JP6813805B2 - Manufacturing method of high-strength precast concrete - Google Patents

Manufacturing method of high-strength precast concrete Download PDF

Info

Publication number
JP6813805B2
JP6813805B2 JP2017064989A JP2017064989A JP6813805B2 JP 6813805 B2 JP6813805 B2 JP 6813805B2 JP 2017064989 A JP2017064989 A JP 2017064989A JP 2017064989 A JP2017064989 A JP 2017064989A JP 6813805 B2 JP6813805 B2 JP 6813805B2
Authority
JP
Japan
Prior art keywords
temperature
concrete
curing
hours
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064989A
Other languages
Japanese (ja)
Other versions
JP2018168003A (en
Inventor
典恵 白濱
典恵 白濱
義仁 黒岩
義仁 黒岩
祥平 木村
祥平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017064989A priority Critical patent/JP6813805B2/en
Publication of JP2018168003A publication Critical patent/JP2018168003A/en
Application granted granted Critical
Publication of JP6813805B2 publication Critical patent/JP6813805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、高強度プレキャストコンクリートの製造において、型枠の存置期間が短く、また温度ひび割れが生じ難い製造方法に関する。 The present invention relates to a production method for producing high-strength precast concrete, in which the shelf life of the formwork is short and temperature cracks are unlikely to occur.

プレキャストコンクリートを用いた工法は、予め製作したコンクリート製品を施工現場で組み立て構造体を構築する工法であり、通常、コンクリート製品は専用工場で製作されるので、天候に左右されることなく、高品質で品質の安定したコンクリート製品を製造でき、工事期間の短縮化、施工現場の省力化ができるなどの利点を有しており、広く実施されている。 The construction method using precast concrete is a construction method in which pre-made concrete products are assembled at the construction site to construct a structure. Normally, concrete products are manufactured in a dedicated factory, so high quality is not affected by the weather. It has the advantages of being able to manufacture concrete products with stable quality, shortening the construction period, and saving labor at the construction site, and is widely practiced.

プレキャストコンクリートの製造について、製造時間の短縮や製品の圧縮強度を高めるための検討がなされており、例えば、以下の製造方法が知られている。
(イ) 特開2000−71232号公報(特許文献1)には、前養生温度を40℃にすることで蒸気養生サイクルを短縮した製造方法が記載されている。
(ロ) 特開2013−14447号公報(特許文献2)には、シリカフューム混入セメントを結合材としたセメント組成物において、水結合材比を0.2以下にして混練、成型し、70〜100℃の温度範囲で2〜72時間蒸気養生する第1の養生工程と、常圧を超え22MPa以下の加圧条件下で100〜400℃の温度範囲で2〜72時間加熱する第2の養生工程を行うことによって、圧縮強度300N/mm以上の高強度セメント硬化体を得ることが記載されている。
(ハ) 特開2011−195354号公報(特許文献3)には、低発熱型セメントとポゾラン質物質を含む結合材を用いた高強度プレキャストコンクリートの製造において、常温で2〜4時間前養生した後に、5〜10℃/hの昇温勾配で最高温度60〜90℃まで昇温して3〜9時間保持した後に常温まで冷却する製造方法が記載されている。この製造方法は前養生時間を短縮できるので概ね24時間以内に脱型できるとしている。
Regarding the production of precast concrete, studies have been made to shorten the production time and increase the compressive strength of the product. For example, the following production methods are known.
(B) Japanese Unexamined Patent Publication No. 2000-71232 (Patent Document 1) describes a production method in which the steam curing cycle is shortened by setting the pre-curing temperature to 40 ° C.
(B) Japanese Patent Application Laid-Open No. 2013-14447 (Patent Document 2) describes a cement composition containing silica fume-mixed cement as a binder, kneaded and molded with a water binder ratio of 0.2 or less, and 70 to 100. A first curing step of steam curing in a temperature range of ° C. for 2 to 72 hours, and a second curing step of heating in a temperature range of 100 to 400 ° C. for 2 to 72 hours under a pressurized condition exceeding normal pressure and 22 MPa or less. It is described that a high-strength cement cured product having a compressive strength of 300 N / mm 2 or more can be obtained by carrying out the above.
(C) Japanese Patent Application Laid-Open No. 2011-195354 (Patent Document 3) states that in the production of high-strength precast concrete using a binder containing a low-heat-generating cement and a pozzolanic substance, it was cured at room temperature for 2 to 4 hours. Later, a production method is described in which the temperature is raised to a maximum temperature of 60 to 90 ° C. with a temperature rise gradient of 5 to 10 ° C./h, held for 3 to 9 hours, and then cooled to room temperature. Since this manufacturing method can shorten the pre-curing time, it is said that the mold can be removed within about 24 hours.

特開2000−71232号公報Japanese Unexamined Patent Publication No. 2000-71232 特開2013−14447号公報Japanese Unexamined Patent Publication No. 2013-14447 特開2011−195354号公報Japanese Unexamined Patent Publication No. 2011-195354

特許文献3に開示されている製造方法は、小型の供試体レベルでは所要の強度発現をするものの、実大寸法のプレキャストコンクリートでの部材温度は、高温が数日間推移しており、型枠存置期間が長期化する傾向にある。また、特許文献1〜3の製造方法も同様であるが、一般に部材温度が十分に低下していない段階で脱型すると、特に粉体量の多い超高強度コンクリートの内部は高温になっており内部温度応力によるひび割れや、脱枠時の外気と部材表面の温度差によりヒートクラックを生じる可能性がある。 Although the manufacturing method disclosed in Patent Document 3 exhibits the required strength at the level of a small specimen, the temperature of the member in the full-scale precast concrete has remained high for several days, and the formwork is retained. The period tends to be longer. Further, the manufacturing methods of Patent Documents 1 to 3 are the same, but in general, when the member is demolded at a stage where the member temperature is not sufficiently lowered, the inside of the ultra-high strength concrete having a particularly large amount of powder becomes high. There is a possibility that cracks may occur due to internal temperature stress, or heat cracks may occur due to the temperature difference between the outside air and the surface of the member when the frame is removed.

本発明は、従来の製造方法における上記課題を解決したものであり、型枠から短時間で脱型することができ、型枠の回転率を高め、かつ温度ひび割れが生じ難い高強度プレキャストコンクリートを製造する方法を提供する。 The present invention solves the above-mentioned problems in the conventional manufacturing method, and provides a high-strength precast concrete that can be removed from the formwork in a short time, increases the rotation rate of the formwork, and is less likely to cause temperature cracks. Provide a method of manufacturing.

本発明は、以下の構成によって上記課題を解決した高強度プレキャストコンクリートの製造方法に関する。
〔1〕低熱ポルトランドセメントがベースセメントであるシリカフューム混合セメントに粗骨材、細骨材、促進型高性能減水剤を配合したコンクリート組成物を用いたプレキャストコンクリートの製造方法であって、コンクリートを型枠に打設し、30〜50℃で6〜9時間の前養生を行って凝結始発時間を早めた後に、引続き、昇温勾配10〜20℃/hの割合で養生温度を高め、最高温度60〜90℃で2時間〜4時間保持させる蒸気養生を行い、その後に自然冷却して、コンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下になった後に脱型する温度履歴を経ることを特徴とする高強度プレキャストコンクリートの製造方法。
〔2〕促進型高性能減水剤を結合材に対して1〜6質量%含有し、膨張材を単位量で2〜20kg/m含有するコンクリート組成物を用いる上記[1]に記載する高強度プレキャストコンクリートの製造方法。
The present invention relates to a method for producing high-strength precast concrete that solves the above problems by the following configurations.
[1] A method for producing precast concrete using a concrete composition in which coarse aggregate, fine aggregate, and an accelerated high-performance water reducing agent are mixed with silica-fume mixed cement whose base cement is low-heat Portland cement. After placing in a frame and pre-curing at 30 to 50 ° C. for 6 to 9 hours to accelerate the settling start time, the curing temperature is continuously increased at a rate of temperature rise gradient of 10 to 20 ° C./h to the maximum temperature. Steam curing is performed by holding at 60 to 90 ° C for 2 to 4 hours, and then air cooling is performed so that the temperature difference between the concrete surface temperature and the internal temperature is 20 ° C or less, and the concrete surface temperature and the outside temperature A method for producing high-strength precast concrete, which comprises a temperature history of demolding after the temperature difference becomes 20 ° C. or less .
[2] The height according to the above [1], wherein a concrete composition containing 1 to 6% by mass of an accelerated high-performance water reducing agent and 2 to 20 kg / m 3 of an expanding material in a unit amount is used. How to make strong precast concrete.

本発明の製造方法は、コンクリートを型枠に打設した後に直ちに断熱シートで覆い、30〜50℃で6〜9時間前置養生を行うことによって、コンクリートの凝結始発時間が促進される。一般的な養生方法は、特許文献3に記載されている製造方法のように、凝結始発に到達後に蒸気養生を行うが、本発明の製造方法は、常温よりやや高い温度で前養生を行って凝結始発時間を早める。引続き、昇温勾配10〜20℃/hの割合で養生温度を高め、最高温度60〜90℃で2時間〜4時間保持させる方法であり、前養生時間(約6〜9時間)と昇温時間(約30分〜6時間)と高温保持時間(2〜4時間)と、コンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下に到達するまでに要する自然冷却時間の合計養生時間は概ね40時間〜48時間であり、短時間に脱型することができる。 In the production method of the present invention, the concrete setting start time is promoted by immediately covering the concrete with a heat insulating sheet after placing it in a mold and performing pre-curing at 30 to 50 ° C. for 6 to 9 hours. As a general curing method, steam curing is performed after reaching the first condensation, as in the production method described in Patent Document 3, but in the production method of the present invention, pre-curing is performed at a temperature slightly higher than normal temperature. Accelerate the first settling time. Subsequently, the curing temperature is raised at a rate of a temperature rise gradient of 10 to 20 ° C./h, and the temperature is maintained at a maximum temperature of 60 to 90 ° C. for 2 hours to 4 hours. The temperature rises with the pre-curing time (about 6 to 9 hours). The time (about 30 minutes to 6 hours) and high temperature holding time (2 to 4 hours), the temperature difference between the concrete surface temperature and the internal temperature is 20 ° C or less, and the temperature difference between the concrete surface temperature and the outside air temperature. The total curing time of the natural cooling time required to reach 20 ° C. or lower is approximately 40 hours to 48 hours, and the mold can be removed in a short time.

本発明の製造方法は、コンクリートを型枠に打設後40時間〜48時間経過後の同一時間におけるコンクリートの表面温度と内部温度の温度差が従来の製造方法よりも小さい。また、本発明の製造方法によれば、コンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下になった後に脱型することによって、温度ひび割れが生じ難い高強度プレキャストコンクリートを得ることができる。 In the manufacturing method of the present invention, the temperature difference between the surface temperature and the internal temperature of the concrete at the same time 40 to 48 hours after the concrete is cast into the mold is smaller than that of the conventional manufacturing method. Further, according to the manufacturing method of the present invention, the mold is removed after the temperature difference between the surface temperature of the concrete and the internal temperature becomes 20 ° C. or less and the temperature difference between the surface temperature of the concrete and the outside air temperature becomes 20 ° C. or less. As a result, high-strength precast concrete that is less likely to cause temperature cracks can be obtained.

本発明の製造方法は、温度ひび割れやヒートクラックを抑制した高強度のプレキャストコンクリートを製造することができる。また、前養生温度を常温よりやや高くして、促進型高性能減水剤を配合したセメント組成物の凝結始発時間を早めるので、型枠からの脱型時間を短縮することができ、効率よく高強度プレキャストコンクリートを製造することができる。 The production method of the present invention can produce high-strength precast concrete in which temperature cracks and heat cracks are suppressed. In addition, the pre-curing temperature is slightly higher than room temperature to accelerate the settling start time of the cement composition containing the accelerated high-performance water reducing agent, so that the time required for demolding from the mold can be shortened, resulting in high efficiency. Strong precast concrete can be produced.

本発明における蒸気養生の温度履歴の一例を示すグラフ。The graph which shows an example of the temperature history of steam curing in this invention.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の製造方法は、低熱ポルトランドセメントがベースセメントであるシリカフューム混合セメントに、細骨材、粗骨材および促進型高性能減水剤を配合したセメント組成物を用いたプレキャストコンクリートの製造方法であって、コンクリートを型枠に打設し、30〜50℃で6〜9時間の前養生を行って凝結始発時間を早めた後に、引続き、昇温勾配10〜20℃/hの割合で養生温度を高め、最高温度60〜90℃で2時間〜4時間保持させた後に、自然冷却してコンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下になった後に、脱型する温度履歴を経ることを特徴とする高強度プレキャストコンクリートの製造方法である。
Hereinafter, the present invention will be specifically described based on the embodiments.
The production method of the present invention is a method for producing precast concrete using a cement composition in which fine aggregate, coarse aggregate and an accelerated high-performance water reducing agent are mixed with silica fume mixed cement based on low-heat Portorand cement. Then, concrete is placed in a mold and pre-cured at 30 to 50 ° C. for 6 to 9 hours to accelerate the settling start time, and then the curing temperature is continuously increased at a rate of 10 to 20 ° C./h. After increasing the temperature and holding it at a maximum temperature of 60 to 90 ° C for 2 to 4 hours, it is naturally cooled so that the temperature difference between the surface temperature of the concrete and the internal temperature is 20 ° C or less, and the surface temperature of the concrete and the outside temperature This is a method for producing high-strength precast concrete, which is characterized by undergoing a temperature history of demolding after the temperature difference becomes 20 ° C. or less.

本発明の製造方法は、低熱ポルトランドセメントがベースセメントであるシリカフューム混合セメントを用いたプレキャストコンクリートの製造方法である。低熱ポルトランドセメントはビーライトCS量を40質量%以上にして水和熱を抑えたセメントであり、長期強度の発現に優れ、コンクリートの低熱性、高強度性および高流動性に適している。低熱ポルトランドセメントの含有量は、好ましくは、85.0〜92.5質量%である。低熱ポルトランドセメントは一般的な鉱物組成を有するものでよく、例えば、CSが60〜80質量%、CSが20〜30質量%、CAが6質量%以下の範囲である。 The production method of the present invention is a method for producing precast concrete using silica fume mixed cement in which low-heat Portland cement is the base cement. Low heat Portland cement is a cement with a belite C 2 S content more than 40 mass% suppressing heat of hydration, superior for expression of long strength, low heat concrete, is suitable for high strength and high fluidity .. The content of low heat Portland cement is preferably 85.0 to 92.5% by mass. Low-heat Portland cement may have a general mineral composition, for example, C 2 S is 60 to 80% by mass, C 3 S is 20 to 30% by mass, and C 3 A is 6% by mass or less.

本発明に用いるシリカフューム混合セメントは、シリカフュームの置換率は、例えば7.5〜15質量%である。シリカフュームの置換率が7.5質量%未満では流動性および強度を高める効果が不十分であり、この置換率が15質量%を上回ると、製造工程において多くのシリカフュームを添加する必要があり、製造効率が低下するばかりでなく、相対的にセメント量が少なくなるので強度低下を生じる場合がある。 The silica fume mixed cement used in the present invention has a silica fume substitution rate of, for example, 7.5 to 15% by mass. If the substitution rate of silica fume is less than 7.5% by mass, the effect of increasing fluidity and strength is insufficient, and if this substitution rate exceeds 15% by mass, it is necessary to add a large amount of silica fume in the manufacturing process. Not only is the efficiency reduced, but the amount of cement is relatively small, which may result in a decrease in strength.

本発明のコンクリートには、促進型高性能減水剤が添加される。促進型高性能減水剤は、例えば、ポリカルボン酸コポリマーを主成分とし、モルタルやコンクリートが一定の流動性を得るための単位水量を減少すると共にこれらの凝結を促進する効果を有する。
該促進型高性能減水剤の添加量はセメント等の結合材に対して1〜6質量%が好ましい。該促進型高性能減水剤は市販品(竹本油脂社製:チューポールSSP−104Hなど)を用いることができる。促進型高性能減水剤を上記含有量添加することにより、温度が30〜50℃の前養生6〜9時間の間に凝結始発時間に到達するように凝結始発時間を短縮することができる。促進型高性能減水剤の添加量が結合材に対して1質量%より少ないと、コンクリートの打設に必要な流動性を得ることができず、凝結始発時間を早める効果も十分に得られない。促進型高性能減水剤の添加量が結合材に対して6質量%より多いと、コンクリートの流動性が過剰となり材料分離を起こすばかりでなく、強度発現性が低下する。
An accelerated high-performance water reducing agent is added to the concrete of the present invention. The accelerated high-performance water reducing agent contains, for example, a polycarboxylic acid copolymer as a main component, and has an effect of reducing the unit amount of water for mortar or concrete to obtain a certain fluidity and promoting the coagulation of these.
The amount of the accelerated high-performance water reducing agent added is preferably 1 to 6% by mass with respect to the binder such as cement. As the accelerated high-performance water reducing agent, a commercially available product (Takemoto Oil & Fat Co., Ltd .: Chupole SSP-104H, etc.) can be used. By adding the above-mentioned content of the accelerated high-performance water reducing agent, the condensation initiation time can be shortened so that the condensation initiation time is reached within 6 to 9 hours of pre-curing at a temperature of 30 to 50 ° C. If the amount of the accelerated high-performance water reducing agent added is less than 1% by mass with respect to the binder, the fluidity required for concrete placement cannot be obtained, and the effect of accelerating the condensation start time cannot be sufficiently obtained. .. If the amount of the accelerated high-performance water reducing agent added is more than 6% by mass with respect to the binder, the fluidity of the concrete becomes excessive, causing not only material separation but also a decrease in strength development.

本発明のコンクリートにおいて、粗骨材および細骨材の含有量は一般的な高強度コンクリート組成物の範囲でよく、例えば、粗骨材の単位量400〜500kg/m、細骨材の単位量900〜1100kg/mであり、水セメント比は10〜20%が好ましい。水セメント比が10質量%未満であると、所望の流動性を得るために減水剤の添加量を多く必要し、20質量%を超えるとコンクリートの十分な強度が得られない。 In the concrete of the present invention, the content of coarse aggregate and fine aggregate may be in the range of a general high-strength concrete composition, for example, a unit amount of coarse aggregate 400 to 500 kg / m 3 , a unit of fine aggregate. The amount is 900 to 1100 kg / m 3 , and the water-cement ratio is preferably 10 to 20%. If the water-cement ratio is less than 10% by mass, a large amount of water reducing agent is required to obtain the desired fluidity, and if it exceeds 20% by mass, sufficient strength of concrete cannot be obtained.

本発明のコンクリートには、硬化後の収縮やひび割れなどを防止するための収縮低減剤や膨張材などを添加してもよい。これらの収縮低減剤および膨張材は市販品を用いることができる。例えば、膨張材として、太平洋マテリアル社製品の石灰系膨張材(ハイパーエクスパン)などを用いることができる。膨張材の混入量は、単位量で2〜20kg/mの範囲が適している。膨張材の単位量が2kg/mより少ないと膨張効果が十分ではなくひび割れが発生する場合があり、20kg/mより多いとコンクリートの強度発現性が悪くなるばかりでなく、異常膨張による膨張ひび割れが発生する場合があるので、好ましくない。 To the concrete of the present invention, a shrinkage reducing agent, an expanding material, or the like for preventing shrinkage or cracking after hardening may be added. Commercially available products can be used as these shrinkage reducing agents and expanding materials. For example, as the expansion material, a lime-based expansion material (Hyper Expand) manufactured by Pacific Materials Co., Ltd. can be used. The amount of the expanding material mixed in is preferably in the range of 2 to 20 kg / m 3 in unit amount. If the unit amount of the inflatable material is less than 2 kg / m 3 , the expansion effect is not sufficient and cracks may occur. If it is more than 20 kg / m 3 , not only the strength development of concrete deteriorates, but also expansion due to abnormal expansion It is not preferable because it may cause cracks.

練り混ぜたコンクリートは型枠に打設して養生し、凝結硬化させる。型枠は無筋でもよく、鉄筋を配筋しても良い。 The kneaded concrete is cast in a formwork, cured, and hardened by condensation. The formwork may be unreinforced or reinforced.

本発明の製造方法は、コンクリートを型枠に打設した後に、直ちに断熱シートで覆い、蒸気養生を行う。蒸気養生の温度変化を図1に示す。図示するように、蒸気を吹き込んで30〜50℃にし、この状態を6〜9時間保って前置養生を行う。蒸気を吹き込む代わりに、30〜50℃に温度が調整された蒸気養生槽内に投入してもよい。常温よりやや高い温度で前養生を行うことでコンクリートの凝結始発時間が促進される。この前養生温度が30℃より低いと凝結始発時間を早める効果が不十分となる。効果が不十分であり、一方、前養生温度が50℃を超えると、凝結始発時間に到達するより前に高温の温度履歴を与えることにより、コンクリートの強度発現が阻害されることになるので好ましくない。 In the manufacturing method of the present invention, concrete is cast into a mold and immediately covered with a heat insulating sheet and steam-cured. The temperature change of steam curing is shown in FIG. As shown in the figure, steam is blown into the temperature to 30 to 50 ° C., and this state is maintained for 6 to 9 hours for pre-curing. Instead of blowing steam, it may be put into a steam curing tank whose temperature is adjusted to 30 to 50 ° C. Pre-curing at a temperature slightly higher than normal temperature accelerates the time at which concrete condenses. If the pre-curing temperature is lower than 30 ° C., the effect of accelerating the settling start time becomes insufficient. On the other hand, when the pre-curing temperature exceeds 50 ° C., the effect is insufficient, and it is preferable because the strength development of concrete is hindered by giving a high temperature history before reaching the condensation start time. Absent.

上記前養生の後に、引き続き、昇温勾配10〜20℃/hの割合で最高温度60〜90℃まで養生温度を高める。昇温勾配が10℃/hより低いと、最高温度に達する時間がかかりすぎるので好ましくない。一方、昇温勾配が20℃/hを超えると、コンクリートの表面温度がコンクリート内部よりも急激に高くなり、コンクリートの表面温度と内部温度の温度差が急激に大きくなるため、温度応力によるひび割れを生じやすくなる。 After the above pre-curing, the curing temperature is subsequently raised to a maximum temperature of 60 to 90 ° C. at a rate of temperature rising gradient of 10 to 20 ° C./h. If the temperature rise gradient is lower than 10 ° C./h, it takes too much time to reach the maximum temperature, which is not preferable. On the other hand, when the temperature rise gradient exceeds 20 ° C./h, the surface temperature of the concrete becomes sharply higher than that inside the concrete, and the temperature difference between the surface temperature and the internal temperature of the concrete sharply increases, so that cracks due to thermal stress occur. It is easy to occur.

昇温後、この最高温度で2時間〜4時間保持する。最高温度が60℃未満であり、または保持時間が2時間未満であると、十分な養生効果が得られず圧縮強度が低くなる。一方、最高温度が90℃を超え、または保持時間が4時間を超えると、養生効果はあまり変わらず、圧縮強度の発現性も頭打ちになり、むしろ打設から脱型するまでの所要時間が長くなるので好ましくない。 After the temperature is raised, the temperature is maintained at this maximum temperature for 2 to 4 hours. If the maximum temperature is less than 60 ° C. or the holding time is less than 2 hours, a sufficient curing effect cannot be obtained and the compressive strength becomes low. On the other hand, when the maximum temperature exceeds 90 ° C. or the holding time exceeds 4 hours, the curing effect does not change much, the expression of compressive strength reaches a plateau, and the time required from casting to demolding is rather long. It is not preferable because it becomes.

上記養生後、自然冷却させ、コンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下になった後に脱型する。コンクリートの表面温度と内部温度との温度差が20℃より高い状態で脱型すると、粉体量の多い超高強度コンクリートは内部応力によるひび割れが生じやすくなり、また、脱型時の外気温とコンクリート表面温度の温度差が20℃より高いと、ヒートクラックを生じることがあるので好ましくない。 After the above curing, the concrete is naturally cooled, and the mold is removed after the temperature difference between the surface temperature of the concrete and the internal temperature becomes 20 ° C. or less and the temperature difference between the surface temperature of the concrete and the outside air temperature becomes 20 ° C. or less. If the temperature difference between the surface temperature and the internal temperature of the concrete is higher than 20 ° C, the ultra-high-strength concrete with a large amount of powder is likely to crack due to internal stress, and the outside air temperature at the time of demolding If the temperature difference between the concrete surface temperatures is higher than 20 ° C, heat cracks may occur, which is not preferable.

本発明の製造方法では、上記温度履歴の蒸気養生によって、コンクリートの表面温度と外気温との温度差が20℃以下になる時間が短く、脱型時間を短縮することができる。 In the production method of the present invention, the time for the temperature difference between the surface temperature of concrete and the outside air temperature to be 20 ° C. or less is short and the demolding time can be shortened by the steam curing of the above temperature history.

〔実施例1〕
表1に示す材料を用い、表2に示す配合条件に従ってコンクリートを調製した。このコンクリートを練り混ぜて、寸法が900×900×2000mmの鋼製型枠に打設した後に、直ちに断熱シートで覆い、蒸気を吹き込んで蒸気養生を行い、養生後、脱型して状態を調べた。また、材齢7日、28日、56日、91日でコンクリートの中央部と端部からコア試験体を採取し、圧縮強度を調べた。養生条件および養生効果を表3に示した。コンクリート表面の状態および圧縮強度を調べた。この結果を表4に示した。表3、表4に示すように、本発明の試料No.1〜4は何れも亀裂の無い良好なコンクリートが得られる。一方、前養生温度が30℃より低く20℃と常温である試料No.5は、凝結始発時間の到達に15時間を要し、打設時間から型枠脱型時間までに54時間を要した。
前養生温度が50℃より高く60℃である試料No.6は、打設時間から型枠脱型時間までに59.4時間を要した。さらに、コンクリート表面に巣のような欠陥部が発生し、強度発現性が劣る。また、コンクリートの表面温度と内部温度の差が28℃の試料No.7、および、外気温とコンクリートの表面温度との差が29℃の試料No.8は何れもコンクリート表面にひび割れや亀裂が発生した。
[Example 1]
Using the materials shown in Table 1, concrete was prepared according to the compounding conditions shown in Table 2. After kneading this concrete and placing it in a steel formwork with dimensions of 900 x 900 x 2000 mm, immediately cover it with a heat insulating sheet, blow steam to perform steam curing, and after curing, remove the mold and check the condition. It was. In addition, core test specimens were collected from the central and end parts of concrete at the ages of 7, 28, 56, and 91 days, and the compressive strength was examined. Table 3 shows the curing conditions and curing effects. The condition of the concrete surface and the compressive strength were examined. The results are shown in Table 4. As shown in Tables 3 and 4, good concrete without cracks can be obtained in each of Samples Nos. 1 to 4 of the present invention. On the other hand, Sample No. 5, which has a pre-curing temperature lower than 30 ° C. and a normal temperature of 20 ° C., required 15 hours to reach the settling start time and 54 hours from the casting time to the mold removal time. ..
Sample No. 6, which had a pre-curing temperature higher than 50 ° C. and 60 ° C., required 59.4 hours from the casting time to the mold removal time. Further, defects such as nests are generated on the concrete surface, and the strength development is inferior. In addition, sample No. 7 having a difference between the concrete surface temperature and the internal temperature of 28 ° C. and sample No. 8 having a difference between the outside air temperature and the concrete surface temperature of 29 ° C. have cracks and cracks on the concrete surface. Occurred.

Figure 0006813805
Figure 0006813805

Figure 0006813805
Figure 0006813805

Figure 0006813805
Figure 0006813805

Figure 0006813805
Figure 0006813805

Claims (2)

低熱ポルトランドセメントがベースセメントであるシリカフューム混合セメントに粗骨材、細骨材、促進型高性能減水剤を配合したコンクリート組成物を用いたプレキャストコンクリートの製造方法であって、コンクリートを型枠に打設し、30〜50℃で6〜9時間の前養生を行って凝結始発時間を早めた後に、引続き、昇温勾配10〜20℃/hの割合で養生温度を高め、最高温度60〜90℃で2時間〜4時間保持させる蒸気養生を行い、その後に自然冷却して、コンクリートの表面温度と内部温度との温度差が20℃以下、およびコンクリートの表面温度と外気温との温度差が20℃以下になった後に脱型する温度履歴を経ることを特徴とする高強度プレキャストコンクリートの製造方法。 A method for producing precast concrete using a concrete composition in which coarse aggregate, fine aggregate, and accelerated high-performance water reducing agent are mixed with silica fume mixed cement, which is based on low-heat Portland cement. Concrete is cast into a mold. After setting, pre-curing at 30 to 50 ° C. for 6 to 9 hours to accelerate the settling start time, the curing temperature is continuously increased at a rate of temperature rise gradient of 10 to 20 ° C./h, and the maximum temperature is 60 to 90. Steam curing is performed by holding at ° C for 2 to 4 hours, and then natural cooling is performed so that the temperature difference between the concrete surface temperature and the internal temperature is 20 ° C or less, and the temperature difference between the concrete surface temperature and the outside temperature is large. A method for producing high-strength precast concrete, which is characterized by undergoing a temperature history of demolding after the temperature drops below 20 ° C. 促進型高性能減水剤を結合材に対して1〜6質量%含有し、膨張材を単位量で2〜20kg/m含有するコンクリート組成物を用いる請求項1に記載する高強度プレキャストコンクリートの製造方法。
The high-strength precast concrete according to claim 1, wherein a concrete composition containing 1 to 6% by mass of an accelerated high-performance water reducing agent and 2 to 20 kg / m 3 of an expanding material in a unit amount is used. Production method.
JP2017064989A 2017-03-29 2017-03-29 Manufacturing method of high-strength precast concrete Active JP6813805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064989A JP6813805B2 (en) 2017-03-29 2017-03-29 Manufacturing method of high-strength precast concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064989A JP6813805B2 (en) 2017-03-29 2017-03-29 Manufacturing method of high-strength precast concrete

Publications (2)

Publication Number Publication Date
JP2018168003A JP2018168003A (en) 2018-11-01
JP6813805B2 true JP6813805B2 (en) 2021-01-13

Family

ID=64019227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064989A Active JP6813805B2 (en) 2017-03-29 2017-03-29 Manufacturing method of high-strength precast concrete

Country Status (1)

Country Link
JP (1) JP6813805B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077996B (en) * 2020-09-04 2021-08-24 高安永强混凝土有限公司 Preparation process of high-strength double-seepage curing concrete
JP7425999B2 (en) 2020-09-25 2024-02-01 住友大阪セメント株式会社 Method for manufacturing cement molded bodies, method for setting manufacturing conditions for cement molded bodies
CN112518968A (en) * 2020-12-01 2021-03-19 江苏东交智控科技集团股份有限公司 Intelligent maintenance method and system for cement concrete precast beam
CN113292358B (en) * 2021-06-29 2022-11-01 中建三局第一建设安装有限公司 Steam curing process for assembled building wall

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249386A (en) * 2001-02-20 2002-09-06 Shimizu Corp Method for high temperature steam curing of concrete product
JP2005169814A (en) * 2003-12-10 2005-06-30 Ube Ind Ltd Manufacturing method of centrifugally molded concrete
JP4691381B2 (en) * 2005-03-31 2011-06-01 住友大阪セメント株式会社 High strength concrete

Also Published As

Publication number Publication date
JP2018168003A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6813805B2 (en) Manufacturing method of high-strength precast concrete
Erdem et al. Setting time: an important criterion to determine the length of the delay period before steam curing of concrete
CN108285311B (en) Normal-temperature normal-pressure maintenance type ultrahigh-performance concrete and preparation method thereof
JP5373677B2 (en) Manufacturing method of high-strength precast concrete
JP6512960B2 (en) Concrete evaluation method
KR102342008B1 (en) Manufacturing method of precast geopolymer concrete member
JP2021020835A (en) Concrete-molded material and method for production thereof
CN110861191A (en) Method for reducing brittleness of Ru porcelain by compounding metal
JP2000301531A (en) Manufacture of concrete product
JP6735068B2 (en) Method for producing cement composition and hardened cement product
JP2002249386A (en) Method for high temperature steam curing of concrete product
JP2018052748A (en) A fiber-reinforced cement molded body and method for the preparation thereof
JP2012032156A (en) Dry shrinkage prediction method for concrete
JP6868079B2 (en) Manufacturing method of hardened cementum
JP2015083526A (en) Method of producing cement composition
JP6460454B2 (en) Concrete production method
JP6238356B2 (en) Method for manufacturing spliton block
JPH11228251A (en) Production of light-weight foamed concrete
JP2511528B2 (en) ALC manufacturing method
JP2013043796A (en) Cement material and method of manufacturing cement mass
JP4508347B2 (en) Manufacturing method for secondary concrete products
JP2017218369A (en) Hydration cured body and method for producing the same
JP2012181118A (en) Method for predicting dry shrinkage of centrifugal molding concrete
JP2007153686A (en) Wallastonite based calcium silicate lightweight panel and its production method
JP2007119319A (en) Method of producing alc panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6813805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250