WO2016104729A1 - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
WO2016104729A1
WO2016104729A1 PCT/JP2015/086288 JP2015086288W WO2016104729A1 WO 2016104729 A1 WO2016104729 A1 WO 2016104729A1 JP 2015086288 W JP2015086288 W JP 2015086288W WO 2016104729 A1 WO2016104729 A1 WO 2016104729A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pipe
refrigerant
cooler
heat
Prior art date
Application number
PCT/JP2015/086288
Other languages
French (fr)
Japanese (ja)
Inventor
靖人 末木
俊一 佐田
季朗 久野
Original Assignee
三菱アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱アルミニウム株式会社 filed Critical 三菱アルミニウム株式会社
Priority to JP2016566529A priority Critical patent/JP6505130B2/en
Publication of WO2016104729A1 publication Critical patent/WO2016104729A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a construction machine (hybrid), a wind power / solar power generation power converter, a power converter such as a power supply / uninterruptible power supply, a so-called inverter for motor control of an elevator / rolling machine / machine tool, etc., railway
  • the present invention relates to a cooler used for cooling a control device using a semiconductor element such as a power transistor or a thyristor of a vehicle or an electric vehicle.
  • cooler used for cooling control devices using semiconductor elements such as power transistors and thyristors
  • a cooler that cools a heating element using latent heat when the refrigerant boils is known. Yes.
  • a cooler heat pipe cooler
  • a cooler embeds a plurality of circular tanks having a large cross-sectional area in a base block that receives heat from a heating element such as a semiconductor element.
  • a plurality of thin pipes are erected on the side surface of the exposed portion, and a plurality of fins are attached to the pipes, so that the heat of the heating element can be cooled by outside air.
  • the tube axis of the pipe installed upright in the tank may be inclined.
  • the refrigerant enter the pipe in a liquid state and the condensation area decreases, but the cooling performance may decrease, and the boiling bubbles violently collide with the tip of the pipe, causing a boiling sound (impact sound). ) May occur.
  • the present invention has been made in view of such circumstances, and can provide a cooler that can improve cooling performance and can maintain good cooling performance even when the posture during use changes. With the goal.
  • the cooler of the present invention includes a base block having a mounting surface on which a heating element is mounted along the vertical direction; a circular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; And a plurality of parallel pipe pipes connected in a standing manner to the side of the tank; and a plurality of heat radiations attached to the pipes through the pipes.
  • the tank extends in a horizontal direction
  • the pipe has a base end portion having a connection end connected to the tank; and bends from the base end portion and closes to the tip end side
  • a heat dissipating part having an end; and the base end part is inclined upward from the connection end at a predetermined first inclination angle with respect to a horizontal direction, and the heat dissipating part is 0 with respect to the horizontal direction.
  • the first end of the base end Provided at a second inclination angle of less than oblique angle, to the tank, the set liquid level of the coolant is set at a position lower than the radiator portion.
  • thermosiphon type heat pipe in which a plurality of pipes are connected to one tank, the condensation area of the plurality of pipes is larger than that of a single pipe type heat pipe, so that it is accommodated in the pipe unit.
  • the amount of refrigerant is large.
  • the refrigerant in the pipe unit is biased to one side (lower side), so that there is no refrigerant from the bottom of the tank on the opposite side (higher side). In order to prevent this from happening (so that it does not dry up), it is necessary to increase the amount of refrigerant stored in the pipe unit.
  • each pipe is inclined to the upper side from the tank and connected to the tank and bent in the middle, so that the heat radiating part of the pipe is located above the tank. Therefore, the refrigerant storage area in the tank can be increased. For this reason, even when the cooler tilts and changes its posture, it is possible to secure a space between the tank and the heat radiating portion of the pipe and prevent the refrigerant from flowing from the tank to the heat radiating portion of the pipe in a liquid state. Also, with such a configuration, a sufficient amount of refrigerant can be held in the tank, so that the bottom of the tank does not dry.
  • the pipe is bent between the base end portion and the heat radiating portion, even if the liquid refrigerant enters the base end portion, the bent portion becomes a resistance and hardly flows into the heat radiating portion. Accordingly, it is possible to increase the amount of the refrigerant stored in the tank while suppressing the flow of the liquid refrigerant from the tank to the heat radiating portion of the pipe. be able to.
  • the heat radiating portion of the pipe has the second inclination angle of 0 °, and the heat radiating fin is attached to the heat radiating portion of the pipe so that a plane direction thereof is along the vertical direction. ing.
  • the heat dissipating fins are arranged so that the plane direction is in the vertical direction, that is, parallel to the base block, the heat dissipating fins are parallel to the natural convection direction (vertical direction) of air when used in natural air cooling. become. For this reason, resistance to natural convection can be reduced, and cooling performance can be improved.
  • the set liquid level of the refrigerant accommodated in the tank is set at the connection end of the pipe in a state where the extending direction of the tank is left in a horizontal direction.
  • the ratio (m2 / d1) between the maximum opening height m2 exposed from the surface and the inner diameter d1 of the tank is set to be 0.27 or more.
  • the present inventor has found that the liquid level of the refrigerant accommodated in the pipe unit is left standing along the horizontal direction of the tank extending direction and the maximum opening height m2 of the pipe connection end and the tank It was found that the generation of boiling noise can be avoided by setting the ratio (m2 / d1) to the inner diameter d1 to be 0.27 or more. As described above, when the ratio (m2 / d1) is set to 0.27 or more, a steam passage is ensured between the tank and the pipe, so that boiling bubbles can be prevented from pushing up the refrigerant. Therefore, even when the amount of the refrigerant stored in the pipe unit is increased, generation of boiling noise can be avoided.
  • the cooling performance can be improved, and the cooling performance can be maintained well even when the posture during use is changed.
  • FIG. 2 is a partial cross-sectional arrow view of the cooler shown in FIG. 1 taken along line II-II in FIG. 3B. It is a front view of the cooler shown in FIG. It is a rear view of the cooler shown in FIG. It is principal part sectional drawing in the connection part of the tank and pipe of a pipe unit. It is a fragmentary sectional arrow view which shows the cooler which is 2nd Embodiment of this invention.
  • FIG. 1 to 3A and 3B show a cooler 100 according to a first embodiment of the present invention.
  • the cooler 100 is embedded in a base block 20 in which a mounting surface 21a to which the heating element 10 is mounted is formed along the vertical direction, and an opposite surface 21b opposite to the mounting surface 21a of the base block 20.
  • the fin 40 is provided and used for a vehicle.
  • the cooler 100 is installed in the lower part of the side surface of the vehicle so that the mounting surface 21a of the base block 20 is along the vertical direction.
  • the base block 20 is formed of a metal having a high heat capacity and excellent heat conductivity such as aluminum and copper.
  • a heating element 10 such as a semiconductor element is mounted on the mounting surface 21a on one side (left side in FIG. 1) of the base block 20, and the side opposite to the mounting surface 21a on which the heating element 10 is mounted (right side in FIG. 1).
  • the tank 31 is embedded in the opposite surface 21b.
  • the pipe unit 30 is configured by connecting a plurality of thin tubular pipes 32 having an inner diameter d2 smaller in diameter than the inner diameter d1 of the tank 31 to the side surface of the tubular tank 31.
  • a tank 31 having an inner diameter d1 of 27.6 mm and a pipe 32 having an inner diameter d2 of 13.88 mm can be suitably used.
  • the tank 31 and the pipe 32 are made of aluminum or copper, and are joined together by brazing with the internal space integrated.
  • a refrigerant 60 such as pure water or perfluorocarbon is accommodated in the pipe unit 30 formed by joining the tank 31 and each pipe 32.
  • the tank 31 is formed of a circular pipe, the extending direction thereof is arranged along the horizontal direction, and the tank 31 is attached to the opposite surface 21 b of the base block 20.
  • FIG. 2 shows a cross section only in the vicinity of the joint portion between the base block 20 and the tank 31 and the base end portion 33 of the pipe 32, and shows side surfaces of the heat radiating portions 34 and the heat radiating fins 40 of the pipe 32.
  • the pipe 32 has the inner diameter d2 set smaller than the inner diameter d1 of the tank 31, and is connected to the side surface of each tank 31 as shown in FIG. Further, as shown in FIG. 3B, the pipes 32 are arranged in a state where they are erected in parallel (in one row) with a certain interval in the extending direction of the tank 31. As shown in FIGS. 2 and 4, each pipe 32 is formed by bending a base end portion 33 connected to the tank 31 and a heat radiating portion 34 on the front end side of the base end portion 33 by bending. . The base end portion 33 is inclined at a predetermined first inclination angle ⁇ (> 0 °) upward from the connection end 32j with the tank 31 with respect to the horizontal direction.
  • predetermined first inclination angle
  • the heat radiating portion 34 provided continuously to the base end portion 33 is inclined at a second inclination angle of 0 ° or more and less than the first inclination angle ⁇ with respect to the horizontal direction, and is accommodated in the tank 31. It is disposed at a position higher than the set liquid level of the refrigerant 60.
  • the heat radiating portion 34 of the pipe 32 is disposed along the horizontal direction toward the closed end 32 b, that is, at a second inclination angle of 0 °, The center line is eccentric above the center line of the tank 31.
  • the first inclination angle ⁇ is set with reference to a possible angle when the vehicle is traveling on a slope and the cooler 100 is inclined (for example, 7 °).
  • the first inclination angle ⁇ is set to 30 °, and the heat radiation part 34 of the pipe 32 is higher than the set liquid level of the refrigerant 60 by the distance S. Placed in position.
  • the set liquid level of the refrigerant 60 accommodated in the pipe unit 30 is at the connection end 32 j of the pipe 32 in a state where the extending direction of the tank 31 is left along the horizontal direction.
  • the ratio (m2 / d1) between the maximum opening height m2 exposed from the set liquid surface and the inner diameter d1 of the tank 31 is set to 0.27 or more.
  • a plurality of tanks 31 (pipe units 30) to which a plurality of pipes 32 are attached in this manner are vertically arranged on the opposite surface 21b of the base block 20.
  • the pipes 32 are arranged in a matrix by arranging them in parallel.
  • the pipes 32 are arranged in a lattice shape in a top view, but a configuration in which the pipes are arranged in a zigzag pattern or other arrangements are possible.
  • the base block 20 and each tank 31 are joined together by soldering or the like. Thereby, the heat transfer between the base block 32 and the tank 31 is performed smoothly.
  • a plurality of thin plate-like heat radiating fins 40 made of aluminum or copper having excellent thermal conductivity are attached to the heat radiating portion 34 of the pipe 32 so as to be skewered with the pipe 32 penetrating. ing.
  • the heat radiation fins 40 are arranged such that the plane direction thereof is in the vertical direction.
  • These radiating fins 40 are provided with a plurality of through holes (not shown) formed at a predetermined position of the thin plate, for example, by burring or the like.
  • the heat radiating fins 40 are attached to the pipes 32 so that the heat radiating fins 40 and the pipes 32 are integrally provided.
  • the heat radiation fin 40 can also be attached by expanding the pipe 32 inserted into the through hole of the heat radiation fin 40.
  • the heat generated from the heating element 10 is transmitted to the base block 20, further transmitted from the base block 20 to the tank 31 of the pipe unit 30, and the refrigerant 60 in the tank 31. Boil and evaporate. Then, the vapor of the evaporated refrigerant 60 rises in the tank 31 and moves into the pipe 32, and is cooled by transferring heat to the radiating fins 40 through the pipe 32.
  • the base end portion 33 of each pipe 32 is inclined upward and connected to the tank 31, so that the heat radiating portion 34 of the pipe 32 is eccentric to the upper side of the tank 31.
  • the storage area of the refrigerant 60 inside can be increased.
  • the base end portion 33 of the pipe 32 inclined at the first inclination angle ⁇ in this way has a posture at an angle higher than the horizontal even when the vehicle travels on a sloped place and the cooler 100 tilts. Can keep. Thereby, even when the cooler 100 is tilted and the posture is changed, a space is secured between the tank 31 and the pipe 32, and the refrigerant 60 can be prevented from flowing from the tank 31 into the pipe 32 in a liquid state.
  • the cooler 100 while suppressing the flow of the liquid refrigerant 60 from the tank 31 to the pipe 32, the amount of the refrigerant 60 stored in the tank 31 is increased and the refrigerant 60 is held in the tank 31. As a result, the bottom of the tank 31 does not dry. Therefore, the cooling performance can be exhibited smoothly at all times, and the cooling performance can be maintained satisfactorily.
  • the heat radiating portion 34 of the pipe 32 extends along the horizontal direction, and the plane direction of the heat radiating fins 40 is arranged along the vertical direction, that is, parallel to the base block 20.
  • the heat radiation fins 40 are parallel to the air flow direction (that is, the extending direction of the tank 31) by the vehicle traveling and to the natural convection direction (the direction of the arrow C) when used in natural air cooling. Can be arranged in parallel. For this reason, even when the vehicle is stopped, the resistance to natural convection can be reduced, and the cooling performance can be improved.
  • the maximum opening height m ⁇ b> 2 of the connection end 32 j of the pipe 32 and the tank 31 are set in a state where the set liquid level of the refrigerant 60 is left stationary along the horizontal direction of the tank 31. Since the ratio (m2 / d1) to the inner diameter d1 is set to be 0.27 or more and the vapor passage is secured, it is possible to prevent the boiling bubbles from pushing up the liquid refrigerant 60. Therefore, even when the amount of the refrigerant 60 accommodated in the pipe unit 30 is increased, generation of boiling noise can be avoided.
  • FIG. 5 shows a cooler 110 according to the second embodiment of the present invention.
  • Each pipe 132 constituting the pipe unit 130 of the cooler 110 is formed by bending a base end portion 133 connected to the tank 31 and a heat radiating portion 134 on the front end side of the base end portion 133 by bending. ing.
  • the base end portion 133 is connected to the tank 31 while being inclined upward at a predetermined first inclination angle ⁇ with respect to the horizontal direction.
  • the heat dissipating part 134 is provided to be inclined upward at a second inclination angle that is greater than 0 ° and smaller than the first inclination angle ⁇ with respect to the horizontal direction.
  • FIG. 5 shows a cross section only in the vicinity of the joint portion between the base block 20 and the tank 31 and the base end portion 133 of the pipe 132, and the heat radiating portions 134 and the heat radiating fins 140 of the pipe 132 are shown as side surfaces.
  • the heat radiating portion 134 since the heat radiating portion 134 is inclined, in order to obtain sufficient cooling efficiency for the arrangement space, the heat radiating portion 134 has two types of heat radiating fins 140 (401, 402) having different sizes and heat radiating portions 134 having different lengths. Three types of pipes 132 (301, 302, 303) are required.
  • the radiating fins 140 are not parallel to the natural convection direction C of air, the resistance is large compared to the first embodiment.
  • the heat radiating part 134 since the heat radiating part 134 is inclined, it is difficult for the refrigerant to flow into the heat radiating part 134 in a liquid state, and it is possible to more effectively prevent the cooling performance from being reduced due to the reduction of the condensation area and the generation of noise due to boiling bubbles.
  • the radiating fin 40 is configured to be attached in a state in which all the pipes 32 are penetrated as in the above embodiment, and the plurality of pipes 32 are divided into several blocks, and each of the plurality of pipes 32 is divided. It can also be set as the structure which attaches the small radiation fin divided into.
  • the extending direction of the thermal radiation part 34 of the pipe 32 was arrange
  • the extending direction of a thermal radiation part is other than a horizontal direction (angle 0 degree).
  • the base end portion 33 may be inclined at an angle less than the first inclination angle ⁇ with respect to the horizontal direction.
  • the cooling performance can be improved, and the cooling performance can be maintained well even when the posture during use changes.

Abstract

Provided is a cooler capable of improving cooling performance and favorably maintaining cooling performance even when the orientation thereof during use changes. A tank 31 of a cooler 100 extends in the horizontal direction. A pipe 32 has a base end section 33 having a connecting end connected to the tank 31, and a heat-dissipating section 34 curving from the base end section 33 and having a blocked end on the tip side thereof. The base end section 33 is slanted upward from the connecting end 32j at a prescribed first slant angle α relative to the horizontal direction. The heat-dissipating section 34 is positioned higher than a set fluid level for a coolant 60 stored in the tank 31, and is provided at a second slant angle which, relative to the horizontal direction, is equal to or greater than 0° and less than the first slant angle α of the base end section 33.

Description

冷却器Cooler
 本発明は、建設機械(ハイブリッド)、風力・太陽光発電の電力変換装置、電源装置・無停電電源装置等の電力変換装置、エレベータ・圧延機・工作機械などのモータ制御などのいわゆるインバータ、鉄道車両・電気車両等のパワートランジスタやサイリスタ等の半導体素子を利用した制御機器等の冷却に用いる冷却器に関する。
 本願は、2014年12月25日に出願された特願2014-262358号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a construction machine (hybrid), a wind power / solar power generation power converter, a power converter such as a power supply / uninterruptible power supply, a so-called inverter for motor control of an elevator / rolling machine / machine tool, etc., railway The present invention relates to a cooler used for cooling a control device using a semiconductor element such as a power transistor or a thyristor of a vehicle or an electric vehicle.
This application claims priority based on Japanese Patent Application No. 2014-262358 for which it applied on December 25, 2014, and uses the content here.
 パワートランジスタやサイリスタ等の半導体素子を利用した制御機器等の冷却に使用する冷却器として、冷媒が沸騰する際の潜熱を利用して発熱体を冷却する冷却器(沸騰冷却器)が知られている。 As a cooler used for cooling control devices using semiconductor elements such as power transistors and thyristors, a cooler (boiling cooler) that cools a heating element using latent heat when the refrigerant boils is known. Yes.
 例えば、特許文献1に記載の冷却器(ヒートパイプ冷却器)は、半導体素子等の発熱体の熱を受けるベースブロックに、断面積の大きな複数本の円管状のタンクを埋設するとともに、タンクの露出部分の側面に複数の細いパイプを立設させ、そのパイプに複数のフィンを取り付けた構成とされ、発熱体の熱を外気によって冷却することができるようになっている。 For example, a cooler (heat pipe cooler) described in Patent Document 1 embeds a plurality of circular tanks having a large cross-sectional area in a base block that receives heat from a heating element such as a semiconductor element. A plurality of thin pipes are erected on the side surface of the exposed portion, and a plurality of fins are attached to the pipes, so that the heat of the heating element can be cooled by outside air.
特開2004‐125381号公報JP 2004-125381 A
 沸騰冷却性能を発揮するためには、冷媒の入ったタンクに適正な空間が確保され、この空間部分にパイプが接続されていることが必要とされる。この空間は、通常、タンクの体積の1/3以上あることが理想である。一方、タンクの管底面に液状の冷媒が接触していないと、沸騰冷却性能を発揮することができない。 In order to exhibit boiling cooling performance, it is necessary to secure an appropriate space in the tank containing the refrigerant and to connect a pipe to this space portion. Ideally, this space is usually 1/3 or more of the volume of the tank. On the other hand, if the liquid refrigerant is not in contact with the bottom surface of the tank, the boiling cooling performance cannot be exhibited.
 特許文献1に記載される冷却器においては、ベースブロックの側面に対して複数のパイプが直立して設置されている。この冷却器が取り付けられた車両が勾配のある場所を走行すると、タンクの円管軸方向において、部分的にタンクの空間が液状の冷媒で埋まって液状のまま冷媒がパイプに到達したりタンクの底部に液状の冷媒がない状況ができたりすることが問題であった。 In the cooler described in Patent Document 1, a plurality of pipes are installed upright with respect to the side surface of the base block. When a vehicle equipped with this cooler travels on a slope, the tank space is partially filled with liquid refrigerant in the axial direction of the tank tube, and the refrigerant reaches the pipes in the liquid state. The problem was that there was no liquid refrigerant at the bottom.
 また、タンクの円管軸の傾きとは別に、タンクに直立して設置されたパイプの円管軸の傾きが生じることがある。この場合には、パイプ内に冷媒が液状のまま進入して凝縮面積が減少することで冷却性能が低下するおそれがあるだけでなく、沸騰気泡がパイプ先端に激しく衝突して沸騰音(衝突音)を生じるおそれもある。 Also, apart from the inclination of the tank tube axis, the tube axis of the pipe installed upright in the tank may be inclined. In this case, not only does the refrigerant enter the pipe in a liquid state and the condensation area decreases, but the cooling performance may decrease, and the boiling bubbles violently collide with the tip of the pipe, causing a boiling sound (impact sound). ) May occur.
 本発明は、このような事情に鑑みてなされたもので、冷却性能の向上を図ることができ、使用時の姿勢が変化した場合においても、冷却性能を良好に維持できる冷却器を提供することを目的とする。 The present invention has been made in view of such circumstances, and can provide a cooler that can improve cooling performance and can maintain good cooling performance even when the posture during use changes. With the goal.
 本発明の冷却器は、上下方向に沿い発熱体が装着される装着面を有するベースブロックと:該ベースブロックの前記装着面とは反対面に埋設され、冷媒が収容された円管状のタンク;及び該タンクの側面に立設状態で接続された、相互に平行な複数の円管状のパイプ;からなるパイプユニットと:複数の前記パイプを貫通させた状態でこれらパイプに取り付けられた複数の放熱フィンと:を備え、前記タンクは、水平方向に沿って延在し、前記パイプは、前記タンクに接続される接続端を有する基端部と;この基端部から屈曲して先端側に閉塞端を有する放熱部と;を有し、前記基端部は、水平方向に対する所定の第1傾斜角度で、前記接続端から上方に傾斜しており、前記放熱部は、水平方向に対して0°以上かつ前記基端部の前記第1傾斜角度未満の第2傾斜角度で設けられ、前記タンクには、前記冷媒の設定液面が前記放熱部よりも低い位置に設定されている。 The cooler of the present invention includes a base block having a mounting surface on which a heating element is mounted along the vertical direction; a circular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; And a plurality of parallel pipe pipes connected in a standing manner to the side of the tank; and a plurality of heat radiations attached to the pipes through the pipes. The tank extends in a horizontal direction, and the pipe has a base end portion having a connection end connected to the tank; and bends from the base end portion and closes to the tip end side A heat dissipating part having an end; and the base end part is inclined upward from the connection end at a predetermined first inclination angle with respect to a horizontal direction, and the heat dissipating part is 0 with respect to the horizontal direction. And the first end of the base end Provided at a second inclination angle of less than oblique angle, to the tank, the set liquid level of the coolant is set at a position lower than the radiator portion.
 通常、1つのタンクに複数のパイプを接続したサーモサイフォン型ヒートパイプ(パイプユニット)においては、単管式ヒートパイプと比較して、複数のパイプによる凝縮面積が大きいので、パイプユニットに収容される冷媒の液量が多い。また、車両の登降走行に伴う勾配時の沸騰冷却性能を発揮するには、パイプユニット内の冷媒が片側(低い方)に偏ることでその反対側(高い方)のタンクの底部から冷媒がなくならないように(干上がらないように)するため、パイプユニットにおいて収容する冷媒の液量を多くしておく必要がある。ところが、その一方で、沸騰冷却性能を発揮するためには、パイプユニットの内部に収容された冷媒(冷媒の液面)とタンクに取り付けられたパイプとの間に適正な空間を確保することも必要とされるので、冷媒の液量が多いことが不利になるおそれがある。 Usually, in a thermosiphon type heat pipe (pipe unit) in which a plurality of pipes are connected to one tank, the condensation area of the plurality of pipes is larger than that of a single pipe type heat pipe, so that it is accommodated in the pipe unit. The amount of refrigerant is large. In addition, in order to demonstrate the boiling cooling performance at the time of a gradient accompanying the climbing of the vehicle, the refrigerant in the pipe unit is biased to one side (lower side), so that there is no refrigerant from the bottom of the tank on the opposite side (higher side). In order to prevent this from happening (so that it does not dry up), it is necessary to increase the amount of refrigerant stored in the pipe unit. However, on the other hand, in order to exert the boiling cooling performance, it is also possible to secure an appropriate space between the refrigerant (liquid level of the refrigerant) accommodated in the pipe unit and the pipe attached to the tank. Since it is required, it may be disadvantageous that the amount of the refrigerant is large.
 この点、本発明の冷却器においては、各パイプをタンクから上方に向かうように傾斜させてタンクに接続しているとともに途中で屈曲させていることにより、パイプの放熱部がタンクに対して上側に偏芯させた位置に配置されるので、タンク内の冷媒の貯留領域を増加させることができる。このため、冷却器が傾いて姿勢が変化した際にも、タンクとパイプの放熱部との間に空間を確保してタンクからパイプの放熱部に液状のまま冷媒が流れ込むことを防止できる。また、このような構成により、タンク内に十分な液量の冷媒を保持することができるので、タンクの底部が乾くことがない。また、パイプが基端部と放熱部との間で屈曲しているので、液状の冷媒がもし基端部に入り込んでも、屈曲部が抵抗となって放熱部までは流れ込みにくい。したがって、タンクからパイプの放熱部への液状の冷媒の流れ込みを抑制しながら、タンクに収容する冷媒の液量を増加することが可能となり、常時、沸騰冷却性能を円滑に発揮させ良好に維持することができる。 In this regard, in the cooler of the present invention, each pipe is inclined to the upper side from the tank and connected to the tank and bent in the middle, so that the heat radiating part of the pipe is located above the tank. Therefore, the refrigerant storage area in the tank can be increased. For this reason, even when the cooler tilts and changes its posture, it is possible to secure a space between the tank and the heat radiating portion of the pipe and prevent the refrigerant from flowing from the tank to the heat radiating portion of the pipe in a liquid state. Also, with such a configuration, a sufficient amount of refrigerant can be held in the tank, so that the bottom of the tank does not dry. Further, since the pipe is bent between the base end portion and the heat radiating portion, even if the liquid refrigerant enters the base end portion, the bent portion becomes a resistance and hardly flows into the heat radiating portion. Accordingly, it is possible to increase the amount of the refrigerant stored in the tank while suppressing the flow of the liquid refrigerant from the tank to the heat radiating portion of the pipe. be able to.
 本発明の冷却器において、前記パイプの前記放熱部は前記第2傾斜角度が0°であり、前記放熱フィンは、その平面方向が前記上下方向に沿うように前記パイプの前記放熱部に取り付けられている。 In the cooler of the present invention, the heat radiating portion of the pipe has the second inclination angle of 0 °, and the heat radiating fin is attached to the heat radiating portion of the pipe so that a plane direction thereof is along the vertical direction. ing.
 放熱フィンを平面方向が上下方向に沿うように、すなわち、ベースブロックと平行に配置されているので、自然空冷での使用時において、空気の自然対流方向(上下方向)に対して放熱フィンが平行になる。このため、自然対流に対する抵抗を小さくすることができ、冷却性能を向上させることができる。 Since the heat dissipating fins are arranged so that the plane direction is in the vertical direction, that is, parallel to the base block, the heat dissipating fins are parallel to the natural convection direction (vertical direction) of air when used in natural air cooling. become. For this reason, resistance to natural convection can be reduced, and cooling performance can be improved.
 本発明の冷却器において、前記タンクに収容される前記冷媒の前記設定液面は、前記タンクの延在方向を水平方向に沿って静置した状態において、前記パイプの前記接続端における前記設定液面から露出した最大開口高さm2と前記タンクの内径d1との比率(m2/d1)が0.27以上となるように設定される。 In the cooler of the present invention, the set liquid level of the refrigerant accommodated in the tank is set at the connection end of the pipe in a state where the extending direction of the tank is left in a horizontal direction. The ratio (m2 / d1) between the maximum opening height m2 exposed from the surface and the inner diameter d1 of the tank is set to be 0.27 or more.
 タンクに対してパイプの放熱部を上側に偏芯させることで、パイプユニットの内部に収容する冷媒の液量を増加させることが可能となり、冷却性能の向上を図ることができる。しかし、パイプユニットの内部に収容する冷媒をあまり多くすると、タンク内の沸騰気泡がパイプに向かって冷媒を押し上げることで、パイプ先端に沸騰気泡が激しく衝突し、沸騰音(衝突音)が生じることがある。 By decentering the heat radiating part of the pipe upward with respect to the tank, it is possible to increase the amount of refrigerant accommodated in the pipe unit, and to improve the cooling performance. However, if too much refrigerant is stored inside the pipe unit, the boiling bubbles in the tank push up the refrigerant toward the pipe, causing the boiling bubbles to collide violently at the tip of the pipe, resulting in a boiling sound (collision sound). There is.
 この点、本発明者は、パイプユニットに収容される冷媒の液面を、タンクの延在方向を水平方向に沿って静置した状態において、パイプの接続端の最大開口高さm2とタンクの内径d1との比率(m2/d1)が0.27以上となるように設定することにより、沸騰音の発生を回避できることを突き止めた。このように、比率(m2/d1)を0.27以上に設定した場合においては、タンクとパイプとの間で蒸気の通路が確保されることから、沸騰気泡が冷媒を押し上げることを防止できる。したがって、パイプユニットの内部に収容する冷媒の液量を増量した場合であっても、沸騰音の発生を回避することができる。 In this regard, the present inventor has found that the liquid level of the refrigerant accommodated in the pipe unit is left standing along the horizontal direction of the tank extending direction and the maximum opening height m2 of the pipe connection end and the tank It was found that the generation of boiling noise can be avoided by setting the ratio (m2 / d1) to the inner diameter d1 to be 0.27 or more. As described above, when the ratio (m2 / d1) is set to 0.27 or more, a steam passage is ensured between the tank and the pipe, so that boiling bubbles can be prevented from pushing up the refrigerant. Therefore, even when the amount of the refrigerant stored in the pipe unit is increased, generation of boiling noise can be avoided.
 本発明によれば、冷却性能の向上を図ることができ、使用時おける姿勢が変化した場合においても、冷却性能を良好に維持することができる。 According to the present invention, the cooling performance can be improved, and the cooling performance can be maintained well even when the posture during use is changed.
本発明の第1実施形態である冷却器を示す側面図である。It is a side view which shows the cooler which is 1st Embodiment of this invention. 図1に示す冷却器の図3BのII-II線に沿う部分断面矢視図である。FIG. 2 is a partial cross-sectional arrow view of the cooler shown in FIG. 1 taken along line II-II in FIG. 3B. 図1に示す冷却器の正面図である。It is a front view of the cooler shown in FIG. 図1に示す冷却器の背面図である。It is a rear view of the cooler shown in FIG. パイプユニットのタンクとパイプとの接続部分における要部断面図である。It is principal part sectional drawing in the connection part of the tank and pipe of a pipe unit. 本発明の第2実施形態である冷却器を示す部分断面矢視図である。It is a fragmentary sectional arrow view which shows the cooler which is 2nd Embodiment of this invention.
 以下、本発明の冷却器の各実施形態について、図面を参照して説明する。
 図1から図3A,3Bは、本発明の第1実施形態の冷却器100を示している。この冷却器100は、発熱体10が装着される装着面21aが上下方向に沿って形成されたベースブロック20と、このベースブロック20の装着面21aとは反対側の反対面21bに埋設された複数のタンク31及び各タンク31の側面に立設した状態で接続された複数のパイプ32からなるパイプユニット30と、複数のパイプ32を貫通させた状態でこれらパイプ32に取り付けられた複数の放熱フィン40とを備え、車両に用いられる。
Hereinafter, each embodiment of the cooler of the present invention will be described with reference to the drawings.
1 to 3A and 3B show a cooler 100 according to a first embodiment of the present invention. The cooler 100 is embedded in a base block 20 in which a mounting surface 21a to which the heating element 10 is mounted is formed along the vertical direction, and an opposite surface 21b opposite to the mounting surface 21a of the base block 20. A plurality of tanks 31 and a plurality of pipes 30 connected to each tank 31 in a standing state, and a plurality of heat radiations attached to these pipes 32 with the plurality of pipes 32 penetrating. The fin 40 is provided and used for a vehicle.
 この冷却器100は、図示は省略するが、車両の側面の下部において、ベースブロック20の装着面21aが上下方向に沿うようにして設置される。 Although not shown, the cooler 100 is installed in the lower part of the side surface of the vehicle so that the mounting surface 21a of the base block 20 is along the vertical direction.
 ベースブロック20は、熱伝導性に優れる熱容量の大きなアルミニウムや銅等の金属により形成されている。そして、ベースブロック20の片側(図1では左側)の装着面21aに、半導体素子等の発熱体10が装着され、その発熱体10が装着された装着面21aとは反対側(図1では右側)の反対面21bに、タンク31が埋設されている。 The base block 20 is formed of a metal having a high heat capacity and excellent heat conductivity such as aluminum and copper. A heating element 10 such as a semiconductor element is mounted on the mounting surface 21a on one side (left side in FIG. 1) of the base block 20, and the side opposite to the mounting surface 21a on which the heating element 10 is mounted (right side in FIG. 1). The tank 31 is embedded in the opposite surface 21b.
 パイプユニット30は、円管状のタンク31の側面に、このタンク31の内径d1よりも径の小さい内径d2の円管状の細いパイプ32を複数接続することにより構成されている。例えば、内径d1を27.6mmとするタンク31と、内径d2を13.88mmとするパイプ32とを、好適に用いることができる。 The pipe unit 30 is configured by connecting a plurality of thin tubular pipes 32 having an inner diameter d2 smaller in diameter than the inner diameter d1 of the tank 31 to the side surface of the tubular tank 31. For example, a tank 31 having an inner diameter d1 of 27.6 mm and a pipe 32 having an inner diameter d2 of 13.88 mm can be suitably used.
 これらタンク31及びパイプ32は、アルミニウム又は銅により形成され、内部空間を一体としてろう付けにより接合されている。タンク31および各パイプ32を接合してなるパイプユニット30の内部には、純水やパーフルオロカーボン等の冷媒60が収容されている。 The tank 31 and the pipe 32 are made of aluminum or copper, and are joined together by brazing with the internal space integrated. A refrigerant 60 such as pure water or perfluorocarbon is accommodated in the pipe unit 30 formed by joining the tank 31 and each pipe 32.
 タンク31は、図2に示すように、円管状のパイプにより形成され、その延在方向が水平方向に沿って配置され、ベースブロック20の反対面21bに取り付けられている。なお、図2はベースブロック20およびタンク31とパイプ32の基端部33との接合部分近傍のみ断面で示し、パイプ32の放熱部34および放熱フィン40については側面を示している。 As shown in FIG. 2, the tank 31 is formed of a circular pipe, the extending direction thereof is arranged along the horizontal direction, and the tank 31 is attached to the opposite surface 21 b of the base block 20. Note that FIG. 2 shows a cross section only in the vicinity of the joint portion between the base block 20 and the tank 31 and the base end portion 33 of the pipe 32, and shows side surfaces of the heat radiating portions 34 and the heat radiating fins 40 of the pipe 32.
 パイプ32は、上述したように、内径d2がタンク31の内径d1よりも小さく設定され、図2に示すように各タンク31の側面に接続されている。また、パイプ32は、図3Bに示すように、タンク31の延伸方向に一定間隔をおいて相互に平行(一列)に立設した状態に並べられている。各パイプ32は、図2及び図4に示すように、タンク31に接続された基端部33と、その基端部33よりも先端側の放熱部34とが曲げ加工により屈曲形成されている。基端部33は、そのタンク31との接続端32jから、水平方向に対して上方に所定の第1傾斜角度α(>0°)で傾斜している。この基端部33に連続して設けられた放熱部34が、水平方向に対して0°以上かつ第1傾斜角度α未満の第2傾斜角度で傾斜しているとともに、タンク31に収容された冷媒60の設定液面よりも高い位置に配置されている。本実施形態の冷却器100においては、図2及び図4に示すように、パイプ32の放熱部34は、閉塞端32bにかけて水平方向に沿って、すなわち第2傾斜角度0°で配置され、その中心線がタンク31の中心線よりも上側に偏芯している。 As described above, the pipe 32 has the inner diameter d2 set smaller than the inner diameter d1 of the tank 31, and is connected to the side surface of each tank 31 as shown in FIG. Further, as shown in FIG. 3B, the pipes 32 are arranged in a state where they are erected in parallel (in one row) with a certain interval in the extending direction of the tank 31. As shown in FIGS. 2 and 4, each pipe 32 is formed by bending a base end portion 33 connected to the tank 31 and a heat radiating portion 34 on the front end side of the base end portion 33 by bending. . The base end portion 33 is inclined at a predetermined first inclination angle α (> 0 °) upward from the connection end 32j with the tank 31 with respect to the horizontal direction. The heat radiating portion 34 provided continuously to the base end portion 33 is inclined at a second inclination angle of 0 ° or more and less than the first inclination angle α with respect to the horizontal direction, and is accommodated in the tank 31. It is disposed at a position higher than the set liquid level of the refrigerant 60. In the cooler 100 of the present embodiment, as shown in FIGS. 2 and 4, the heat radiating portion 34 of the pipe 32 is disposed along the horizontal direction toward the closed end 32 b, that is, at a second inclination angle of 0 °, The center line is eccentric above the center line of the tank 31.
 第1傾斜角度αは、車両が勾配のある場所を走行して冷却器100が傾いた場合に可能性のある角度を基準(例えば7°)に設定されている。図1~図4に示す本実施形態の冷却器100においては、第1傾斜角度αを30°に設定しており、パイプ32の放熱部34が距離Sだけ冷媒60の設定液面よりも高い位置に配置されている。 The first inclination angle α is set with reference to a possible angle when the vehicle is traveling on a slope and the cooler 100 is inclined (for example, 7 °). In the cooler 100 of the present embodiment shown in FIGS. 1 to 4, the first inclination angle α is set to 30 °, and the heat radiation part 34 of the pipe 32 is higher than the set liquid level of the refrigerant 60 by the distance S. Placed in position.
 パイプユニット30に収容された冷媒60の設定液面は、図2及び図4に示すように、タンク31の延在方向を水平方向に沿って静置した状態において、パイプ32の接続端32jにおける設定液面から露出した最大開口高さm2とタンク31の内径d1との比率(m2/d1)が0.27以上となるように設定されている。 As shown in FIGS. 2 and 4, the set liquid level of the refrigerant 60 accommodated in the pipe unit 30 is at the connection end 32 j of the pipe 32 in a state where the extending direction of the tank 31 is left along the horizontal direction. The ratio (m2 / d1) between the maximum opening height m2 exposed from the set liquid surface and the inner diameter d1 of the tank 31 is set to 0.27 or more.
 冷却器100では、このように複数のパイプ32が取り付けられたタンク31(パイプユニット30)を、図1から図3A,3Bに示すように、ベースブロック20の反対面21bに複数個を上下方向に並列に配置することにより、パイプ32をマトリクス状に配置している。なお、本実施例では、図3Bに示すように、パイプ32を上面視で格子状に配置しているが、ジグザグに配列する構成としたり、他の配列とすることも可能である。 In the cooler 100, as shown in FIGS. 1 to 3A and 3B, a plurality of tanks 31 (pipe units 30) to which a plurality of pipes 32 are attached in this manner are vertically arranged on the opposite surface 21b of the base block 20. The pipes 32 are arranged in a matrix by arranging them in parallel. In this embodiment, as shown in FIG. 3B, the pipes 32 are arranged in a lattice shape in a top view, but a configuration in which the pipes are arranged in a zigzag pattern or other arrangements are possible.
 ベースブロック20と各タンク31とは、はんだ付け等により、一体に接合されている。これにより、ベースブロック32とタンク31との間の熱移動が円滑に行われるようになっている。 The base block 20 and each tank 31 are joined together by soldering or the like. Thereby, the heat transfer between the base block 32 and the tank 31 is performed smoothly.
 パイプ32の放熱部34には、熱伝導率に優れたアルミニウムや銅からなる薄い板状の放熱フィン40が、パイプ32を貫通させた状態で、串刺しにされたように複数枚重ねて取り付けられている。放熱フィン40は、その平面方向が上下方向に沿って配置されている。これらの放熱フィン40には、薄板の所定位置に、例えばバーリング加工等により形成された複数の貫通孔(図示略)が設けられている。これらの貫通孔にパイプ32の放熱部34を圧入することにより、各パイプ32に放熱フィン40が跨って取り付けられ、放熱フィン40と各パイプ32とが一体に設けられる。なお、放熱フィン40の貫通孔に挿入したパイプ32を拡管することにより、放熱フィン40を取り付けることもできる。 A plurality of thin plate-like heat radiating fins 40 made of aluminum or copper having excellent thermal conductivity are attached to the heat radiating portion 34 of the pipe 32 so as to be skewered with the pipe 32 penetrating. ing. The heat radiation fins 40 are arranged such that the plane direction thereof is in the vertical direction. These radiating fins 40 are provided with a plurality of through holes (not shown) formed at a predetermined position of the thin plate, for example, by burring or the like. By press-fitting the heat radiating portion 34 of the pipe 32 into these through holes, the heat radiating fins 40 are attached to the pipes 32 so that the heat radiating fins 40 and the pipes 32 are integrally provided. In addition, the heat radiation fin 40 can also be attached by expanding the pipe 32 inserted into the through hole of the heat radiation fin 40.
 このように構成された車両用冷却器100においては、発熱体10から発生した熱が、ベースブロック20に伝わり、さらにベースブロック20からパイプユニット30のタンク31に伝わって、タンク31内の冷媒60を沸騰させて蒸発させる。そして、蒸発した冷媒60の蒸気は、タンク31内を上昇してパイプ32内に移動し、パイプ32を介して放熱フィン40に熱が伝わることにより冷却される。 In the vehicle cooler 100 configured as described above, the heat generated from the heating element 10 is transmitted to the base block 20, further transmitted from the base block 20 to the tank 31 of the pipe unit 30, and the refrigerant 60 in the tank 31. Boil and evaporate. Then, the vapor of the evaporated refrigerant 60 rises in the tank 31 and moves into the pipe 32, and is cooled by transferring heat to the radiating fins 40 through the pipe 32.
 この冷却器100においては、各パイプ32の基端部33を上方に傾斜させてタンク31に接続することにより、パイプ32の放熱部34をタンク31の上側に偏芯させているので、タンク31内の冷媒60の貯留領域を増加させることができる。また、このように第1傾斜角度αで傾斜させたパイプ32の基端部33は、車両が勾配のある場所を走行して冷却器100が傾いた際にも、水平以上の角度の姿勢を保つことができる。これにより、冷却器100が傾いて姿勢が変化した際にも、タンク31とパイプ32との間に空間を確保し、タンク31からパイプ32に液状のまま冷媒60が流れ込むことを防止できる。このため、冷却器100においては、タンク31からパイプ32への液状の冷媒60の流れ込みを抑制しながら、タンク31に収容する冷媒60の液量を増加させてタンク31内に冷媒60を保持することができるので、タンク31の底部が乾くことがない。したがって、常時、冷却性能を円滑に発揮させることができ、冷却性能を良好に維持することができる。 In this cooler 100, the base end portion 33 of each pipe 32 is inclined upward and connected to the tank 31, so that the heat radiating portion 34 of the pipe 32 is eccentric to the upper side of the tank 31. The storage area of the refrigerant 60 inside can be increased. Further, the base end portion 33 of the pipe 32 inclined at the first inclination angle α in this way has a posture at an angle higher than the horizontal even when the vehicle travels on a sloped place and the cooler 100 tilts. Can keep. Thereby, even when the cooler 100 is tilted and the posture is changed, a space is secured between the tank 31 and the pipe 32, and the refrigerant 60 can be prevented from flowing from the tank 31 into the pipe 32 in a liquid state. For this reason, in the cooler 100, while suppressing the flow of the liquid refrigerant 60 from the tank 31 to the pipe 32, the amount of the refrigerant 60 stored in the tank 31 is increased and the refrigerant 60 is held in the tank 31. As a result, the bottom of the tank 31 does not dry. Therefore, the cooling performance can be exhibited smoothly at all times, and the cooling performance can be maintained satisfactorily.
 また、冷却器100においては、パイプ32の放熱部34が水平方向に沿って延在し、放熱フィン40の平面方向を上下方向に沿って、すなわち、ベースブロック20と平行に配置している。これにより、車両走行による空気の流通方向(すなわちタンク31の延在方向)に対して平行に、かつ自然空冷での使用時における空気の自然対流方向(矢印Cの方向)に対して放熱フィン40を平行に配置することができる。このため、車両の停止時であっても、自然対流に対する抵抗を小さくすることができ、冷却性能を向上させることができる。 In the cooler 100, the heat radiating portion 34 of the pipe 32 extends along the horizontal direction, and the plane direction of the heat radiating fins 40 is arranged along the vertical direction, that is, parallel to the base block 20. Thus, the heat radiation fins 40 are parallel to the air flow direction (that is, the extending direction of the tank 31) by the vehicle traveling and to the natural convection direction (the direction of the arrow C) when used in natural air cooling. Can be arranged in parallel. For this reason, even when the vehicle is stopped, the resistance to natural convection can be reduced, and the cooling performance can be improved.
 また、冷却器100においては、冷媒60の設定液面を、タンク31の延在方向を水平方向に沿って静置した状態において、パイプ32の接続端32jの最大開口高さm2とタンク31の内径d1との比率(m2/d1)が0.27以上となるように設定し、蒸気の通路を確保しているので、沸騰気泡が液状の冷媒60を押し上げることを防止できる。したがって、パイプユニット30の内部に収容する冷媒60の液量を増量した場合であっても、沸騰音の発生を回避することができる。 In the cooler 100, the maximum opening height m <b> 2 of the connection end 32 j of the pipe 32 and the tank 31 are set in a state where the set liquid level of the refrigerant 60 is left stationary along the horizontal direction of the tank 31. Since the ratio (m2 / d1) to the inner diameter d1 is set to be 0.27 or more and the vapor passage is secured, it is possible to prevent the boiling bubbles from pushing up the liquid refrigerant 60. Therefore, even when the amount of the refrigerant 60 accommodated in the pipe unit 30 is increased, generation of boiling noise can be avoided.
 本発明の第2実施形態に係る冷却器110を図5に示す。この冷却器110のパイプユニット130を構成する各パイプ132は、タンク31に接続された基端部133と、この基端部133よりも先端側の放熱部134とが、曲げ加工により屈曲形成されている。基端部133は、第1実施形態と同様に、水平方向に対して上方に所定の第1傾斜角度αで傾斜してタンク31に接続されている。放熱部134は、水平方向に対して0°よりも大きく第1傾斜角度αよりも小さい第2傾斜角度で、上方に傾斜して設けられている。また、放熱フィン140は、鉛直方向からやや傾斜して放熱部134に固定されている。なお、図5はベースブロック20およびタンク31とパイプ132の基端部133との接合部分近傍のみ断面で示し、パイプ132の放熱部134および放熱フィン140については側面を示している。 FIG. 5 shows a cooler 110 according to the second embodiment of the present invention. Each pipe 132 constituting the pipe unit 130 of the cooler 110 is formed by bending a base end portion 133 connected to the tank 31 and a heat radiating portion 134 on the front end side of the base end portion 133 by bending. ing. Similarly to the first embodiment, the base end portion 133 is connected to the tank 31 while being inclined upward at a predetermined first inclination angle α with respect to the horizontal direction. The heat dissipating part 134 is provided to be inclined upward at a second inclination angle that is greater than 0 ° and smaller than the first inclination angle α with respect to the horizontal direction. Further, the heat radiating fins 140 are fixed to the heat radiating portion 134 with a slight inclination from the vertical direction. FIG. 5 shows a cross section only in the vicinity of the joint portion between the base block 20 and the tank 31 and the base end portion 133 of the pipe 132, and the heat radiating portions 134 and the heat radiating fins 140 of the pipe 132 are shown as side surfaces.
 この場合、放熱部134が傾斜しているので、配置スペースに対する十分な冷却効率を得るには、大きさの異なる2種類の放熱フィン140(401,402)、長さの異なる放熱部134を有する3種類のパイプ132(301,302,303)が必要となる。また、空気の自然対流方向Cに対して放熱フィン140が平行でないので、第1実施形態に比較すると抵抗が大きい。しかしながら、放熱部134が傾斜していることにより、冷媒が液状のまま放熱部134に流れ込みにくく、凝縮面積の減少による冷却性能の低下や沸騰気泡による騒音の発生をより効果的に防止できる。 In this case, since the heat radiating portion 134 is inclined, in order to obtain sufficient cooling efficiency for the arrangement space, the heat radiating portion 134 has two types of heat radiating fins 140 (401, 402) having different sizes and heat radiating portions 134 having different lengths. Three types of pipes 132 (301, 302, 303) are required. In addition, since the radiating fins 140 are not parallel to the natural convection direction C of air, the resistance is large compared to the first embodiment. However, since the heat radiating part 134 is inclined, it is difficult for the refrigerant to flow into the heat radiating part 134 in a liquid state, and it is possible to more effectively prevent the cooling performance from being reduced due to the reduction of the condensation area and the generation of noise due to boiling bubbles.
 なお、本発明は上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made in the detailed configuration without departing from the spirit of the present invention.
 例えば、放熱フィン40は、上記実施形態のように、全部のパイプ32を貫通させた状態で取り付ける構成とする他、これら複数のパイプ32をいくつかのブロックに分けて、複数個のパイプ32毎に分けた小型の放熱フィンを取り付ける構成とすることもできる。 For example, the radiating fin 40 is configured to be attached in a state in which all the pipes 32 are penetrated as in the above embodiment, and the plurality of pipes 32 are divided into several blocks, and each of the plurality of pipes 32 is divided. It can also be set as the structure which attaches the small radiation fin divided into.
 また、上記第1実施形態では、パイプ32の放熱部34の延在方向を、水平方向に沿って配置していたが、放熱部の延在方向は、水平方向(角度0°)以外にも、例えば第2実施形態のように水平方向に対して基端部33の第1傾斜角度α未満の角度で傾斜してもよい。 Moreover, in the said 1st Embodiment, although the extending direction of the thermal radiation part 34 of the pipe 32 was arrange | positioned along the horizontal direction, the extending direction of a thermal radiation part is other than a horizontal direction (angle 0 degree). For example, as in the second embodiment, the base end portion 33 may be inclined at an angle less than the first inclination angle α with respect to the horizontal direction.
 冷却器において、冷却性能の向上を図ることができ、使用時おける姿勢が変化した場合においても、冷却性能を良好に維持することができる。 In the cooler, the cooling performance can be improved, and the cooling performance can be maintained well even when the posture during use changes.
10 発熱体
20 ベースブロック
21a 装着面
21b 反対面
30,130 パイプユニット
31 タンク
32,132(301~303) パイプ
32b 閉塞端
32j 接続端
33,133 基端部
34,134 放熱部
40,140(401,402) 放熱フィン
60 冷媒
100,110 冷却器

 
DESCRIPTION OF SYMBOLS 10 Heat generating body 20 Base block 21a Mounting surface 21b Opposite surface 30,130 Pipe unit 31 Tank 32,132 (301-303) Pipe 32b Closed end 32j Connection end 33,133 Base end part 34,134 Radiation part 40,140 (401 402) Radiating fin 60 Refrigerant 100, 110 Cooler

Claims (3)

  1.  上下方向に沿い発熱体が装着される装着面を有するベースブロックと、
     該ベースブロックの前記装着面とは反対面に埋設され、冷媒が収容された円管状のタンク;及び該タンクの側面に立設状態で接続された、相互に平行な複数の円管状のパイプ;からなるパイプユニットと、
     複数の前記パイプを貫通させた状態でこれらパイプに取り付けられた複数の放熱フィンとを備え、
     前記タンクは、水平方向に沿って延在し、
     前記パイプは、前記タンクに接続される接続端を有する基端部と;この基端部から屈曲して先端側に閉塞端を有する放熱部とを有し、
     前記基端部は、水平方向に対する所定の第1傾斜角度で、前記接続端から上方に傾斜しており、
     前記放熱部は、水平方向に対して0°以上かつ前記基端部の前記第1傾斜角度未満の第2傾斜角度で設けられ、
     前記タンクには、前記冷媒の設定液面が前記放熱部よりも低い位置に設定されている
    ことを特徴とする冷却器。
    A base block having a mounting surface on which a heating element is mounted along the vertical direction;
    A tubular tank embedded in a surface opposite to the mounting surface of the base block and containing a refrigerant; and a plurality of parallel tubular pipes connected in a standing state to a side surface of the tank; A pipe unit consisting of
    A plurality of heat dissipating fins attached to these pipes in a state of penetrating the plurality of pipes;
    The tank extends along a horizontal direction;
    The pipe has a base end portion having a connection end connected to the tank; and a heat dissipation portion bent from the base end portion and having a closed end on the tip end side,
    The base end portion is inclined upward from the connection end at a predetermined first inclination angle with respect to a horizontal direction,
    The heat dissipating part is provided at a second inclination angle of 0 ° or more with respect to the horizontal direction and less than the first inclination angle of the base end part,
    The cooler, wherein a set liquid level of the refrigerant is set at a position lower than the heat radiating portion in the tank.
  2.  前記パイプの前記放熱部は、前記第2傾斜角度が0°であり、
     前記放熱フィンは、その平面方向が前記上下方向に沿うように、前記パイプの前記放熱部に取り付けられている
    ことを特徴とする請求項1記載の冷却器。
    The heat radiating portion of the pipe has the second inclination angle of 0 °,
    The cooler according to claim 1, wherein the heat radiation fin is attached to the heat radiation portion of the pipe so that a planar direction thereof is along the vertical direction.
  3.  前記タンクに収容された前記冷媒の前記設定液面は、
     前記タンクの延在方向を水平方向に沿って静置した状態において、
     前記パイプの前記接続端における前記設定液面から露出した最大開口高さm2と前記タンクの内径d1との比率(m2/d1)が0.27以上となるように設定されている
    ことを特徴とする請求項1記載の冷却器。

     
    The set liquid level of the refrigerant stored in the tank is
    In the state where the extending direction of the tank is left along the horizontal direction,
    The ratio (m2 / d1) between the maximum opening height m2 exposed from the set liquid level at the connection end of the pipe and the inner diameter d1 of the tank is set to be 0.27 or more. The cooler according to claim 1.

PCT/JP2015/086288 2014-12-25 2015-12-25 Cooler WO2016104729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566529A JP6505130B2 (en) 2014-12-25 2015-12-25 Cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262358 2014-12-25
JP2014-262358 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104729A1 true WO2016104729A1 (en) 2016-06-30

Family

ID=56150741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086288 WO2016104729A1 (en) 2014-12-25 2015-12-25 Cooler

Country Status (2)

Country Link
JP (1) JP6505130B2 (en)
WO (1) WO2016104729A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104727A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
US20170303441A1 (en) * 2016-04-15 2017-10-19 Google Inc. Cooling electronic devices in a data center
WO2019131834A1 (en) 2017-12-28 2019-07-04 古河電気工業株式会社 Cooling device
WO2020152822A1 (en) * 2019-01-24 2020-07-30 三菱電機株式会社 Cooling device
JP6813137B1 (en) * 2020-01-27 2021-01-13 三菱電機株式会社 Manufacturing method of heat pipe type cooler and heat pipe type cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233204A (en) * 1984-05-07 1985-11-19 昭和アルミニウム株式会社 Concrete panel for melting snow
JPH10321777A (en) * 1997-05-15 1998-12-04 Hitachi Cable Ltd Heat pipe type heat sink
JP2004048489A (en) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp Traveling object mounted antenna and its cooling device
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2014159915A (en) * 2013-02-20 2014-09-04 Uacj Copper Tube Corp Natural air cooling heat pipe type heat sink

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140249U (en) * 1975-05-06 1976-11-11
JPH06120382A (en) * 1992-10-05 1994-04-28 Toshiba Corp Semiconductor cooling equipment
JPH08148870A (en) * 1994-11-16 1996-06-07 Hitachi Ltd Hat radiation structure of electronic equipment
JP2004125381A (en) * 2002-08-02 2004-04-22 Mitsubishi Alum Co Ltd Heat pipe unit and heat pipe cooler
WO2011036535A1 (en) * 2009-09-22 2011-03-31 Lu Vinh Luu Thermal management kit for high power of solid state light emitting diodes
US20160102920A1 (en) * 2014-10-08 2016-04-14 Mersen Canada Toronto Inc. Heat pipe assembly with bonded fins on the baseplate hybrid
WO2016104727A1 (en) * 2014-12-25 2016-06-30 三菱アルミニウム株式会社 Cooling device
JP6448666B2 (en) * 2014-12-25 2019-01-09 三菱アルミニウム株式会社 Cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233204A (en) * 1984-05-07 1985-11-19 昭和アルミニウム株式会社 Concrete panel for melting snow
JPH10321777A (en) * 1997-05-15 1998-12-04 Hitachi Cable Ltd Heat pipe type heat sink
JP2004048489A (en) * 2002-07-12 2004-02-12 Mitsubishi Electric Corp Traveling object mounted antenna and its cooling device
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2014159915A (en) * 2013-02-20 2014-09-04 Uacj Copper Tube Corp Natural air cooling heat pipe type heat sink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104727A1 (en) * 2014-12-25 2017-10-05 三菱アルミニウム株式会社 Cooler
US20170303441A1 (en) * 2016-04-15 2017-10-19 Google Inc. Cooling electronic devices in a data center
WO2019131834A1 (en) 2017-12-28 2019-07-04 古河電気工業株式会社 Cooling device
WO2020152822A1 (en) * 2019-01-24 2020-07-30 三菱電機株式会社 Cooling device
JPWO2020152822A1 (en) * 2019-01-24 2021-11-04 三菱電機株式会社 Cooling system
JP6813137B1 (en) * 2020-01-27 2021-01-13 三菱電機株式会社 Manufacturing method of heat pipe type cooler and heat pipe type cooler

Also Published As

Publication number Publication date
JPWO2016104729A1 (en) 2017-10-05
JP6505130B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
WO2016104729A1 (en) Cooler
JP5401419B2 (en) Railway vehicle power converter
TWI361655B (en) Heat pipe heat sink
JP2004125381A (en) Heat pipe unit and heat pipe cooler
JP6440822B2 (en) Cooler, power conversion device and cooling system
JP6358872B2 (en) Boiling cooler for heating element
WO2017170153A1 (en) Phase change cooler and electronic equipment
JP6534686B2 (en) Cooler
JP6448666B2 (en) Cooler
JP2008249314A (en) Thermosiphon type boiling cooler
JP2005229102A (en) Heatsink
JP2007080989A (en) Heat sink
US10729040B2 (en) Cooler, power conversion apparatus, and cooling system
JP2006344636A (en) Parallel loop type heat dispersion plate
JP4969979B2 (en) heatsink
JP4877069B2 (en) Boiling cooler
JP2006234267A (en) Ebullient cooling device
JP2006229102A (en) Boiling cooler
JP2013083399A (en) Cooling device, and electronic apparatus with the same, and electric vehicle
JP2014152983A (en) Cooler
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2017009253A (en) Cooler, electronic equipment mounted with the same, and electric vehicle
JP3169368U (en) Heat dissipation device
JP2013170746A (en) Cooling device, and electric vehicle and electronic device loading the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873297

Country of ref document: EP

Kind code of ref document: A1