JP6817479B1 - Reflective sensor - Google Patents

Reflective sensor Download PDF

Info

Publication number
JP6817479B1
JP6817479B1 JP2020078442A JP2020078442A JP6817479B1 JP 6817479 B1 JP6817479 B1 JP 6817479B1 JP 2020078442 A JP2020078442 A JP 2020078442A JP 2020078442 A JP2020078442 A JP 2020078442A JP 6817479 B1 JP6817479 B1 JP 6817479B1
Authority
JP
Japan
Prior art keywords
light
receiving element
reflected light
light receiving
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020078442A
Other languages
Japanese (ja)
Other versions
JP2021173668A (en
Inventor
一真 本田
一真 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2020078442A priority Critical patent/JP6817479B1/en
Application granted granted Critical
Publication of JP6817479B1 publication Critical patent/JP6817479B1/en
Publication of JP2021173668A publication Critical patent/JP2021173668A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】測定対象物までの距離に応じたセンサ出力の変動を抑制可能な反射型センサを提供する。【解決手段】測定対象物に照射光を照射し、測定対象物からの反射光を受光する反射型センサであって、基板110と、照射光を照射する発光素子140と、反射光のS波成分を受光する第1受光素子151および反射光のP波成分を受光する第2受光素子152と、レンズと、遮光壁170とを備える。遮光壁170は、反射光の一部を遮光して第1受光素子151へ反射光が入光可能な第1反射領域および第2受光素子152へ反射光が入光可能な第2反射領域を制限し、測定対象物の照射領域に対する第1反射領域および第2反射領域の各比率は、測定対象物までの距離が大きくなるほど大きくなることを特徴とする。【選択図】図2PROBLEM TO BE SOLVED: To provide a reflective sensor capable of suppressing fluctuation of sensor output according to a distance to a measurement object. SOLUTION: This is a reflection type sensor that irradiates an object to be measured with irradiation light and receives the reflected light from the object to be measured, and is a substrate 110, a light emitting element 140 that irradiates the irradiation light, and an S wave of the reflected light. A first light receiving element 151 for receiving a component, a second light receiving element 152 for receiving a P wave component of reflected light, a lens, and a light shielding wall 170 are provided. The light-shielding wall 170 provides a first reflection region in which a part of the reflected light is shielded and the reflected light can enter the first light receiving element 151 and a second reflection region in which the reflected light can enter the second light receiving element 152. It is characterized in that each ratio of the first reflection region and the second reflection region to the irradiation region of the measurement target becomes larger as the distance to the measurement target becomes larger. [Selection diagram] Fig. 2

Description

本発明は、反射型センサに関する。 The present invention relates to a reflective sensor.

図5に、従来の反射型センサ300を示す。反射型センサ300は、基板310と、レンズホルダ320と、レンズ330と、発光素子340と、受光素子351〜353とを備える。反射型センサ300では、発光素子340が測定対象物に照射光を照射し、受光素子351、352が測定対象物からの反射光を受光する。受光素子353は、発光素子340の照射光量を測定するために用いられる。 FIG. 5 shows a conventional reflective sensor 300. The reflection type sensor 300 includes a substrate 310, a lens holder 320, a lens 330, a light emitting element 340, and a light receiving element 3513 to 353. In the reflection type sensor 300, the light emitting element 340 irradiates the measurement object with irradiation light, and the light receiving elements 351 and 352 receive the reflected light from the measurement object. The light receiving element 353 is used for measuring the irradiation light amount of the light emitting element 340.

反射型センサ300をトナー付着量センサとして用いる場合、レンズ330の上面にトナーの粉や紙粉等の汚れが付着する場合がある。その場合、レンズ330に付着した汚れによって内面反射光が生じ、内面反射光が受光素子351、352に入射してしまう。 When the reflective sensor 300 is used as a toner adhesion amount sensor, stains such as toner powder and paper dust may adhere to the upper surface of the lens 330. In that case, the dirt adhering to the lens 330 generates the internally reflected light, and the internally reflected light is incident on the light receiving elements 351 and 352.

この点、特許文献1に記載の反射型センサでは、レンズの上面側に遮光溝を形成することで、内面反射光を反射または屈折させて、内面反射光が受光素子に入射するのを抑制している。 In this regard, in the reflective sensor described in Patent Document 1, by forming a light-shielding groove on the upper surface side of the lens, the internally reflected light is reflected or refracted, and the internally reflected light is suppressed from being incident on the light receiving element. ing.

特開2017−116636号公報Japanese Unexamined Patent Publication No. 2017-116636

ところで、従来の反射型センサ300では、センサ出力(受光素子351、352の出力信号)は測定対象物からの反射光の光量に比例する。また図6に示すように、測定対象物における照射光の照射領域は、測定対象物における受光素子351へ反射光が入光可能な第1反射領域と一致する。なお、上記照射領域は、測定対象物における受光素子352へ反射光が入光可能な第2反射領域とも一致する。 By the way, in the conventional reflection type sensor 300, the sensor output (output signals of the light receiving elements 351 and 352) is proportional to the amount of reflected light from the object to be measured. Further, as shown in FIG. 6, the irradiation region of the irradiation light in the measurement object coincides with the first reflection region in which the reflected light can enter the light receiving element 351 of the measurement object. The irradiation region also coincides with the second reflection region where the reflected light can enter the light receiving element 352 of the object to be measured.

反射光の光量は、反射型センサ300から測定対象物までの距離が大きいほど小さくなる。これは、距離が大きいほど光が減衰するためである。図6では、測定対象物までの距離がX1、X2、X3の順に、反射光の光量が大、中、小となる。このように、従来の反射型センサ300では、測定対象物までの距離に応じて、反射光の光量すなわちセンサ出力が変動してしまうという問題がある。 The amount of reflected light decreases as the distance from the reflective sensor 300 to the object to be measured increases. This is because the light is attenuated as the distance increases. In FIG. 6, the amount of reflected light becomes large, medium, and small in the order of the distance to the object to be measured, X1, X2, and X3. As described above, the conventional reflective sensor 300 has a problem that the amount of reflected light, that is, the sensor output fluctuates according to the distance to the object to be measured.

本発明は上記事情に鑑みてなされたものであって、その課題とするところは、測定対象物までの距離に応じたセンサ出力の変動を抑制可能な反射型センサを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reflective sensor capable of suppressing fluctuations in sensor output according to a distance to a measurement object.

上記課題を解決するために、本発明に係る反射型センサは、
測定対象物に照射光を照射し、前記照射光に対する前記測定対象物からの反射光を受光する反射型センサであって、
基板と、
前記基板表面の横方向一方側に配置された、前記照射光を照射する発光素子と、
前記基板表面の横方向他方側に配置された、前記反射光のS波成分を受光する第1受光素子および前記反射光のP波成分を受光する第2受光素子と、
前記照射光を前記測定対象物に導き、前記反射光を前記第1受光素子および前記第2受光素子に導くレンズと、
前記発光素子と前記第1受光素子および前記第2受光素子との間に位置する遮光壁と、
を備え、
前記遮光壁は、前記第1受光素子によって受光される前記反射光の一部を遮光して前記第1受光素子へ前記反射光が入光可能な第1反射領域を制限するとともに、前記第2受光素子によって受光される前記反射光の一部を遮光して前記第2受光素子へ前記反射光が入光可能な第2反射領域を制限し、
前記測定対象物における前記照射光の照射領域に対する前記第1反射領域の比率および前記照射領域に対する前記第2反射領域の比率は、前記測定対象物までの距離が大きくなるほど大きくなり、
前記測定対象物までの距離の増加に応じた前記反射光の光量の減少が、前記第1反射領域の比率の増加および前記第2反射領域の比率の増加によって相殺されるように、前記第1受光素子および前記第2受光素子は、前記基板表面の縦方向に並んで配置されていることを特徴とする。
In order to solve the above problems, the reflective sensor according to the present invention is used.
A reflective sensor that irradiates an object to be measured with irradiation light and receives the reflected light from the object to be measured with respect to the irradiation light.
With the board
A light emitting element that irradiates the irradiation light and is arranged on one side in the lateral direction of the substrate surface.
A first light receiving element that receives the S wave component of the reflected light and a second light receiving element that receives the P wave component of the reflected light, which are arranged on the other side of the substrate surface in the lateral direction.
A lens that guides the irradiation light to the measurement object and guides the reflected light to the first light receiving element and the second light receiving element.
A light-shielding wall located between the light-emitting element, the first light-receiving element, and the second light-receiving element,
With
The light-shielding wall shields a part of the reflected light received by the first light-receiving element to limit the first reflection region where the reflected light can enter the first light-receiving element, and the second light-shielding wall. A part of the reflected light received by the light receiving element is shielded to limit the second reflection region where the reflected light can enter the second light receiving element.
The ratio of the second reflective region relative proportions and the irradiation region of the first reflective region to the irradiation region of the irradiation light on the object to be measured, Ri as large name distance to the measurement object is increased,
The first, such that the decrease in the amount of reflected light in response to the increase in the distance to the measurement object is offset by the increase in the ratio of the first reflection region and the increase in the ratio of the second reflection region. The light receiving element and the second light receiving element are arranged side by side in the vertical direction on the surface of the substrate .

この構成によれば、照射領域に対する第1および第2反射領域の各比率が測定対象物までの距離の増加に応じて増加するように、遮光壁により第1および第2反射領域が制限されるので、距離の増加による反射光量の減少が上記比率の増加(反射可能領域の増加による反射光量の増加)によって相殺される。したがって、この構成によれば、測定対象物までの距離に応じたセンサ出力の変動を抑制することができる。 According to this configuration, the light-shielding wall limits the first and second reflection regions so that the ratio of the first and second reflection regions to the irradiation region increases as the distance to the object to be measured increases. Therefore, the decrease in the amount of reflected light due to the increase in distance is offset by the increase in the above ratio (the increase in the amount of reflected light due to the increase in the reflective region). Therefore, according to this configuration, it is possible to suppress fluctuations in the sensor output according to the distance to the object to be measured.

上記反射型センサでは、
前記基板表面に配置され、前記基板表面の横方向に互いに分離された第1収容空間および第2収容空間を形成するとともに、表面側に前記レンズが配置されるレンズホルダをさらに備え、
前記発光素子は、前記第1収容空間に配置され、
前記第1受光素子および前記第2受光素子は、前記第2収容空間に配置され、
前記遮光壁は、前記レンズホルダの一部を突出させて形成したものであってもよい。
In the above reflective sensor,
A lens holder which is arranged on the surface of the substrate and is separated from each other in the lateral direction of the surface of the substrate is formed, and further includes a lens holder on which the lens is arranged on the surface side.
The light emitting element is arranged in the first accommodation space.
The first light receiving element and the second light receiving element are arranged in the second accommodating space.
The light-shielding wall may be formed by projecting a part of the lens holder.

上記反射型センサでは、
前記遮光壁の表面と前記レンズの表面とが同一平面をなすよう構成できる。
In the above reflective sensor,
The surface of the light-shielding wall and the surface of the lens can be configured to form the same plane.

本発明によれば、測定対象物までの距離に応じたセンサ出力の変動を抑制可能な反射型センサを提供することができる。 According to the present invention, it is possible to provide a reflective sensor capable of suppressing fluctuations in sensor output according to a distance to a measurement object.

本発明の反射型センサを示す図である。It is a figure which shows the reflection type sensor of this invention. 本発明の反射型センサの部分平面図である。It is a partial plan view of the reflection type sensor of this invention. 本発明の反射型センサにおける第1反射領域と照射領域との関係を示す図である。It is a figure which shows the relationship between the 1st reflection area and the irradiation area in the reflection type sensor of this invention. 本発明の反射型センサを利用した坪量測定を説明するための図である。It is a figure for demonstrating the basis weight measurement using the reflection type sensor of this invention. 従来の反射型センサを示す図である。It is a figure which shows the conventional reflection type sensor. 従来の反射型センサにおける第1反射領域と照射領域との関係を示す図である。It is a figure which shows the relationship between the 1st reflection area and the irradiation area in the conventional reflection type sensor.

以下、添付図面を参照して、本発明に係る反射型センサの実施形態について説明する。 Hereinafter, embodiments of the reflective sensor according to the present invention will be described with reference to the accompanying drawings.

図1に本発明の一実施形態に係る反射型センサ100を示し、図2に反射型センサ100の部分平面図を示す。図1に示すように、反射型センサ100は、制御回路200とともに坪量測定装置1を構成する。なお、本実施形態では、反射型センサ100と制御回路200とを分けて説明するが、制御回路200は反射型センサ100に含まれていてもよい。 FIG. 1 shows a reflective sensor 100 according to an embodiment of the present invention, and FIG. 2 shows a partial plan view of the reflective sensor 100. As shown in FIG. 1, the reflection type sensor 100 constitutes the basis weight measuring device 1 together with the control circuit 200. In the present embodiment, the reflection type sensor 100 and the control circuit 200 will be described separately, but the control circuit 200 may be included in the reflection type sensor 100.

坪量測定装置1は、例えば、レーザプリンタや複合機などの画像形成装置において、印刷用紙(本発明の「測定対象物」に相当)の種別を判別するためのメディアセンサとして用いられる。 The basis weight measuring device 1 is used as a media sensor for discriminating the type of printing paper (corresponding to the “measurement object” of the present invention) in an image forming device such as a laser printer or a multifunction device.

反射型センサ100は、基板110と、レンズホルダ120と、レンズ130と、発光素子140と、第1受光素子151と、第2受光素子152と、第3受光素子153と、信号処理回路160とを備え、測定対象物に照射光を照射し、照射光に対する測定対象物からの反射光(第1反射光)を受光する。 The reflective sensor 100 includes a substrate 110, a lens holder 120, a lens 130, a light emitting element 140, a first light receiving element 151, a second light receiving element 152, a third light receiving element 153, and a signal processing circuit 160. The object to be measured is irradiated with the irradiation light, and the reflected light (first reflected light) from the object to be measured with respect to the irradiation light is received.

基板110は、例えば、矩形状のプリント配線板である。基板110の上面(基板表面)には、発光素子140と、第1受光素子151と、第2受光素子152と、第3受光素子153と、信号処理回路160とが配置される。図2に示すように、第1受光素子151および第2受光素子152は、基板110上面の縦方向に並んで配置される。基板110には、レンズホルダ120の一部が嵌め込まれる貫通溝が設けられている。 The board 110 is, for example, a rectangular printed wiring board. A light emitting element 140, a first light receiving element 151, a second light receiving element 152, a third light receiving element 153, and a signal processing circuit 160 are arranged on the upper surface (board surface) of the substrate 110. As shown in FIG. 2, the first light receiving element 151 and the second light receiving element 152 are arranged side by side in the vertical direction on the upper surface of the substrate 110. The substrate 110 is provided with a through groove into which a part of the lens holder 120 is fitted.

レンズホルダ120は、発光素子140の照射光に対して不透明で、かつ照射光を反射させる材料で構成される。レンズホルダ120は、基板110の上面に配置され、下面側に第1収容部121、第2収容部122および第3収容部123を有する。 The lens holder 120 is made of a material that is opaque to the irradiation light of the light emitting element 140 and reflects the irradiation light. The lens holder 120 is arranged on the upper surface of the substrate 110, and has a first accommodating portion 121, a second accommodating portion 122, and a third accommodating portion 123 on the lower surface side.

第1収容部121は、基板110上に第1収容空間を形成する。第1収容空間には、発光素子140と第3受光素子153とが収容される。第2収容部122は、基板110上に第2収容空間を形成する。第2収容空間には、第1受光素子151および第2受光素子152が収容される。第3収容部123は、基板110上に第3収容空間を形成する。第3収容空間には、信号処理回路160が配置される。 The first accommodating portion 121 forms a first accommodating space on the substrate 110. The light emitting element 140 and the third light receiving element 153 are accommodated in the first accommodation space. The second accommodating portion 122 forms a second accommodating space on the substrate 110. The first light receiving element 151 and the second light receiving element 152 are housed in the second accommodating space. The third accommodating portion 123 forms a third accommodating space on the substrate 110. A signal processing circuit 160 is arranged in the third accommodation space.

第1収容空間、第2収容空間および第3収容空間は、基板110上において横方向に互いに分離している。このように第1〜第3受光素子151〜153と信号処理回路160との収容空間を分離することにより、信号処理チップ等の信号処理回路160で光が反射して第1〜第3受光素子151〜153に入るのを防止することができる。 The first accommodation space, the second accommodation space, and the third accommodation space are laterally separated from each other on the substrate 110. By separating the accommodation space between the first to third light receiving elements 151 to 153 and the signal processing circuit 160 in this way, light is reflected by the signal processing circuit 160 such as a signal processing chip, and the first to third light receiving elements are reflected. It is possible to prevent the entry into 151 to 153.

レンズホルダ120は、上面側(表面側)にレンズ固定部124を有する。レンズ固定部124は、図1では省略しているが、レンズ130を固定できるような形状に構成されている。 The lens holder 120 has a lens fixing portion 124 on the upper surface side (front surface side). Although omitted in FIG. 1, the lens fixing portion 124 is configured to have a shape capable of fixing the lens 130.

また、レンズホルダ120は、第1収容部121につながる第1開口部125と、第2収容部122につながる第2開口部126と、第1開口部125と第2開口部126との間に位置する遮光部127とを有する。 Further, the lens holder 120 is placed between the first opening 125 connected to the first accommodating portion 121, the second opening 126 connected to the second accommodating portion 122, and the first opening 125 and the second opening 126. It has a light-shielding portion 127 located.

第1開口部125は、発光素子140の上方に位置し、発光素子140の照射光の照射範囲を制限する絞り部として機能する。第1開口部125の上端には、第1偏光フィルタ171が設けられている。第1偏光フィルタ171は、照射光のS波成分を遮光し、P波成分を透過させるP波透過用偏光フィルタである。 The first opening 125 is located above the light emitting element 140 and functions as a diaphragm portion that limits the irradiation range of the irradiation light of the light emitting element 140. A first polarizing filter 171 is provided at the upper end of the first opening 125. The first polarizing filter 171 is a polarizing filter for P wave transmission that blocks the S wave component of the irradiation light and transmits the P wave component.

第2開口部126は、第2収容部122とほぼ同じ大きさに形成されている。第2開口部126と第2収容部122とは、1つの貫通孔で構成されていてもよい。第2開口部126の上端には、第1受光素子151の上方に位置する第2偏光フィルタ172と、第2受光素子152の上方に位置する第3偏光フィルタ173とが設けられている。第2偏光フィルタ172は、測定対象物からの反射光のP波成分を遮光し、S波成分を透過させるS波透過用偏光フィルタであり、第3偏光フィルタ173は、P波透過用偏光フィルタである。 The second opening 126 is formed to have substantially the same size as the second accommodating portion 122. The second opening 126 and the second accommodating portion 122 may be composed of one through hole. At the upper end of the second opening 126, a second polarizing filter 172 located above the first light receiving element 151 and a third polarizing filter 173 located above the second light receiving element 152 are provided. The second polarizing filter 172 is an S wave transmitting polarizing filter that shields the P wave component of the reflected light from the measurement object and transmits the S wave component, and the third polarizing filter 173 is a P wave transmitting polarizing filter. Is.

遮光部127は、上部がレンズ130内に突出して設けられており、レンズ130内を伝搬する照射光を遮ることができる一方、下部が基板110の貫通溝に嵌め込まれており、基板110内を伝搬する照射光を遮ることができる。遮光部127の上端部分は、遮光壁170に相当する。遮光壁170については後述する。 The light-shielding portion 127 is provided so that the upper portion protrudes into the lens 130 and can block the irradiation light propagating in the lens 130, while the lower portion is fitted into the through groove of the substrate 110 and the inside of the substrate 110. It is possible to block the propagating irradiation light. The upper end of the light-shielding portion 127 corresponds to the light-shielding wall 170. The light-shielding wall 170 will be described later.

レンズ130は、発光素子140の照射光に対して透明な材料で構成され、レンズホルダ120のレンズ固定部124に固定される。レンズ130は、上面側(表面側)に凸レンズ部131を有し、下面側(裏面側)に発光レンズ部132および受光レンズ部133を有する。 The lens 130 is made of a material that is transparent to the irradiation light of the light emitting element 140, and is fixed to the lens fixing portion 124 of the lens holder 120. The lens 130 has a convex lens portion 131 on the upper surface side (front surface side), and has a light emitting lens portion 132 and a light receiving lens portion 133 on the lower surface side (back surface side).

凸レンズ部131は、下面側の発光レンズ部132および受光レンズ部133に対向している。凸レンズ部131の上面は平坦になっており、凸レンズ部131の幅方向(縦方向)の長さは遮光部127の幅方向の長さよりも大きくなっている。 The convex lens portion 131 faces the light emitting lens portion 132 and the light receiving lens portion 133 on the lower surface side. The upper surface of the convex lens portion 131 is flat, and the length of the convex lens portion 131 in the width direction (vertical direction) is larger than the length of the light-shielding portion 127 in the width direction.

発光レンズ部132は、発光素子140の上方に位置して発光素子140の照射光を集光する一方、受光レンズ部133は、第1受光素子151および第2受光素子152の上方に位置して測定対象物からの反射光を集光する。発光レンズ部132は、レンズホルダ120の筒状の開口部(第1開口部125)を通して光を絞る関係上、受光レンズ部133よりも高い位置に形成されている。 The light emitting lens unit 132 is located above the light emitting element 140 to collect the irradiation light of the light emitting element 140, while the light receiving lens unit 133 is located above the first light receiving element 151 and the second light receiving element 152. Condenses the reflected light from the object to be measured. The light emitting lens portion 132 is formed at a position higher than that of the light receiving lens portion 133 because the light is focused through the tubular opening (first opening 125) of the lens holder 120.

発光素子140は、制御回路200の制御下で、第1偏光フィルタ171およびレンズ130を介して測定対象物に照射光を照射する。発光素子140としては、例えば、赤外線を照射する赤外発光ダイオード(赤外LED)または赤色光を照射する赤色発光ダイオード(赤色LED)を用いることができる。 Under the control of the control circuit 200, the light emitting element 140 irradiates the object to be measured with irradiation light via the first polarizing filter 171 and the lens 130. As the light emitting element 140, for example, an infrared light emitting diode (infrared LED) that irradiates infrared rays or a red light emitting diode (red LED) that irradiates red light can be used.

第1受光素子151は、第1反射光のS波成分を受光し、受光量に応じた電流信号を信号処理回路160に出力する。第2受光素子152は、第1反射光のP波成分を受光し、受光量に応じた電流信号を信号処理回路160に出力する。第1受光素子151および第2受光素子152としては、例えば、フォトダイオードまたはフォトトランジスタを用いることができる。 The first light receiving element 151 receives the S wave component of the first reflected light and outputs a current signal corresponding to the amount of received light to the signal processing circuit 160. The second light receiving element 152 receives the P wave component of the first reflected light and outputs a current signal corresponding to the amount of received light to the signal processing circuit 160. As the first light receiving element 151 and the second light receiving element 152, for example, a photodiode or a phototransistor can be used.

第3受光素子153は、発光素子140の照射光に対するレンズホルダ120からの反射光(第2反射光)を受光する。なお、発光素子140からの第3受光素子153への直接光の入射を防止するために、発光素子140と第3受光素子153との間に突起等の遮蔽物を設けてもよい。本実施形態では、測定対象物に照射される照射光の光量と第2反射光の光量とが同程度になる。第3受光素子153は、第2反射光の受光量に応じた電流信号を信号処理回路160に出力する。第3受光素子153としては、例えば、フォトダイオードまたはフォトトランジスタを用いることができる。 The third light receiving element 153 receives the reflected light (second reflected light) from the lens holder 120 with respect to the irradiation light of the light emitting element 140. In addition, in order to prevent the direct light from entering the third light receiving element 153 from the light emitting element 140, a shield such as a protrusion may be provided between the light emitting element 140 and the third light receiving element 153. In the present embodiment, the amount of irradiation light applied to the object to be measured and the amount of light of the second reflected light are about the same. The third light receiving element 153 outputs a current signal corresponding to the amount of received light of the second reflected light to the signal processing circuit 160. As the third light receiving element 153, for example, a photodiode or a phototransistor can be used.

本実施形態では、発光素子140、第1受光素子151、第2受光素子152および第3受光素子153を、パッケージ(樹脂封止)されていないベアチップのまま基板110に実装している。これにより、センサ全体の小型化を図ることができる。 In the present embodiment, the light emitting element 140, the first light receiving element 151, the second light receiving element 152, and the third light receiving element 153 are mounted on the substrate 110 as bare chips that are not packaged (resin-sealed). As a result, the size of the entire sensor can be reduced.

信号処理回路160は、第1受光素子151の電流信号に応じた電圧信号(第1出力信号)と、第2受光素子152の電流信号に応じた電圧信号(第2出力信号)と、第3受光素子153の電流信号に応じた電圧信号(第3出力信号)と、を生成して制御回路200に出力する。 The signal processing circuit 160 includes a voltage signal (first output signal) corresponding to the current signal of the first light receiving element 151, a voltage signal (second output signal) corresponding to the current signal of the second light receiving element 152, and a third. A voltage signal (third output signal) corresponding to the current signal of the light receiving element 153 is generated and output to the control circuit 200.

信号処理回路160は、例えば、オペアンプで構成される複数の電流増幅回路を含む。なお、信号処理回路160は、差動増幅回路を含み、第1出力信号および第2出力信号の電位差に相当する第1反射光の正反射光の光量に応じた電圧信号を生成し、当該電圧信号を制御回路200に出力してもよい。 The signal processing circuit 160 includes, for example, a plurality of current amplification circuits composed of operational amplifiers. The signal processing circuit 160 includes a differential amplification circuit, generates a voltage signal corresponding to the amount of positively reflected light of the first reflected light corresponding to the potential difference between the first output signal and the second output signal, and generates the voltage. The signal may be output to the control circuit 200.

遮光壁170は、遮光部127と同様に、発光素子140と第1受光素子151および第2受光素子152との間に位置する。遮光壁170は、レンズホルダ120の一部を突出させて形成したものであり、具体的には、遮光部127をレンズ130の上面(表面)まで突出させて形成したものである。すなわち、遮光部127の上端部分が遮光壁170である。 The light-shielding wall 170 is located between the light-emitting element 140, the first light-receiving element 151, and the second light-receiving element 152, similarly to the light-shielding portion 127. The light-shielding wall 170 is formed by projecting a part of the lens holder 120, and specifically, the light-shielding portion 127 is formed by projecting the light-shielding portion 127 to the upper surface (surface) of the lens 130. That is, the upper end portion of the light-shielding portion 127 is the light-shielding wall 170.

図3に示すように、遮光壁170は、第1受光素子151によって受光される反射光の一部を遮光し、測定対象物における第1受光素子151へ反射光が入光可能な領域(第1反射領域)を制限する。同様に、遮光壁170は、第2受光素子152によって受光される反射光の一部を遮光し、測定対象物における第2受光素子152へ反射光が入光可能な領域(第2反射領域)を制限する。反射可能領域は、測定対象物までの距離が大きくなるほど大きくなる。 As shown in FIG. 3, the light-shielding wall 170 blocks a part of the reflected light received by the first light-receiving element 151, and the reflected light can enter the first light-receiving element 151 in the measurement object (the first region (first). 1 Reflection area) is limited. Similarly, the light-shielding wall 170 shields a part of the reflected light received by the second light-receiving element 152, and the reflected light can enter the second light-receiving element 152 in the measurement object (second reflection area). To limit. The reflective area becomes larger as the distance to the object to be measured increases.

センサ出力(本実施形態では、第1出力信号および第2出力信号)は、測定対象物からの反射光の光量に比例する。反射光の光量は、測定対象物までの距離が大きいほど小さくなる。これは、距離が大きいほど光が減衰するためである。一方で、図3に示すように、照射領域に対する第1反射領域の比率は、反射型センサ100から測定対象物までの距離が大きくなるほど大きくなる。例えば、測定対象物までの距離がX1、X2、X3の順に、上記比率が小、中、大となる。同様に、照射領域に対する第2反射領域の比率も、測定対象物までの距離が大きくなるほど大きくなる。上記比率が大きいほど、反射光の光量は大きくなる。 The sensor output (in this embodiment, the first output signal and the second output signal) is proportional to the amount of reflected light from the object to be measured. The amount of reflected light decreases as the distance to the object to be measured increases. This is because the light is attenuated as the distance increases. On the other hand, as shown in FIG. 3, the ratio of the first reflection region to the irradiation region increases as the distance from the reflection sensor 100 to the object to be measured increases. For example, the above ratios are small, medium, and large in the order of the distances to the measurement object being X1, X2, and X3. Similarly, the ratio of the second reflection region to the irradiation region also increases as the distance to the measurement target increases. The larger the ratio, the larger the amount of reflected light.

すなわち、測定対象物までの距離の増加に応じた反射光量の減少(光の減衰)が、上記比率の増加(反射可能領域の増加に応じた反射光量の増加)によって相殺される。したがって、反射型センサ100によれば、測定対象物までの距離に応じたセンサ出力の変動を抑制することができる。さらに、反射型センサ100では、第1受光素子151および第2受光素子152が基板110上面の縦方向に並んで配置されているので、第1受光素子151および第2受光素子152における上記センサ出力の変動を同程度に抑制することができる。 That is, the decrease in the amount of reflected light (attenuation of light) as the distance to the object to be measured increases is offset by the increase in the above ratio (increase in the amount of reflected light as the reflective region increases). Therefore, according to the reflective sensor 100, it is possible to suppress fluctuations in the sensor output according to the distance to the object to be measured. Further, in the reflection type sensor 100, since the first light receiving element 151 and the second light receiving element 152 are arranged side by side in the vertical direction on the upper surface of the substrate 110, the sensor output of the first light receiving element 151 and the second light receiving element 152 Fluctuations can be suppressed to the same extent.

また、反射型センサ100では、レンズ130の上面に付着した汚れ等によって内面反射光が生じた場合であっても、遮光壁170により、内面反射光が第1受光素子151および第2受光素子152に入射するのを抑制することができる。 Further, in the reflective sensor 100, even when the inner surface reflected light is generated due to dirt or the like adhering to the upper surface of the lens 130, the inner surface reflected light is transmitted by the light shielding wall 170 to the first light receiving element 151 and the second light receiving element 152. It is possible to suppress the incident on the lens.

制御回路200は、測定対象物の坪量を測定する坪量測定部と、測定対象物の光沢度を測定する光沢度測定部と、照射光の光量が一定になるように発光素子140を制御する発光制御部とを備える。制御回路200は、例えば、マイコンで構成される。 The control circuit 200 controls a basis weight measuring unit that measures the basis weight of the object to be measured, a glossiness measuring unit that measures the glossiness of the object to be measured, and a light emitting element 140 so that the amount of irradiation light is constant. It is provided with a light emission control unit. The control circuit 200 is composed of, for example, a microcomputer.

坪量測定部は、図4に示すように、照射光V(I)に対する測定対象物の透過光Vtを擬似的に算出した擬似透過光Vt’に基づいて、測定対象物の坪量を測定する。擬似透過光Vt’は、下記の(1)式に示すように、第2反射光V(R)から第1反射光のP波成分V(P)およびS波成分V(S)を差し引くことにより算出される。V(R)は第3出力信号に基づいて算出され、V(P)およびV(S)は第2出力信号および第1出力信号に基づいて算出される。

Figure 0006817479
As shown in FIG. 4, the basis weight measuring unit measures the basis weight of the object to be measured based on the pseudo transmitted light Vt'which is a pseudo calculation of the transmitted light Vt of the object to be measured with respect to the irradiation light V (I). To do. The pseudo transmitted light Vt'is obtained by subtracting the P wave component V (P) and the S wave component V (S) of the first reflected light from the second reflected light V (R) as shown in the following equation (1). Is calculated by. V (R) is calculated based on the third output signal, and V (P) and V (S) are calculated based on the second output signal and the first output signal.
Figure 0006817479

透過光Vtと坪量は相関関係を有し、透過光Vtと擬似透過光Vt’も相関関係を有する(本実施形態では、ほぼ同じ値になる)ため、擬似透過光Vt’と坪量は相関関係を有する。したがって、坪量測定部は、擬似透過光Vt’に基づいて坪量を測定することができる。 Since the transmitted light Vt and the basis weight have a correlation, and the transmitted light Vt and the pseudo transmitted light Vt'have a correlation (in the present embodiment, the values are almost the same), the pseudo transmitted light Vt'and the basis weight have a correlation. Has a correlation. Therefore, the basis weight measuring unit can measure the basis weight based on the pseudo transmitted light Vt'.

測定対象物の内部拡散反射光Viは無視できる程度に小さいため、本実施形態では、擬似透過光Vt’を算出する際に内部拡散反射光Viを考慮していない。これにより、擬似透過光Vt’を検出する受光素子を省略できるため、センサ全体の小型化を図ることができる。なお、測定対象物の種別ごとの内部拡散反射光Viを予め測定できるのであれば、予め測定したViを坪量測定部に記憶させておき、V(R)からV(P)、V(S)、Viを差し引くことにより擬似透過光Vt’を算出してもよい。 Since the internal diffuse reflected light Vi of the object to be measured is so small that it can be ignored, the internal diffuse reflected light Vi is not taken into consideration when calculating the pseudo transmitted light Vt'in this embodiment. As a result, the light receiving element that detects the pseudo transmitted light Vt'can be omitted, so that the size of the entire sensor can be reduced. If the internal diffuse reflection light Vi for each type of the object to be measured can be measured in advance, the pre-measured Vi is stored in the basis weight measuring unit, and V (R) to V (P), V (S). ), Vi may be subtracted to calculate the pseudo-transmitted light Vt'.

本実施形態では、測定対象物に照射される照射光V(I)の光量と第2反射光V(R)の光量とが同程度であるが、両者に差がある場合は、その差に応じて第2反射光V(R)を補正し、補正後の第2反射光V(R)を上記の(1)式に適用することが好ましい。例えば、照射光V(I)の光量および第2反射光V(R)の光量を予め測定して補正係数を算出し、算出した補正係数により第2反射光V(R)を補正してもよい。 In the present embodiment, the amount of irradiation light V (I) irradiated to the object to be measured and the amount of light of the second reflected light V (R) are about the same, but if there is a difference between the two, the difference is It is preferable to correct the second reflected light V (R) accordingly and apply the corrected second reflected light V (R) to the above equation (1). For example, even if the light amount of the irradiation light V (I) and the light amount of the second reflected light V (R) are measured in advance to calculate the correction coefficient, and the second reflected light V (R) is corrected by the calculated correction coefficient. Good.

光沢度測定部は、照射光に対する測定対象物からの反射光(第1反射光)に基づいて、測定対象物の光沢度を測定する。例えば、光沢度測定部は、第1出力信号および第2出力信号の電位差に基づいて、換言すれば、第1反射光の正反射光(本実施形態では、P波成分)の光量に応じた電圧信号に基づいて、測定対象物の光沢度を測定する。 The glossiness measuring unit measures the glossiness of the object to be measured based on the reflected light (first reflected light) from the object to be measured with respect to the irradiation light. For example, the glossiness measuring unit responds to the amount of specularly reflected light (P wave component in the present embodiment) of the first reflected light based on the potential difference between the first output signal and the second output signal. The glossiness of the object to be measured is measured based on the voltage signal.

発光制御部は、第3出力信号に基づいて、発光素子140の照射光の光量が一定になるように発光素子140をフィードバック制御する。本実施形態では、1つの第3受光素子153が、発光素子140のフィードバック制御を行うためのセンサ素子として機能し、かつ測定対象物の坪量を測定するためのセンサ素子としても機能しているので、装置全体の小型化を図ることができる。 The light emitting control unit feedback-controls the light emitting element 140 so that the amount of irradiation light of the light emitting element 140 becomes constant based on the third output signal. In the present embodiment, one third light receiving element 153 functions as a sensor element for performing feedback control of the light emitting element 140, and also functions as a sensor element for measuring the basis weight of the object to be measured. Therefore, the size of the entire device can be reduced.

以上、本発明に係る反射型センサの実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the embodiment of the reflective sensor according to the present invention has been described above, the present invention is not limited to the above embodiment.

本発明に係る反射型センサは、基板と、照射光を照射する発光素子と、反射光のS波成分を受光する第1受光素子および反射光のP波成分を受光する第2受光素子と、照射光を測定対象物に導くとともに反射光を第1受光素子および第2受光素子に導くレンズと、発光素子と第1受光素子および第2受光素子との間に位置する遮光壁とを備え、測定対象物における照射光の照射領域に対する第1反射領域の比率および照射領域に対する第2反射領域の比率が、測定対象物までの距離が大きくなるほど大きくなるのであれば、適宜構成を変更できる。 The reflective sensor according to the present invention includes a substrate, a light emitting element that irradiates irradiation light, a first light receiving element that receives the S wave component of the reflected light, and a second light receiving element that receives the P wave component of the reflected light. It is provided with a lens that guides the irradiation light to the object to be measured and guides the reflected light to the first light receiving element and the second light receiving element, and a light shielding wall located between the light emitting element and the first light receiving element and the second light receiving element. If the ratio of the first reflection region to the irradiation region of the irradiation light in the measurement target and the ratio of the second reflection region to the irradiation region increase as the distance to the measurement target increases, the configuration can be appropriately changed.

例えば、第1受光素子151および第2受光素子152の配置は変更することができる。しかしながら、第1受光素子151および第2受光素子152を基板110上面の横方向に並べて配置した場合、例えば、遮光壁170に近い側の第2受光素子152は距離変化に伴う出力変動を抑制できる一方、遮光壁170から遠い側の第1受光素子151は測定対象物までの距離の変化に伴って出力も変動してしまうおそれがある。このため、遮光壁170によって、第1受光素子151で受光される反射光の一部を遮光して第1反射領域を制限するとともに、第2受光素子152で受光される反射光の一部を遮光して第2反射領域を制限するという条件下で、第1受光素子151および第2受光素子152の配置を変更する必要がある。 For example, the arrangement of the first light receiving element 151 and the second light receiving element 152 can be changed. However, when the first light receiving element 151 and the second light receiving element 152 are arranged side by side in the horizontal direction on the upper surface of the substrate 110, for example, the second light receiving element 152 on the side close to the light shielding wall 170 can suppress the output fluctuation due to the distance change. On the other hand, the output of the first light receiving element 151 on the side far from the light shielding wall 170 may fluctuate as the distance to the object to be measured changes. Therefore, the light-shielding wall 170 blocks a part of the reflected light received by the first light receiving element 151 to limit the first reflection region, and a part of the reflected light received by the second light receiving element 152 is blocked. It is necessary to change the arrangement of the first light receiving element 151 and the second light receiving element 152 under the condition that the light is shielded to limit the second reflection region.

上記実施形態では、遮光部127の上端部分を遮光壁170としているが、遮光壁170は、遮光部127すなわちレンズホルダ120とは別の部材(発光素子140の照射光に対して不透明な部材)で構成することができる。 In the above embodiment, the upper end portion of the light-shielding portion 127 is a light-shielding wall 170, but the light-shielding wall 170 is a member different from the light-shielding portion 127, that is, the lens holder 120 (a member opaque to the irradiation light of the light emitting element 140). Can be configured with.

上記実施形態では、遮光壁170の上面とレンズ130の上面とが同一平面をなすように構成されているが、遮光壁170の上面は、レンズ130の上面よりも高い位置にあってもよいし、低い位置にあってもよい。 In the above embodiment, the upper surface of the light-shielding wall 170 and the upper surface of the lens 130 are configured to form the same plane, but the upper surface of the light-shielding wall 170 may be located higher than the upper surface of the lens 130. , May be in a low position.

本発明に係る反射型センサは、メディアセンサに限定されるものではなく、他のセンサにも適用することができ、例えば、測定対象物に付着したトナーの付着量を測定するトナー付着量センサに適用することができる。 The reflective sensor according to the present invention is not limited to the media sensor, and can be applied to other sensors, for example, a toner adhesion amount sensor that measures the adhesion amount of toner adhering to a measurement object. Can be applied.

1 坪量測定装置
100 反射型センサ
110 基板
120 レンズホルダ
121 第1収容部
122 第2収容部
123 第3収容部
124 レンズ固定部
125 第1開口部
126 第2開口部
127 遮光部
130 レンズ
131 凸レンズ部
132 発光レンズ部
133 受光レンズ部
140 発光素子
151 第1受光素子
152 第2受光素子
153 第3受光素子
160 信号処理回路
170 遮光壁
171 第1偏光フィルタ
172 第2偏光フィルタ
173 第3偏光フィルタ
200 制御回路
1 Basis weight measuring device 100 Reflective sensor 110 Substrate 120 Lens holder 121 1st accommodating unit 122 2nd accommodating unit 123 3rd accommodating unit 124 Lens fixing unit 125 1st opening 126 2nd opening 127 Light-shielding unit 130 Lens 131 Convex lens Part 132 Light-emitting lens part 133 Light-receiving lens part 140 Light-emitting element 151 First light-receiving element 152 Second light-receiving element 153 Third light-receiving element 160 Signal processing circuit 170 Light-shielding wall 171 First polarization filter 172 Second polarization filter 173 Third polarization filter 200 Control circuit

Claims (3)

測定対象物に照射光を照射し、前記照射光に対する前記測定対象物からの反射光を受光する反射型センサであって、
基板と、
前記基板表面の横方向一方側に配置された、前記照射光を照射する発光素子と、
前記基板表面の横方向他方側に配置された、前記反射光のS波成分を受光する第1受光素子および前記反射光のP波成分を受光する第2受光素子と、
前記照射光を前記測定対象物に導き、前記反射光を前記第1受光素子および前記第2受光素子に導くレンズと、
前記発光素子と前記第1受光素子および前記第2受光素子との間に位置する遮光壁と、
を備え、
前記遮光壁は、前記第1受光素子によって受光される前記反射光の一部を遮光して前記第1受光素子へ前記反射光が入光可能な第1反射領域を制限するとともに、前記第2受光素子によって受光される前記反射光の一部を遮光して前記第2受光素子へ前記反射光が入光可能な第2反射領域を制限し、
前記測定対象物における前記照射光の照射領域に対する前記第1反射領域の比率および前記照射領域に対する前記第2反射領域の比率は、前記測定対象物までの距離が大きくなるほど大きくなり、
前記測定対象物までの距離の増加に応じた前記反射光の光量の減少が、前記第1反射領域の比率の増加および前記第2反射領域の比率の増加によって相殺されるように、前記第1受光素子および前記第2受光素子は、前記基板表面の縦方向に並んで配置されていることを特徴とする反射型センサ。
A reflective sensor that irradiates an object to be measured with irradiation light and receives the reflected light from the object to be measured with respect to the irradiation light.
With the board
A light emitting element that irradiates the irradiation light and is arranged on one side in the lateral direction of the substrate surface.
A first light receiving element that receives the S wave component of the reflected light and a second light receiving element that receives the P wave component of the reflected light, which are arranged on the other side of the substrate surface in the lateral direction.
A lens that guides the irradiation light to the measurement object and guides the reflected light to the first light receiving element and the second light receiving element.
A light-shielding wall located between the light-emitting element, the first light-receiving element, and the second light-receiving element,
With
The light-shielding wall shields a part of the reflected light received by the first light-receiving element to limit the first reflection region where the reflected light can enter the first light-receiving element, and the second light-shielding wall. A part of the reflected light received by the light receiving element is shielded to limit the second reflection region where the reflected light can enter the second light receiving element.
The ratio of the second reflective region relative proportions and the irradiation region of the first reflective region to the irradiation region of the irradiation light on the object to be measured, Ri as large name distance to the measurement object is increased,
The first, such that the decrease in the amount of reflected light in response to the increase in the distance to the measurement object is offset by the increase in the ratio of the first reflection region and the increase in the ratio of the second reflection region. A reflective sensor in which the light receiving element and the second light receiving element are arranged side by side in the vertical direction of the substrate surface .
前記基板表面に配置され、前記基板表面の横方向に互いに分離された第1収容空間および第2収容空間を形成するとともに、表面側に前記レンズが配置されるレンズホルダをさらに備え、
前記発光素子は、前記第1収容空間に配置され、
前記第1受光素子および前記第2受光素子は、前記第2収容空間に配置され、
前記遮光壁は、前記レンズホルダの一部を突出させて形成したものであることを特徴とする請求項に記載の反射型センサ。
A lens holder which is arranged on the surface of the substrate and is separated from each other in the lateral direction of the surface of the substrate is formed, and further includes a lens holder on which the lens is arranged on the surface side.
The light emitting element is arranged in the first accommodation space.
The first light receiving element and the second light receiving element are arranged in the second accommodating space.
The reflective sensor according to claim 1 , wherein the light-shielding wall is formed by projecting a part of the lens holder.
前記遮光壁の表面と前記レンズの表面とが同一平面をなすことを特徴とする請求項1または2に記載の反射型センサ。 The reflective sensor according to claim 1 or 2 , wherein the surface of the light-shielding wall and the surface of the lens form the same plane.
JP2020078442A 2020-04-27 2020-04-27 Reflective sensor Active JP6817479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020078442A JP6817479B1 (en) 2020-04-27 2020-04-27 Reflective sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020078442A JP6817479B1 (en) 2020-04-27 2020-04-27 Reflective sensor

Publications (2)

Publication Number Publication Date
JP6817479B1 true JP6817479B1 (en) 2021-01-20
JP2021173668A JP2021173668A (en) 2021-11-01

Family

ID=74164524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078442A Active JP6817479B1 (en) 2020-04-27 2020-04-27 Reflective sensor

Country Status (1)

Country Link
JP (1) JP6817479B1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204538A (en) * 1992-05-18 1993-04-20 Xerox Corporation Densitometer for an electrophotographic printer using focused and unfocused reflecting beams
US6585341B1 (en) * 1997-06-30 2003-07-01 Hewlett-Packard Company Back-branding media determination system for inkjet printing
JP4422039B2 (en) * 2005-01-31 2010-02-24 ニチコン株式会社 Toner adhesion measuring device
JP4732482B2 (en) * 2008-04-28 2011-07-27 株式会社リコー Optical sensor and image forming apparatus
US9046851B2 (en) * 2012-03-30 2015-06-02 Eastman Kodak Company Method of operating a printer with unfused toner process control
JP2016225623A (en) * 2015-05-26 2016-12-28 京セラ株式会社 Light receiving/emitting element module and measuring device
JP6552052B2 (en) * 2015-12-22 2019-07-31 ニチコン株式会社 Toner adhesion amount sensor
JP6926880B2 (en) * 2017-09-21 2021-08-25 コニカミノルタ株式会社 Recording material characteristic detection device and image forming device
JP2019056831A (en) * 2017-09-21 2019-04-11 キヤノン株式会社 Image forming device and optical sensor
JP7093275B2 (en) * 2018-09-12 2022-06-29 ニチコン株式会社 Toner adhesion sensor

Also Published As

Publication number Publication date
JP2021173668A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
TWI710783B (en) Optoelectronic modules operable to recognize spurious reflections and to compensate for errors caused by spurious reflections
US6781705B2 (en) Distance determination
JP5583120B2 (en) Photoelectric switch and method for detecting objects
TW201539012A (en) Optical imaging modules and optical detection modules including a time-of-flight sensor
TWI536210B (en) Method of estimating motion with optical lift detection
JP2009085844A (en) Radiation detector
JP6552052B2 (en) Toner adhesion amount sensor
JP2009150690A (en) Reflection-type optical sensor
JP2018141781A (en) Radiation detector and radiation detection device
JP6817479B1 (en) Reflective sensor
JP4793786B2 (en) pointing device
JP7093275B2 (en) Toner adhesion sensor
JP6761912B1 (en) Basis weight measuring device and basis weight measuring method
WO2013136825A1 (en) Reflective light sensor
JPH1062161A (en) Distance-measuring sensor, distance-measuring unit, paper-sheets conveyance device, automatic inspection device and printing apparatus
JP4554840B2 (en) Toner adhesion measuring device
JP7062362B2 (en) Radiation detector and radiation detector
GB2122835A (en) Rangefinder
KR100551581B1 (en) OCToptical coherence tomography system using a CCDcharge coupled device camera
JPH0950176A (en) Toner density measuring device
JP2816257B2 (en) Non-contact displacement measuring device
JP2789414B2 (en) Small tilt angle detector
JP2018141673A (en) Radiation detector and radiation detection device
JP2023038517A (en) Reflective sensor
JP2018115953A (en) Radiation detector and radiation detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200604

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6817479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250