JP6818145B2 - Steel material with excellent corrosion resistance in a dew condensation environment containing sulfide and its manufacturing method - Google Patents

Steel material with excellent corrosion resistance in a dew condensation environment containing sulfide and its manufacturing method Download PDF

Info

Publication number
JP6818145B2
JP6818145B2 JP2019528916A JP2019528916A JP6818145B2 JP 6818145 B2 JP6818145 B2 JP 6818145B2 JP 2019528916 A JP2019528916 A JP 2019528916A JP 2019528916 A JP2019528916 A JP 2019528916A JP 6818145 B2 JP6818145 B2 JP 6818145B2
Authority
JP
Japan
Prior art keywords
sulfide
mass
less
corrosion resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019528916A
Other languages
Japanese (ja)
Other versions
JP2020509164A (en
Inventor
ホ パク,ジン
ホ パク,ジン
グン オム,ギョン
グン オム,ギョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020509164A publication Critical patent/JP2020509164A/en
Application granted granted Critical
Publication of JP6818145B2 publication Critical patent/JP6818145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、硫化物を含む結露環境における耐食性に優れた鋼材及びその製造方法に係り、より詳しくは、油槽船、原油タンクなどに用いられる耐食性に優れた鋼材であって、特に硫化物ガスを含む結露環境において優れた耐食性を有する硫化物を含む結露環境における耐食性に優れた鋼材及びその製造方法に関する。 The present invention relates to a steel material having excellent corrosion resistance in a dew condensation environment containing sulfide and a method for producing the same. More specifically, a steel material having excellent corrosion resistance used for oil tankers, crude oil tanks, etc., particularly sulfide gas. The present invention relates to a steel material having excellent corrosion resistance in a dew condensation environment containing sulfide having excellent corrosion resistance in a dew condensation environment including, and a method for producing the same.

船舶に用いられる様々な鋼材のうち、特に油槽船用の原油タンクに用いられる鋼材には、原油タンク内部の環境によって非常に深刻な腐食損傷が発生する。原油タンクの内面では、原油中の揮発成分や混入海水、油田塩水中の塩分防爆のためにタンクの中に送られる不活性ガス、内部温度差による結露などによって、様々な形態の腐食が進み、その腐食速度も一般の塩水環境に比べて格段に大きい。 Of the various steel materials used in ships, especially those used in crude oil tanks for oil tank ships, the environment inside the crude oil tank causes extremely serious corrosion damage. On the inner surface of the crude oil tank, various forms of corrosion progress due to volatile components in crude oil, mixed seawater, inert gas sent into the tank to prevent salt explosion in oil field salt water, and dew condensation due to internal temperature differences. Its corrosion rate is also much higher than that of a general salt water environment.

特に、原油タンクの上板では、原油から蒸発する硫化水素ガスと、防爆のために投入される不活性ガス中のCO、SO、Oなどのガスが、温度差によって鋼材表面に形成された結露と反応して、多量に含まれる硫化水素、二酸化硫黄成分によって腐食が進む。前記結露、即ち、凝縮水による腐食は、薄い水膜で腐食が発生するため、耐候性鋼の大気腐食と類似するが、日較差による水分の結露と乾燥が周期的に繰り返されるという点から、結露腐食(dew point corrosion)として別に分類されている。 In particular, on the upper plate of the crude oil tank, hydrogen sulfide gas evaporating from the crude oil and gases such as CO 2 , SO 2 , and O 2 in the inert gas input for explosion prevention are formed on the surface of the steel material due to the temperature difference. It reacts with the condensed dew and corrosion progresses due to the large amount of hydrogen sulfide and sulfur dioxide components contained. The above-mentioned dew condensation, that is, corrosion due to condensed water, is similar to atmospheric corrosion of weather-resistant steel because corrosion occurs in a thin water film, but dew condensation and drying of water due to daily range are repeated periodically. It is classified separately as dew point corrosion.

昼間は、原油を積載して運航する原油輸送船のデッキヘッド(deck head)の内部温度が50℃まで上昇するため、結露が発生しないが、夜間運航時には、デッキヘッドの内部温度が約25℃に落ちるため、蒸発した水分がデッキヘッドの下部に形成される。30万トン級の原油輸送船の場合、最大30トンの水分がデッキヘッドの上部で結露して腐食を起こすため、前記結露した凝縮水による腐食は無視できない。 During the daytime, the internal temperature of the deck head of a crude oil transport vessel that is loaded with crude oil rises to 50 ° C, so condensation does not occur, but during night operation, the internal temperature of the deck head is about 25 ° C. Evaporated moisture is formed at the bottom of the deck head. In the case of a 300,000-ton class crude oil transport ship, a maximum of 30 tons of water condenses on the upper part of the deck head and causes corrosion, so that the corrosion due to the condensed water that has condensed cannot be ignored.

それだけではなく、原油輸送船のタンクの空き空間には、船体の爆発を防止するために、二酸化炭素、二酸化硫黄などを注入する。このようなガスは、デッキヘッド内に結露が発生すると、原油に既に含まれている硫黄や硫化水素などと共に水分に溶解して酸性凝縮水腐食に近い雰囲気を形成する。一般に、酸性度が高くなれば高くなるほど腐食反応に関与するHイオンの量が増加するため、腐食速度はさらに上昇する。 Not only that, carbon dioxide, sulfur dioxide, etc. are injected into the empty space of the tank of the crude oil transport ship to prevent the hull from exploding. When dew condensation occurs in the deck head, such a gas dissolves in water together with sulfur and hydrogen sulfide already contained in crude oil to form an atmosphere close to acidic condensed water corrosion. In general, the higher the acidity, the higher the amount of H + ions involved in the corrosion reaction, and the higher the corrosion rate.

船舶用鋼材の耐食性を向上させるために、特許文献1が提案された。しかし、特許文献1は、原油に硫化水素が含まれる場合における硫化物による腐食を全く考慮せずに設計されたものであるため、原油タンクに実際に用いるには不十分である。 Patent Document 1 has been proposed in order to improve the corrosion resistance of marine steel materials. However, Patent Document 1 is not sufficient for actual use in a crude oil tank because it is designed without considering corrosion by sulfide when the crude oil contains hydrogen sulfide.

特開2000−017381号公報Japanese Unexamined Patent Publication No. 2000-013781

本発明は、鋼成分を最適化し、成分間の関係を究明することで、硫化物を含む結露環境においても優れた耐食性を確保することができる鋼材とその製造方法を提供することを目的とする。 An object of the present invention is to provide a steel material and a method for producing the same, which can secure excellent corrosion resistance even in a dew condensation environment containing sulfide by optimizing the steel composition and investigating the relationship between the components. ..

本発明の解決課題は、上述の課題に制限されず、言及されていない他の課題は、以下の記載から当業者が明確に理解することができる。 The problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

本発明は、質量%で、C:0.02〜0.2%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.03%以下、S:0.03%以下、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Mo:0.02〜0.5%、Al:0.1%以下、Cr:0.05〜0.5%、Ca:0.001〜0.01%、残りはFeと不可避不純物からなり、
式1で表される硫化物結露腐食感受性指数が1.7以上、2.5以下である、硫化物を含む結露環境における耐食性に優れた鋼材であることを特徴とする。
[式1]
硫化物結露腐食感受性指数=0.4Ca/S+5Cr+6Mo+2Cu+Ni−0.5Mn
但し、Ca、S、Cr、Mo、Cu、Ni及びMnは、元素の含量(質量%)である。
In the present invention, in mass%, C: 0.02 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.03% or less, S : 0.03% or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.02 to 0.5%, Al: 0.1% or less, Cr: 0.05-0.5%, Ca: 0.001-0.01%, the rest consists of Fe and unavoidable impurities.
It is a steel material having a sulfide dew condensation corrosion susceptibility index represented by the formula 1 of 1.7 or more and 2.5 or less, and having excellent corrosion resistance in a dew condensation environment containing sulfide.
[Equation 1]
Sulfide Condensation Corrosion Sensitivity Index = 0.4Ca / S + 5Cr + 6Mo + 2Cu + Ni-0.5Mn
However, Ca, S, Cr, Mo, Cu, Ni and Mn are elemental contents (mass%).

また、本発明は、質量%で、C:0.02〜0.2%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.03%以下、S:0.03%以下、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Mo:0.02〜0.5%、Al:0.1%以下、Cr:0.05〜0.5%、Ca:0.001〜0.01%、残りはFeと不可避不純物からなり、式1で表される硫化物結露腐食感受性指数が1.7以上、2.5以下である鋼スラブを熱間圧延し、冷却して鋼板を製造する方法であって、
前記冷却は、Ar3以上の冷却開始温度と(Ae1−30℃)〜600℃の冷却停止温度の間を10℃/s以上の冷却速度で冷却することを特徴とする。
[式1]
硫化物結露腐食感受性指数=0.4Ca/S+5Cr+6Mo+2Cu+Ni−0.5Mn
但し、Ca、S、Cr、Mo、Cu、Ni及びMnは、元素の含量(質量%)である。
Further, in the present invention, in mass%, C: 0.02 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.03% or less. , S: 0.03% or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.02 to 0.5%, Al: 0.1% or less, Cr: 0.05 to 0.5%, Ca: 0.001 to 0.01%, the rest consists of Fe and unavoidable impurities, and the sulfide condensation corrosion susceptibility index represented by the formula 1 is 1.7 or more, 2 A method of hot rolling a steel slab of .5 or less and cooling it to manufacture a steel sheet.
The cooling is characterized by cooling at a cooling rate of 10 ° C./s or more between a cooling start temperature of Ar3 or higher and a cooling stop temperature of (Ae1-30 ° C.) to 600 ° C.
[Equation 1]
Sulfide condensation corrosion susceptibility index = 0.4Ca / S + 5Cr + 6Mo + 2Cu + Ni-0.5Mn
However, Ca, S, Cr, Mo, Cu, Ni and Mn are elemental contents (mass%).

本発明によると、鋼成分を最適化して硫化物結露腐食感受性指数を満たすことにより、硫化物結露腐食に対する抵抗性を向上させることができる。 According to the present invention, the resistance to sulfide condensation corrosion can be improved by optimizing the steel composition and satisfying the sulfide condensation corrosion susceptibility index.

本発明において硫化物結露試験を模擬するための試験装置を示す図である。It is a figure which shows the test apparatus for simulating the sulfide dew condensation test in this invention. 本発明の実施形態によって硫化物結露腐食実験を100日間行った試験結果を観察した写真である。It is a photograph which observed the test result which carried out the sulfide dew condensation corrosion experiment for 100 days by embodiment of this invention.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の発明者らは、上述の従来技術の問題点を解決するために研究を重ねた。その結果、硫化物ガスを含む結露環境において腐食に対する抵抗性を高めるためには、各成分の組成を下記のように適切に制御することが好ましく、また結露腐食の感受性に影響を与えるCa、S、Cr、Mo、Ni、Mnなどの成分間の関係を適切に制御する必要があることを見出し、本発明を完成するに至った。 The inventors of the present invention have conducted research in order to solve the above-mentioned problems of the prior art. As a result, in order to increase the resistance to corrosion in a dew condensation environment containing sulfide gas, it is preferable to appropriately control the composition of each component as described below, and Ca and S which affect the sensitivity to dew condensation corrosion. , Cr, Mo, Ni, Mn and the like, and found that it is necessary to appropriately control the relationship between the components, and completed the present invention.

まず、本発明による鋼材の合金組成範囲について詳細に説明する。本発明の鋼材は、質量%で、C:0.02〜0.2%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.03%以下、S:0.03%以下、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Mo:0.02〜0.5%、Al:0.1%以下、Cr:0.05〜0.5%、Ca:0.001〜0.01%、残りはFeと不可避不純物からなる。 First, the alloy composition range of the steel material according to the present invention will be described in detail. The steel material of the present invention has C: 0.02 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.03% or less in mass%. , S: 0.03% or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.02 to 0.5%, Al: 0.1% or less, Cr: 0.05 to 0.5%, Ca: 0.001 to 0.01%, and the rest consists of Fe and unavoidable impurities.

炭素(C):0.02〜0.2質量%
Cは、強度を向上させるために添加される元素であり、その含量を増加させると、焼入れ性を向上させて強度を向上させることができる。しかし、添加量が増加するにつれて耐全面腐食性を阻害し、炭化物などの析出を助長するため、耐局部腐食性にも一部影響を及ぼす。耐全面腐食性及び耐局部腐食性を向上させるためには、C含量を減らす必要があるが、Cが0.02質量%未満であると、強度を確保し難く、0.2質量%を超えると、溶接性が劣化するため溶接構造物用鋼として好ましくない。したがって、その範囲を0.02〜0.2質量%とすることが好ましい。耐食性の観点からは、Cを0.16質量%以下とすることがより好ましく、鋳造割れを防止し、且つ炭素当量を減らすためには、0.14質量%以下とすることがさらに好ましい。
Carbon (C): 0.02-0.2% by mass
C is an element added to improve the strength, and when the content thereof is increased, the hardenability can be improved and the strength can be improved. However, as the amount of addition increases, the total corrosion resistance is inhibited and the precipitation of carbides and the like is promoted, so that the local corrosion resistance is also partially affected. In order to improve the total corrosion resistance and the local corrosion resistance, it is necessary to reduce the C content, but if C is less than 0.02% by mass, it is difficult to secure the strength and exceeds 0.2% by mass. This is not preferable as a steel for welded structures because the weldability deteriorates. Therefore, the range is preferably 0.02 to 0.2% by mass. From the viewpoint of corrosion resistance, C is more preferably 0.16% by mass or less, and further preferably 0.14% by mass or less in order to prevent casting cracks and reduce the carbon equivalent.

シリコン(Si):0.1〜1.0質量%
Siは、脱酸剤として作用するだけではなく、鋼の強度を上昇させる元素としてその役割を発揮するためには、0.1質量%以上の含量が必要である。また、Siは耐全面腐食性の向上に寄与するため、含量を増加させることが有利であるが、Siの含量が1.0質量%を超えると、靭性及び溶接性を阻害し、圧延時にスケールの剥離が困難になるため、スケールによる表面欠陥などが引き起こされる。したがって、その含量を0.1〜1.0質量%に制限することが好ましい。耐食性の向上のためには、Siを0.2質量%以上添加することがより好ましい。
Silicon (Si): 0.1 to 1.0% by mass
Si must have a content of 0.1% by mass or more in order not only to act as an antacid but also to exert its role as an element for increasing the strength of steel. Further, since Si contributes to the improvement of overall corrosion resistance, it is advantageous to increase the content, but if the Si content exceeds 1.0% by mass, toughness and weldability are impaired, and scale is achieved during rolling. Since it becomes difficult to peel off, surface defects due to scale are caused. Therefore, it is preferable to limit the content to 0.1 to 1.0% by mass. In order to improve the corrosion resistance, it is more preferable to add 0.2% by mass or more of Si.

マンガン(Mn):0.2〜2.0質量%
Mnは、靭性を低下させることなく強度を上昇させるのに有効な成分である。しかし、過量に添加した場合には、腐食反応時に鋼材表面の電気化学反応速度を上昇させて耐食性を低下させることもある。Mnが0.2質量%未満添加されると、構造用鋼材の耐久性を確保し難く、含量が増加すると、焼入れ性が増加して強度が上昇するが、2.0質量%を超えて添加されると、溶接性及び耐食性が低下するという問題がある。したがって、Mn含量を0.2〜2.0質量%とすることが好ましい。
Manganese (Mn): 0.2 to 2.0% by mass
Mn is an effective component for increasing strength without reducing toughness. However, when added in an excessive amount, the electrochemical reaction rate on the surface of the steel material may be increased during the corrosion reaction to reduce the corrosion resistance. If Mn is added in an amount of less than 0.2% by mass, it is difficult to secure the durability of the structural steel material, and if the content is increased, the hardenability increases and the strength increases, but it is added in an amount exceeding 2.0% by mass. If this is done, there is a problem that weldability and corrosion resistance are lowered. Therefore, the Mn content is preferably 0.2 to 2.0% by mass.

リン(P):0.03質量%以下
Pは不純物元素であり、その含量が0.03質量%を超えると、溶接性が著しく低下するだけでなく、靭性が劣化するため、その含量を0.03質量%以下に制限することが好ましい。
Phosphorus (P): 0.03% by mass or less P is an impurity element, and if its content exceeds 0.03% by mass, not only the weldability is significantly reduced, but also the toughness is deteriorated, so the content is set to 0. It is preferable to limit it to 0.03% by mass or less.

硫黄(S):0.03質量%以下
Sも不純物元素であり、その含量が0.03質量%を超えると、鋼の延性、衝撃靭性及び溶接性が劣化するという問題がある。したがって、その含量を0.03質量%以下に制限することが好ましい。特に、SはMnと反応してMnSのように延伸介在物を形成しやすく、延伸介在物の両端に存在する空孔は局部腐食の開始点となるため、その含量を0.01質量%以下に制限することがより好ましい。
Sulfur (S): 0.03% by mass or less S is also an impurity element, and if its content exceeds 0.03% by mass, there is a problem that the ductility, impact toughness and weldability of steel deteriorate. Therefore, it is preferable to limit the content to 0.03% by mass or less. In particular, S easily reacts with Mn to form stretching inclusions like MnS, and the pores existing at both ends of the stretching inclusions serve as the starting points of local corrosion, so the content thereof is 0.01% by mass or less. It is more preferable to limit to.

銅(Cu):0.05〜0.5質量%
Cuは、Niと共に0.05質量%以上含有させると、Feの溶出を遅延させて耐全面腐食性及び耐局部腐食性の向上に有効となる。しかし、0.5質量%を超えると、スラブ製造時に液体状態のCuが粒界に溶け込んで熱間加工中にクラックを発生させる赤熱脆性(Hot Shortness)現象を引き起こすため、その含量は0.05〜0.5質量%とすることが好ましい。スラブ製造時に発生する表面割れは、C、Ni、Mn含量と相互作用をするため、各元素の含量によって表面割れの発生頻度は変わるが、Cu含量を0.5質量%以下とすることが最も好ましい。
Copper (Cu): 0.05 to 0.5% by mass
When Cu is contained in an amount of 0.05% by mass or more together with Ni, the elution of Fe is delayed and it is effective in improving the total corrosion resistance and the local corrosion resistance. However, if it exceeds 0.5% by mass, Cu in a liquid state dissolves in the grain boundaries during slab production and causes a red hot brittleness phenomenon that causes cracks during hot working, so the content is 0.05. It is preferably ~ 0.5% by mass. Since surface cracks generated during slab production interact with the C, Ni, and Mn contents, the frequency of surface cracks varies depending on the content of each element, but the Cu content is best set to 0.5% by mass or less. preferable.

ニッケル(Ni):0.05〜0.5質量%
Niは、Cuと同様に0.05質量%以上含有させると、耐全面腐食性及び耐局部腐食性の向上に有効となる。また、Cuと共に添加すると、Cuと反応して低融点のCu相の生成を抑制し、赤熱脆性を抑制する効果もある。Niは母材の靭性向上にも有効な元素である。しかし、Niは高価な元素であり、0.5質量%を超えて添加することは経済性や溶接性の側面で不利であるため、その含量を0.05〜0.5質量%とすることが好ましい。
Nickel (Ni): 0.05 to 0.5% by mass
When Ni is contained in an amount of 0.05% by mass or more like Cu, it is effective in improving the total corrosion resistance and the local corrosion resistance. When added together with Cu, it also has the effect of reacting with Cu to suppress the formation of a Cu phase having a low melting point and suppress red hot brittleness. Ni is an element that is also effective in improving the toughness of the base metal. However, Ni is an expensive element, and adding more than 0.5% by mass is disadvantageous in terms of economy and weldability, so the content should be 0.05 to 0.5% by mass. Is preferable.

Niが耐腐食性の向上に及ぼす影響はCuに比べて高くない。したがって、耐食性の向上のためにNiを多く添加するよりは、Cu添加による表面割れを抑制するために、NiをCu含量以上、Cu含量の1.5倍以下を含有することがより好ましく、その含量を0.3質量%以下に制限することがより好ましい。 The effect of Ni on the improvement of corrosion resistance is not higher than that of Cu. Therefore, rather than adding a large amount of Ni to improve corrosion resistance, it is more preferable to contain Ni in an amount of Cu content or more and 1.5 times or less of the Cu content in order to suppress surface cracking due to the addition of Cu. It is more preferable to limit the content to 0.3% by mass or less.

モリブデン(Mo):0.02〜0.5質量%
Moは、耐腐食性及び強度向上に寄与する元素であり、その効果を奏するためには、0.02質量%以上添加する必要がある。しかし、Moが耐腐食性を向上させるためには鋼材中に固溶しなければならない。即ち、固溶したMoは、硫化水素を含む凝縮水に対する耐食性を向上させるが、固溶限度を超えて含有されたMoはSと反応してMoSを形成し、耐食性を低下させるため、Moが過量に添加されると、硫化水素を含む凝縮水に対する耐食性が低下する。したがって、その上限は0.5質量%であることが好ましい。また、Moの析出物は、強度を向上させる作用をするが、粗大に析出したMoは鋼の局部腐食を生じさせることがあるため、0.1質量%以下添加することがより好ましい。
Molybdenum (Mo): 0.02-0.5% by mass
Mo is an element that contributes to the improvement of corrosion resistance and strength, and it is necessary to add 0.02% by mass or more in order to exert its effect. However, in order for Mo to improve corrosion resistance, it must be solid-solved in the steel material. That is, the solid-dissolved Mo improves the corrosion resistance to condensed water containing hydrogen sulfide, but the Mo contained in excess of the solid-solution limit reacts with S to form Mo 2 S, which lowers the corrosion resistance. If Mo is added in an excessive amount, the corrosion resistance to condensed water containing hydrogen sulfide is lowered. Therefore, the upper limit is preferably 0.5% by mass. Further, the precipitate of Mo acts to improve the strength, but the coarsely precipitated Mo may cause local corrosion of steel, so it is more preferable to add 0.1% by mass or less.

アルミニウム(Al):0.1質量%以下
Alは、脱酸のために添加される元素であり、鋼中のNと反応してAlNを形成し、オーステナイト結晶粒を微細化させて靭性を向上させる元素である。しかし、0.1質量%を超えて過剰に含有すると、製鋼工程で粗大な酸化物に介在物を形成し、Al oxide系の特徴によって圧延中に破砕されて長く伸びる延伸介在物を形成する。このような延伸介在物の形成は、介在物の周辺に空孔の形成を助長し、このような空孔は局部腐食の開始点として作用するため、耐局部腐食性を阻害する。したがって、Al含量は0.1質量%以下とすることが好ましい。Alを添加しても、Siなどの他の脱酸元素によって脱酸効果を得ることができるため、Alの下限は特に制限しない。但し、Alによる脱酸効果を期待するためには、Alは少なくとも0.001質量%以上添加することが好ましい。
Aluminum (Al): 0.1% by mass or less Al is an element added for deoxidation, reacts with N in steel to form AlN, and refines austenite crystal grains to improve toughness. It is an element that causes. However, if it is excessively contained in excess of 0.1% by mass, inclusions are formed in the coarse oxide in the steelmaking process, and due to the characteristics of the aluminum system, stretch inclusions that are crushed during rolling and elongated during rolling are formed. The formation of such stretched inclusions promotes the formation of pores around the inclusions, and such pores act as a starting point for local corrosion, thus inhibiting local corrosion resistance. Therefore, the Al content is preferably 0.1% by mass or less. Even if Al is added, the deoxidizing effect can be obtained by other deoxidizing elements such as Si, so that the lower limit of Al is not particularly limited. However, in order to expect the deoxidizing effect of Al, it is preferable to add at least 0.001% by mass or more of Al.

クロム(Cr):0.05〜0.5質量%
Crは、腐食環境における鋼材表面にCrを含む酸化膜を形成して耐食性を上昇させる元素である。Crの添加による耐食性の効果を奏するためには、0.05質量%以上含有する必要がある。しかし、Crが0.5質量%を超えて過剰に含有されると、靭性と溶接性に悪影響を及ぼすため、その含量を質量%で0.05〜0.5質量%とすることが好ましい。
Chromium (Cr): 0.05 to 0.5% by mass
Cr is an element that forms an oxide film containing Cr on the surface of a steel material in a corrosive environment to increase corrosion resistance. In order to obtain the effect of corrosion resistance due to the addition of Cr, it is necessary to contain 0.05% by mass or more. However, if Cr is excessively contained in excess of 0.5% by mass, the toughness and weldability are adversely affected. Therefore, the content is preferably 0.05 to 0.5% by mass in mass%.

カルシウム(Ca):0.001〜0.01質量%
Caは、溶鋼中でAl、Si、Oと反応して複合酸化物を形成し、次いでSと反応してCaSを形成する。このようなCaS介在物は、結露環境において水に溶解して鋼材表面のpHを上昇させることで鋼材の電気化学反応を抑制して安全相の形成を促進し、耐腐食特性を向上させる。Caが耐腐食特性を向上させるためには、少なくとも0.001質量%以上添加する必要があるが、0.01質量%を超えると、製鋼工程時に耐火物の溶損を引き起こすという問題点があるため、その含量を0.001〜0.01質量%とすることが好ましい。また、硫化物結露腐食感受性指数を確保するためには、0.002質量%以上添加することがより好ましい。
Calcium (Ca): 0.001 to 0.01% by mass
Ca reacts with Al, Si, and O in molten steel to form a composite oxide, and then reacts with S to form CaS. Such CaS inclusions dissolve in water in a dew condensation environment to raise the pH of the steel material surface, thereby suppressing the electrochemical reaction of the steel material, promoting the formation of a safe phase, and improving the corrosion resistance characteristics. In order to improve the corrosion resistance of Ca, it is necessary to add at least 0.001% by mass, but if it exceeds 0.01% by mass, there is a problem that the refractory is melted and damaged during the steelmaking process. Therefore, the content is preferably 0.001 to 0.01% by mass. Further, in order to secure the sulfide dew condensation corrosion susceptibility index, it is more preferable to add 0.002% by mass or more.

前記成分以外にも、残りはFe及び不可避不純物からなる。但し、本発明の技術的思想を逸脱しない範囲内で、他の合金元素の添加を排除しない。 In addition to the above components, the rest consists of Fe and unavoidable impurities. However, the addition of other alloying elements is not excluded within the range not deviating from the technical idea of the present invention.

一方、本発明の鋼材は、式1で定義される硫化物結露腐食感受性指数が1.7〜2.3を満たすことが好ましい。
[関係式1]
硫化物結露腐食感受性指数=0.4Ca/S+5Cr+6Mo+2Cu+Ni−0.5Mn
但し、Ca、S、Cr、Mo、Cu、Ni及びMnは、該当元素の含量(質量%)である。
On the other hand, the steel material of the present invention preferably satisfies the sulfide dew condensation corrosion susceptibility index defined by the formula 1 from 1.7 to 2.3.
[Relationship formula 1]
Sulfide condensation corrosion susceptibility index = 0.4Ca / S + 5Cr + 6Mo + 2Cu + Ni-0.5Mn
However, Ca, S, Cr, Mo, Cu, Ni and Mn are the contents (mass%) of the corresponding element.

Ca、Cr、Mo、Cu、Ni、Mnは、添加量によって硫化物結露環境における耐食性効果に影響を与える要素である。これら各成分が耐食性に及ぼす影響を定量的に導出して、これらの関係を式1で示した。式1で定義される硫化物結露腐食感受性指数が1.7〜2.5であると、該当環境において優れた耐食性を確保することができる。 Ca, Cr, Mo, Cu, Ni, and Mn are factors that affect the corrosion resistance effect in the sulfide dew condensation environment depending on the amount added. The effect of each of these components on corrosion resistance was quantitatively derived, and the relationship between them was shown by Equation 1. When the sulfide dew condensation corrosion susceptibility index defined by the formula 1 is 1.7 to 2.5, excellent corrosion resistance can be ensured in the corresponding environment.

上述の有利な組成を有する本発明の鋼材は、本発明が属する技術分野における通常の知識を有する者であれば、実験を過度に繰り返すことなく、本発明が属する技術分野における通常の知識を利用して容易に製造することができる。但し、本発明では本発明の発明者が見出したより有利な製造方法、例えば、前記鋼板を製造する方法を提案する。 The steel material of the present invention having the above-mentioned advantageous composition can utilize the ordinary knowledge in the technical field to which the present invention belongs without excessively repeating the experiment, if the person has ordinary knowledge in the technical field to which the present invention belongs. Can be easily manufactured. However, the present invention proposes a more advantageous manufacturing method found by the inventor of the present invention, for example, a method for manufacturing the steel sheet.

即ち、本発明の鋼材の製造方法は、通常の方法で熱間圧延した後、冷却して鋼材を製造する方法であって、冷却開始温度がAr3温度以上であり、冷却停止温度が(Ae1−30℃)〜600℃の範囲となるように、10℃/s以上の冷却速度で冷却を行うことを特徴とする。以下、本発明の冷却条件について説明する。 That is, the method for producing a steel material of the present invention is a method for producing a steel material by hot rolling by a usual method and then cooling, and the cooling start temperature is Ar3 temperature or higher and the cooling stop temperature is (Ae1-). It is characterized in that cooling is performed at a cooling rate of 10 ° C./s or more so as to be in the range of 30 ° C.) to 600 ° C. Hereinafter, the cooling conditions of the present invention will be described.

冷却区間:Ar3以上から(Ae1−30℃)〜600℃まで冷却
本発明者らの実験結果によると、本発明において有利な効果を得るために添加するMoが析出物を多量に形成する場合、全面腐食または局部腐食などに悪影響を及ぼす。逆にMoが過剰に固溶する場合には、硫化水素を含む環境における耐食性に悪影響を及ぼす。したがって、析出物を形成するMoと固溶するMoの比を適切に制御する必要があるが、Moは700〜550℃の間の温度で析出物を形成する傾向があるため、Moが析出物を形成しないようにその区間の一部を迅速に冷却させ、残りの一部は、過剰に固溶しないように徐冷する必要がある。
Cooling section: Cooling from Ar3 or higher (Ae1-30 ° C) to 600 ° C According to the experimental results of the present inventors, when Mo added to obtain a favorable effect in the present invention forms a large amount of precipitates, It has an adverse effect on total corrosion or local corrosion. On the contrary, when Mo is excessively dissolved, it adversely affects the corrosion resistance in the environment containing hydrogen sulfide. Therefore, it is necessary to appropriately control the ratio of Mo that forms a precipitate to Mo that dissolves in a solid solution. However, since Mo tends to form a precipitate at a temperature between 700 and 550 ° C, Mo is a precipitate. It is necessary to cool a part of the section quickly so as not to form a solid solution, and slowly cool the remaining part so as not to excessively dissolve.

また、Ar3以下の温度で冷却を開始する場合には、Cuがパーライトに偏析してパーライトとフェライトのガルバニック対による腐食によって腐食がさらに加速される。したがって、冷却はAr3以上の温度で開始される必要があり、冷却は、パーライトは形成されないが、Moなどの析出物は適切に形成されるようにする温度であるAe1−30℃以下まで行われる必要がある。また、冷却によって温度が下がりすぎると、Moが適切に析出されず、過剰に固溶することから、硫化水素を含む凝縮雰囲気でMoはSと結合してMoSを形成し、結果的に鋼材の耐食性を悪化させる恐れがある。したがって、冷却は、600℃以上の温度で終了する必要がある。 Further, when cooling is started at a temperature of Ar3 or less, Cu segregates into pearlite and corrosion due to the galvanic pair of pearlite and ferrite further accelerates the corrosion. Therefore, cooling needs to be started at a temperature of Ar3 or higher, and cooling is carried out to Ae1-30 ° C. or lower, which is a temperature at which pearlite is not formed but precipitates such as Mo are properly formed. There is a need. In addition, if the temperature drops too much due to cooling, Mo will not be properly precipitated and will dissolve excessively. Therefore, Mo will combine with S to form Mo 2 S in a condensed atmosphere containing hydrogen sulfide, resulting in Mo 2 S. There is a risk of deteriorating the corrosion resistance of steel materials. Therefore, cooling needs to be completed at a temperature of 600 ° C. or higher.

冷却速度:10℃/s以上
冷却速度が低い場合には、上述のようにMoの析出物が容易に形成される温度範囲を経由する時間が増加するため、析出物が過剰に形成される恐れがある。したがって、冷却速度は10℃/s以上である必要がある。冷却速度が高くても本発明の目的達成には何ら問題がないため、冷却速度の上限を定める必要はない。但し、非常に高い冷却速度を適用するためには、冷却設備能力に限界があるという点を考慮して、その上限を50℃/sと定めることもできる。
Cooling rate: 10 ° C./s or more When the cooling rate is low, the time required for passing through the temperature range in which Mo precipitates are easily formed increases as described above, so that the precipitates may be excessively formed. There is. Therefore, the cooling rate needs to be 10 ° C./s or higher. Since there is no problem in achieving the object of the present invention even if the cooling rate is high, it is not necessary to set an upper limit of the cooling rate. However, in order to apply a very high cooling rate, the upper limit can be set to 50 ° C./s in consideration of the fact that the cooling equipment capacity is limited.

以下、本発明の実施例について詳細に説明する。下記実施例は、本発明の理解を助けるためのものであり、本発明を限定するものではない。 Hereinafter, examples of the present invention will be described in detail. The following examples are for facilitating the understanding of the present invention and are not intended to limit the present invention.

(実施例)
表1のような組成(質量%、残りはFeと不可避不純物である)を有する溶鋼を設けた後、連続鋳造を用いて鋼スラブを製造した。続いて、製造された鋼スラブを通常の条件で熱間圧延した後、表2の条件で冷却した。
(Example)
After providing molten steel having the composition as shown in Table 1 (mass%, the rest being Fe and unavoidable impurities), a steel slab was produced by continuous casting. Subsequently, the produced steel slab was hot-rolled under normal conditions and then cooled under the conditions shown in Table 2.

表1から分かるように、発明鋼はいずれも、本発明で規定する成分範囲を満たす組成を有する鋼板を意味する。しかし、比較鋼1、5、6は、Mo、Cu、Crなど本発明で必須添加元素として選定した元素が添加されていない場合を示す。また、比較鋼2、3、4、7及び8は、必須元素を添加したものの、後述するように、式1で表した硫化物結露腐食感受性指数が1.7未満または2.5を超えて、要求範囲を満たさない場合を示す。このような比較鋼の成分は、発明鋼に比べて耐食性が著しく低下して、硫化物結露腐食環境では鋼材の腐食を防ぐことができないため、耐久性が低下し、交換周期が短くなる恐れがある。 As can be seen from Table 1, each of the invention steels means a steel sheet having a composition satisfying the component range specified in the present invention. However, Comparative Steels 1, 5 and 6 show the case where the elements selected as essential additive elements in the present invention such as Mo, Cu and Cr are not added. Further, although the comparative steels 2, 3, 4, 7 and 8 have the essential elements added, the sulfide dew condensation corrosion susceptibility index represented by the formula 1 is less than 1.7 or more than 2.5, as will be described later. , Indicates a case where the required range is not satisfied. Such a component of the comparative steel has a significantly lower corrosion resistance than the invention steel and cannot prevent the steel material from corroding in a sulfide condensation corrosion environment, so that the durability may be lowered and the replacement cycle may be shortened. is there.

表3には、発明鋼及び比較鋼の硫化物結露腐食感受性指数と腐食速度を測定した結果を示した。表3に示した腐食速度は、図1に示した装置を用いて測定した結果である。即ち、図1に示すように、硫化物結露環境を模擬するために、密閉容器内に蒸留水を満たした後、SO、HS、CO、Oなどの腐食性ガスを蒸留水中に継続的に充填した。その後、腐食速度を測定するための60mm×20mm×5mmサイズの試験片を#600のサンドペーパーで研磨した後に密閉容器の上部に位置させた。密閉容器の蓋は、ガス入口、出口及び加熱/冷却水循環システムを有しており、密閉した後に容器を恒温槽内に設置し、且つ(50℃、20時間)→(25℃、4時間)の温度サイクルを100日間行った。試験装置に注入されたガスは、原油タンク上甲板の硫化物結露腐食環境を模擬したガスであって、下記の組成を有する。
ガス組成:体積%で、5%O−15%CO−0.011%SO−0.055%HS−残りN
Table 3 shows the results of measuring the sulfide condensation corrosion susceptibility index and the corrosion rate of the invention steel and the comparative steel. The corrosion rates shown in Table 3 are the results measured using the apparatus shown in FIG. That is, as shown in FIG. 1, in order to simulate a sulfide dew condensation environment, after filling a closed container with distilled water, corrosive gases such as SO 2 , H 2 S, CO 2 , and O 2 are added to the distilled water. Was continuously filled. Then, a 60 mm × 20 mm × 5 mm size test piece for measuring the corrosion rate was sanded with # 600 sandpaper and then placed on the upper part of the closed container. The lid of the closed container has a gas inlet, outlet and heating / cooling water circulation system, and after sealing, the container is installed in a constant temperature bath, and (50 ° C, 20 hours) → (25 ° C, 4 hours). The temperature cycle of was carried out for 100 days. The gas injected into the test apparatus is a gas simulating the sulfide condensation and corrosion environment on the upper deck of the crude oil tank, and has the following composition.
Gas composition: by volume%, 5% O 2 -15% CO 2 -0.011% SO 2 -0.055% H 2 S- remainder N 2

100日間の腐食試験を行った後、腐食生成物除去溶液で錆除去処理した後、各試験片の質量減少量を初期の試験片の表面積で割った。相対比較のために、比較鋼1の腐食速度を100とし、表3に相対腐食速度を示した。 After performing a corrosion test for 100 days, the rust was removed with a corrosion product removing solution, and then the mass loss of each test piece was divided by the surface area of the initial test piece. For relative comparison, the corrosion rate of the comparative steel 1 was set to 100, and the relative corrosion rate is shown in Table 3.

表2から確認できるように、Mo、Cu、Crなどの耐食性元素を全く添加しないか、または十分に添加しない状態において硫化物結露腐食感受性指数が本発明で提案する1.7超2.3未満の範囲を満たさない場合、発明鋼に比べて相対腐食速度が最大2倍ほど高いことが分かった。このような現象は程度の差はあるものの、比較鋼全体で発生した。これは、本発明で提示した硫化物結露腐食感受性指数を満たさなかったことが原因であると判断される。 As can be confirmed from Table 2, the sulfide condensation corrosion susceptibility index proposed in the present invention is more than 1.7 and less than 2.3 in the state where no corrosion-resistant elements such as Mo, Cu, and Cr are added or not sufficiently added. It was found that the relative corrosion rate was up to twice as high as that of the invention steel when the above range was not satisfied. Such a phenomenon occurred in the whole comparative steel to varying degrees. It is determined that this is because the sulfide condensation corrosion susceptibility index presented in the present invention was not satisfied.

一方、図2は硫化物結露腐食実験を100日間行った後、前記発明鋼1〜7と比較鋼1〜8の試験片を観察した写真である。上述のように、硫化物結露腐食感受性指数が本発明の関係式1で提案した範囲である1.7以上2.5以下を満たす発明鋼1〜7の場合、腐食生成物は色が明るく稠密な構造を有していたが、そのほかの比較鋼1〜8の場合は、肉眼で区分できるほど多孔質で色の暗い腐食生成物が示されることが確認できる。 On the other hand, FIG. 2 is a photograph of the test pieces of the invention steels 1 to 7 and the comparative steels 1 to 8 observed after the sulfide dew condensation corrosion experiment was carried out for 100 days. As described above, in the case of the invention steels 1 to 7 in which the sulfide dew condensation corrosion susceptibility index satisfies the range of 1.7 or more and 2.5 or less, which is the range proposed by the relational expression 1 of the present invention, the corrosion product is bright and dense in color. However, in the case of the other comparative steels 1 to 8, it can be confirmed that the corrosion products are so porous and dark in color that they can be distinguished with the naked eye.

上述のように、表3と図2から確認できるように、硫化物結露腐食を防止するためには、本発明で提案した硫化物結露腐食感受性指数を満たさなければならず、硫化物結露腐食感受性指数を満たさない場合には、該当環境で鋼材が安定的に用いられるだけの十分な耐食性を確保できず、該当構造物の寿命を確保することができない。 As described above, as can be confirmed from Table 3 and FIG. 2, in order to prevent sulfide condensation corrosion, the sulfide condensation corrosion susceptibility index proposed in the present invention must be satisfied, and sulfide condensation corrosion susceptibility is satisfied. If the index is not satisfied, sufficient corrosion resistance for stable use of the steel material in the relevant environment cannot be ensured, and the life of the relevant structure cannot be ensured.

Claims (6)

質量%で、C:0.02〜0.2%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.03%以下、S:0.03%以下、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Mo:0.02〜0.5%、Al:0.1%以下、Cr:0.05〜0.5%、Ca:0.001〜0.01%、残りはFe及び不可避不純物からなり、
式1で表される硫化物結露腐食感受性指数が1.78以上2.5以下であることを特徴とする硫化物を含む結露環境における耐食性に優れた鋼材。
[関係式1]
硫化物結露腐食感受性指数=0.4Ca/S+5Cr+6Mo+2Cu+Ni−0.5Mn
但し、Ca、S、Cr、Mo、Cu、Ni及びMnは、該当元素の含量(質量%)である。
By mass%, C: 0.02 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.03% or less, S: 0.03 % Or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.02 to 0.5%, Al: 0.1% or less, Cr: 0.05 to 0.5%, Ca: 0.001-0.01%, the rest consists of Fe and unavoidable impurities.
A steel material having excellent corrosion resistance in a dew condensation environment containing sulfide, which has a sulfide dew condensation corrosion susceptibility index represented by the formula 1 of 1.78 or more and 2.5 or less.
[Relationship formula 1]
Sulfide condensation corrosion susceptibility index = 0.4Ca / S + 5Cr + 6Mo + 2Cu + Ni-0.5Mn
However, Ca, S, Cr, Mo, Cu, Ni and Mn are the contents (mass%) of the corresponding element.
前記Ni成分は、Cu含量以上、Cu含量の1.5倍以下を含むことを特徴とする請求
項1に記載の硫化物を含む結露環境における耐食性に優れた鋼材。
The steel material having excellent corrosion resistance in a dew condensation environment containing the sulfide according to claim 1, wherein the Ni component contains Cu content or more and 1.5 times or less of Cu content.
前記Caは、0.002〜0.01%であることを特徴とする請求項1に記載の硫化物
を含む結露環境における耐食性に優れた鋼材。
The steel material having excellent corrosion resistance in a dew condensation environment containing the sulfide according to claim 1, wherein Ca is 0.002 to 0.01%.
質量%で、C:0.02〜0.2%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.03%以下、S:0.03%以下、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Mo:0.02〜0.5%、Al:0.1%以下、Cr:0.05〜0.5%、Ca:0.001〜0.01%、残りはFeと不可避不純物からなり、式1で表される硫化物結露腐食感受性指数が1.78以上2.5以下である鋼スラブを熱間圧延し、冷却して鋼板を製造する方法であって、
前記冷却は、Ar3以上の冷却開始温度と(Ae1−30℃)〜600℃の冷却停止温度の間を10℃/s以上の冷却速度で冷却することを特徴とする硫化物を含む結露環境における耐食性に優れた鋼材の製造方法。
[関係式1]
硫化物結露腐食感受性指数=0.4Ca/S+5Cr+6Mo+2Cu+Ni−0.5Mn
但し、Ca、S、Cr、Mo、Cu、Ni及びMnは、該当元素の含量(質量%)である。
By mass%, C: 0.02 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.03% or less, S: 0.03 % Or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.02 to 0.5%, Al: 0.1% or less, Cr: 0.05 to 0.5%, Ca: 0.001 to 0.01%, the rest consists of Fe and unavoidable impurities, and the sulfide dew corrosion susceptibility index represented by Equation 1 is 1.78 or more and 2.5 or less. Is a method of hot rolling and cooling to manufacture steel sheets.
The cooling is performed in a sulfide-containing dew condensation environment characterized by cooling at a cooling rate of 10 ° C./s or higher between a cooling start temperature of Ar3 or higher and a cooling stop temperature of (Ae1-30 ° C.) to 600 ° C. A method for manufacturing steel materials with excellent corrosion resistance.
[Relationship formula 1]
Sulfide condensation corrosion susceptibility index = 0.4Ca / S + 5Cr + 6Mo + 2Cu + Ni-0.5Mn
However, Ca, S, Cr, Mo, Cu, Ni and Mn are the contents (mass%) of the corresponding element.
前記Ni成分は、Cu含量以上、Cu含量の1.5倍以下を含むことを特徴とする請求
項4に記載の硫化物を含む結露環境における耐食性に優れた鋼材の製造方法。
The method for producing a steel material having excellent corrosion resistance in a dew condensation environment containing a sulfide according to claim 4, wherein the Ni component contains Cu content or more and 1.5 times or less of Cu content.
前記Caは、0.002〜0.01%であることを特徴とする請求項4に記載の硫化物
を含む結露環境における耐食性に優れた鋼材の製造方法。
The method for producing a steel material having excellent corrosion resistance in a dew condensation environment containing sulfide according to claim 4, wherein Ca is 0.002 to 0.01%.
JP2019528916A 2016-12-22 2017-12-21 Steel material with excellent corrosion resistance in a dew condensation environment containing sulfide and its manufacturing method Active JP6818145B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0177202 2016-12-22
KR1020160177202A KR101889195B1 (en) 2016-12-22 2016-12-22 Steel having excellent corrosion resitance in condensed water containing surfide and method for manufacturing the same
PCT/KR2017/015294 WO2018117715A1 (en) 2016-12-22 2017-12-21 Steel material having excellent corrosion resistance in dew condensation environment containing sulfide and method for producing same

Publications (2)

Publication Number Publication Date
JP2020509164A JP2020509164A (en) 2020-03-26
JP6818145B2 true JP6818145B2 (en) 2021-01-20

Family

ID=62626952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019528916A Active JP6818145B2 (en) 2016-12-22 2017-12-21 Steel material with excellent corrosion resistance in a dew condensation environment containing sulfide and its manufacturing method

Country Status (6)

Country Link
US (1) US20200087766A1 (en)
EP (1) EP3561126B1 (en)
JP (1) JP6818145B2 (en)
KR (1) KR101889195B1 (en)
CN (1) CN110088345A (en)
WO (1) WO2018117715A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428051A (en) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 Dew point corrosion assessment device with controllable condensation temperature

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115611A (en) * 1977-03-19 1978-10-09 Nippon Steel Corp Method for low-alloyed steel of high carbon content for welding use excellent in weld crack resistance
JPH07188838A (en) * 1993-12-27 1995-07-25 Nippon Steel Corp Thick steel plate for pressure vessel excellent in sohic resistance in wet hydrogen sulfide environment
JP3860666B2 (en) 1998-07-03 2006-12-20 新日本製鐵株式会社 Corrosion resistant steel for cargo oil tanks
JP3570376B2 (en) * 2000-12-04 2004-09-29 Jfeスチール株式会社 Steel material excellent in corrosion resistance of crude oil tank and its manufacturing method
KR20060012952A (en) 2004-08-05 2006-02-09 엔에이치엔(주) Internet game service system capable of using customized sound effect for victory and method thereof
JP5014831B2 (en) * 2007-02-22 2012-08-29 新日本製鐵株式会社 ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
KR101069981B1 (en) * 2008-12-11 2011-10-04 주식회사 포스코 Manufacturing method for steel with excellent corrosion resistance at condensed water containing hydrogen sulfide
JP5526859B2 (en) * 2009-02-26 2014-06-18 Jfeスチール株式会社 Steel for crude oil tankers
JP5662894B2 (en) * 2011-07-27 2015-02-04 株式会社神戸製鋼所 Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP2014201759A (en) 2013-04-01 2014-10-27 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
CN103286127B (en) * 2013-06-14 2015-06-24 首钢总公司 Method for manufacturing anticorrosion steel plate for upper deck on crude oil tanker oil cargo tank and steel plate
JP6048385B2 (en) * 2013-12-12 2016-12-21 Jfeスチール株式会社 Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
CN106086641B (en) * 2016-06-23 2017-08-22 江阴兴澄特种钢铁有限公司 A kind of super-huge petroleum storage tank high-strength steel of hydrogen sulfide corrosion resistant and its manufacture method
KR101696157B1 (en) * 2016-08-01 2017-01-13 주식회사 포스코 Hot rolled steel plate having excellent sulfide stress cracking resistance and method for manufacturing the same

Also Published As

Publication number Publication date
EP3561126A4 (en) 2019-12-25
KR20180073414A (en) 2018-07-02
JP2020509164A (en) 2020-03-26
KR101889195B1 (en) 2018-08-16
WO2018117715A1 (en) 2018-06-28
CN110088345A (en) 2019-08-02
US20200087766A1 (en) 2020-03-19
EP3561126B1 (en) 2023-08-30
EP3561126A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
KR20110089205A (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP7147960B2 (en) Steel plate and its manufacturing method
TWI460285B (en) Hot-rolled shapes for crude oil tank and process for manufacturing the same
JP6601258B2 (en) Corrosion-resistant steel for ballast tanks
JP6818145B2 (en) Steel material with excellent corrosion resistance in a dew condensation environment containing sulfide and its manufacturing method
CN111108225B (en) Steel sheet and method for producing same
RU2584315C1 (en) Structural cryogenic austenite high-strength corrosion-resistant, including bioactive media, welded steel and method of processing
KR101125950B1 (en) High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and manufacturing method for the same
KR101125886B1 (en) High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same
JP2002173736A (en) Steel having excellent crude oil tank corrosion resistance and its production method
CN112513309B (en) Steel sheet and method for producing same
KR20150124811A (en) Steel sheet for line pipe and method of manufacturing the same
JP7277862B1 (en) Steel plate and its manufacturing method
KR101069981B1 (en) Manufacturing method for steel with excellent corrosion resistance at condensed water containing hydrogen sulfide
KR102142774B1 (en) High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof
KR101125931B1 (en) High toughness ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and manufacturing method for the same
JP6906335B2 (en) Steel materials and their manufacturing methods
KR101125909B1 (en) Ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution
JP2004359980A (en) Steel material for bottom plate of crude oil tank
KR20150077549A (en) Steel for cargo oil tank and method of manufacturing the same
KR101105003B1 (en) Manufacturing method for steel plate with excellent corrosion resistance at low ph chloride solution
RU2452789C2 (en) Rustproof nanostructured ferrite steel
KR20140003008A (en) High strength steel plate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6818145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250