JP6813137B1 - Manufacturing method of heat pipe type cooler and heat pipe type cooler - Google Patents

Manufacturing method of heat pipe type cooler and heat pipe type cooler Download PDF

Info

Publication number
JP6813137B1
JP6813137B1 JP2020539871A JP2020539871A JP6813137B1 JP 6813137 B1 JP6813137 B1 JP 6813137B1 JP 2020539871 A JP2020539871 A JP 2020539871A JP 2020539871 A JP2020539871 A JP 2020539871A JP 6813137 B1 JP6813137 B1 JP 6813137B1
Authority
JP
Japan
Prior art keywords
heat
receiving portion
heat receiving
refrigerant
type cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020539871A
Other languages
Japanese (ja)
Other versions
JPWO2021152668A1 (en
Inventor
透 山田
透 山田
裕之 牛房
裕之 牛房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6813137B1 publication Critical patent/JP6813137B1/en
Publication of JPWO2021152668A1 publication Critical patent/JPWO2021152668A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Abstract

本開示におけるヒートパイプ式冷却器(100)は、発熱体(4)が設置される面を有する受熱部(5)及び受熱部(5)と対向する接続部(6)を有する主管体(1)と、内部が主管体(1)の内部と連通するように接続部(6)に接続される枝管体(2)と、を有するヒートパイプユニットと、枝管体(2)に取り付けられるフィン(3)と、を備え、受熱部(5)と接続部(6)との間の空間領域が多段に分割されて複数の空間部が形成され、複数の空間部のそれぞれの内部には冷媒(8)が配置されるものである。The heat pipe type cooler (100) in the present disclosure has a heat receiving portion (5) having a surface on which the heating element (4) is installed and a main pipe body (1) having a connecting portion (6) facing the heat receiving portion (5). ), A branch pipe body (2) connected to the connection portion (6) so that the inside communicates with the inside of the main pipe body (1), and a heat pipe unit having the branch pipe body (2). A fin (3) is provided, and the space region between the heat receiving portion (5) and the connecting portion (6) is divided into multiple stages to form a plurality of space portions, and inside each of the plurality of space portions. The refrigerant (8) is arranged.

Description

本開示はヒートパイプ式冷却器及びヒートパイプ式冷却器の製造方法に関するものである。 The present disclosure relates to a heat pipe type cooler and a method for manufacturing a heat pipe type cooler.

断面積の大きな、例えば断面円形のタンクの側面に、複数の細いパイプが設けられ、細いパイプには、フィンが取り付けられているヒートパイプユニットが開示されている。タンクは、金属からなるベースブロックに埋めこまれており、タンクとベースブロックとの間で、熱移動が行われる。ベースブロックは、タンクを埋め込んだ面と反対側の面には、発熱する半導体素子が取り付けられている(特許文献1参照)。 A heat pipe unit is disclosed in which a plurality of thin pipes are provided on the side surface of a tank having a large cross-sectional area, for example, a circular cross-section, and fins are attached to the thin pipes. The tank is embedded in a base block made of metal, and heat transfer is performed between the tank and the base block. A semiconductor element that generates heat is attached to the surface of the base block opposite to the surface in which the tank is embedded (see Patent Document 1).

特開2004−125381号公報Japanese Unexamined Patent Publication No. 2004-125381

しかしながら、特許文献1の技術では、ベースブロックによって半導体素子と複数のヒートパイプユニットを接続する場合、ヒートパイプユニットへの熱輸送のためにタンクを深く埋め込む必要があり、ベースブロックの体積が増加し、ヒートパイプ式冷却器の重量が増加してしまうという課題があった。 However, in the technique of Patent Document 1, when a semiconductor element and a plurality of heat pipe units are connected by a base block, it is necessary to deeply embed a tank for heat transport to the heat pipe unit, and the volume of the base block increases. , There is a problem that the weight of the heat pipe type cooler increases.

本開示は、上述の問題を解決するためになされたもので、重量増加を抑制できるヒートパイプ式冷却器及びヒートパイプ式冷却器の製造方法を提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a heat pipe type cooler and a method for manufacturing a heat pipe type cooler capable of suppressing a weight increase.

本開示にかかるヒートパイプ式冷却器は、発熱体が設置される面を有する受熱部及び受熱部と対向する接続部を有する主管体と、内部が主管体の内部と連通するように接続部に接続される枝管体と、を有するヒートパイプユニットと、枝管体に取り付けられるフィンと、を備え、フィンに走行風が流れるようにして鉄道車両で使用されるヒートパイプ式冷却器において、発熱体が設置される面は上下方向に延びる面であり、受熱部と接続部との間の空間領域が上下方向に多段に分割されて複数の空間部が形成され、複数の空間部のそれぞれには液面を有するように冷媒が配置され、枝管体は内部で凝縮した冷媒が重力によって主管体に戻るように傾いて、かつ、空間部の冷媒の液面より上方で接続部に接続され、受熱部は、発熱体が設置される面とは反対の面に、冷媒を吸い上げて冷媒を保持するウィックが配置され、受熱部又は接続部は凹凸形状であり、凹凸形状の凹部によって受熱部と接続部との間の空間領域が多段に分割され、凸部によって複数の空間部が形成されるものである。


The heat pipe type cooler according to the present disclosure has a heat receiving portion having a surface on which a heating element is installed, a main pipe having a connecting portion facing the heat receiving portion, and a connecting portion so that the inside communicates with the inside of the main pipe. A heat pipe unit having a branch pipe body to be connected, and fins attached to the branch pipe body are provided, and heat is generated in a heat pipe type cooler used in a railroad vehicle so that running wind flows through the fins. The surface on which the body is installed is a surface that extends in the vertical direction, and the space area between the heat receiving portion and the connecting portion is divided in multiple stages in the vertical direction to form a plurality of space portions, and each of the plurality of space portions has a surface. The refrigerant is arranged so as to have a liquid level, and the branch pipe body is tilted so that the internally condensed refrigerant returns to the main pipe body due to gravity, and is connected to the connection portion above the liquid level of the refrigerant in the space. In the heat receiving part, a wick that sucks up the refrigerant and holds the refrigerant is arranged on the surface opposite to the surface on which the heating element is installed , and the heat receiving part or the connecting part has an uneven shape, and heat is received by the concave and convex concave portions. The space area between the portion and the connecting portion is divided into multiple stages, and a plurality of space portions are formed by the convex portions .


本開示にかかるヒートパイプ式冷却器の製造方法は、第1の板部材を曲げ、連続した凹凸形状を形成し、凹凸部材を形成する凹凸部材形成工程と、凹凸部材に第2の板部材を取り付け取付部材とし、凹凸部材と取付部材との間の空間領域が凹凸形状の凹部によって分割され、上下方向に多段構造を有する主管体を形成する主管体形成工程と、内部で凝縮した冷媒が重力によって主管体に戻るように傾いて、かつ、凹凸形状の凸部に注入される冷媒の液面より上方で、凹凸部材又は取付部材に枝管体を取り付け、主管体の内部と枝管体の内部とを連通させて接続する枝管体接続工程と、主管体の凹凸形状の凸部のそれぞれ液面を有するように冷媒を注入する冷媒注入工程と、枝管体にフィンを取り付けるフィン取付工程とを有するものである。 The method for manufacturing a heat pipe type cooler according to the present disclosure includes a step of forming a concavo-convex member by bending a first plate member to form a continuous concavo-convex shape and forming a concavo-convex member, and a second plate member on the concavo-convex member. As a mounting mounting member, the space area between the concave-convex member and the mounting member is divided by concave-convex-shaped recesses to form a main tubular body having a multi-stage structure in the vertical direction, and the refrigerant condensed inside is gravity. The branch pipe is attached to the uneven member or the mounting member above the liquid level of the refrigerant injected into the convex portion of the concave-convex shape, and the inside of the main pipe and the branch pipe are attached. A branch pipe connection step that connects the inside by communicating with each other , a refrigerant injection step that injects a refrigerant so that each of the convex portions of the main pipe has a liquid level, and fin mounting that attaches fins to the branch pipe. It has a process.

本開示によれば、ヒートパイプ式冷却器の重量増加を抑制できる。 According to the present disclosure, the weight increase of the heat pipe type cooler can be suppressed.

実施の形態1にかかるヒートパイプ式冷却器の概略構成図。The schematic block diagram of the heat pipe type cooler which concerns on Embodiment 1. FIG. 実施の形態1にかかるヒートパイプ式冷却器の概略側面図。The schematic side view of the heat pipe type cooler which concerns on Embodiment 1. FIG. 実施の形態1にかかるヒートパイプ式冷却器の概略断面図。The schematic sectional view of the heat pipe type cooler which concerns on Embodiment 1. FIG. 実施の形態1にかかるヒートパイプ式冷却器の製造方法を示す工程図。The process chart which shows the manufacturing method of the heat pipe type cooler which concerns on Embodiment 1. FIG. 実施の形態2にかかるヒートパイプ式冷却器の概略断面図。The schematic sectional view of the heat pipe type cooler which concerns on Embodiment 2. FIG. 実施の形態2にかかるヒートパイプ式冷却器の製造方法を示す工程図。The process chart which shows the manufacturing method of the heat pipe type cooler which concerns on Embodiment 2. 実施の形態3にかかるヒートパイプ式冷却器の概略断面図。The schematic sectional view of the heat pipe type cooler which concerns on Embodiment 3. FIG. 実施の形態3にかかるヒートパイプ式冷却器の製造方法を示す工程図。The process chart which shows the manufacturing method of the heat pipe type cooler which concerns on Embodiment 3. FIG. 実施の形態4にかかるヒートパイプ式冷却器の概略断面図。FIG. 6 is a schematic cross-sectional view of the heat pipe type cooler according to the fourth embodiment. 実施の形態5にかかるヒートパイプ式冷却器の概略断面図。FIG. 6 is a schematic cross-sectional view of the heat pipe type cooler according to the fifth embodiment. 実施の形態5にかかるヒートパイプ式冷却器の製造方法を示す工程図。The process chart which shows the manufacturing method of the heat pipe type cooler which concerns on Embodiment 5.

実施の形態1.
図1は、実施の形態1にかかるヒートパイプ式冷却器100の概略構成図である。図2は、実施の形態1にかかるヒートパイプ式冷却器100の概略側面図であり、図1の紙面左側からヒートパイプ式冷却器100を見た概略側面図である。図3は、実施の形態1にかかるヒートパイプ式冷却器100の概略断面図であり、図1のAA断面を示す概略断面図である。
Embodiment 1.
FIG. 1 is a schematic configuration diagram of the heat pipe type cooler 100 according to the first embodiment. FIG. 2 is a schematic side view of the heat pipe type cooler 100 according to the first embodiment, and is a schematic side view of the heat pipe type cooler 100 viewed from the left side of the paper surface of FIG. FIG. 3 is a schematic cross-sectional view of the heat pipe type cooler 100 according to the first embodiment, and is a schematic cross-sectional view showing the AA cross section of FIG.

図1のX軸方向は、ヒートパイプ式冷却器100の幅方向を示し、Y軸方向は高さ方向、すなわちヒートパイプ式冷却器100の上下方向を示す。−Y軸方向は、ヒートパイプ式冷却器100の設置面方向(ヒートパイプ式冷却器100の下側)を示し、+Y軸方向は、反設置面方向(ヒートパイプ式冷却器100の上側)を示す。図1のZ軸方向はヒートパイプ式冷却器100の奥行き方向を示す。これらは、以下の図面も同様である。ここで、設置面とは、ヒートパイプ式冷却器100が設置される車両の床面等を指す。反設置面とは、設置面と対向する仮想の面又は車両の天井等を指す。 The X-axis direction of FIG. 1 indicates the width direction of the heat pipe type cooler 100, and the Y-axis direction indicates the height direction, that is, the vertical direction of the heat pipe type cooler 100. The −Y axis direction indicates the installation surface direction of the heat pipe type cooler 100 (lower side of the heat pipe type cooler 100), and the + Y axis direction indicates the opposite installation surface direction (upper side of the heat pipe type cooler 100). Shown. The Z-axis direction in FIG. 1 indicates the depth direction of the heat pipe type cooler 100. These are also the same in the following drawings. Here, the installation surface refers to the floor surface or the like of a vehicle in which the heat pipe type cooler 100 is installed. The anti-installation surface refers to a virtual surface facing the installation surface, the ceiling of the vehicle, or the like.

ヒートパイプ式冷却器100は、内部に冷媒8が配置される主管体1と、主管体1に接続される枝管体2と、枝管体2を貫通させて取り付けられるフィン3とを備える。主管体1と枝管体2とを合わせて、ヒートパイプユニットと記す。以下、詳細を説明する。 The heat pipe type cooler 100 includes a main pipe body 1 in which the refrigerant 8 is arranged, a branch pipe body 2 connected to the main pipe body 1, and fins 3 attached so as to penetrate the branch pipe body 2. The main pipe body 1 and the branch pipe body 2 are collectively referred to as a heat pipe unit. The details will be described below.

主管体1は、発熱体4が取り付けられる面を有する受熱部5と、枝管体2が接続される接続部6とを有する。ここで、発熱体4とは、半導体素子が搭載された電気機器等を指す。受熱部5及び接続部6は対向して配置される。ここで、受熱部5及び接続部6が対向するとは、例えば受熱部5の発熱体4が取り付けられる面と、接続部6の枝管体2が取り付けられる面とが対向していることを指す。受熱部5と接続部6との間、すなわち主管体1の内部には空間領域が形成される。主管体1は、中空状とも言える。主管体1の内部には、受熱部5と接続部6との間を仕切るように仕切板7が配置される。主管体1の内部は、仕切板7よって分割され形成された複数の空間部を有し、複数の空間部には、それぞれ冷媒8が配置される。主管体1は、Y軸方向に複数の空間部が形成された多段構造を有する。仕切板7は、X軸方向に延伸している。 The main tubular body 1 has a heat receiving portion 5 having a surface to which the heating element 4 is attached, and a connecting portion 6 to which the branch tubular body 2 is connected. Here, the heating element 4 refers to an electric device or the like on which a semiconductor element is mounted. The heat receiving portion 5 and the connecting portion 6 are arranged so as to face each other. Here, the fact that the heat receiving portion 5 and the connecting portion 6 face each other means that, for example, the surface of the heat receiving portion 5 to which the heating element 4 is attached and the surface of the connecting portion 6 to which the branch pipe body 2 is attached face each other. .. A space region is formed between the heat receiving portion 5 and the connecting portion 6, that is, inside the main pipe body 1. It can be said that the main body 1 is hollow. Inside the main body 1, a partition plate 7 is arranged so as to partition between the heat receiving portion 5 and the connecting portion 6. The inside of the main pipe 1 has a plurality of space portions divided and formed by a partition plate 7, and the refrigerant 8 is arranged in each of the plurality of space portions. The main body 1 has a multi-stage structure in which a plurality of space portions are formed in the Y-axis direction. The partition plate 7 extends in the X-axis direction.

枝管体2は、例えば円管状である。枝管体2は、主管体1の接続部6に取り付けられる。枝管体2の内部は、主管体1の内部と連通して接続される。このとき、主管体1の各空間部に対して、少なくとも1つの枝管体2が接続される。 The branch tube body 2 is, for example, a circular tube. The branch pipe body 2 is attached to the connection portion 6 of the main pipe body 1. The inside of the branch pipe body 2 communicates with the inside of the main pipe body 1 and is connected. At this time, at least one branch pipe body 2 is connected to each space portion of the main pipe body 1.

また、ヒートパイプ式冷却器100が鉄道車両用インバータの冷却に使用される場合、走行中等に車両が傾き枝管体2へ冷媒が流入してしまうと、主管体1の冷媒量が少なくなり、十分な沸騰が起こらず、冷却効率が低下する。枝管体2を主管体1の接続部6に接続する際に、冷媒8の液面よりも上方に接続すれば、車両が傾いても冷媒8が枝管体2に流入することを抑制できる。 Further, when the heat pipe type cooler 100 is used for cooling the inverter for a railroad vehicle, if the vehicle tilts during traveling or the like and the refrigerant flows into the branch pipe body 2, the amount of the refrigerant in the main pipe body 1 decreases. Sufficient boiling does not occur and the cooling efficiency decreases. When the branch pipe body 2 is connected to the connection portion 6 of the main pipe body 1, if the branch pipe body 2 is connected above the liquid level of the refrigerant 8, the refrigerant 8 can be suppressed from flowing into the branch pipe body 2 even if the vehicle is tilted. ..

また、図2及び図3に示すように、枝管体2を反設置面に対して傾けて接続部6に接続すればよい。このとき、主管体1と枝管体2とのなす角度は、80°〜85°であることが望ましいが、この限りではない。これにより、発熱体4の熱を受けとり蒸発した冷媒8が、フィン3によって枝管体2の内部で凝縮し、重力によって主管体1へ戻ることができる。 Further, as shown in FIGS. 2 and 3, the branch pipe body 2 may be tilted with respect to the anti-installation surface and connected to the connecting portion 6. At this time, the angle formed by the main pipe body 1 and the branch pipe body 2 is preferably 80 ° to 85 °, but this is not the case. As a result, the refrigerant 8 that receives the heat of the heating element 4 and evaporates is condensed inside the branch pipe body 2 by the fins 3 and can return to the main pipe body 1 by gravity.

図1に戻るが、主管体1の各空間部に対して、少なくとも1つ以上の枝管体2が接続されている。各空間部に接続された枝管体2のうち、少なくとも1つは、先端部に冷媒注入孔20が形成された注入管の役割を果たす。各注入管から主管体1の各空間部に冷媒8が注入される。 Returning to FIG. 1, at least one or more branch pipe bodies 2 are connected to each space portion of the main pipe body 1. At least one of the branch pipes 2 connected to each space serves as an injection pipe having a refrigerant injection hole 20 formed at the tip thereof. The refrigerant 8 is injected from each injection pipe into each space of the main pipe 1.

フィン3は、枝管体2を貫通させて、枝管体2に取り付けられる。換言すると、枝管体2にフィン3が串刺しとなるように取り付けられる。 The fin 3 penetrates the branch pipe body 2 and is attached to the branch pipe body 2. In other words, the fins 3 are attached to the branch tube body 2 so as to be skewered.

ここで、ヒートパイプ式冷却器100を用いた発熱体4の冷却の流れについて説明する。発熱体4から発生した熱は、受熱部5から主管体1内の冷媒8へと伝わる。この熱は、冷媒8の蒸発に使用され、蒸気は枝管体2へと輸送される。枝管体2へと輸送された蒸気は、フィン3によって冷却されて凝縮し、液体となる。液体となった冷媒8は、重力によって主管体1へと還流する。冷媒8がこの循環を繰り返すことによって、発熱体4から発生した熱は、相変化の潜熱によって効率よく大気中に放熱され、高効率な冷却が実現される。 Here, the flow of cooling of the heating element 4 using the heat pipe type cooler 100 will be described. The heat generated from the heating element 4 is transferred from the heat receiving unit 5 to the refrigerant 8 in the main body 1. This heat is used to evaporate the refrigerant 8, and the steam is transported to the branch pipe body 2. The vapor transported to the branch tube 2 is cooled by the fins 3 and condensed to become a liquid. The liquid refrigerant 8 returns to the main body 1 due to gravity. When the refrigerant 8 repeats this circulation, the heat generated from the heating element 4 is efficiently dissipated into the atmosphere by the latent heat of the phase change, and highly efficient cooling is realized.

図4は、実施の形態1にかかるヒートパイプ式冷却器100の製造方法を示す工程図である。以下、詳細を説明する。 FIG. 4 is a process diagram showing a method of manufacturing the heat pipe type cooler 100 according to the first embodiment. The details will be described below.

ステップST1では、1枚の板部材である受熱部材の4辺を、例えばプレス加工によってL字状に曲げ、受熱部5を形成する(受熱部形成工程)。受熱部材を曲げることによって、発熱体4が取り付けられる面を有する受熱部5と、受熱部5を囲む側面部とが形成される。なお、発熱体4となる板部材に、側面部となる板部材をろう付け等によって接続してもよい。また、受熱部5とは、発熱体4が設置されている面を含む部分を指すものである。 In step ST1, the four sides of the heat receiving member, which is one plate member, are bent into an L shape by, for example, pressing to form the heat receiving portion 5 (heat receiving portion forming step). By bending the heat receiving member, a heat receiving portion 5 having a surface on which the heating element 4 is attached and a side surface portion surrounding the heat receiving portion 5 are formed. The plate member to be the side surface may be connected to the plate member to be the heating element 4 by brazing or the like. Further, the heat receiving portion 5 refers to a portion including a surface on which the heating element 4 is installed.

ステップST2では、受熱部5の、発熱体4が取り付けられる面とは反対の面に、仕切板7を配置する(仕切板配置工程)。仕切板7は、例えばろう付けによって受熱部5の取付面部及び側面部に接続される。 In step ST2, the partition plate 7 is arranged on the surface of the heat receiving portion 5 opposite to the surface on which the heating element 4 is attached (partition plate arrangement step). The partition plate 7 is connected to the mounting surface portion and the side surface portion of the heat receiving portion 5 by, for example, brazing.

ステップST3では、仕切板7と、仕切板7によって仕切られた受熱部5とに、例えばろう付けによって、接続部材を取り付け、接続部6とする(接続部取付工程)。これにより、内部に多段構造を有する主管体1が形成される。なお、接続部6には、接続される枝管体2の取付孔を予め形成しておくか、受熱部5に取り付けた後に形成する。また、接続部取付工程は主管体形成工程とも言える。 In step ST3, a connecting member is attached to the partition plate 7 and the heat receiving portion 5 partitioned by the partition plate 7, for example, by brazing to form the connecting portion 6 (connection portion attaching step). As a result, the main body 1 having a multi-stage structure is formed inside. In the connecting portion 6, a mounting hole for the branch pipe body 2 to be connected is formed in advance, or is formed after being attached to the heat receiving portion 5. Further, the connection portion attaching process can be said to be a main pipe body forming process.

ステップST4では、各取付孔に枝管体2を配置し、例えばろう付けによって接続部6に取り付け、枝管体2の内部と主管体1の内部と連通して接続させる(枝管体接続工程)。このとき、複数の枝管体2のうち少なくとも1つは、先端部に冷媒注入孔20が形成された注入管とする。冷媒注入孔20は、枝管体2を接続部6に接続する前に形成してもよいし、接続してから形成してもよい。 In step ST4, the branch pipe body 2 is arranged in each attachment hole, attached to the connection portion 6 by brazing, for example, and communicated with the inside of the branch pipe body 2 and the inside of the main pipe body 1 (branch pipe body connection step). ). At this time, at least one of the plurality of branch pipes 2 is an injection pipe having a refrigerant injection hole 20 formed at the tip thereof. The refrigerant injection hole 20 may be formed before connecting the branch pipe body 2 to the connecting portion 6, or may be formed after connecting the branch pipe body 2.

ステップST5では、主管体1及び枝管体2の内部を十分に真空引きした後、冷媒注入孔20から主管体1の内部の各空間部に冷媒8を注入する(冷媒注入工程)。冷媒8の注入量は各空間部の30%程度となることが望ましい。冷媒8の注入後、冷媒注入孔20を、例えば圧接によって塞ぐ。これにより、主管体1及び枝管体2内の気密性を保持することができる。 In step ST5, after sufficiently evacuating the insides of the main pipe body 1 and the branch pipe body 2, the refrigerant 8 is injected into each space inside the main pipe body 1 from the refrigerant injection hole 20 (refrigerant injection step). It is desirable that the injection amount of the refrigerant 8 is about 30% of each space. After injecting the refrigerant 8, the refrigerant injection hole 20 is closed by, for example, pressure welding. Thereby, the airtightness in the main pipe body 1 and the branch pipe body 2 can be maintained.

ステップST6では、枝管体2にフィン3を取り付ける(フィン取付工程)。フィン3には、予め枝管体2が貫通する位置に所定の間隔で枝管体通し孔を開け、例えばバーリング加工を施してフリンジを形成すればよい。枝管体通し孔に枝管体2を通し、例えば圧接によって枝管体2にフィン3を取り付ける。これにより、ヒートパイプ式冷却器100が形成される。 In step ST6, the fin 3 is attached to the branch pipe body 2 (fin attachment step). The fins 3 may be provided with branch tube through holes at predetermined intervals at positions where the branch tube 2 penetrates in advance, and burring may be performed to form fringes. The branch pipe body 2 is passed through the branch pipe body through hole, and the fin 3 is attached to the branch pipe body 2 by, for example, pressure welding. As a result, the heat pipe type cooler 100 is formed.

これにより、発熱体4が設置される面を有する受熱部5及び受熱部5と対向する接続部6を有する主管体1と、内部が主管体1の内部と連通するように接続部6に接続される枝管体2と、を有するヒートパイプユニットと、枝管体2に取り付けられるフィン3と、を備え、受熱部5と接続部6との間の空間領域が多段に分割されて複数の空間部が形成され、複数の空間部のそれぞれの内部には冷媒8が配置されるヒートパイプ式冷却器100を製造できる。 As a result, the heat receiving portion 5 having the surface on which the heating element 4 is installed and the main pipe body 1 having the connecting portion 6 facing the heat receiving portion 5 are connected to the connecting portion 6 so that the inside communicates with the inside of the main pipe body 1. A heat pipe unit having a branch pipe body 2 to be formed, and fins 3 attached to the branch pipe body 2 are provided, and a plurality of spatial regions between the heat receiving portion 5 and the connecting portion 6 are divided in multiple stages. A heat pipe type cooler 100 in which a space portion is formed and a refrigerant 8 is arranged inside each of the plurality of space portions can be manufactured.

上述の構成によって、ヒートパイプ式冷却器100の重量増加を抑制できる。 With the above configuration, the weight increase of the heat pipe type cooler 100 can be suppressed.

さらに、ベースブロックを介さずに、主管体1に発熱体4が取り付けられるため、冷却効率を向上できる。 Further, since the heating element 4 is attached to the main pipe body 1 without using the base block, the cooling efficiency can be improved.

実施の形態2.
図5は、実施の形態2にかかるヒートパイプ式冷却器110の概略断面図である。ヒートパイプ式冷却器110は、半円状の接続部6を有する点で、ヒートパイプ式冷却器100と異なる。
Embodiment 2.
FIG. 5 is a schematic cross-sectional view of the heat pipe type cooler 110 according to the second embodiment. The heat pipe type cooler 110 differs from the heat pipe type cooler 100 in that it has a semicircular connection portion 6.

図6は、実施の形態2にかかるヒートパイプ式冷却器110の製造方法を示す工程図である。ステップST30では、半円状の接続部6を、板状の受熱部5に配置し、取り付ける(接続部取付工程)。このとき、半円状の接続部6は、受熱部5のY軸方向に複数配置されるため、ヒートパイプ式冷却器110は多段構造を有する。半円状の接続部6が、ヒートパイプ式冷却器100の受熱部5の側面部も兼ねているため、ステップST1及びステップST2に相当するステップは記載していない。ステップST4〜ST6は、ヒートパイプ式冷却器100の製造方法と同様であるため、詳細な説明は省略する。 FIG. 6 is a process diagram showing a method of manufacturing the heat pipe type cooler 110 according to the second embodiment. In step ST30, the semicircular connecting portion 6 is arranged and attached to the plate-shaped heat receiving portion 5 (connection portion attaching step). At this time, since a plurality of semicircular connecting portions 6 are arranged in the Y-axis direction of the heat receiving portion 5, the heat pipe type cooler 110 has a multi-stage structure. Since the semicircular connecting portion 6 also serves as the side surface portion of the heat receiving portion 5 of the heat pipe type cooler 100, the steps corresponding to steps ST1 and ST2 are not described. Since steps ST4 to ST6 are the same as the method for manufacturing the heat pipe type cooler 100, detailed description thereof will be omitted.

上述の構成によって、ヒートパイプ式冷却器110の重量増加を抑制できる。 With the above configuration, the weight increase of the heat pipe type cooler 110 can be suppressed.

また、半円状の接続部6を受熱部5に取り付けることにより、ろう付けの回数を減らすことができ、作業性を向上できる。そして、主管体1の複数の空間部の間で冷媒8がリークすることを抑制できる。 Further, by attaching the semicircular connecting portion 6 to the heat receiving portion 5, the number of brazing times can be reduced and the workability can be improved. Then, it is possible to prevent the refrigerant 8 from leaking between the plurality of spaces of the main body 1.

なお、実施の形態2において、半円状の接続部6を受熱部5に取り付ける例を示したが、半円状とは、楕円状及び扁平状も含む。 In the second embodiment, an example in which the semicircular connecting portion 6 is attached to the heat receiving portion 5 is shown, but the semicircular shape also includes an elliptical shape and a flat shape.

実施の形態3.
図7は、実施の形態3にかかるヒートパイプ式冷却器120の概略断面図である。ヒートパイプ式冷却器120は、受熱部5が凹凸形状である点で、ヒートパイプ式冷却器100と異なる。
Embodiment 3.
FIG. 7 is a schematic cross-sectional view of the heat pipe type cooler 120 according to the third embodiment. The heat pipe type cooler 120 is different from the heat pipe type cooler 100 in that the heat receiving portion 5 has an uneven shape.

図8は、実施の形態3にかかるヒートパイプ式冷却器120の製造方法を示す工程図である。ステップST10では、受熱部材を曲げ、連続した凹凸形状を有する受熱部5を形成する(受熱部形成工程)。受熱部5の凹凸形状は、例えば金型を用いた押出加工、又はプレス加工等によって、一枚の板状の受熱部材を曲げて形成すればよい。 FIG. 8 is a process diagram showing a method of manufacturing the heat pipe type cooler 120 according to the third embodiment. In step ST10, the heat receiving member is bent to form the heat receiving portion 5 having a continuous uneven shape (heat receiving portion forming step). The uneven shape of the heat receiving portion 5 may be formed by bending a single plate-shaped heat receiving member by, for example, extrusion processing using a mold, press processing, or the like.

ここで、受熱部5の凹凸形状について説明する。凹凸形状は、図8に示すように、ヒートパイプ式冷却器100の設置面から反設置面方向へ連続して形成されている。凹凸形状のうち、例えば、凸部によって主管体1の内部の複数の空間部が形成される。そして、各凸部の内部に冷媒8が配置される。また、受熱部5の凹部、すなわち接続部6側に突き出した部分は、ヒートパイプ式冷却器100の仕切板7に相当する。 Here, the uneven shape of the heat receiving portion 5 will be described. As shown in FIG. 8, the uneven shape is continuously formed from the installation surface of the heat pipe type cooler 100 toward the opposite installation surface. Of the concave-convex shape, for example, a plurality of space portions inside the main pipe 1 are formed by the convex portion. Then, the refrigerant 8 is arranged inside each convex portion. Further, the recessed portion of the heat receiving portion 5, that is, the portion protruding toward the connecting portion 6, corresponds to the partition plate 7 of the heat pipe type cooler 100.

ステップST3〜ST6は、ヒートパイプ式冷却器100の製造方法と同様であるため、詳細な説明は省略する。 Since steps ST3 to ST6 are the same as the method for manufacturing the heat pipe type cooler 100, detailed description thereof will be omitted.

このように、ヒートパイプ式冷却器120の製造方法は、受熱部材(第1の板部材)を曲げ、連続した凹凸形状を形成し、受熱部5(凹凸部材)を形成する受熱部形成工程(凹凸部材形成工程)と、受熱部5に接続部材(第2の板部材)を取り付け接続部6(取付部材)とし、受熱部5と接続部6との間の空間領域が凹凸形状の凹部によって分割され、多段構造を有する主管体1を形成する主管体形成工程と、受熱部5又は接続部6に枝管体2を取り付け、主管体1の内部と枝管体2の内部とを連通させて接続する枝管体接続工程と、主管体1の凹凸形状の凸部に冷媒8を注入する冷媒注入工程と、枝管体2にフィン3を取り付けるフィン取付工程とを有するものである。 As described above, the method for manufacturing the heat pipe type cooler 120 is a heat receiving portion forming step (a heat receiving portion forming step) in which the heat receiving member (first plate member) is bent to form a continuous uneven shape, and the heat receiving portion 5 (concave and convex member) is formed. (Concavo-convex member forming step) and a connecting member (second plate member) is attached to the heat receiving portion 5 to form a connecting portion 6 (mounting member), and the space region between the heat receiving portion 5 and the connecting portion 6 is formed by the concave and convex concave portion. The main pipe body forming step of forming the main pipe body 1 which is divided and has a multi-stage structure, and the branch pipe body 2 is attached to the heat receiving portion 5 or the connecting portion 6, and the inside of the main pipe body 1 and the inside of the branch pipe body 2 are communicated with each other. It has a branch pipe body connecting step of connecting the main pipe body 1, a refrigerant injection step of injecting the refrigerant 8 into the convex portion of the main pipe body 1, and a fin attaching step of attaching the fins 3 to the branch pipe body 2.

上述の構成によって、ヒートパイプ式冷却器110の重量増加を抑制できる。 With the above configuration, the weight increase of the heat pipe type cooler 110 can be suppressed.

また、仕切板7を用いずに主管体1の多段構造を形成できるため、部品数を削減できる。 Further, since the multi-stage structure of the main pipe 1 can be formed without using the partition plate 7, the number of parts can be reduced.

また、仕切板7を用いないため、例えばろう付による接続箇所を削減できるため、作業性を向上できる。 Further, since the partition plate 7 is not used, the number of connection points due to brazing, for example, can be reduced, so that workability can be improved.

なお、受熱部5を第1面、接続部6を第2の板部としたが、逆でもよい。凹凸形状は受熱部5に限ることなく、接続部6が凹凸形状、又は受熱部5及び接続部6の両方が凹凸形状を有していてもよい。 The heat receiving portion 5 is used as the first surface and the connecting portion 6 is used as the second plate portion, but the reverse is also possible. The uneven shape is not limited to the heat receiving portion 5, and the connecting portion 6 may have an uneven shape, or both the heat receiving portion 5 and the connecting portion 6 may have an uneven shape.

実施の形態4.
図9は、実施の形態4にかかるヒートパイプ式冷却器130の概略断面図である。ヒートパイプ式冷却器130は、受熱部5の、発熱体4に設置される面とは反対の面に、ウィック9が配置される点で、ヒートパイプ式冷却器100と異なる。
Embodiment 4.
FIG. 9 is a schematic cross-sectional view of the heat pipe type cooler 130 according to the fourth embodiment. The heat pipe type cooler 130 is different from the heat pipe type cooler 100 in that the wick 9 is arranged on the surface of the heat receiving unit 5 opposite to the surface installed on the heating element 4.

ウィック9は、例えば微粒子を素材とした多孔質焼結体又は網状体等である。ウィック9は、例えば半田によって、受熱部5に取り付けられる。 The wick 9 is, for example, a porous sintered body or a reticulated body made of fine particles as a material. The wick 9 is attached to the heat receiving portion 5 by, for example, soldering.

上述の構成によって、ヒートパイプ式冷却器130の重量増加を抑制できる。 With the above configuration, the weight increase of the heat pipe type cooler 130 can be suppressed.

また、受熱部5にウィック9が配置されることにより、ウィック9の毛細管力によって冷媒8が吸い上げられ、冷媒8が保持されるため、冷媒8の沸騰の促進及び冷却効率を向上できる。 Further, since the wick 9 is arranged in the heat receiving portion 5, the refrigerant 8 is sucked up by the capillary force of the wick 9 and the refrigerant 8 is held, so that the boiling of the refrigerant 8 can be promoted and the cooling efficiency can be improved.

なお、実施の形態4において、発熱体4に設置されたウィック9の高さ、すなわち受熱部5から接続部6に向かう方向への長さは、受熱部5から接続部6までの長さ未満とする。ウィック9の長さが、受熱部5から接続部6までの長さ以上であると、ウィック9が枝管体2内に入り、これによって、ウィック9に付着した冷媒8が枝管体2内に冷媒が流入するおそれがある。その結果、主管体1内の冷媒量が少なくなり、十分な沸騰が起こらず、冷却効率が低下する。ウィック9の長さが、受熱部5から接続部6までの長さ未満であれば、ウィック9に付着した冷媒8が、枝管体2に流入することを抑制できる。 In the fourth embodiment, the height of the wick 9 installed on the heating element 4, that is, the length in the direction from the heat receiving portion 5 toward the connecting portion 6, is less than the length from the heat receiving portion 5 to the connecting portion 6. And. When the length of the wick 9 is equal to or greater than the length from the heat receiving portion 5 to the connecting portion 6, the wick 9 enters the branch pipe body 2, whereby the refrigerant 8 adhering to the wick 9 enters the branch pipe body 2. Refrigerant may flow into the water. As a result, the amount of the refrigerant in the main pipe 1 is reduced, sufficient boiling does not occur, and the cooling efficiency is lowered. If the length of the wick 9 is less than the length from the heat receiving portion 5 to the connecting portion 6, the refrigerant 8 adhering to the wick 9 can be suppressed from flowing into the branch pipe body 2.

実施の形態5.
図10は、実施の形態5にかかるヒートパイプ式冷却器140の概略断面図である。ヒートパイプ式冷却器140は、受熱部5に埋込部10を形成し、埋込部10に発熱体4を取り付ける点で、ヒートパイプ式冷却器100と異なる。
Embodiment 5.
FIG. 10 is a schematic cross-sectional view of the heat pipe type cooler 140 according to the fifth embodiment. The heat pipe type cooler 140 is different from the heat pipe type cooler 100 in that an embedded portion 10 is formed in the heat receiving portion 5 and a heating element 4 is attached to the embedded portion 10.

図11は、実施の形態5にかかるヒートパイプ式冷却器140の製造方法を示す工程図である。ステップST11では、受熱部材の一部に埋込部10を形成し、受熱部5を形成する(受熱部形成工程)。埋込部10は、例えばプレス加工によって形成される。形成された埋込部10は、主管体1の各空間部の内部、すなわち接続部6側へ突き出すように形成される。発熱体4の少なくとも一部、例えば図11に示すように、3面を覆うように、受熱部5の埋込部10は発熱体4に設置される。埋込部10は、設置される発熱体4の形状に沿って形成することが望ましいが、この限りではない。 FIG. 11 is a process diagram showing a method of manufacturing the heat pipe type cooler 140 according to the fifth embodiment. In step ST11, the embedded portion 10 is formed in a part of the heat receiving member to form the heat receiving portion 5 (heat receiving portion forming step). The embedded portion 10 is formed by, for example, press working. The formed embedded portion 10 is formed so as to protrude inside each space portion of the main pipe body 1, that is, toward the connecting portion 6. The embedded portion 10 of the heat receiving portion 5 is installed in the heating element 4 so as to cover at least a part of the heating element 4, for example, as shown in FIG. It is desirable that the embedded portion 10 is formed according to the shape of the heating element 4 to be installed, but this is not the case.

ステップST2〜ST6は、ヒートパイプ式冷却器100の製造方法と同様であるため、詳細な説明は省略する。 Since steps ST2 to ST6 are the same as the method for manufacturing the heat pipe type cooler 100, detailed description thereof will be omitted.

上述の構成によって、ヒートパイプ式冷却器140の重量増加を抑制できる。 With the above configuration, the weight increase of the heat pipe type cooler 140 can be suppressed.

また、発熱体4を受熱部5の凸形状に埋め込むように取り付けることにより、発熱体4と受熱部5との接触面積が増え、より冷却効率を向上できる。 Further, by mounting the heating element 4 so as to be embedded in the convex shape of the heat receiving portion 5, the contact area between the heating element 4 and the heat receiving portion 5 can be increased, and the cooling efficiency can be further improved.

なお、実施の形態5において、仕切板7を配置する例を示したが、ヒートパイプ式冷却器130のように、凹凸形状を有する受熱部5としてもよい。 Although the example in which the partition plate 7 is arranged is shown in the fifth embodiment, the heat receiving portion 5 having an uneven shape may be used as in the heat pipe type cooler 130.

なお、本開示において、発熱体4ごとにヒートパイプユニットを分割しているが、この分割方法に限定することなく、発熱体4の数とヒートパイプユニットの分割数は自由に設定すればよい。 In the present disclosure, the heat pipe unit is divided for each heating element 4, but the number of heating elements 4 and the number of divisions of the heat pipe unit may be freely set without being limited to this division method.

また、本開示において、受熱部5の厚みは、受熱部5と接続部6との間の長さよりも薄く形成する。これにより、ヒートパイプユニットを軽量化できるとともに、発熱体4からの熱を効率よく冷媒8に伝えることができる。 Further, in the present disclosure, the thickness of the heat receiving portion 5 is formed to be thinner than the length between the heat receiving portion 5 and the connecting portion 6. As a result, the weight of the heat pipe unit can be reduced, and the heat from the heating element 4 can be efficiently transferred to the refrigerant 8.

また、実施の形態4及び実施の形態5の受熱部5にウィック9を配置する例を示したが、いずれの実施の形態にも適用できる。 Further, although an example in which the wick 9 is arranged in the heat receiving portion 5 of the fourth embodiment and the fifth embodiment is shown, it can be applied to any of the embodiments.

また、本開示において、主管体の断面は、実施の形態1の長方形、又は実施の形態2の半円状に限られず、受熱部5を複数の空間部に分割できれば良いものとする。 Further, in the present disclosure, the cross section of the main body is not limited to the rectangle of the first embodiment or the semicircular shape of the second embodiment, and it is sufficient that the heat receiving portion 5 can be divided into a plurality of space portions.

また、本開示において、主管体1の各空間部の断面形状は、限定されないが、Y軸方向を長辺、Z軸方向を短辺とした長方形となっていることが望ましい。これは、各空間部の内部で冷媒8が十分な水位を保つようにするためである。冷媒8の水位が高ければ高いほど、発熱体4と冷媒8とが受熱部5を介して接している面積が大きくなり、冷媒の沸騰が促進される。 Further, in the present disclosure, the cross-sectional shape of each space portion of the main body 1 is not limited, but it is desirable that the cross-sectional shape is a rectangle having a long side in the Y-axis direction and a short side in the Z-axis direction. This is to ensure that the refrigerant 8 maintains a sufficient water level inside each space. The higher the water level of the refrigerant 8, the larger the area where the heating element 4 and the refrigerant 8 are in contact with each other via the heat receiving portion 5, and the boiling of the refrigerant is promoted.

また、本開示において、主管体1の分割の間隔、すなわち主管体1の各空間部は等間隔形成されているが、発熱体4の大きさが異なる場合等は、不等間隔に分割すればよい。 Further, in the present disclosure, the intervals between the divisions of the main body 1, that is, the spaces of the main body 1 are formed at equal intervals, but when the sizes of the heating elements 4 are different, the intervals may be divided into unequal intervals. Good.

また、本開示において、枝管体2の接続端部が主管体1内に貫通せずに接続部6に接続されているが、枝管体2を接続部6へ貫通させてもよい。これにより、枝管体2の接続端部を接続部6に合わせてカットする必要がなくなるため、作業性が向上するとともに、製造コストを削減できる。 Further, in the present disclosure, the connecting end portion of the branch pipe body 2 is connected to the connecting portion 6 without penetrating into the main pipe body 1, but the branch pipe body 2 may be penetrated through the connecting portion 6. As a result, it is not necessary to cut the connection end portion of the branch pipe body 2 in accordance with the connection portion 6, so that workability can be improved and the manufacturing cost can be reduced.

また、本開示において、フィン3と設置面との角度は直交としているが、この限りではなく、枝管体2とフィン3との角度を直交としてもよい。ただし、フィン3と設置面との角度を直交させることにより、図示しないヒートパイプ式冷却器カバーの網目と方向を合わせることができるため、走行風が流入しやすくする。 Further, in the present disclosure, the angle between the fin 3 and the installation surface is orthogonal, but the angle is not limited to this, and the angle between the branch pipe body 2 and the fin 3 may be orthogonal. However, by making the angle between the fin 3 and the installation surface orthogonal to each other, the direction can be aligned with the mesh of the heat pipe type cooler cover (not shown), so that the running wind can easily flow in.

また、本開示において、枝管体2の配置は、左右、上下等間隔になっているが、枝管体2の配置方法はこの配置に限定されることなく、不等間隔や千鳥配置を行ってもよい。千鳥配置を行った場合、枝管体2周りの温度境界層の発達を抑制でき、高効率な冷却が期待できる。 Further, in the present disclosure, the branch pipe bodies 2 are arranged at equal intervals on the left and right and up and down, but the arrangement method of the branch pipe bodies 2 is not limited to this arrangement, and the branch pipe bodies 2 are arranged at unequal intervals or staggered. You may. When the staggered arrangement is performed, the development of the temperature boundary layer around the branch pipe body 2 can be suppressed, and highly efficient cooling can be expected.

また、本開示のヒートパイプ式冷却器100〜140には、冷媒8として、アセトン、メタノール、又はエタノール等の不凍液を用いることができる。さらに、水又は水にアルコール等を混合させた液体等も用いることができる。 Further, in the heat pipe type coolers 100 to 140 of the present disclosure, an antifreeze solution such as acetone, methanol, or ethanol can be used as the refrigerant 8. Further, water or a liquid obtained by mixing alcohol or the like with water can also be used.

また、冷媒注入孔20の位置を、各注入管の先端としているが、この位置に限るものではない。 Further, the position of the refrigerant injection hole 20 is the tip of each injection pipe, but the position is not limited to this position.

また、本開示において、主管体1及び枝管体2の材料は、熱伝導率及び加工性の良い銅又はアルミ等とすればよい。フィン3の材料は、熱伝導率の良いアルミ又は銅等とすればよい。 Further, in the present disclosure, the material of the main pipe body 1 and the branch pipe body 2 may be copper, aluminum or the like having good thermal conductivity and workability. The material of the fin 3 may be aluminum, copper, or the like having good thermal conductivity.

また、本開示において、主管体1と枝管体2とを別体として接続し、ヒートパイプユニットとする例を示したが、主管体1と枝管体2とを一体に形成してもよい。 Further, in the present disclosure, an example is shown in which the main pipe body 1 and the branch pipe body 2 are connected as separate bodies to form a heat pipe unit, but the main pipe body 1 and the branch pipe body 2 may be integrally formed. ..

また、本開示において、ヒートパイプ式冷却器100〜140を、設置面に対して垂直に配置する例を示したが、発熱体4の形状によって傾斜させて配置してもよい。 Further, in the present disclosure, an example in which the heat pipe type coolers 100 to 140 are arranged perpendicularly to the installation surface is shown, but they may be arranged in an inclined manner depending on the shape of the heating element 4.

なお、本開示は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。 In the present disclosure, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

1 主管体、2 枝管体、3 フィン、4 発熱体、5 受熱部、6 接続部、7 仕切板、8 冷媒、9 ウィック、10 埋込部、20 冷媒注入孔、100、110、120、130、140 ヒートパイプ式冷却器。 1 Main pipe, 2 Branch pipe, 3 Fins, 4 Heating element, 5 Heat receiving part, 6 Connection part, 7 Partition plate, 8 Refrigerant, 9 Wick, 10 Embedded part, 20 Refrigerant injection hole, 100, 110, 120, 130, 140 heat pipe type cooler.

Claims (5)

発熱体が設置される面を有する受熱部及び前記受熱部と対向する接続部を有する主管体と、内部が前記主管体の内部と連通するように前記接続部に接続される枝管体と、を有するヒートパイプユニットと、
前記枝管体に取り付けられるフィンと、を備え、
前記フィンに走行風が流れるようにして鉄道車両で使用されるヒートパイプ式冷却器において、
前記発熱体が設置される面は上下方向に延びる面であり、
前記受熱部と前記接続部との間の空間領域が上下方向に多段に分割されて複数の空間部が形成され、前記複数の空間部のそれぞれには液面を有するように冷媒が配置され、
前記枝管体は内部で凝縮した前記冷媒が重力によって前記主管体に戻るように傾いて、かつ、前記空間部の前記冷媒の液面より上方で前記接続部に接続され、
前記受熱部は、前記発熱体が設置される面とは反対の面に、前記冷媒を吸い上げて前記冷媒を保持するウィックが配置され、
前記受熱部又は前記接続部は凹凸形状であり、
前記凹凸形状の凹部によって前記受熱部と前記接続部との間の空間領域が多段に分割され、凸部によって前記複数の空間部が形成される
ートパイプ式冷却器。
A main pipe body having a heat receiving portion having a surface on which the heating element is installed and a connecting portion facing the heat receiving portion, and a branch pipe body connected to the connecting portion so that the inside communicates with the inside of the main pipe body. With a heat pipe unit,
With fins attached to the branch tube body,
In a heat pipe type cooler used in a railroad vehicle so that running wind flows through the fins,
The surface on which the heating element is installed is a surface extending in the vertical direction.
The space region between the heat receiving portion and the connecting portion is divided in multiple stages in the vertical direction to form a plurality of space portions, and the refrigerant is arranged so as to have a liquid level in each of the plurality of space portions.
The branch tube is inclined so that the refrigerant condensed in the inside is returned to the main tube by gravity, and is connected to the connection portion above the liquid level of the refrigerant in the space,
The heat receiving portion, the surface on which the heating element is disposed on the opposite surface, the wick for holding the refrigerant sucked the refrigerant is arranged,
The heat receiving portion or the connecting portion has an uneven shape.
The space region between the heat receiving portion and the connecting portion is divided into multiple stages by the concave-convex-shaped concave portion, and the plurality of space portions are formed by the convex portion.
Human Topaipu cooler.
前記受熱部の厚みは、前記受熱部から前記接続部までの長さよりも薄い、
請求項1に記載のヒートパイプ式冷却器。
The thickness of the heat receiving portion is thinner than the length from the heat receiving portion to the connecting portion.
The heat pipe type cooler according to claim 1 .
前記ウィックにおける、前記受熱部から前記接続部に向かう方向の長さが、前記受熱部から前記接続部までの長さ未満である、
請求項1又は2に記載のヒートパイプ式冷却器。
The length of the wick in the direction from the heat receiving portion to the connecting portion is less than the length from the heat receiving portion to the connecting portion.
The heat pipe type cooler according to claim 1 or 2 .
前記受熱部は、前記発熱体の外周の少なくとも一部を覆うように形成される、
請求項1〜のいずれか一項に記載のヒートパイプ式冷却器。
The heat receiving portion is formed so as to cover at least a part of the outer periphery of the heating element.
The heat pipe type cooler according to any one of claims 1 to 3 .
第1の板部材を曲げ、連続した凹凸形状を形成し、凹凸部材を形成する凹凸部材形成工程と、
前記凹凸部材に第2の板部材を取り付け取付部材とし、前記凹凸部材と前記取付部材との間の空間領域が前記凹凸形状の凹部によって分割され、上下方向に多段構造を有する主管体を形成する主管体形成工程と、
内部で凝縮した冷媒が重力によって前記主管体に戻るように傾いて、かつ、前記凹凸形状の凸部に注入される前記冷媒の液面より上方で、前記凹凸部材又は前記取付部材に枝管体を取り付け、前記主管体の内部と前記枝管体の内部とを連通させて接続する枝管体接続工程と、
前記主管体の前記凹凸形状の前記凸部のそれぞれに液面を有するように前記冷媒を注入する冷媒注入工程と、
前記枝管体にフィンを取り付けるフィン取付工程と
を有するヒートパイプ式冷却器の製造方法。
The uneven member forming step of bending the first plate member to form a continuous uneven shape and forming the uneven member,
A second plate member is attached to the uneven member to serve as a mounting member, and a space region between the concave-convex member and the mounting member is divided by the concave-convex-shaped recess to form a main body having a multi-stage structure in the vertical direction. Main tube formation process and
The refrigerant condensed inside is tilted so as to return to the main pipe body due to gravity, and above the liquid level of the refrigerant injected into the convex portion of the concave-convex shape, the branch pipe body is attached to the concave-convex member or the attachment member. The branch pipe connecting step of connecting the inside of the main pipe and the inside of the branch pipe by communicating with each other.
A refrigerant injection step of injecting the refrigerant so that each of the convex portions of the concave-convex shape of the main pipe has a liquid level.
A method for manufacturing a heat pipe type cooler, which comprises a fin attaching step of attaching fins to the branch pipe body.
JP2020539871A 2020-01-27 2020-01-27 Manufacturing method of heat pipe type cooler and heat pipe type cooler Active JP6813137B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002797 WO2021152668A1 (en) 2020-01-27 2020-01-27 Heat-pipe-type cooler, and method for manufacturing heat-pipe-type cooler

Publications (2)

Publication Number Publication Date
JP6813137B1 true JP6813137B1 (en) 2021-01-13
JPWO2021152668A1 JPWO2021152668A1 (en) 2021-08-05

Family

ID=74096284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539871A Active JP6813137B1 (en) 2020-01-27 2020-01-27 Manufacturing method of heat pipe type cooler and heat pipe type cooler

Country Status (2)

Country Link
JP (1) JP6813137B1 (en)
WO (1) WO2021152668A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150764U (en) * 1973-04-24 1974-12-27
JPS5088943U (en) * 1973-12-17 1975-07-28
JPH0369245U (en) * 1989-11-08 1991-07-09
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2012256760A (en) * 2011-06-09 2012-12-27 Toshiba Corp Ebullient cooler
WO2016104729A1 (en) * 2014-12-25 2016-06-30 三菱アルミニウム株式会社 Cooler
WO2018179314A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Cooling device and vehicle power conversion device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369245A (en) * 1989-08-08 1991-03-25 Nec Corp Reception data monitor system for information processor
JP3207138B2 (en) * 1997-07-29 2001-09-10 三菱電機株式会社 Water evaporative cooling system
US6994152B2 (en) * 2003-06-26 2006-02-07 Thermal Corp. Brazed wick for a heat transfer device
US10107558B2 (en) * 2013-09-02 2018-10-23 Asia Vital Components Co., Ltd. Thermal module
JP6353682B2 (en) * 2014-04-01 2018-07-04 昭和電工株式会社 Boiling cooler
JP7103007B2 (en) * 2018-07-18 2022-07-20 株式会社デンソー Thermosiphon heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150764U (en) * 1973-04-24 1974-12-27
JPS5088943U (en) * 1973-12-17 1975-07-28
JPH0369245U (en) * 1989-11-08 1991-07-09
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2012256760A (en) * 2011-06-09 2012-12-27 Toshiba Corp Ebullient cooler
WO2016104729A1 (en) * 2014-12-25 2016-06-30 三菱アルミニウム株式会社 Cooler
WO2018179314A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Cooling device and vehicle power conversion device

Also Published As

Publication number Publication date
WO2021152668A1 (en) 2021-08-05
JPWO2021152668A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
TWI361655B (en) Heat pipe heat sink
US20140083653A1 (en) Vapor-Based Heat Transfer Apparatus
US20110000649A1 (en) Heat sink device
WO2014157147A1 (en) Cooling apparatus
JP6688863B2 (en) Cooling device and cooling system using the cooling device
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP4426684B2 (en) heatsink
US7044212B1 (en) Refrigeration device and a method for producing the same
JP2020076554A (en) heat pipe
CN210108104U (en) Temperature equalizing plate
CN112710180A (en) Steam chamber
JP7220434B2 (en) Boiling cooling structure
US11300361B2 (en) Evaporator having an optimized vaporization interface
US20110240263A1 (en) Enhanced Electronic Cooling by an Inner Fin Structure in a Vapor Chamber
JP2010016254A (en) Semiconductor device
JP6813137B1 (en) Manufacturing method of heat pipe type cooler and heat pipe type cooler
JP4177337B2 (en) Heat sink with heat pipe
CN112584671A (en) Vapor chamber for cooling electronic components
CN209745070U (en) Phase change heat dissipation device
CN111818756B (en) Heat exchanger with integrated two-phase radiator
JP2009076622A (en) Heat sink and electronic apparatus using the same
US20080128109A1 (en) Two-phase cooling technology for electronic cooling applications
JP2008281253A (en) Cooling device
JP2014115054A (en) Self-excited vibration type heat pipe

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6813137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250