JP6815825B2 - 評価装置及び評価方法 - Google Patents

評価装置及び評価方法 Download PDF

Info

Publication number
JP6815825B2
JP6815825B2 JP2016208616A JP2016208616A JP6815825B2 JP 6815825 B2 JP6815825 B2 JP 6815825B2 JP 2016208616 A JP2016208616 A JP 2016208616A JP 2016208616 A JP2016208616 A JP 2016208616A JP 6815825 B2 JP6815825 B2 JP 6815825B2
Authority
JP
Japan
Prior art keywords
film
waveguide
electromagnetic wave
unit
transmitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016208616A
Other languages
English (en)
Other versions
JP2018072020A (ja
Inventor
彩人 射庭
彩人 射庭
誠人 池田
誠人 池田
誠 中嶋
誠 中嶋
恵介 ▲高▼野
恵介 ▲高▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Osaka University NUC
Original Assignee
Asahi Kasei Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Osaka University NUC filed Critical Asahi Kasei Corp
Priority to JP2016208616A priority Critical patent/JP6815825B2/ja
Publication of JP2018072020A publication Critical patent/JP2018072020A/ja
Application granted granted Critical
Publication of JP6815825B2 publication Critical patent/JP6815825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、膜状体の特性を評価する評価装置及び評価方法に関する。
試料の特性を評価する評価装置が普及している。このような評価装置として、試料に照射しても損傷が少ないという理由から、電磁波を用いるものが知られている。
特許文献1には、テラヘルツ時間領域分光法(THz−TDS法)と称される方式の評価装置が記載されている。当該評価装置は、周波数が0.1THz〜10THz、波長が300μm〜3mmの電磁波であるテラヘルツ波を用いている。テラヘルツ波は、光と電波の境界領域に属していることから、光が有する直進性と、電波が有する透過性と、の双方を兼ね備えている。
特許文献1記載の評価装置は、電磁波を発信する発信部と、当該電磁波を受信する受信部と、を備えている。発信部と受信部との間には、測定対象である試料が配置される。発信部が発信した電磁波が試料に照射されると、その一部が試料によって吸収され、他部が試料を透過する。評価装置は、受信部が当該電磁波の他部を受信することによって取得する電流波形と、試料を配置しない場合に受信部が電磁波を受信することによって取得する電流波形と、の差異に基づいて、当該試料の特性を評価する。
特開2002−277394号公報
ところで、試料による電磁波の吸収の程度は、電磁波が当該試料中を透過する距離や、当該試料の吸収係数に依存する。電磁波が試料中を透過する距離が小さいと、試料に吸収される電磁波が少なくなる。この場合、前述した2つの電流波形の差異が小さくなる。
したがって、膜状体のように厚みが小さい試料では、電磁波の透過距離が小さいため、前述した2つの電流波形の差異も小さくなる。このため、特許文献1記載の装置では、膜状体の特性を精度よく評価できないという課題があった。
本発明はこのような課題に鑑みてなされたものであり、その目的は、膜状体の特性を高い精度で評価することが可能な評価装置及び評価方法を提供することにある。
本発明の一形態は、膜状体の特性を評価する評価装置であって、電磁波を発信する発信部と、発信部が発信した電磁波を受信する受信部と、発信部と受信部との間に配置され、発信部が発信した電磁波を受信部側に導く導波路を内部に有する導波部材と、受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する演算部と、を備える。導波部材は、電磁波を反射させる一対の反射面を有する。一対の反射面は、所定方向において隙間を隔てて互いに対向することにより導波路を形成する。導波路は、その一部に、厚さ方向が所定方向と直交しないように膜状体を配置する膜状体配置部を有している。
上記構成によれば、発信部が発した電磁波は、一対の反射面の間で反射しながら受信部に導かれる。膜状体は、その厚さ方向が、所定方向と直交しないように配置されている。このため、電磁波は、膜状体をその厚さ方向に複数回透過する。この結果、膜状体における電磁波の透過距離を大きくし、膜状体の特性を精度よく評価することが可能になる。
また、本発明の他の形態は、膜状体の特性の評価方法であって、電磁波を発信する発信部と、発信部が発信した電磁波を受信する受信部と、を配置する第1行程と、発信部と受信部との間に、膜状体を配置する第2行程と、発信部が発信した電磁波を反射させることにより、膜状体に、その厚さ方向に電磁波を複数回透過させる第3行程と、受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する第4行程と、を含む。
上記方法によれば、発信部が発した電磁波は、膜状体をその厚さ方向に複数回透過する。この結果、膜状体における電磁波の透過距離を大きくし、膜状体の特性を精度よく評価することが可能になる。
本発明によれば、膜状体の特性を高い精度で評価することが可能な評価装置及び評価方法を提供することができる。
実施形態に係る評価装置を示す模式図である。 図1の演算部が取得する電流波形を示すグラフである。 図1の導波部材を示す正面図である。 図1の導波部材を示す斜視図である。 図1の導波部材を示す拡大図である。 図1の導波部材を示す拡大図である。 図1の導波部材を示す拡大図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
まず、図1及び図2を参照しながら、実施形態に係る評価装置1の概要を説明する。評価装置1は、テラヘルツ時間領域分光法を用いて、膜状体Mの光学的特性(例えば、吸収率や、屈折率、透過率等。)を評価する装置である。膜状体Mは、厚さ寸法が他の寸法と比べて小さい物体である。評価対象にできる膜状体Mとして、例えば、綿織物や、キュプラ織物、樹脂フィルム等が挙げられる。図1に示されるように、評価装置1は、発信部2と、受信部3と、導波部材4と、演算部7と、を備えている。
発信部2は、外部の空間に電磁波を発信する機器である。詳細には、発信部2は、周波数が0.1THz〜10THz、波長が300μm〜3mmの電磁波であるテラヘルツ波を発生させる。発信部2は、フェムト秒レーザ、光伝導アンテナや、テラヘルツ発信共鳴トンネルダイオード(RTD)、テラヘルツ量子カスケードレーザ等、テラヘルツ波を発信可能な機構を有している。図1はこれらを簡略し、発信部2を1つのユニットとして図示している。発信部2は、不図示の制御装置から受信する制御信号に基づいて電磁波を発信する。
受信部3は、発信部2が発信した電磁波を受信する機器である。受信部3は、発信部2と間隔を空けて配置されている。受信部3は、光伝導素子等の複数の部材を有している。図2はこれらを簡略し、受信部3を1つのユニットとして図示している。受信部3は、発信部2が発信した電磁波を受信し、当該電磁波の電場強度を電流として検出することができる。
導波部材4は、発信部2と受信部3との間に配置される部材である。導波部材4は、その内部に導波路40を有している。導波路40は、その端部が開放されている。詳細には、導波部材4は、隙間を隔てて対向する導波板5,6を有しており、当該隙間が導波路40に相当する。膜状体Mは、この導波路40の一部に配置されている。後述するように、発信部2が発信した電磁波はこの導波路40を通過することによって受信部3に導かれる。
尚、理解を容易にするため、図1に示されるように、導波板5,6が対向する方向をZ方向とし、当該Z方向に直交する方向をX方向、Y方向とする直交座標を用いて説明する。図3以降においても、当該直交座標と対応する座標が示される。
演算部7は、膜状体Mの特性を導出する機器である。演算部7は、少なくとも受信部3と接続されている。演算部7は、受信部3が検出した電流に基づいて所定の演算を行うことにより、膜状体Mの特性を導出する。
演算部7は、図2に示される電流波形を受信部3から取得する。図2は、発信部2から電磁波が発信された後に、受信部3が検出した電流の変化を示している。導波路40に膜状体Mが配置されていない場合に受信部3が検出する電流Erの波形は、実線によって示されている。一方、導波路40に膜状体Mが配置されている場合に受信部3が検出する電流Emの波形は、破線によって示されている。電流Er及び電流Emの波形は、電磁波が受信部3によって受信されたタイミングにピークを有している。
導波路40に膜状体Mが配置されていない場合、発信部2が発信した電磁波は、導波路40において殆ど吸収されることなく受信部3に至る。この場合、電流Erの波形のピークが明瞭に現れる。このような電流Erの波形は、膜状体Mの評価に先駆けて取得されている。
一方、導波路40に膜状体Mが配置されている場合、発信部2が発信した電磁波の一部は、導波路40において当該膜状体Mによって吸収される。電磁波の他部は、当該膜状体Mを透過し、導波路40を通過して発信部2に至る。つまり、電流Emの波形は、多重反射も含めた透過後の電磁波のものを示している。このため、電流Emの波形のピークは、電流Erの波形のものよりも小さくなる。また、電流Emの波形のピークは、電流Erのピークが現れるタイミングからやや遅れて現れる。
演算部7は、このような電流Er,Emの波形のそれぞれに所定の処理を施す。詳細には、演算部7は、電流Er,Emの波形のそれぞれの複素フーリエ成分を計算し、両者の比を計算する。両者の比は複素振幅透過率に相当し、複素屈折率の関数として表される。したがって、演算部7は、予め実験で得られている複素振幅透過率に基づいて、膜状体Mの光学的特性の1つである複素屈折率を導出することができる。
このように構成された評価装置1において、膜状体Mの特性を高い精度で評価するためには、電流Erの波形と電流Emの波形との差異が、有意なものでなければならない。換言すれば、導波路40における膜状体Mの有無に応じて、電流Er,Emの波形の差異が顕著となるように評価装置1を構成する必要がある。
そこで、評価装置1では、電流Er,Emの波形の差異を顕著なものとすべく、導波部材4の構成に工夫がなされている。次に図3から図7を参照しながら、この導波部材4の構成について説明する。
図3及び図4に示されるように、導波板5,6は、X軸方向を長手方向とし、Z軸方向を厚さ方向とする板形状を呈している。導波板5,6は、アルミニウムによって形成されている。X軸方向における導波板5,6の寸法Lxは、90mm程度である。図3に示されるように、導波板5,6は、その一側面に反射面50,60を有している。
反射面50,60は、研磨が施されることにより凹凸が少ない滑らかな面となっている。これにより、後述するように反射面50,60において電磁波が反射する際の散乱が抑制される。反射面50,60は、入口側テーパ部51,61、平坦部52,62、及び出口側テーパ部53,63を有している。
平坦部52,62は、X軸方向において反射面50,60の略中央部に位置する平坦な面である。X軸方向における平坦部52,62の寸法Lx1は30mm程度である。導波板5,6は、この平坦部52,62が、Z軸方向に隙間を隔てて互いに平行となるように配置されている。Z軸方向における隙間の寸法dは、発信部2が発信する電磁波の波長以下(例えば、200μm)に設定されている。導波路40のうち、この平坦部52と平坦部62との間に形成される部分は、膜状体配置部42と称される。尚、説明の理解の為、図3から図7では、導波路40を極端に大きく示している。
膜状体Mは、この膜状体配置部42に、その厚さ方向がZ方向と直交しないように配置される。詳細には、膜状体Mは、その厚さ方向がZ方向と一致するとともに、平坦部52,62に沿って延びるように膜状体配置部42に配置される。膜状体Mは、平坦部52,62と接触しないように、Y軸方向の両端部が不図示の治具によって固定されている。
入口側テーパ部51,61は、平坦部52,62よりも発信部2(図3では不図示)側に位置し、平坦部52,62に連続する面である。入口側テーパ部51,61は、導波路40に向かって突出するように湾曲している。導波路40のうち、この入口側テーパ部51と入口側テーパ部61との間に形成される部分は入口部41と称される。入口部41において、入口側テーパ部51,61は、X軸方向に向かうにつれて漸次近接するように形成されている。換言すれば、入口部41は、X軸方向に向かうにつれてその幅が漸次減少するように形成されている。
出口側テーパ部53,63は、平坦部52,62よりも受信部3(図3では不図示)側に位置し、平坦部52,62に連続する面である。出口側テーパ部53,63は、導波路40に向かって突出するように湾曲している。導波路40のうち、この出口側テーパ部53と出口側テーパ部63との間に形成される部分は出口部43と称される。出口部43において、出口側テーパ部53,63は、X軸方向に向かうにつれて漸次離反するように形成されている。換言すれば、出口部43は、X軸方向に向かうにつれてその幅が漸次増加するように形成されている。
図5に示されるように、発信部2(図5では不図示)によって発信された電磁波は、まず、導波路40の−X方向における端部から入口部41に進入する。図5は、電磁波の進行方向を、矢印A1によって模式的に示している。矢印A1で示されるように、電磁波は、入口側テーパ部51,61において繰り返し反射することにより、Z方向に往復する。
また、前述したように、入口側テーパ部51,61は導波路40に向かって突出するように湾曲している。このため、入口側テーパ部51,61は、X方向を指向するように電磁波を反射させる。また、入口部41は、X軸方向に向かうにつれてその幅が漸次減少しているため、Z方向における電磁波の移動距離は漸次小さくなる。この結果、電磁波は収束しながら膜状体配置部42に向かって進行する。
入口部41を通過した電磁波は、次に、図6に示されるように膜状体配置部42に進入する。前述したように、Z軸方向における膜状体配置部42の寸法dは、電磁波の波長よりも小さい。一般的に、電磁波は、その回折限界のため、寸法が波長よりも小さい隙間を通過することは困難である。
本実施形態に係る評価装置1では、平坦部52,62は、金属材料であるアルミニウムによって形成されている。膜状体配置部42に進入した電磁波が平坦部52,62の近傍を進行する際は、当該電磁波の電場の成分のうち、表面に平行な成分は金属中の自由電子に遮蔽され存在せず、表面に垂直な成分のみが存在するという境界条件が満たされる。膜状体配置部42の寸法dを電磁波の回折限界以下とした場合でも、この境界条件は満たされ、電磁波は平坦部52,62で反射しながら進行することが可能である。
電磁波は、矢印A2で示されるように、平坦部52,62において繰り返し反射し、Z方向に往復しながら膜状体配置部42を進行する。したがって、電磁波は、膜状体配置部42に配置されている膜状体Mを、その厚さ方向に繰り返し透過する。詳細には、膜状体Mに達した電磁波の一部が膜状体Mによって吸収され、他部が膜状体Mを透過する。
膜状体配置部42を通過した電磁波は、次に、図7に示されるように出口部43に進入する。矢印A3で示されるように、電磁波は、出口側テーパ部53,63において繰り返し反射することにより、Z方向に往復する。
一般に、導波路の終端に頂角が形成されていると、当該頂角において電磁波の回折が生じる。この結果、導波路の終端から電磁波が拡散し、受信部3が受信できる電磁波が減少してしまう。
本実施形態に係る評価装置1では、前述したように、出口側テーパ部53,63は導波路40に向かって突出するように湾曲している。これにより、導波路40の終端における電磁波の拡散が抑制される。このようにして出口部43を通過した電磁波は、受信部3によって受信される。
次に、以上の説明のように構成された評価装置1が奏する作用効果について説明する。
評価装置1の構成によれば、発信部2が発した電磁波は、一対の反射面50,60の間で反射しながら受信部3に導かれる。膜状体Mは、その厚さ方向が、反射面50,60が対向する方向と直交しないように配置されている。このため、電磁波は、膜状体Mをその厚さ方向に複数回透過する。この結果、膜状体Mにおける電磁波の透過距離を大きくし、膜状体Mの特性を精度よく評価することが可能になる。
また、一対の反射面50,60は、平坦面である。この構成によれば、一対の反射面50,60の間で、電磁波の散乱を抑制しながら反射させることができる。この結果、膜状体Mの特性をより正確に評価することが可能になる。
ところで、膜状体配置部42の寸法dが小さいほど、膜状体配置部42に電磁波を収束させ、評価精度を向上させることが可能になる。しかしながら、反射面50,60間の寸法dが電磁波の波長を下回ると、回折限界のため、電磁波が膜状体配置部42を通過できなくなる。
そこで、評価装置1では、反射面50,60は、金属材料によって形成されている。この構成によれば、反射面50,60間の寸法dが電磁波の波長よりも小さい場合であっても、電磁波は、反射面50,60における境界条件を満たしながら、膜状体配置部42を通過することが可能になる。この結果、膜状体配置部42に電磁波を収束させ、特性の評価精度を向上させることが可能になる。この構成は、発信部2が発信する電磁波が、他の電磁波と比較して波長が長いテラヘルツ波である場合に特に好適である。
また、反射面50,60は、発信部2側から膜状体配置部42側に向かって導波路40の幅を漸次減少させる入口側テーパ部51,61を有している。この構成によれば、発信部2から発信された電磁波を、入口側テーパ部51,61によって収束させながら膜状体配置部42に導くことが可能になる。この結果、特性の評価精度をさらに高めることが可能になる。
また、入口側テーパ部51,61は、導波路40に向かって突出するように湾曲している。この構成によれば、発信部2から発信された電磁波を、より膜状体配置部42に指向させることができる。この結果、電磁波を高い効率で収束させ、特性の評価精度をさらに高めることが可能になる。
また、反射面50,60は、膜状体配置部42側から受信部3側に向かって導波路40の幅を漸次増加させる出口側テーパ部53,63を有している。この構成によれば、導波路40の終端における電磁波の回折を抑制し、膜状体配置部42を通過した電磁波を更に確実に受信部3に受信させることが可能になる。
以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
上記実施形態では、アルミニウムによって形成された導波板5,6の対向する面を反射面50,60としている。しかしながら、本発明はこの形態に限定されない。例えば、導波板を樹脂材料等によって形成するとともに、その対向する面のそれぞれに、金属材料によって形成された別部材を配置したり、金属材料の被膜を形成したりしてもよい。この場合、当該別部材や被膜が反射面として機能する。
また、上記実施形態では、膜状体Mは、その厚さ方向がZ方向と一致するとともに、平坦部52,62に沿って延びるように膜状体配置部42に配置される。しかしながら、本発明はこの形態に限定されない。膜状体Mは、平坦部52,62において繰り返し反射する電磁波が透過するような姿勢であれば、例えば平坦部52,62に対して傾斜して延びるように膜状体配置部42に配置されてもよい。
1:評価装置
2:発信部
3:受信部
4:導波部材
40:導波路
42:膜状体配置部
50,60:反射面
51,61:入口側テーパ部
52,62:平坦部
53,63:出口側テーパ部
7:演算部
M:膜状体

Claims (9)

  1. 膜状体の特性を評価する評価装置であって、
    電磁波を発信する発信部と、
    前記発信部が発信した電磁波を受信する受信部と、
    前記発信部と前記受信部との間に配置され、前記発信部が発信した電磁波を前記受信部側に導く導波路を内部に有する導波部材と、
    前記受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する演算部と、を備え、
    前記導波部材は、電磁波を反射させる一対の反射面を有し、
    前記一対の反射面は、所定方向において隙間を隔てて互いに対向することにより前記導波路を形成し、
    前記導波路は、その一部に、厚さ方向が前記所定方向と直交しないように膜状体を配置する膜状体配置部を有し
    前記反射面は、前記発信部側から前記膜状体配置部側に向かって前記導波路の幅を漸次減少させる入口側テーパ部を有していることを特徴とする評価装置。
  2. 前記入口側テーパ部は、前記導波路に向かって突出するように湾曲していることを特徴とする請求項1に記載の評価装置。
  3. 膜状体の特性を評価する評価装置であって、
    電磁波を発信する発信部と、
    前記発信部が発信した電磁波を受信する受信部と、
    前記発信部と前記受信部との間に配置され、前記発信部が発信した電磁波を前記受信部側に導く導波路を内部に有する導波部材と、
    前記受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する演算部と、を備え、
    前記導波部材は、電磁波を反射させる一対の反射面を有し、
    前記一対の反射面は、所定方向において隙間を隔てて互いに対向することにより前記導波路を形成し、
    前記導波路は、その一部に、厚さ方向が前記所定方向と直交しないように膜状体を配置する膜状体配置部を有し
    前記反射面は、前記膜状体配置部側から前記受信部側に向かって前記導波路の幅を漸次増加させる出口側テーパ部を有していることを特徴とする評価装置。
  4. 前記一対の反射面は、平坦面であることを特徴とする請求項1から3のいずれか一項に記載の評価装置。
  5. 前記一対の反射面は、金属材料によって形成されていることを特徴とする請求項4に記載の評価装置。
  6. 膜状体の特性の評価方法であって、
    電磁波を発信する発信部と、前記発信部が発信した電磁波を受信する受信部と、を配置する第1行程と、
    前記発信部と前記受信部との間に、膜状体を配置する第2行程と、
    前記発信部が発信した電磁波を反射させることにより、膜状体に、その厚さ方向に電磁波を複数回透過させる第3行程と、
    前記受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する第4行程と、を含み、
    前記第3行程において、前記発信部が発信した電磁波を、前記発信部側から膜状体に向かって幅が漸次減少する導波路を介して、膜状体に導くことを特徴とする評価方法。
  7. 膜状体の特性の評価方法であって、
    電磁波を発信する発信部と、前記発信部が発信した電磁波を受信する受信部と、を配置する第1行程と、
    前記発信部と前記受信部との間に、膜状体を配置する第2行程と、
    前記発信部が発信した電磁波を反射させることにより、膜状体に、その厚さ方向に電磁波を複数回透過させる第3行程と、
    前記受信部によって受信された電磁波に基づいて所定の演算を行うことにより、膜状体の特性を導出する第4行程と、を含み、
    前記第3行程において、前記膜状体を透過した電磁波を、前記膜状体側から前記受信部側に向かって幅が漸次増加する導波路を介して、前記受信部に導くことを特徴とする評価方法。
  8. 前記第3行程において、平坦面である一対の反射面を用いて、前記発信部が発信した電磁波を反射させることを特徴とする請求項6または7に記載の評価方法。
  9. 前記第3行程において、金属材料によって形成された前記一対の反射面を用いて、前記発信部が発信した電磁波を反射させることを特徴とする請求項8に記載の評価方法。
JP2016208616A 2016-10-25 2016-10-25 評価装置及び評価方法 Active JP6815825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208616A JP6815825B2 (ja) 2016-10-25 2016-10-25 評価装置及び評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208616A JP6815825B2 (ja) 2016-10-25 2016-10-25 評価装置及び評価方法

Publications (2)

Publication Number Publication Date
JP2018072020A JP2018072020A (ja) 2018-05-10
JP6815825B2 true JP6815825B2 (ja) 2021-01-20

Family

ID=62114960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208616A Active JP6815825B2 (ja) 2016-10-25 2016-10-25 評価装置及び評価方法

Country Status (1)

Country Link
JP (1) JP6815825B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090310A (ja) * 2000-09-19 2002-03-27 Sekisui Chem Co Ltd シート検査装置
CN105403531B (zh) * 2007-07-12 2019-05-14 派克米瑞斯有限责任公司 测量时域数据中脉冲的渡越时间位置的系统和方法
US8975586B2 (en) * 2011-06-06 2015-03-10 Honeywell Asca Inc. Diffusing measurement window for near and mid IR multichannel sensor

Also Published As

Publication number Publication date
JP2018072020A (ja) 2018-05-10

Similar Documents

Publication Publication Date Title
KR101699273B1 (ko) 테라헤르츠파를 이용한 실시간 비접촉 비파괴 두께 측정장치
US7633299B2 (en) Inspection apparatus using terahertz wave
US8259022B2 (en) Ultra low loss waveguide for broadband Terahertz radiation
Polanco et al. Scattering of surface plasmon polaritons by one-dimensional surface defects
US20100054296A1 (en) Terahertz wave generating apparatus and terahertz wave generating method
EP2366093B1 (en) Method, measuring arrangement and apparatus for optically measuring by interferometry the thickness of an object
US20230314315A1 (en) Thz measuring device and thz measurement method for measuring test objects, in particular pipes
JP6815825B2 (ja) 評価装置及び評価方法
KR101121056B1 (ko) 가우시안 빔 안테나를 이용한 플라즈마 밀도 측정용 간섭계
JP6729970B2 (ja) 評価装置
Hasar et al. Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements
JP6926286B2 (ja) 評価装置
Trappe et al. Gaussian beam mode analysis of standing waves between two coupled corrugated horns
KR101039126B1 (ko) 테라헤르츠파 평행판 도파관
Zhu et al. Inexpensive and easy fabrication of multi-mode tapered dielectric circular probes at millimeter wave frequencies
KR101584128B1 (ko) 시료 집합체 및 이를 이용한 광학 상수 측정 장치
US9568422B2 (en) Light beam incident device and reflected light measurement device
KR101994995B1 (ko) 전자기 특성 분석 장치 및 방법
KR20140115063A (ko) 레이 트레이싱 전파환경에서 전파 수신레벨 결정장치 및 방법
CN105404069B (zh) 一种水平导轨泵浦双向受激散射同时发生增强装置及方法
JP6541366B2 (ja) テラヘルツ波計測装置
KR101593399B1 (ko) 테라헤르츠 전자기파를 이용한 성분 분석 장치
JP6361908B2 (ja) 電磁波検出器及び電磁波検出方法
JP2014081345A (ja) センサ
KR101374321B1 (ko) 비접촉 두께 측정 장치 및 그것의 두께 측정 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6815825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250