JP6812655B2 - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- JP6812655B2 JP6812655B2 JP2016077987A JP2016077987A JP6812655B2 JP 6812655 B2 JP6812655 B2 JP 6812655B2 JP 2016077987 A JP2016077987 A JP 2016077987A JP 2016077987 A JP2016077987 A JP 2016077987A JP 6812655 B2 JP6812655 B2 JP 6812655B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polarizer
- less
- liquid crystal
- polarizing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
- Planar Illumination Modules (AREA)
- Laminated Bodies (AREA)
Description
本発明は、液晶表示装置に関する。詳しくは、虹状の色斑の発生が改善された液晶表示装置に関する。 The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in which the occurrence of rainbow-shaped color spots is improved.
液晶表示装置(LCD)に使用される偏光板は、通常ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子を2枚の偏光子保護フィルムで挟んだ構成であり、偏光子保護フィルムとしては通常トリアセチルセルロース(TAC)フィルムが用いられている。近年、LCDの薄型化に伴い、偏光板の薄層化が求められるようになっている。しかし、このために保護フィルムとして用いられているTACフィルムの厚みを薄くすると、充分な機械強度を得ることが出来ず、また透湿性が悪化するという問題が発生する。また、TACフィルムは非常に高価であり、安価な代替素材としてポリエステルフィルムが提案されているが(特許文献1〜3)、虹状の色斑が観察されるという問題があった。 The polarizing plate used in the liquid crystal display device (LCD) usually has a structure in which a polarizing element obtained by dyeing iodine on polyvinyl alcohol (PVA) or the like is sandwiched between two polarizing element protective films, and is used as a polarizer protective film. Usually, a triacetyl cellulose (TAC) film is used. In recent years, as LCDs have become thinner, there has been a demand for thinner polarizing plates. However, if the thickness of the TAC film used as the protective film is reduced for this purpose, sufficient mechanical strength cannot be obtained, and there arises a problem that the moisture permeability is deteriorated. Further, the TAC film is very expensive, and a polyester film has been proposed as an inexpensive alternative material (Patent Documents 1 to 3), but there is a problem that iridescent color spots are observed.
偏光子の片側に複屈折性を有する配向ポリエステルフィルムを配した場合、バックライトユニット、または、偏光子から出射した直線偏光はポリエステルフィルムを通過する際に偏光状態が変化する。透過した光は配向ポリエステルフィルムの複屈折と厚さの積であるリタデーションに特有の干渉色を示す。そのため、光源として冷陰極管や熱陰極管など不連続な発光スペクトルを用いると、波長によって異なる透過光強度を示し、虹状の色斑となる(参照:第15回マイクロオプティカルカンファレンス予稿集、第30〜31項)。 When an oriented polyester film having birefringence is arranged on one side of the polarizer, the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film. The transmitted light exhibits an interference color peculiar to retardation, which is the product of birefringence and thickness of the oriented polyester film. Therefore, if a discontinuous emission spectrum such as a cold-cathode tube or a hot-cathode tube is used as the light source, the transmitted light intensity differs depending on the wavelength, resulting in iridescent color spots (see: Proceedings of the 15th Micro Optical Conference, No. 30-31).
上記の問題を解決する手段として、バックライト光源として白色発光ダイオードのような連続的で幅広い発光スペクトルを有する白色光源を用い、更に偏光子保護フィルムとして一定のリタデーションを有する配向ポリエステルフィルムを用いることが提案されている(特許文献4)。白色発光ダイオードは、可視光領域において連続的で幅広い発光スペクトルを有する。そのため、複屈折体を透過した透過光による干渉色スペクトルの包絡線形状に着目すると、配向ポリエステルフィルムのリタデーションを制御することで、光源の発光スペクトルと相似なスペクトルを得ることが可能となり、これにより虹斑を抑制することを可能とした。 As a means for solving the above problems, a white light source having a continuous and wide emission spectrum such as a white light emitting diode is used as the backlight light source, and an oriented polyester film having a certain retardation is used as the polarizer protective film. It has been proposed (Patent Document 4). White light emitting diodes have a continuous and wide emission spectrum in the visible light region. Therefore, focusing on the envelope shape of the interference color spectrum due to the transmitted light transmitted through the birefringent, it is possible to obtain a spectrum similar to the emission spectrum of the light source by controlling the retardation of the oriented polyester film. It made it possible to suppress rainbow spots.
加えて、配向ポリエステルフィルムの配向方向と偏光板の偏光方向を直交、あるいは平行にすることにより、偏光子から出射した直線偏光は配向ポリエステルフィルムを通過しても偏光状態を維持したまま通過するようになる。また、配向ポリエステルフィルムの複屈折を制御して一軸配向性を高めることにより、斜め方向から入射する光も偏光状態を維持したまま通過するようになる。配向ポリエステルフィルムを斜めから見ると、真上から見たときと比較して配向主軸方向にズレが生じるが、一軸配向性が高いと斜めから見たときの配向主軸方向のズレが小さくなる。このため、直線偏光の方向と配向主軸方向のズレが小さくなり、偏光状態の変化が生じにくくなっていると考えられる。このように、光源の発光スペクトルと複屈折体の配向状態、配向主軸方向を制御することにより、偏光状態の変化が抑制され、虹状の色斑が発生せずに、視認性が顕著に改善すると考えられた。 In addition, by making the orientation direction of the oriented polyester film perpendicular to or parallel to the polarization direction of the polarizing plate, the linearly polarized light emitted from the polarizer passes through the oriented polyester film while maintaining the polarized state. become. Further, by controlling the birefringence of the oriented polyester film to enhance the uniaxial orientation, light incident from an oblique direction can also pass while maintaining the polarized state. When the oriented polyester film is viewed from an angle, a deviation occurs in the orientation spindle direction as compared with a case where it is viewed from directly above, but when the uniaxial orientation is high, the deviation in the orientation spindle direction when viewed from an angle becomes small. Therefore, it is considered that the deviation between the direction of linearly polarized light and the direction of the main axis of orientation is small, and the change in the polarization state is less likely to occur. In this way, by controlling the emission spectrum of the light source, the orientation state of the birefringent, and the orientation main axis direction, changes in the polarization state are suppressed, rainbow-shaped color spots do not occur, and visibility is significantly improved. It was thought that.
液晶表示装置のバックライト光源として、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体(YAG系黄色蛍光体)とを組み合わせた発光素子からなる白色発光ダイオード(白色LED)が、従来から広く用いられている。この白色光源の発光スペクトルは、可視光領域で幅広いスペクトルを有しているともに、発光効率にも優れるため、バックライト光源として汎用されている。しかし、この白色LEDをバックライト光源とした液晶表示装置では、人間の目が認識可能なスペクトルの20%程度しか色を再現することが出来ない。 As a backlight source for liquid crystal display devices, white light emitting diodes (white LEDs) consisting of light emitting elements that combine a blue light emitting diode and an yttrium aluminum garnet yellow phosphor (YAG yellow phosphor) have been widely used in the past. Has been done. The emission spectrum of this white light source has a wide spectrum in the visible light region and is also excellent in luminous efficiency, so that it is widely used as a backlight source. However, a liquid crystal display device using this white LED as a backlight source can reproduce colors only about 20% of the spectrum recognizable by the human eye.
一方、近年の色域拡大要求の高まりから、白色光源の発光スペクトルが、R(赤)、G(緑)、B(青)の各波長領域に、それぞれ明確なピーク形状を有する液晶表示装置が開発されている。例えば、量子ドット技術を利用した白色光源、励起光によりR(赤)、G(緑)の領域に明確な発光ピークを有する蛍光体と青色LEDを用いた蛍光体方式の白色LED光源、3波長方式の白色LED光源、赤色レーザーを組み合わせた白色LED光源等、様々な種類の光源を用いた、広色域化対応の液晶表示装置が開発されている。量子ドット技術を利用した白色光源をバックライト光源とする液晶表示装置の場合、人間の目が認識可能なスペクトルの60%以上の色を再現することが可能になると言われている。これらの白色光源は、いずれも従来のYAG系黄色蛍光体を用いた白色発光ダイオードからなる光源と比較してピークの半値幅が比較的狭く、リタデーションを有する配向ポリエステルフィルムを偏光板の構成部材である偏光子保護フィルムとして用いた場合に、光源の種類によっては虹斑が発生する場合があることが新たにわかった。 On the other hand, due to the increasing demand for color gamut expansion in recent years, liquid crystal display devices having a clear peak shape in each wavelength region of R (red), G (green), and B (blue) in the emission spectrum of a white light source have been introduced. It is being developed. For example, a white light source using quantum dot technology, a phosphor-type white LED light source using a phosphor having clear emission peaks in the R (red) and G (green) regions due to excitation light, and a blue LED, and three wavelengths. A liquid crystal display device compatible with a wide color range has been developed using various types of light sources such as a white LED light source of the type and a white LED light source combining a red laser. In the case of a liquid crystal display device using a white light source as a backlight source using quantum dot technology, it is said that it is possible to reproduce 60% or more of colors in a spectrum recognizable by the human eye. All of these white light sources have a relatively narrow peak half-value width as compared with a light source composed of a white light emitting diode using a conventional YAG-based yellow phosphor, and an oriented polyester film having retardation is used as a constituent member of the polarizing plate. It was newly found that rainbow spots may occur depending on the type of light source when used as a certain polarizing element protective film.
本発明では、R,G,Bの各波長領域にピークトップを持ち、各ピークの半値幅が比較的狭い発光スペクトルを有する白色光源を用いた液晶表示装置において、偏光板の構成部材である偏光子保護フィルムとしてポリエステルフィルムを用いた場合でも、虹斑の発生が抑制された液晶表示装置を提供することを課題とする。 In the present invention, in a liquid crystal display device using a white light source having a peak top in each wavelength region of R, G, and B and having an emission spectrum having a relatively narrow half-value width of each peak, polarized light, which is a constituent member of a polarizing plate, is used. An object of the present invention is to provide a liquid crystal display device in which the occurrence of iridescent spots is suppressed even when a polyester film is used as a child protective film.
代表的な本発明は、以下の通りである。
項1.
バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配置された液晶セルを有する液晶表示装置であって、
前記バックライト光源は、400nm以上495nm未満、495nm以上600nm未満及び600nm以上750nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有し、各ピークの半値幅が5nm以上であり、
前記2つの偏光板のうち少なくとも一方の偏光板は、偏光子の少なくとも一方の面に接着剤層を介してポリエステルフィルムが積層されたものであり、
前記接着剤層の屈折率と、前記偏光子の透過軸と平行な方向における前記ポリエステルフィルムの屈折率との差が0.13以下である、
液晶表示装置。
項2.
前記バックライト光源が、励起光を出射する光源と量子ドットを含むバックライト光源である、項1に記載の液晶表示装置。
項3.
前記ポリエステルフィルムが、1500〜30000nmのリタデーションを有する、項1又は2に記載の液晶表示装置。
A typical invention is as follows.
Item 1.
A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell arranged between the two polarizing plates.
The backlight source has a peak top of the emission spectrum in each wavelength region of 400 nm or more and less than 495 nm, 495 nm or more and less than 600 nm, and 600 nm or more and 750 nm or less, and the half width of each peak is 5 nm or more.
At least one of the two polarizing plates is obtained by laminating a polyester film on at least one surface of a polarizing element via an adhesive layer.
The difference between the refractive index of the adhesive layer and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is 0.13 or less.
Liquid crystal display device.
Item 2.
Item 2. The liquid crystal display device according to Item 1, wherein the backlight source is a backlight source including a light source that emits excitation light and quantum dots.
Item 3.
Item 2. The liquid crystal display device according to Item 1 or 2, wherein the polyester film has a retardation of 1500 to 30000 nm.
本発明の液晶表示装置は、広い色域を有するとともに、いずれの観察角度においても虹状の色斑の発生が有意に抑制された良好な視認性を確保することができる。 The liquid crystal display device of the present invention has a wide color gamut, and can ensure good visibility in which the occurrence of rainbow-shaped color spots is significantly suppressed at any observation angle.
(液晶表示装置)
一般に、液晶表示装置は、バックライト光源に対向する側から画像を表示する側(視認側)に向かう順に、後面モジュール、液晶セルおよび前面モジュールから構成されている。後面モジュールおよび前面モジュールは、一般に、透明基板と、その液晶セル側表面に形成された透明導電膜と、その反対側に配置された偏光板とから構成されている。ここで、偏光板は、後面モジュールでは、バックライト光源に対向する側に配置され、前面モジュールでは、画像を表示する側(視認側)に配置されている。バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わない。また、液晶表示装置は、バックライト光源、偏光板、液晶セル以外に他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。光源側偏光板とバックライト光源の間に、輝度向上フィルムを設けてもよい。輝度向上フィルムとしては、例えば、一方の直線偏光を透過し、それと直交する直線偏光を反射する反射型偏光板が挙げられる。反射型偏光板としては、例えば、住友スリーエム株式会社製のDBEF(登録商標)(Dual Brightness Enhancement Film)シリーズの輝度向上フィルムが好適に用いられる。なお、反射型偏光板は、通常、反射型偏光板の吸収軸と光源側偏光板の吸収軸とが平行になるように配置される。
(Liquid crystal display device)
Generally, a liquid crystal display device is composed of a rear surface module, a liquid crystal cell, and a front surface module in the order from the side facing the backlight source to the side displaying an image (visual recognition side). The rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the surface of the liquid crystal cell side thereof, and a polarizing plate arranged on the opposite side thereof. Here, the polarizing plate is arranged on the side facing the backlight light source in the rear module, and is arranged on the image display side (visual recognition side) in the front module. The backlight may be configured by an edge light system having a light guide plate, a reflector, or the like as a constituent member, or a direct type system. In addition to the backlight source, the polarizing plate, and the liquid crystal cell, the liquid crystal display device may appropriately have other configurations such as a color filter, a lens film, a diffusion sheet, and an antireflection film. A brightness improving film may be provided between the light source side polarizing plate and the backlight light source. Examples of the brightness improving film include a reflective polarizing plate that transmits one linearly polarized light and reflects the linearly polarized light orthogonal to the linearly polarized light. As the reflective polarizing plate, for example, a brightness improving film of the DBEF (registered trademark) (Dual Brightness Enhancement Film) series manufactured by Sumitomo 3M Ltd. is preferably used. The reflective polarizing plate is usually arranged so that the absorption axis of the reflective polarizing plate and the absorption axis of the light source side polarizing plate are parallel to each other.
(バックライト光源)
本発明の液晶表示装置は少なくとも、バックライト光源と、2つの偏光板の間に配された液晶セルとを構成部材とする。前記バックライト光源は、400nm以上495nm未満、495nm以上600nm未満、及び600nm以上750nm以下の各波長領域にそれぞれピークトップを有し、各ピークの半値幅が5nm以上である発光スペクトルを有する白色光源が好ましい。
(Backlight light source)
The liquid crystal display device of the present invention comprises at least a backlight source and a liquid crystal cell arranged between two polarizing plates as constituent members. The backlight source is a white light source having a peak top in each wavelength region of 400 nm or more and less than 495 nm, 495 nm or more and less than 600 nm, and 600 nm or more and 750 nm or less, and having an emission spectrum in which the half width of each peak is 5 nm or more. preferable.
前記400nm以上495nm未満の波長領域は、より好ましくは430nm以上470nm以下である。前記495nm以上600nm未満の波長領域は、より好ましくは510nm以上560nm以下である。前記600nm以上750nm以下の波長領域は、より好ましくは630nm以上700nm以下であり、さらにより好ましくは630nm以上680mn以下である。各ピークの半値幅が5nm未満であると、虹状の色斑が発生し易くなることから好ましくない。各ピークの半値幅の好ましい下限値は10nm以上であり、より好ましくは15nm以上であり、更に好ましくは20nm以上である。適正な色域を確保する観点から、各ピークの半値幅の上限は、好ましくは140nm以下であり、好ましくは120nm以下であり、好ましくは100nm以下であり、より好ましくは80nm以下であり、さらに好ましくは60nm以下であり、よりさらに好ましくは45nm以下である。なお、ここで半値幅とは、ピークトップの波長におけるピーク強度の、1/2の強度におけるピーク幅(nm)のことである。 The wavelength region of 400 nm or more and less than 495 nm is more preferably 430 nm or more and 470 nm or less. The wavelength region of 495 nm or more and less than 600 nm is more preferably 510 nm or more and 560 nm or less. The wavelength region of 600 nm or more and 750 nm or less is more preferably 630 nm or more and 700 nm or less, and even more preferably 630 nm or more and 680 mn or less. If the half width of each peak is less than 5 nm, iridescent color spots are likely to occur, which is not preferable. The preferable lower limit of the half width of each peak is 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. From the viewpoint of ensuring an appropriate color gamut, the upper limit of the half width of each peak is preferably 140 nm or less, preferably 120 nm or less, preferably 100 nm or less, more preferably 80 nm or less, and further preferably. Is 60 nm or less, and more preferably 45 nm or less. Here, the full width at half maximum is the peak width (nm) at half the intensity of the peak intensity at the wavelength of the peak top.
なお、400nm以上495nm未満の波長領域、495nm以上600nm未満の波長領域、又は600nm以上750nm以下の波長領域のいずれかの波長領域において、複数のピークが存在する場合は以下の様に考える。
複数のピークが、それぞれ独立したピークである場合、最もピーク強度の高いピークの半値幅が上記範囲であることが好ましい。さらに、最も高いピーク強度の70%以上の強度を有する他のピークについても、同様に半値幅が上記範囲になることがより好ましい態様である。ここで、独立したピークとは、ピークの短波長側、長波長側の両方にピーク強度の1/2になる強度の領域を有するものである。すなわち、複数のピークが重なり、個々のピークがピーク強度の1/2になる強度の領域を有さない場合は、その複数のピークを全体として一個のピークと見なす。この様な、複数のピークが重なった形状を有する一個のピークは、その中の最も高いピーク強度の、1/2の強度におけるピークの幅(nm)を半値幅とする。
なお、複数のピークのうち、最もピーク強度の高いピークをピークトップとする。
なお、400nm以上495nm未満の波長領域、495nm以上600nm未満の波長領域、又は600nm以上750nm以下の波長領域の最も高いピーク強度を持つピークは他の波長領域のピークとはお互い独立した関係にあることが好ましい。特に、495nm以上600nm未満の波長領域で最も高いピーク強度を持つピークと、又は600nm以上750nm以下の領域で最も高いピーク強度を持つピークとの間の波長領域には、強度が600nm以上750nm以下の波長領域の最も高いピーク強度を持つピークのピーク強度の1/3になる領域が存在することが色彩の鮮明性の面で好ましい。
When a plurality of peaks are present in any of the wavelength region of 400 nm or more and less than 495 nm, the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 750 nm or less, it is considered as follows.
When the plurality of peaks are independent peaks, it is preferable that the half width of the peak having the highest peak intensity is in the above range. Further, for other peaks having an intensity of 70% or more of the highest peak intensity, it is more preferable that the half width is similarly in the above range. Here, the independent peak has an intensity region that is halved of the peak intensity on both the short wavelength side and the long wavelength side of the peak. That is, when a plurality of peaks overlap and each peak does not have a region of intensity that is 1/2 of the peak intensity, the plurality of peaks are regarded as one peak as a whole. For one peak having such a shape in which a plurality of peaks are overlapped, the width (nm) of the peak at 1/2 intensity of the highest peak intensity among them is set as the half width.
Of the plurality of peaks, the peak with the highest peak intensity is set as the peak top.
The peak having the highest peak intensity in the wavelength region of 400 nm or more and less than 495 nm, or the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 750 nm or less has an independent relationship with the peaks in other wavelength regions. Is preferable. In particular, the intensity is 600 nm or more and 750 nm or less in the wavelength region between the peak having the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm or the peak having the highest peak intensity in the region of 600 nm or more and 750 nm or less. In terms of color clarity, it is preferable that there is a region that is 1/3 of the peak intensity of the peak having the highest peak intensity in the wavelength region.
バックライト光源の発光スペクトルは、浜松ホトニクス製 マルチチャンネル分光器 PMA−12等の分光器を用いることにより測定が可能である。 The emission spectrum of the backlight source can be measured by using a spectroscope such as the Hamamatsu Photonics multi-channel spectroscope PMA-12.
上述したバックライト光源として、具体的には、励起光を出射する光源と量子ドットを少なくとも含むバックライト光源が挙げられる。その他、励起光によりR(赤)、G(緑)の領域にそれぞれ発光ピークを有する蛍光体と青色LEDを用いた蛍光体方式の白色LED光源、3波長方式の白色LED光源、赤色レーザーを組み合わせた白色LED光源等を例示することができる。前記蛍光体のうち赤色蛍光体としては、例えば、CaAlSiN3:Eu等を基本組成とする窒化物系蛍光体、CaS:Eu等を基本組成とする硫化物系蛍光体、Ca2SiO4:Eu 等を基本組成とするシリケート系蛍光体、その他が例示される。また、前記蛍光体のうち緑色蛍光体としては、例えばβ−SiAlON:Eu等を基本組成とするサイアロン系蛍光体、(Ba,Sr)2SiO4:Eu等を基本組成とするシリケート系蛍光体、その他が例示される。 Specific examples of the above-mentioned backlight source include a light source that emits excitation light and a backlight source that includes at least quantum dots. In addition, a combination of a phosphor with emission peaks in the R (red) and G (green) regions due to excitation light, a phosphor-type white LED light source using a blue LED, a three-wavelength white LED light source, and a red laser. A white LED light source and the like can be exemplified. Among the phosphors, examples of the red phosphor include a nitride-based phosphor having a basic composition of CaAlSiN 3 : Eu and the like, a sulfide-based phosphor having a basic composition of CaS: Eu and the like, and Ca 2 SiO 4 : Eu. Etc. are exemplified as silicate-based phosphors having a basic composition such as. Among the phosphors, as the green phosphor, for example, a sialon-based fluorescent substance having a basic composition of β-SiAlON: Eu or the like, or a silicate-based fluorescent substance having a basic composition of (Ba, Sr) 2 SiO 4 : Eu or the like. , Others are exemplified.
量子ドット技術のLCDへの適用は、近年の色域拡大要求の高まりから注目されている技術である。通常の白色LEDをバックライト光源として使用するLEDでは、人間の目が認識可能なスペクトルの20%程度しか色を再現することが出来ない。これに対し、励起光を出射する光源と量子ドットを含む発光層からなるバックライト光源を用いた場合、60%以上の色を再現することが可能になると言われている。実用化されている量子ドット技術は、ナノシス社のQDEFTMやQD Vision社のColor IQTM等がある。 The application of quantum dot technology to LCDs is a technology that has been attracting attention due to the growing demand for color gamut expansion in recent years. An LED that uses an ordinary white LED as a backlight source can reproduce colors only about 20% of the spectrum that can be recognized by the human eye. On the other hand, when a backlight source composed of a light source that emits excitation light and a light emitting layer containing quantum dots is used, it is said that 60% or more of colors can be reproduced. Quantum dot technologies that have been put into practical use include QDEF TM from Nanosys and Color IQ TM from QD Vision.
量子ドットは、例えば、量子ドットを多く含む層を設け、これを発光層としてバックライトに用いることができる。量子ドットを含む発光層は、例えばポリスチレン等の樹脂材料などに量子ドットを含んで構成されており、光源から出射される励起光に基づいて、画素単位で各色の発光光を出射する層である。この発光層は例えば赤色画素に配設された赤色発光層、緑色画素に配設された緑色発光層、青色画素に配設された青色発光層からなり、これら複数色の発光層における量子ドットでは、励起光に基づいて互いに異なる波長(色)の発光光を生成するようになっている。 For the quantum dots, for example, a layer containing a large number of quantum dots can be provided, and this can be used as a light emitting layer for the backlight. The light emitting layer containing the quantum dots is formed by including the quantum dots in a resin material such as polystyrene, for example, and is a layer that emits emitted light of each color in pixel units based on the excitation light emitted from the light source. .. This light emitting layer is composed of, for example, a red light emitting layer arranged in red pixels, a green light emitting layer arranged in green pixels, and a blue light emitting layer arranged in blue pixels, and the quantum dots in these multiple color light emitting layers , Emission light of different wavelengths (colors) is generated based on the excitation light.
このような量子ドットの材料としては、例えばCdSe、CdS、ZnS:Mn、InN、InP、CuCl、CuBr、Siなどが挙げられ、それらの量子ドットの粒径(一辺方向のサイズ)は、例えば2〜20nm程度である。また上記の量子ドット材料のうち、赤色発光材料としてはInPが挙げられ、緑色発光材料としては例えばCdScが挙げられ、青色発光材料としては例えばCdS等が挙げられる。このような発光層では、量子ドットにおけるサイズ(粒径)や材料の組成を変化させることにより、発光波長が変化することが確認されている。量子ドットのサイズ(粒径)や材料を制御し、樹脂材料に混ぜて、画素毎に塗り分けて塗布し使用される。 Examples of such quantum dot materials include CdSe, CdS, ZnS: Mn, InN, InP, CuCl, CuBr, Si, etc., and the particle size (size in one side direction) of these quantum dots is, for example, 2. It is about 20 nm. Among the above-mentioned quantum dot materials, the red light emitting material includes InP, the green light emitting material includes, for example, CdSc, and the blue light emitting material includes, for example, CdS. In such a light emitting layer, it has been confirmed that the emission wavelength changes by changing the size (particle size) of the quantum dots and the composition of the material. The size (particle size) and material of the quantum dots are controlled, mixed with the resin material, and applied separately for each pixel.
励起光を発光する光源としては、青色LEDが利用されるが、半導体レーザーなどのレーザー光が用いられることもある。光源から出た励起光が発光層を通過することにより、400nm以上495nm未満、495nm以上〜600nm未満及び600nm以上750nm以下の各波長領域にそれぞれピークトップを有する発光スペクトルが生じる。この時に各波長領域のピークの半値幅が狭いほど色域が広がるが、ピークの半値幅が狭くなると発光効率が低下することから、要求される色域と発光効率のバランスから発光スペクトルの形状が設計される。 A blue LED is used as a light source that emits excitation light, but laser light such as a semiconductor laser may also be used. When the excitation light emitted from the light source passes through the light emitting layer, an emission spectrum having a peak top is generated in each wavelength region of 400 nm or more and less than 495 nm, 495 nm or more and less than 600 nm, and 600 nm or more and 750 nm or less. At this time, the narrower the half-value width of the peak in each wavelength region, the wider the color range. However, when the half-value width of the peak becomes narrower, the luminous efficiency decreases. Therefore, the shape of the emission spectrum is determined from the balance between the required color gamut and the luminous efficiency. Designed.
(偏光板)
液晶表示装置内に配置される2つの偏光板のうち、少なくとも一方の偏光板は、ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子の少なくとも一方の面に接着剤層を介してポリエステルフィルムが積層されたものである。なお、以下、単に、接着剤層と記載するときは、偏光子とポリエステルフィルムの間に存在する接着剤層のことを指すものとする。偏光子の他方の面には、TACフィルムやアクリルフィルム、ノルボルネン系フィルムに代表されるような複屈折が無いフィルムが積層されることが好ましいが(3層構成の偏光板)、必ずしも偏光子の他方の面にフィルムが積層される必要はない(2層構成の偏光板)。なお、偏光子の両側の保護フィルムとしてポリエステルフィルムが用いられる場合、両方のポリエステルフィルムの遅相軸は互いに略平行であることが好ましい。
(Polarizer)
Of the two polarizing plates arranged in the liquid crystal display device, at least one polarizing plate is made of polyester on at least one surface of a polarizing element obtained by dyeing polyvinyl alcohol (PVA) or the like with iodine via an adhesive layer. It is a laminated film. In the following, when the term "adhesive layer" is simply used, it means the adhesive layer existing between the polarizer and the polyester film. It is preferable that a film having no double refraction such as a TAC film, an acrylic film, or a norbornene-based film is laminated on the other surface of the polarizer (three-layered polarizing plate), but it is not always the same as that of the polarizer. It is not necessary for the film to be laminated on the other surface (two-layer polarizing plate). When a polyester film is used as the protective film on both sides of the polarizer, it is preferable that the slow axes of both polyester films are substantially parallel to each other.
本発明らは鋭意検討した結果、上述した励起光を出射する光源と量子ドットを含むバックライト光源に代表されるように、発光スペクトルの各ピークの半値幅が比較的狭いバックライト光源を有する液晶表示装置において、偏光子保護フィルムとしてポリエステルフィルムを用いた偏光板を使用した場合でも、接着剤層の屈折率と、偏光子の透過軸と平行な方向におけるポリエステルフィルムの屈折率との差が0.13以下であれば、有為に虹斑を抑制できることを見出した。上記態様により虹状の色斑の発生が抑制される機構としては、次のように考えている。 As a result of diligent studies, the present inventions have a liquid crystal having a backlit light source in which the half-value width of each peak of the emission spectrum is relatively narrow, as represented by the above-mentioned light source that emits excitation light and a backlit light source that includes quantum dots. Even when a polarizing plate using a polyester film is used as the polarizer protective film in the display device, the difference between the refractive index of the adhesive layer and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is 0. It was found that if it is .13 or less, rainbow spots can be significantly suppressed. The mechanism by which the occurrence of iridescent color spots is suppressed by the above aspect is considered as follows.
偏光子の片側に配向ポリエステルフィルムを配した場合、バックライトユニット、または、偏光子から出射した直線偏光はポリエステルフィルムを通過する際に偏光状態が変化する。バックライトユニット、または、偏光子から出射した直線偏光が配向ポリエステルフィルムを通過する際に偏光状態が変化する要因の一つに、接着剤層と配向ポリエステルフィルムとの界面の屈折率差が影響している可能性を見出した。斜め方向から入射した直線偏光が、各界面を通過する際に、界面間の屈折率差により光の一部が反射される。この時に出射光、反射光とも偏光状態が変化することが考えられることから、虹状の色斑が発生する要因の一つとなっていると考えられる。このため、入射する直線偏光の偏光方向(透過軸方向)における、接着剤と配向ポリエステルフィルムとの屈折率差を小さくすることで、各界面での反射が抑制されて、虹状の色斑が抑制されると考えられる。 When an oriented polyester film is arranged on one side of the polarizer, the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film. One of the factors that change the polarization state when the linearly polarized light emitted from the backlight unit or the polarizer passes through the oriented polyester film is the difference in the refractive index at the interface between the adhesive layer and the oriented polyester film. I found the possibility of When linearly polarized light incident from an oblique direction passes through each interface, a part of light is reflected due to the difference in refractive index between the interfaces. At this time, it is possible that the polarization state of both the emitted light and the reflected light changes, which is considered to be one of the factors that cause rainbow-shaped color spots. Therefore, by reducing the difference in refractive index between the adhesive and the oriented polyester film in the polarization direction (transmission axis direction) of the incident linearly polarized light, reflection at each interface is suppressed and rainbow-shaped color spots are formed. It is thought to be suppressed.
以上のように、本発明では励起光を出射する光源と量子ドットを含むバックライト光源に代表されるように、発光スペクトルの各ピークの半値幅が比較的狭いバックライト光源からなる液晶表示装置において、偏光子保護フィルムとしてポリエステルフィルムを使用した偏光板を用いても、虹状の色斑が発生せずに、良好な視認性を有することが可能となる。 As described above, in the present invention, as represented by a light source that emits excitation light and a backlight source that includes quantum dots, a liquid crystal display device including a backlight source that has a relatively narrow half-value width of each peak of the emission spectrum. Even if a polarizing plate using a polyester film is used as the polarizer protective film, it is possible to have good visibility without generating rainbow-shaped color spots.
接着剤層の屈折率と、偏光子の透過軸と平行な方向におけるポリエステルフィルムの屈折率との差が0.13以下であることが好ましく、好ましくは0.12以下、好ましくは0.11以下、好ましくは0.10以下、好ましくは0.9以下、好ましくは0.08以下、好ましくは0.07以下、好ましくは0.06以下、好ましくは0.05以下である。屈折率差が小さいほど、ポリエステルフィルム界面での反射を抑え、虹斑を抑制できることから好ましい。下限は0である。 The difference between the refractive index of the adhesive layer and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is preferably 0.13 or less, preferably 0.12 or less, preferably 0.11 or less. It is preferably 0.10 or less, preferably 0.9 or less, preferably 0.08 or less, preferably 0.07 or less, preferably 0.06 or less, and preferably 0.05 or less. The smaller the difference in refractive index, the more preferable it is because the reflection at the polyester film interface can be suppressed and the rainbow spots can be suppressed. The lower limit is 0.
偏光子の透過軸と平行な方向における接着剤層の屈折率と、偏光子の透過軸と平行な方向におけるポリエステルフィルムの屈折率との差が、0.13以下であることがより好ましく、より好ましくは0.12以下、より好ましくは0.11以下、より好ましくは0.10以下、より好ましくは0.09以下、より好ましくは0.08以下、より好ましくは0.07以下、より好ましくは0.06以下、より好ましくは0.05以下である。屈折率差が小さいほど、ポリエステルフィルム界面での反射を抑え、虹斑を抑制できることから好ましい。下限は0である。 The difference between the refractive index of the adhesive layer in the direction parallel to the transmission axis of the polarizer and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is more preferably 0.13 or less. It is preferably 0.12 or less, more preferably 0.11 or less, more preferably 0.10 or less, more preferably 0.09 or less, more preferably 0.08 or less, more preferably 0.07 or less, and more preferably. It is 0.06 or less, more preferably 0.05 or less. The smaller the difference in refractive index, the more preferable it is because the reflection at the polyester film interface can be suppressed and the rainbow spots can be suppressed. The lower limit is 0.
ポリエステルフィルムと偏光子の積層方法は特に限定されるものではなく、ポリエステルフィルムの進相軸方向と偏光子の透過軸方向を略平行とする、又はポリエステルフィルムの遅相軸方向と偏光子の透過軸方向を略平行とする配置が好ましい。接着剤の屈折率と、偏光子の透過軸と平行な方向におけるポリエステルフィルムの屈折率との差が好ましい範囲になるように注意して積層すればよい。 The method of laminating the polyester film and the polarizer is not particularly limited, and the phase-advancing axis direction of the polyester film and the transmission axis direction of the polarizer are substantially parallel, or the slow-phase axial direction of the polyester film and the transmission of the polarizer are substantially parallel. An arrangement in which the axial directions are substantially parallel is preferable. Careful stacking may be performed so that the difference between the refractive index of the adhesive and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is within a preferable range.
ここで略平行であるとは、偏光子の透過軸と偏光子保護フィルムの進相軸(又は遅相軸)とがなす角が、好ましくは−15°〜15°、より好ましくは−10°〜10°、さらに好ましく−5°〜5°、よりさらに好ましくは−3°〜3°、一層好ましくは−2°〜2°、特に好ましくは−1°〜1°であることを意味する。好ましい一実施形態において、略平行とは実質的に平行である。ここで実質的に平行であるとは、偏光子と保護フィルムとを張り合わせる際に不可避的に生じるずれを許容する程度に透過軸と進相軸(又は遅相軸)とが平行であることを意味する。遅相軸の方向は、分子配向計(例えば、王子計測器株式会社製、MOA−6004型分子配向計)で測定して求めることができる。 Here, substantially parallel means that the angle formed by the transmission axis of the polarizer and the phase advance axis (or slow phase axis) of the polarizer protective film is preferably -15 ° to 15 °, more preferably -10 °. It means that it is -10 °, more preferably -5 ° to 5 °, even more preferably -3 ° to 3 °, still more preferably -2 ° to 2 °, and particularly preferably -1 ° to 1 °. In one preferred embodiment, substantially parallel is substantially parallel. Here, substantially parallel means that the transmission axis and the phase advance axis (or slow phase axis) are parallel to the extent that the displacement that inevitably occurs when the polarizer and the protective film are bonded to each other is allowed. Means. The direction of the slow-phase axis can be determined by measuring with a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.).
(ポリエステルフィルム)
偏光子保護フィルムに用いられるポリエステルフィルムは1500〜30000nmのリタデーションを有することが好ましい。リタデーションが上記範囲にあれば、より虹斑が低減しやすくなる傾向にあり好ましい。好ましいリタデーションの下限値は3000nm、次に好ましい下限値は3500nm、より好ましい下限値は4000nm、更に好ましい下限値は6000nm、より更に好ましい下限値は8000nmである。好ましい上限は30000nmであり、これ以上のリタデーションを有するポリエステルフィルムでは厚みが相当大きくなり、工業材料としての取り扱い性が低下する傾向にある。
(Polyester film)
The polyester film used for the polarizer protective film preferably has a retardation of 1500 to 30000 nm. If the retardation is within the above range, iris spots tend to be reduced more easily, which is preferable. The lower limit of the preferred retardation is 3000 nm, the next preferred lower limit is 3500 nm, the more preferred lower limit is 4000 nm, the more preferred lower limit is 6000 nm, and the further preferred lower limit is 8000 nm. The preferable upper limit is 30,000 nm, and a polyester film having a retardation of more than this tends to have a considerably large thickness and a decrease in handleability as an industrial material.
なお、リタデーションは、2軸方向の屈折率と厚みを測定して求めることもできるし、KOBRA−21ADH(王子計測機器株式会社)といった市販の自動複屈折測定装置を用いて求めることもできる。なお、屈折率は、アッベの屈折率計(測定波長589nm)によって求めることができる。 The retardation can be obtained by measuring the refractive index and the thickness in the biaxial direction, or can be obtained by using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Measuring Instruments Co., Ltd.). The refractive index can be determined by an Abbe refractive index meter (measurement wavelength 589 nm).
ポリエステルフィルムのリタデーション(Re:面内リタデーション)と厚さ方向のリタデーション(Rth)との比(Re/Rth)は、好ましくは0.2以上、より好ましくは0.5以上、さらに好ましくは0.6以上である。上記リタデーションと厚さ方向リタデーションの比(Re/Rth)が大きいほど、複屈折の作用は等方性を増し、観察角度による虹状の色斑の発生が生じ難くなる傾向にある。完全な1軸性(1軸対称)フィルムでは上記リタデーションと厚さ方向リタデーションの比(Re/Rth)は2.0となることから、上記リタデーションと厚さ方向リタデーションの比(Re/Rth)の上限は2.0が好ましい。なお、厚さ方向位相差は、フィルムを厚さ方向断面から見たときの2つの複屈折△Nxz、△Nyzにそれぞれフィルム厚さdを掛けて得られる位相差の平均を意味する。 The ratio (Re / Rth) of the retardation (Re: in-plane retardation) of the polyester film to the retardation (Rth) in the thickness direction is preferably 0.2 or more, more preferably 0.5 or more, still more preferably 0. 6 or more. The larger the ratio (Re / Rth) of the above retardation to the thickness direction retardation, the more isotropic the action of birefringence, and the less likely it is that iridescent color spots will occur depending on the observation angle. Since the ratio of the above retardation to the thickness direction retardation (Re / Rth) is 2.0 in a completely uniaxial (uniaxially symmetric) film, the ratio of the above retardation to the thickness direction retardation (Re / Rth) The upper limit is preferably 2.0. The phase difference in the thickness direction means the average of the phase differences obtained by multiplying the two birefringences ΔNxz and ΔNyz when the film is viewed from the cross section in the thickness direction by the film thickness d, respectively.
ポリエステルフィルムの進相軸方向の屈折率は、1.53以上1.62以下であることが好ましい。屈折率が1.53未満になると、ポリエステルフィルムの結晶化が不十分となり、寸法安定性、力学強度、耐薬品性等の延伸により得られる特性が不十分となることから好ましくない。ポリエステルフィルムの進相軸方向の屈折率の上限は、より好ましくは1.61以下であり、さらに好ましくは1.60以下であり、さらにより好ましくは1.59以下であり、特に好ましくは1.58以下である。ポリエステルフィルムの進相軸方向の屈折率の下限は、より好ましくは1.54以上であり、さらに好ましくは1.55以上であり、さらにより好ましくは1.56以上であり、特に好ましくは1.57以上である。
ポリエステルフィルムの遅相軸方向の屈折率は、1.67以上1.75以下であることが好ましい。ポリエステルフィルムの遅相軸方向の屈折率の上限は、より好ましくは1.74以下であり、さらに好ましくは1.73以下であり、さらにより好ましくは1.72以下であり、特に好ましくは1.71以下である。ポリエステルフィルムの遅相軸の屈折率の下限は、より好ましくは1.68以上である。上記屈折率の調整は、後述する後述する製膜工程における延伸処理により、容易に調整することが可能である。
The refractive index of the polyester film in the phase-advancing axis direction is preferably 1.53 or more and 1.62 or less. If the refractive index is less than 1.53, the crystallization of the polyester film becomes insufficient, and the properties obtained by stretching such as dimensional stability, mechanical strength, and chemical resistance become insufficient, which is not preferable. The upper limit of the refractive index of the polyester film in the phase-advancing axis direction is more preferably 1.61 or less, further preferably 1.60 or less, still more preferably 1.59 or less, and particularly preferably 1. It is 58 or less. The lower limit of the refractive index of the polyester film in the phase-advancing axis direction is more preferably 1.54 or more, further preferably 1.55 or more, still more preferably 1.56 or more, and particularly preferably 1. It is 57 or more.
The refractive index of the polyester film in the slow axis direction is preferably 1.67 or more and 1.75 or less. The upper limit of the refractive index of the polyester film in the slow axis direction is more preferably 1.74 or less, further preferably 1.73 or less, still more preferably 1.72 or less, and particularly preferably 1. It is 71 or less. The lower limit of the refractive index of the slow axis of the polyester film is more preferably 1.68 or more. The adjustment of the refractive index can be easily adjusted by a stretching treatment in a film forming step described later.
上記ポリエステルフィルムからなる偏光子保護フィルムは、入射光側(光源側)と出射光側(視認側)の両方の偏光板に用いることができる。入射光側に配される偏光板において、上記ポリエステルフィルムからなる偏光子保護フィルムは、その偏光子を起点として入射光側に配置していても、液晶セル側に配置していても、両側に配置されていても良いが、少なくとも入射光側に配置されていることが好ましい。出射光側に配置される偏光板については、上記ポリエステルフィルムからなる偏光子保護フィルムは、その偏光子を起点として液晶側に配置されても、出射光側に配置されていても、両側に配置されていてもよいが、少なくとも出射光側に配置されていることが好ましい。 The polarizer protective film made of the polyester film can be used for both the incident light side (light source side) and the emitted light side (visual recognition side). In the polarizing plate arranged on the incident light side, the polarizer protective film made of the polyester film is arranged on both sides regardless of whether the polarizing element is arranged on the incident light side or the liquid crystal cell side as a starting point. It may be arranged, but it is preferable that it is arranged at least on the incident light side. Regarding the polarizing plate arranged on the emitting light side, the polarizing element protective film made of the polyester film is arranged on both sides regardless of whether it is arranged on the liquid crystal side or the emitting light side with the polarizing element as the starting point. However, it is preferable that the film is arranged at least on the emitted light side.
ポリエステルフィルムに用いられるポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートを用いることができるが、他の共重合成分を含んでも構わない。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。特に、ポリエチレンテレフタレートは固有複屈折が大きく、フィルムを延伸することで進相軸(遅相軸方向と垂直)方向の屈折率を低く抑えることができること、及びフィルムの厚みが薄くても比較的容易に大きなリタデーションが得られることから、最も好適な素材である。 As the polyester used for the polyester film, polyethylene terephthalate or polyethylene naphthalate can be used, but other copolymerization components may be contained. These resins are excellent in transparency as well as thermal and mechanical properties, and retardation can be easily controlled by stretching. In particular, polyethylene terephthalate has a large intrinsic birefringence, and the refractive index in the phase-advancing axis (perpendicular to the slow-phase axis direction) can be suppressed low by stretching the film, and it is relatively easy even if the film is thin. It is the most suitable material because it can obtain a large amount of retardation.
また、ヨウ素色素などの光学機能性色素の劣化を抑制することを目的として、ポリエステルフィルムは、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。なお、透過率は、フィルムの平面に対して垂直方法に測定したものであり、分光光度計(例えば、日立U−3500型)を用いて測定することができる。 Further, for the purpose of suppressing deterioration of an optically functional dye such as an iodine dye, it is desirable that the polyester film has a light transmittance of 20% or less at a wavelength of 380 nm. The light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. When the light transmittance is 20% or less, deterioration of the optical functional dye due to ultraviolet rays can be suppressed. The transmittance is measured in a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
ポリエステルフィルムの波長380nmの透過率を20%以下にするためには、紫外線吸収剤の種類、濃度、及びフィルムの厚みを適宜調節することが望ましい。本発明で使用される紫外線吸収剤は公知の物質である。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられるが上述した吸光度の範囲であれば特に限定されない。しかし、耐久性の観点からはベンゾトアゾール系、環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、より紫外線吸収効果を改善することができる。 In order to reduce the transmittance of the polyester film at a wavelength of 380 nm to 20% or less, it is desirable to appropriately adjust the type and concentration of the ultraviolet absorber and the thickness of the film. The UV absorber used in the present invention is a known substance. Examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, but an organic ultraviolet absorber is preferable from the viewpoint of transparency. Examples of the organic ultraviolet absorber include benzotriazole-based, benzophenone-based, cyclic iminoester-based, and combinations thereof, but are not particularly limited as long as they are within the above-mentioned absorbance range. However, from the viewpoint of durability, benzotoazole-based and cyclic iminoester-based are particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed at the same time, so that the ultraviolet absorption effect can be further improved.
ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤としては例えば2−[2’−ヒドロキシ−5’ −(メタクリロイルオキシメチル)フェニル]−2H−ベンゾトリアゾール、2−[2’ −ヒドロキシ−5’ −(メタクリロイルオキシエチル)フェニル]−2H−ベンゾトリアゾール、2−[2’ −ヒドロキシ−5’ −(メタクリロイルオキシプロピル)フェニル]−2H−ベンゾトリアゾール、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,4−ジ−tert−ブチル−6−(5−クロロベンゾトリアゾール−2−イル)フェノール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(5−クロロ(2H)−ベンゾトリアゾール−2−イル)−4−メチル−6−(tert−ブチル)フェノール、2,2’−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノールなどが挙げられる。環状イミノエステル系紫外線吸収剤としては例えば2,2’−(1,4−フェニレン)ビス(4H−3,1−ベンズオキサジノン−4−オン)、2−メチル−3,1−ベンゾオキサジン−4−オン、2−ブチル−3,1−ベンゾオキサジン−4−オン、2−フェニル−3,1−ベンゾオキサジン−4−オンなどが挙げられる。しかし特にこれらに限定されるものではない。 Examples of benzophenol-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, and acrylonitrile-based ultraviolet absorbers include 2- [2'-hydroxy-5'-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2'. -Hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2'-dihydroxy- 4,4'-Dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazole-2-yl) phenol, 2- ( 2'-Hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (5-chloro (2H) -benzotriazole-2-yl) -4-methyl-6- ( Examples thereof include tert-butyl) phenol and 2,2'-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazole-2-yl) phenol. Cyclic iminoester. Examples of the ultraviolet absorbers include 2,2'-(1,4-phenylene) bis (4H-3,1-benzoxadinone-4-one) and 2-methyl-3,1-benzoxazine-4-one. , 2-Butyl-3,1-benzoxazine-4-one, 2-phenyl-3,1-benzoxazine-4-one and the like, but are not particularly limited thereto.
また、紫外線吸収剤以外に、本発明の効果を妨げない範囲で、触媒以外の各種の添加剤を含有させることも好ましい様態である。添加剤として、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。 Further, in addition to the ultraviolet absorber, it is also preferable to contain various additives other than the catalyst as long as the effects of the present invention are not impaired. As additives, for example, inorganic particles, heat-resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light retardants, flame retardants, heat stabilizers, antioxidants, antigelling agents. , Surfactants and the like. Further, in order to obtain high transparency, it is also preferable that the polyester film contains substantially no particles. "Substantially free of particles" means, for example, in the case of inorganic particles, the content is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when the inorganic element is quantified by Keiko X-ray analysis. means.
本発明に用いられる偏光子保護フィルムであるポリエステルフィルムの表面には、写り込み防止やギラツキ抑制、キズ抑制などを目的として、種々の機能層、すなわちハードコート層、防眩層、反射防止層等を設けることも好ましい様態である。種々の機能層を設けるに際して、ポリエステルフィルムはその表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率とポリエステルフィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやゲルマニウム、その他の金属種を含有させることで容易に調整することができる。 On the surface of the polyester film, which is a polarizing element protective film used in the present invention, various functional layers, that is, a hard coat layer, an antiglare layer, an antireflection layer, etc., are used for the purpose of preventing reflection, glare, and scratches. It is also a preferable mode to provide. When providing various functional layers, it is preferable that the polyester film has an easy-adhesion layer on its surface. At that time, from the viewpoint of suppressing interference due to reflected light, it is preferable to adjust the refractive index of the easy-adhesion layer so as to be close to the geometric mean of the refractive index of the functional layer and the refractive index of the polyester film. A known method can be adopted for adjusting the refractive index of the easy-adhesion layer. For example, the refractive index can be easily adjusted by adding titanium, germanium, or other metal species to the binder resin.
ポリエステルフィルムには、偏光子との接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。 The polyester film can also be subjected to a corona treatment, a coating treatment, a flame treatment, or the like in order to improve the adhesiveness with the polarizer.
本発明においては、偏光子との接着性を改良のために、本発明のフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。本発明の易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。 In the present invention, in order to improve the adhesiveness with the polarizer, an easy-adhesion layer containing at least one of polyester resin, polyurethane resin or polyacrylic resin as a main component is provided on at least one side of the film of the present invention. Is preferable. Here, the "main component" refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer. The coating liquid used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating liquid containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, acrylic resin and polyurethane resin. Examples of these coating liquids include water-soluble or water-dispersible copolymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, Japanese Patent No. 4150982, and the like. Examples thereof include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
易接着層は、前記塗布液を縦方向の1軸延伸フィルムの片面または両面に塗布した後、100〜150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な易接着層の塗布量は、0.05〜0.20g/m2に管理することが好ましい。塗布量が0.05g/m2未満であると、得られる偏光子との接着性が不十分となる場合がある。一方、塗布量が0.20g/m2を超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に易接着層を設ける場合は、両面の易接着層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The easy-adhesion layer can be obtained by applying the coating liquid to one or both sides of a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and further stretching in the transverse direction. The final coating amount of the easy-adhesion layer is preferably controlled to 0.05 to 0.20 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesiveness with the obtained polarizer may be insufficient. On the other hand, if the coating amount exceeds 0.20 g / m 2 , the blocking resistance may decrease. When the easy-adhesion layers are provided on both sides of the polyester film, the coating amounts of the easy-adhesion layers on both sides may be the same or different, and can be independently set within the above ranges.
易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組合せて添加することもできる。 It is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 μm or less. When the average particle size of the particles exceeds 2 μm, the particles are likely to fall off from the coating layer. The particles contained in the easy-adhesion layer include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectrite, zirconia, tungsten oxide, lithium fluoride, etc. Examples thereof include inorganic particles such as calcium fluoride and organic polymer particles such as styrene-based, acrylic-based, melamine-based, benzoguanamine-based, and silicone-based particles. These may be added to the easy-adhesion layer alone, or may be added in combination of two or more.
また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。 Further, as a method of applying the coating liquid, a known method can be used. For example, the reverse roll coating method, the gravure coating method, the kiss coating method, the roll brush method, the spray coating method, the air knife coating method, the wire bar coating method, the pipe doctor method, etc. can be mentioned, and these methods can be used alone. Alternatively, it can be performed in combination.
なお、上記の粒子の平均粒径の測定は下記方法により行う。粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2〜5mmとなるような倍率で、300〜500個の粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を平均粒径とする。 The average particle size of the above particles is measured by the following method. The particles are photographed with a scanning electron microscope (SEM), and the maximum diameter of 300 to 500 particles (between the two most distant points) is magnified so that the size of one of the smallest particles is 2 to 5 mm. Distance) is measured, and the average value is taken as the average particle size.
偏光子保護フィルムとして使用するポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。 The polyester film used as the polarizer protective film can be manufactured according to a general polyester film manufacturing method. For example, a non-oriented polyester obtained by melting a polyester resin and extruding it into a sheet is stretched in the vertical direction at a temperature equal to or higher than the glass transition temperature by utilizing the speed difference of the rolls, and then stretched in the horizontal direction by a tenter. A method of applying heat treatment can be mentioned.
本発明で使用するポリエステルフィルムは一軸延伸フィルムであっても、二軸延伸フィルムであってもかまわないが、二軸延伸フィルムを偏光子保護フィルムとして用いた場合、フィルム面の真上から観察しても虹状の色斑が見られないが、斜め方向から観察した時に虹状の色斑が観察される場合があるので注意が必要である。 The polyester film used in the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizer protective film, it is observed from directly above the film surface. However, rainbow-shaped color spots are not seen, but caution is required because rainbow-shaped color spots may be observed when observed from an oblique direction.
ポリエステルフィルムの製膜条件を具体的に説明すると、縦延伸温度、横延伸温度は80〜135℃が好ましく、より好ましくは80〜130℃、特に好ましくは90〜120℃である。遅相軸がTD方向になるようにフィルムを配向させるには、縦延伸倍率は1.0〜3.5倍が好ましく、特に好ましくは1.0倍〜3.0倍である。また、横延伸倍率は2.5〜6.0倍が好ましく、特に好ましくは3.0〜5.5倍である。遅相軸がMD方向となるようにフィルムを配向させるには、縦延伸倍率は2.5倍〜6.0倍が好ましく、特に好ましくは3.0〜5.5倍である。また、横延伸倍率は1.0倍〜3.5倍が好ましく、特に好ましくは1.0倍〜3.0倍である。
ポリエステルフィルムの進相軸方向の屈折率又はリタデーションを上記範囲に制御するためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましい。縦横の延伸倍率の差が小さすぎると、ポリエステルフィルムの進相軸方向の屈折率が1.62を超える傾向にあり、また、リタデーション高くすることが難しくなるため、好ましくない。また、延伸温度を低く設定することは、リタデーションを高くする上では好ましい対応である。続く熱処理においては、処理温度は100〜250℃が好ましく、特に好ましくは180〜245℃である。
Specifically explaining the film forming conditions of the polyester film, the longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 135 ° C., more preferably 80 to 130 ° C., and particularly preferably 90 to 120 ° C. In order to orient the film so that the slow axis is in the TD direction, the longitudinal stretching ratio is preferably 1.0 to 3.5 times, particularly preferably 1.0 to 3.0 times. The lateral stretching ratio is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times. In order to orient the film so that the slow axis is in the MD direction, the longitudinal stretching ratio is preferably 2.5 times to 6.0 times, particularly preferably 3.0 to 5.5 times. The transverse stretching ratio is preferably 1.0 to 3.5 times, and particularly preferably 1.0 to 3.0 times.
In order to control the refractive index or retardation of the polyester film in the phase-advancing axis direction within the above range, it is preferable to control the ratio of the longitudinal stretching ratio to the transverse stretching ratio. If the difference between the vertical and horizontal stretching ratios is too small, the refractive index of the polyester film in the phase-advancing axis direction tends to exceed 1.62, and it becomes difficult to increase the retardation, which is not preferable. Further, setting the stretching temperature low is a preferable measure for increasing the retardation. In the subsequent heat treatment, the treatment temperature is preferably 100 to 250 ° C, particularly preferably 180 to 245 ° C.
リタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。延伸温度、延伸倍率はフィルムの厚み斑に大きな影響を与えることから、厚み斑の観点からも製膜条件の最適化を行う必要がある。特にリタデーションを高くするために縦延伸倍率を低くすると、縦厚み斑が悪くなることがある。縦厚み斑は延伸倍率のある特定の範囲で非常に悪くなる領域があることから、この範囲を外したところで製膜条件を設定することが望ましい。 In order to suppress fluctuations in retardation, it is preferable that the thickness unevenness of the film is small. Since the stretching temperature and the stretching ratio have a great influence on the thickness unevenness of the film, it is necessary to optimize the film forming conditions from the viewpoint of the thickness unevenness. In particular, if the longitudinal stretching ratio is lowered in order to increase the retardation, the vertical thickness unevenness may worsen. Since there is a region where the vertical thickness unevenness becomes very poor in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
ポリエステルフィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。 The thickness unevenness of the polyester film is preferably 5.0% or less, further preferably 4.5% or less, further preferably 4.0% or less, and 3.0% or less. Is particularly preferable.
前述のように、ポリエステルフィルムのリタデーションを特定範囲に制御する為には、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行なうことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。但し、フィルムの厚みを厚くすると、厚さ方向位相差が大きくなりやすい。そのため、フィルム厚みは後述の範囲に適宜設定することが望ましい。また、リタデーションの制御に加えて、加工に必要な物性等を勘案して最終的な製膜条件を設定する必要がある。 As described above, in order to control the retardation of the polyester film within a specific range, it can be performed by appropriately setting the draw ratio, the draw temperature, and the thickness of the film. For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the easier it is to obtain high retardation. On the contrary, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the easier it is to obtain low retardation. However, when the thickness of the film is increased, the phase difference in the thickness direction tends to increase. Therefore, it is desirable to appropriately set the film thickness within the range described later. Further, in addition to the control of retardation, it is necessary to set the final film forming conditions in consideration of the physical characteristics required for processing.
ポリエステルフィルムの厚みは任意であるが、15〜300μmの範囲が好ましく、より好ましくは15〜200μmの範囲である。15μmを下回る厚みのフィルムでも、原理的には1500nm以上のリタデーションを得ることは可能である。しかし、その場合にはフィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する。特に好ましい厚みの下限は25μmである。一方、偏光子保護フィルムの厚みの上限は、300μmを超えると偏光板の厚みが厚くなりすぎてしまい好ましくない。偏光子保護フィルムとしての実用性の観点からは厚みの上限は200μmが好ましい。特に好ましい厚みの上限は一般的なTACフィルムと同等程度の100μmである。上記厚み範囲においてもリタデーションを本発明の範囲に制御するために、フィルム基材として用いるポリエステルはポリエチレンタレフタレートが好適である。 The thickness of the polyester film is arbitrary, but is preferably in the range of 15 to 300 μm, more preferably in the range of 15 to 200 μm. In principle, it is possible to obtain retardation of 1500 nm or more even with a film having a thickness of less than 15 μm. However, in that case, the anisotropy of the mechanical properties of the film becomes remarkable, and tearing, tearing, etc. are likely to occur, and the practicality as an industrial material is remarkably lowered. A particularly preferable lower limit of the thickness is 25 μm. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 300 μm, the thickness of the polarizing plate becomes too thick, which is not preferable. From the viewpoint of practicality as a polarizer protective film, the upper limit of the thickness is preferably 200 μm. A particularly preferable upper limit of the thickness is 100 μm, which is equivalent to that of a general TAC film. In order to control the retardation within the range of the present invention even in the above thickness range, polyethylene sauce phthalate is preferable as the polyester used as the film base material.
また、ポリエステルフィルムに紫外線吸収剤を配合する方法としては、公知の方法を組み合わせて採用し得るが、例えば予め混練押出機を用い、乾燥させた紫外線吸収剤とポリマー原料とをブレンドしマスターバッチを作製しておき、フィルム製膜時に所定の該マスターバッチとポリマー原料を混合する方法などによって配合することができる。 Further, as a method of blending the ultraviolet absorber into the polyester film, a known method can be used in combination. For example, a master batch is prepared by blending the dried ultraviolet absorber and the polymer raw material using a kneading extruder in advance. It can be prepared and blended by a method of mixing the predetermined masterbatch with the polymer raw material at the time of film formation.
この時マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために5〜30質量%の濃度にするのが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエステル原料の融点以上、290℃以下の温度で1〜15分間で押し出すのが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。押し出し温度1分以下では紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。 At this time, the concentration of the ultraviolet absorber in the masterbatch is preferably 5 to 30% by mass in order to uniformly disperse the ultraviolet absorber and to blend it economically. As a condition for producing the masterbatch, it is preferable to use a kneading extruder and extrude the polyester raw material at a temperature equal to or higher than the melting point of the polyester raw material and lower than 290 ° C. for 1 to 15 minutes. At 290 ° C. or higher, the amount of the ultraviolet absorber is greatly reduced, and the viscosity of the masterbatch is significantly reduced. If the extrusion temperature is 1 minute or less, it becomes difficult to uniformly mix the ultraviolet absorber. At this time, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added as needed.
また、ポリエステルフィルムを少なくとも3層以上の多層構造とし、フィルムの中間層に紫外線吸収剤を添加することが好ましい。中間層に紫外線吸収剤を含む3層構造のフィルムは、具体的には次のように作製することができる。外層用としてポリエステルのペレット単独、中間層用として紫外線吸収剤を含有したマスターバッチとポリエステルのペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、2台以上の押出機、3層のマニホールドまたは合流ブロック(例えば角型合流部を有する合流ブロック)を用いて、両外層を構成するフィルム層、中間層を構成するフィルム層を積層し、口金から3層のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。なお、発明では、光学欠点の原因となる、原料のポリエステル中に含まれている異物を除去するため、溶融押し出しの際に高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率95%)は、15μm以下が好ましい。濾材の濾過粒子サイズが15μmを超えると、20μm以上の異物の除去が不十分となりやすい。 Further, it is preferable that the polyester film has a multilayer structure of at least three layers or more, and an ultraviolet absorber is added to the intermediate layer of the film. Specifically, a film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be produced as follows. A polyester pellet alone for the outer layer, and a masterbatch containing an ultraviolet absorber for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt lamination extruder to form a slit. It is extruded from a die into a sheet and cooled and solidified on a casting roll to form an unstretched film. That is, using two or more extruders, a three-layer manifold or a merging block (for example, a merging block having a square merging portion), a film layer forming both outer layers and a film layer forming an intermediate layer are laminated. A three-layer sheet is extruded from the base and cooled with a casting roll to make an unstretched film. In the present invention, in order to remove foreign substances contained in the raw material polyester, which causes optical defects, it is preferable to perform high-precision filtration at the time of melt extrusion. The filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 μm or less. If the size of the filtered particles of the filter medium exceeds 15 μm, the removal of foreign matter of 20 μm or more tends to be insufficient.
(接着剤層)
ポリエステルフィルムと偏光子を貼り合わせるための接着剤としては、従来公知のものを使用することができる。接着剤層の屈折率の下限は、好ましくは1.46以上、より好ましくは1.47以上、さらに好ましくは1.48以上である。接着剤層の屈折率の上限は、好ましくは1.59以下、より好ましくは1.56以下、さらに好ましくは1.54以下である。
(Adhesive layer)
As the adhesive for adhering the polyester film and the polarizer, conventionally known adhesives can be used. The lower limit of the refractive index of the adhesive layer is preferably 1.46 or more, more preferably 1.47 or more, still more preferably 1.48 or more. The upper limit of the refractive index of the adhesive layer is preferably 1.59 or less, more preferably 1.56 or less, still more preferably 1.54 or less.
接着剤としては、例えばポリビニルアルコール、ポリビニルブチラールなどのポリビニルアルコール系接着剤や、ポリブチルアクリレートなどビニル系ラテックス等の従来公知の水系接着剤があげられる。ポリビニルアルコール系接着剤としては、ポリビニルアルコール、部分けん化処理したポリ酢酸ビニル、カルボキシル基やアセトアセチル基で変性したポリビニルアルコール、ホルマル化処理したポリビニルアルコール等が含まれる。 Examples of the adhesive include polyvinyl alcohol-based adhesives such as polyvinyl alcohol and polyvinyl butyral, and conventionally known water-based adhesives such as vinyl latex such as polybutyl acrylate. Examples of the polyvinyl alcohol-based adhesive include polyvinyl alcohol, partially saponified polyvinyl acetate, polyvinyl alcohol modified with a carboxyl group or an acetoacetyl group, polyvinyl alcohol treated with formalization, and the like.
前記水系接着剤には、架橋剤を添加してもよい。架橋剤としては、特に限定されず、公知の架橋剤を用いることができる。例えば、ポリビニルアルコール系接着剤に用いられているものを特に制限なく使用することができる。例えば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4−フェニルメタントリイソシアネート)、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ−ホルムアルデヒド樹脂;酢酸ジルコニウム、硝酸ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウム、酸塩化ジルコニウム等のジルコニウム化合物;グリオキシル酸金属塩(金属としては、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅などの遷移金属、亜鉛、アルミニウムなどが挙げられる。)、グリオキシル酸アミン塩(アミンとしては、例えば、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミンなどが挙げられる。)などのグリオキシル酸塩;1つ以上の塩基性基と1つ以上の酸性基とを有するアミノ酸又は含硫アミノ酸;ジメトキシエタナール、ジエトキシエタナール、ジアルコキシエタナール等のアセタール化合物;更にナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル等の二価金属、又は三価金属の塩及びその酸化物等を例示することができる。これらは一種単独用いてもよいし、二種以上を併用することができる。これらのなかでも1つ以上の塩基性基と1つ以上の酸性基とを有するアミノ酸又は含硫アミノ酸を用いることが好ましい。塩基性基としてはアミノ基が好ましく、酸性基としてはカルボキシル基又はスルホ基が好ましい。前記アミノ酸としては、例えば、グリシン、アラニン、フェニルアラニン、バリン、ロイシン、イソロイシン、リシン、プロリン、セリン、トレオニン、トリプトファン、ヒスチジン、チロシン、アルギニン、アスパラギン、アスパラギン酸、アスパルテーム、グルタミン、グルタミン酸、及びこれらアミノ酸と(メタ)アクリル酸との共重合体などを例示することができる。前記含硫アミノ酸としては、例えば、メチオニン、システイン、シスチン、及びタウリンなどを例示することができる。これらのなかでも特に、タウリンなどのスルホ基を有する含硫アミノ酸を用いることが好ましい。金属塩を使用したものは、接着剤層の屈折率を高くすることができる。また、架橋剤として、シランカップリング剤、チタンカップリング剤などのカップリング剤を用いることができる。前記架橋剤の配合量は、ポリビニルアルコール、ポリビニルブチラールなどのポリビニルアルコール系樹脂や、ポリブチルアクリレートなどビニル系ラテックスを100質量部とした場合、例えば、0.1〜50重量部が好ましく、より好ましくは0.2〜30質量部、さらに好ましくは0.5〜20質量部である。 A cross-linking agent may be added to the water-based adhesive. The cross-linking agent is not particularly limited, and a known cross-linking agent can be used. For example, those used for polyvinyl alcohol-based adhesives can be used without particular limitation. For example, alkylenediamines having two alkylene groups and two amino groups such as ethylenediamine, triethylenediamine and hexamethylenediamine; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylenebis. (4-Phenylmethane triisocyanate), isophorone diisocyanates and isocyanates such as these ketooxime blocks or phenol blocks; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerinji or triglycidyl ether, 1,6- Epoxys such as hexanediol diglycidyl ether, trimethylpropan triglycidyl ether, diglycidylaniline, diglycidylamine; monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde; glioxal, malondialdehyde, succindialdehyde, Dialdehydes such as glutalurdialdehyde, maleindialdehyde, phthaldialdehyde; amino-formaldehyde resins such as methylol urea, methylol melamine, alkylated methylol urea, alkylated methylolated melamine, acetguanamine, condensate of benzoguanamine and formaldehyde Zyrazine compounds such as zirconium acetate, zirconium nitrate, zirconium carbonate, zirconium hydroxide, zirconium hydrochloride; metal glycylic acid salts (metals include alkali metals such as lithium, sodium and potassium, and alkaline soils such as magnesium and calcium). Kinds of metals, titanium, zirconium, chromium, manganese, iron, cobalt, nickel, transition metals such as copper, zinc, aluminum, etc.), glyoxylate amine salts (amines include, for example, ammonia, monomethylamine, dimethyl). Glyoxyphosphates such as amines, trimethylamines, etc .); amino acids or sulfur-containing amino acids having one or more basic groups and one or more acidic groups; dimethoxyethaneal, diethoxyethanal, dialkoxyethane. Acetal compounds such as nal; further, divalent metals such as sodium, potassium, magnesium, calcium, aluminum, iron and nickel, or salts of trivalent metals and oxides thereof can be exemplified. These may be used alone or in combination of two or more. Among these, it is preferable to use an amino acid having one or more basic groups and one or more acidic groups, or a sulfur-containing amino acid. The basic group is preferably an amino group, and the acidic group is preferably a carboxyl group or a sulfo group. Examples of the amino acids include glycine, alanine, phenylalanine, valine, leucine, isoleucine, lysine, proline, serine, threonine, tryptophan, histidine, tyrosine, arginine, asparagine, aspartic acid, aspartate, glutamine, glutamic acid, and these amino acids. Examples thereof include a copolymer with (meth) acrylic acid. Examples of the sulfur-containing amino acid include methionine, cysteine, cystine, taurine and the like. Among these, it is particularly preferable to use a sulfur-containing amino acid having a sulfo group such as taurine. Those using a metal salt can increase the refractive index of the adhesive layer. Further, as the cross-linking agent, a coupling agent such as a silane coupling agent or a titanium coupling agent can be used. When 100 parts by mass of a polyvinyl alcohol-based resin such as polyvinyl alcohol and polyvinyl butyral or a vinyl-based latex such as polybutyl acrylate is used as the blending amount of the cross-linking agent, for example, 0.1 to 50 parts by weight is preferable and more preferable. Is 0.2 to 30 parts by mass, more preferably 0.5 to 20 parts by mass.
その他、近年活性エネルギー線硬化性の接着剤も好ましい。偏光板は偏光子の両側に偏光子保護フィルムが積層された構成であり、少なくとも一方の偏光子保護フィルムは、活性エネルギー線硬化性接着剤を介して偏光子と積層されることが好ましい。活性エネルギー線硬化性組成物を用いることにより、低透湿性フィルムを用いた場合でも接着することができ、また密着性を向上させることができる。さらに、偏光板の耐湿熱性等の耐環境性を向上させることができる。特に、無溶剤の活性エネルギー線硬化性樹脂組成物を用いることにより、接着剤を乾燥させる工程が不要になるため、生産性を向上させることができる。 In addition, in recent years, an active energy ray-curable adhesive is also preferable. The polarizing plate has a structure in which a polarizing element protective film is laminated on both sides of the polarizing element, and it is preferable that at least one of the polarizing element protective films is laminated with the polarizer via an active energy ray-curable adhesive. By using the active energy ray-curable composition, adhesion can be achieved even when a low moisture permeable film is used, and adhesion can be improved. Further, it is possible to improve the environmental resistance such as the moisture and heat resistance of the polarizing plate. In particular, by using a solvent-free active energy ray-curable resin composition, the step of drying the adhesive becomes unnecessary, so that the productivity can be improved.
活性エネルギー線硬化性組成物に含有される活性エネルギー線硬化性化合物としては、従来公知のものを使用することができる。具体的には、エポキシ化合物、オキセタン化合物の他に、(メタ)アクリレート化合物等のラジカル重合性モノマー等を用いることができる。 As the active energy ray-curable compound contained in the active energy ray-curable composition, conventionally known compounds can be used. Specifically, in addition to the epoxy compound and the oxetane compound, a radically polymerizable monomer such as a (meth) acrylate compound can be used.
(エポキシ化合物及びオキセタン化合物)
エポキシ化合物には、脂環式エポキシ化合物、水酸基を有する芳香族化合物および鎖状化合物のグリシジルエーテル化物、アミノ基を有する化合物のグリシジルアミノ化物、およびC−C二重結合を有する鎖状化合物のエポキシ化物等が挙げられる。
(Epoxy compound and oxetane compound)
The epoxy compounds include alicyclic epoxy compounds, glycidyl ethers of aromatic compounds and chain compounds having hydroxyl groups, glycidyl amination compounds of compounds having amino groups, and epoxy compounds of chain compounds having CC double bonds. Examples include compounds.
ここで、脂環式エポキシ化合物とは、飽和環状化合物の環に直接エポキシ基を有してなるもの、および飽和環状化合物の環に直接グリシジルエーテル基またはグリシジル基を有してなるものをいう。なお、他のエポキシ基を構造内に有していてもよい。 Here, the alicyclic epoxy compound refers to a compound having an epoxy group directly on the ring of the saturated cyclic compound and a compound having a glycidyl ether group or a glycidyl group directly on the ring of the saturated cyclic compound. In addition, another epoxy group may be included in the structure.
飽和環状化合物の環に直接エポキシ基を有してなる脂環式エポキシ化合物とは、C−C二重結合を環に有する環状化合物のC−C二重結合を、過酸化物を用いて塩基性条件下においてエポキシ化させることにより得られるものである。 An alicyclic epoxy compound having an epoxy group directly on the ring of a saturated cyclic compound is a base of a CC double bond of a cyclic compound having a CC double bond on the ring, using a peroxide. It is obtained by epoxidation under sexual conditions.
C−C二重結合を環に有する環状化合物としては、特に限定されるものではないが、シクロペンテン環を有する化合物、シクロヘキセン環を有する化合物、およびそれらの多環式化合物等が挙げられる。C−C二重結合を環に有する環状化合物は、環外にC−C二重結合を有していてもよく、このような化合物としては、たとえば、1−ビニル−3−シクロヘキセンおよび単環式モノテルペンであるリモネン等が挙げられる。 The cyclic compound having a CC double bond in the ring is not particularly limited, and examples thereof include a compound having a cyclopentene ring, a compound having a cyclohexene ring, and a polycyclic compound thereof. Cyclic compounds having a CC double bond in the ring may have a CC double bond outside the ring, and such compounds include, for example, 1-vinyl-3-cyclohexene and monoterpene. Examples include limonene, which is a type monoterpene.
また、飽和環状化合物の環に直接エポキシ基を有してなる脂環式エポキシ化合物は、前記によって得られるエポキシ化物を適当な官能基を介して2量化した構造の化合物であってもよい。その官能基からなる結合構造としては、特に限定されるものではないが、たとえば、エステル結合、エーテル結合、およびアルキル基による結合等が挙げられる。また、前記エポキシ化物の2量化した構造は、これらの結合を複数有していてもよい。 Further, the alicyclic epoxy compound having an epoxy group directly on the ring of the saturated cyclic compound may be a compound having a structure in which the epoxidized product obtained as described above is quantified via an appropriate functional group. The bond structure composed of the functional group is not particularly limited, and examples thereof include an ester bond, an ether bond, and a bond with an alkyl group. Moreover, the dimerized structure of the epoxidized product may have a plurality of these bonds.
前記飽和環状化合物の環に直接エポキシ基を有してなる脂環式エポキシ化合物の製造方法は、個々の化合物に応じて変わるものであり特に限定されるものではないが、たとえば、C−C二重結合を環に有する環状化合物を合成した後、エポキシ化する方法、および、C−C二重結合がエポキシ化された化合物を、さらに前記のように官能基を反応させて目的とする構造へ合成する方法等が採用される。エポキシ基の副反応等を抑制する観点から、通常、C−C二重結合を環に有する環状化合物を合成した後、エポキシ化する方法が好ましく採用される。 The method for producing an alicyclic epoxy compound having an epoxy group directly on the ring of the saturated cyclic compound varies depending on the individual compound and is not particularly limited. For example, CC2. A method of synthesizing a cyclic compound having a heavy bond in a ring and then epoxidizing the compound, and a compound having an epoxidized CC double bond further reacted with a functional group as described above to obtain a target structure. A method of synthesizing or the like is adopted. From the viewpoint of suppressing side reactions of epoxy groups, a method of synthesizing a cyclic compound having a CC double bond in a ring and then epoxidizing is usually preferably adopted.
C−C二重結合を環に有する環状化合物の合成は、目的とするエポキシ化合物の骨格に応じて変わるものであり特に限定されるものではないが、2量化された環状化合物の合成例として、たとえば、3−シクロヘキセン−1−カルボキシアルデヒドから適切な触媒を用いてティシチェンコ反応によりエステル化合物である3−シクロヘキセニルメチル−3−シクロヘキセンカルボキシレートを得る方法を挙げることができる。 The synthesis of the cyclic compound having a CC double bond in the ring varies depending on the skeleton of the target epoxy compound and is not particularly limited, but as an example of the synthesis of the quantified cyclic compound, For example, a method of obtaining 3-cyclohexenylmethyl-3-cyclohexene carboxylate, which is an ester compound, from 3-cyclohexene-1-carboxyaldehyde by a Tishchenko reaction using an appropriate catalyst can be mentioned.
さらに、前記エステル化合物と、ジカルボン酸化合物あるいはそのエステル、ジオール化合物あるいはそのエステル、ポリアルキレングリコールあるいはそのエステル、またはヒドロキシカルボン酸化合物あるいはそのエステル等とを、必要に応じて触媒を用いてエステル交換反応させることで、シクロヘキセニル基を両端に有した化合物が得られる。 Further, an ester exchange reaction between the ester compound and the dicarboxylic acid compound or its ester, the diol compound or its ester, the polyalkylene glycol or its ester, or the hydroxycarboxylic acid compound or its ester, if necessary, using a catalyst. By doing so, a compound having a cyclohexenyl group at both ends can be obtained.
ジカルボン酸化合物およびそのエステルとしては、たとえば、シュウ酸、アジピン酸、およびセバシン酸、ならびにそれらのジメチルエステル等が挙げられる。また、ジオール化合物およびそのエステルとしては、たとえば、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、およびポリエチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ならびにそれらのジメチルエステル等が挙げられる。また、ヒドロキシカルボン酸化合物およびそのエステルとしては、たとえば、乳酸、3−ヒドロキシ酪酸、およびクエン酸、ならびにそれらのジメチルエステル・酢酸エステル等、およびラクチド、プロピオラクトン、ブチロラクトン、およびカプロラクトン等が挙げられる。 Examples of the dicarboxylic acid compound and its ester include oxalic acid, adipic acid, and sebacic acid, and dimethyl esters thereof. Examples of the diol compound and its ester include ethylene glycol, diethylene glycol, 1,2-propanediol, polyethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, and dimethyl esters thereof. Can be mentioned. Examples of the hydroxycarboxylic acid compound and its ester include lactic acid, 3-hydroxybutyric acid, citric acid, dimethyl ester and acetic acid ester thereof, and lactide, propiolactone, butyrolactone, and caprolactone. ..
こうして得られるC−C二重結合を環に有する環状化合物を、過酸化物を用いてエポキシ化することにより、飽和環状化合物の環に直接エポキシ基を有してなる脂環式エポキシ化合物を得ることができる。過酸化物は、個々の環状化合物や許容される反応条件等に応じて選択されるものであり、特に限定されるものではないが、たとえば、過酸化水素、過酢酸、およびt−ブチルヒドロペルオキシド等が挙げられる。 The cyclic compound having a CC double bond in the ring thus obtained is epoxidized with a peroxide to obtain an alicyclic epoxy compound having an epoxy group directly on the ring of the saturated cyclic compound. be able to. The peroxide is selected according to individual cyclic compounds, acceptable reaction conditions, etc., and is not particularly limited, but is, for example, hydrogen peroxide, peracetic acid, and t-butyl hydroperoxide. And so on.
飽和環状化合物の環に直接エポキシ基を有してなる脂環式エポキシ化合物の具体例を挙げれば、たとえば、3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、1,2−エポキシ−4−ビニルシクロヘキサン、1,2−エポキシ−1−メチル−4−(1−メチルエポキシエチル)シクロヘキサン、3,4−エポキシシクロヘキシルメチル メタアクリレート、2,2−ビス(ヒドロキシメチル)−1−ブタノールの4−(1,2−エポキシエチル)−1,2−エポキシシクロヘキサン付加物、エチレン ビス(3,4−エポキシシクロヘキサンカルボキシレート)、オキシジエチレン ビス(3,4−エポキシシクロヘキサンカルボキシレート)、1,4−シクロヘキサンジメチル ビス(3,4−エポキシシクロヘキサンカルボキシレート)、および3−(3,4−エポキシシクロヘキシルメトキシカルボニル)プロピル 3,4−エポキシシクロヘキサンカルボキシレート等が挙げられる。 Specific examples of the alicyclic epoxy compound having an epoxy group directly on the ring of the saturated cyclic compound include, for example, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxide-. Of 4-vinylcyclohexane, 1,2-epoxide-1-methyl-4- (1-methylepoxyethyl) cyclohexane, 3,4-epoxycyclohexylmethylmethacrylate, 2,2-bis (hydroxymethyl) -1-butanol 4- (1,2-epoxyethyl) -1,2-epoxycyclohexane adduct, ethylene bis (3,4-epoxycyclohexanecarboxylate), oxydiethylene bis (3,4-epoxycyclohexanecarboxylate), 1,4 Cyclohexanedimethylbis (3,4-epoxidecyclohexanecarboxylate), 3- (3,4-epoxidecyclohexylmethoxycarbonyl) propyl 3,4-epoxidecyclohexanecarboxylate and the like can be mentioned.
飽和環状化合物の環に直接グリシジルエーテル基またはグリシジル基を有してなる脂環式エポキシ化合物とは、後記する水酸基を有する芳香族化合物のグリシジルエーテル化物の芳香環を、触媒の存在下、加圧下で選択的に水素化反応を行なうことにより得られる化合物、水酸基を有する飽和環状化合物のグリシジルエーテル化物、およびビニル基を有する飽和環状化合物のエポキシ化物をいう。 The alicyclic epoxy compound having a glycidyl ether group or a glycidyl group directly on the ring of the saturated cyclic compound is an aromatic ring of a glycidyl etherified product of an aromatic compound having a hydroxyl group, which will be described later, under pressure in the presence of a catalyst. Refers to a compound obtained by selectively carrying out a hydrogenation reaction in (1), a glycidyl ether compound of a saturated cyclic compound having a hydroxyl group, and an epoxidized compound of a saturated cyclic compound having a vinyl group.
水添化される水酸基を有する芳香族化合物のグリシジルエーテル化物としては、特に限定されるものではないが、たとえば、ビスフェノールAのグリシジルエーテル化物およびそのオリゴマー体、ならびにビスフェノールFのグリシジルエーテル化物およびそのオリゴマー体等が挙げられる。 The glycidyl etherified product of the aromatic compound having a hydrogenated hydroxyl group is not particularly limited, but for example, the glycidyl etherified product of bisphenol A and its oligomer, and the glycidyl etherified product of bisphenol F and its oligomer. The body etc. can be mentioned.
水酸基を有する飽和環状化合物のグリシジルエーテル化物としては、特に限定されるものではないが、たとえば、1,4−シクロヘキサンジメタノール ジグリシジルエーテル等が挙げられる。 The glycidyl ether compound of the saturated cyclic compound having a hydroxyl group is not particularly limited, and examples thereof include 1,4-cyclohexanedimethanol diglycidyl ether.
ビニル基を有する飽和環状化合物のエポキシ化物としては、特に限定されるものではないが、たとえば、1,3−ビス(エポキシエチル)ヘキサン、1,2,4−トリス(エポキシエチル)ヘキサン、および2,4−ビス(エポキシエチル)−1−ビニルシクロヘキサン等が挙げられる。 The epoxidized product of the saturated cyclic compound having a vinyl group is not particularly limited, and is, for example, 1,3-bis (epoxyethyl) hexane, 1,2,4-tris (epoxyethyl) hexane, and 2. , 4-Bis (epoxyethyl) -1-vinylcyclohexane and the like.
上記した脂環式エポキシ化合物の中でも、偏光板の耐久性を向上させる上において良好な硬化物特性を示し、または適度な硬化性を有するとともに、比較的廉価に入手できることから、3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレートおよびビスフェノールAのグリシジルエーテル化物の水添化物が好ましく、3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレートがより好ましい。 Among the above-mentioned alicyclic epoxy compounds, 3,4-epoxy is available because it exhibits good cured product properties in improving the durability of the polarizing plate, has appropriate curability, and can be obtained at a relatively low price. Hydrochlorides of cyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and glycidyl etherified bisphenol A are preferred, with 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate being more preferred.
また、これらの脂環式エポキシ化合物は、それぞれ単独で使用してもよいし、2種以上を混合して使用してもよい。 Further, these alicyclic epoxy compounds may be used alone or in combination of two or more.
脂環式エポキシ化合物を含む活性エネルギー線硬化性組成物の色相は、硬化前における活性エネルギー線硬化性組成物のガードナー色度で5以下が好ましく、3以下がより好ましく、1以下がさらに好ましい。色相が5を超えると、接着剤層の着色によって偏光板の色相へ影響が現れる場合がある。 The hue of the active energy ray-curable composition containing the alicyclic epoxy compound is preferably 5 or less, more preferably 3 or less, still more preferably 1 or less, in terms of Gardner chromaticity of the active energy ray-curable composition before curing. If the hue exceeds 5, coloring of the adhesive layer may affect the hue of the polarizing plate.
水酸基を有する芳香族化合物および鎖状化合物のグリシジルエーテル化物とは、その水酸基へエピクロルヒドリン等の化合物をアルカリ条件下において付加縮合させることにより得られるものである。たとえば、ビスフェノール型エポキシ樹脂、多芳香環型エポキシ樹脂、およびアルキレングリコール型エポキシ樹脂等が挙げられる。 The glycidyl etherified product of an aromatic compound having a hydroxyl group and a chain compound is obtained by addition-condensing a compound such as epichlorohydrin to the hydroxyl group under alkaline conditions. For example, bisphenol type epoxy resin, polyaromatic ring type epoxy resin, alkylene glycol type epoxy resin and the like can be mentioned.
ビスフェノール型エポキシ樹脂としては、たとえば、ビスフェノールAのグリシジルエーテル化物およびそのオリゴマー体、ビスフェノールFのグリシジルエーテル化物およびそのオリゴマー体、ならびに3,3’,5,5’−メチル−4,4’−ビフェノールのグリシジルエーテル化物およびそのオリゴマー体等が挙げられる。 Examples of the bisphenol type epoxy resin include glycidyl etherified product of bisphenol A and its oligomer, glycidyl etherified product of bisphenol F and its oligomer, and 3,3', 5,5'-methyl-4,4'-biphenol. Examples thereof include glycidyl etherified products and oligomers thereof.
また、多芳香環型エポキシ樹脂としては、たとえば、フェノールノボラック樹脂のグリシジルエーテル化物、クレゾールノボラック樹脂のグリシジルエーテル化物、フェノールアラルキル樹脂のグリシジルエーテル化物、ナフトールアラルキル樹脂のグリシジルエーテル化物、およびフェノールジシクロペンタジエン樹脂のグリシジルエーテル化物等が挙げられる。さらに、トリヒドロキシフェニルメタンのグリシジルエーテル化物およびそのオリゴマー体、ならびにトリスフェノールPAのグリシジルエーテル化物およびそのオリゴマー体等も挙げられる。 Examples of the polyaromatic ring type epoxy resin include glycidyl etherified product of phenol novolac resin, glycidyl etherified product of cresol novolac resin, glycidyl etherified product of phenol aralkyl resin, glycidyl etherified product of naphthol aralkyl resin, and phenoldicyclopentadiene. Examples thereof include glycidyl etherified resin. Further, glycidyl etherified product of trihydroxyphenylmethane and an oligomer thereof, glycidyl etherified product of trihydroxyphenyl PA and an oligomer thereof, and the like can be mentioned.
また、アルキレングリコール型エポキシ樹脂としては、たとえば、エチレングリコールのグリシジルエーテル化物、ジエチレングリコールのグリシジルエーテル化物、1,4−ブタンジオールのグリシジルエーテル化物、および1,6−ヘキサンジオールのグリシジルエーテル化物等が挙げられる。 Examples of the alkylene glycol type epoxy resin include glycidyl etherified product of ethylene glycol, glycidyl etherified product of diethylene glycol, glycidyl etherified product of 1,4-butanediol, and glycidyl etherified product of 1,6-hexanediol. Be done.
アミノ基を有する化合物のグリシジルアミノ化物とは、そのアミノ基へエピクロルヒドリン等の化合物を塩基性条件下において付加縮合させることにより得られるものである。アミノ基を有する化合物は、同時に水酸基を有していてもよい。たとえば、1,3−フェニレンジアミンのグリシジルアミノ化物およびそのオリゴマー体、1,4−フェニレンジアミンのグリシジルアミノ化物およびそのオリゴマー体、3−アミノフェノールのグリシジルアミノ化およびグリジシジルエーテル化物ならびにそのオリゴマー体、および、4−アミノフェノールのグリシジルアミノ化およびグリジシジルエーテル化物ならびにそのオリゴマー体等が挙げられる。 The glycidyl amination of a compound having an amino group is obtained by addition-condensing a compound such as epichlorohydrin to the amino group under basic conditions. The compound having an amino group may have a hydroxyl group at the same time. For example, glycidyl aminated products of 1,3-phenylenediamine and their oligomers, glycidyl aminoated products of 1,4-phenylenediamine and their oligomers, glycidyl amination of 3-aminophenol and glycidyl etherified products and their oligomers. , And glycidyl amination of 4-aminophenol, glycidyl etherified product, and oligomers thereof.
C−C二重結合を有する鎖状化合物のエポキシ化物とは、C−C二重結合を有する鎖状化合物のC−C二重結合を、過酸化物を用いて塩基性条件下においてエポキシ化させることにより得られるものである。 The epoxidized product of a chain compound having a CC double bond is an epoxidation of a CC double bond of a chain compound having a CC double bond using a peroxide under basic conditions. It is obtained by letting it.
C−C二重結合を有する鎖状化合物としては、特に限定されるものではないが、たとえば、ブタジエン、ポリブタジエン、イソプレン、ペンタジエン、およびヘキサジエン等が挙げられる。 The chain compound having a CC double bond is not particularly limited, and examples thereof include butadiene, polybutadiene, isoprene, pentadiene, and hexadiene.
これらのエポキシ化合物およびそのオリゴマー等は、それぞれ単独で使用してもよいし、2種以上を混合して使用してもよい。 These epoxy compounds and their oligomers may be used alone or in combination of two or more.
このようなエポキシ化合物は、市販品を容易に入手することが可能であり、たとえば、それぞれ商品名で、「セロキサイド」、「サイクロマー」(以上、ダイセル化学工業株式会社製)および「サイラキュア」(ダウケミカル社製)、「エピコート」(ジャパンエポキシレジン株式会社製)、「エピクロン」(DIC株式会社製)、「エポトート」(東都化成株式会社製)、「アデカレジン」(株式会社ADEKA製)、「デナコール」(ナガセケムテックス株式会社製)、「ダウエポキシ」(ダウケミカル社製)および「テピック」(日産化学工業株式会社製)等が挙げられる。 Commercially available products of such epoxy compounds are easily available. For example, the trade names are "Ceroxide", "Cyclomer" (all manufactured by Dicell Chemical Industries, Ltd.) and "Syracure" (Syracure). Dow Chemical Co., Ltd.), "Epicort" (manufactured by Japan Epoxy Resin Co., Ltd.), "Epicron" (manufactured by DIC Corporation), "Epototo" (manufactured by Toto Kasei Co., Ltd.), "Adecalegin" (manufactured by ADEKA Co., Ltd.) Examples include "Denacol" (manufactured by Nagase ChemteX Corporation), "Dow Epoxy" (manufactured by Dow Chemical Co., Ltd.) and "Tepic" (manufactured by Nissan Chemical Industries, Ltd.).
エポキシ化合物のエポキシ当量は、通常、30〜2000g/eqであり、50〜1500g/eqであることが好ましく、70〜1000g/eqであることがより好ましい。エポキシ当量が30g/eqを下回ると、第一の接着剤層の可撓性が低下したり、接着強度が低下したりする場合がある。一方、2000g/eqを超えると、硬化速度が低下したり、硬化した接着剤層に必要な剛性や強度が不足したりする場合がある。なお、このエポキシ当量は、JIS K 7236(ISO 3001)に準拠して測定する値である。また、エポキシ化合物が高純度単量体であれば、その分子量より理論量を算出することができる。 The epoxy equivalent of the epoxy compound is usually 30 to 2000 g / eq, preferably 50 to 1500 g / eq, and more preferably 70 to 1000 g / eq. If the epoxy equivalent is less than 30 g / eq, the flexibility of the first adhesive layer may decrease or the adhesive strength may decrease. On the other hand, if it exceeds 2000 g / eq, the curing rate may decrease, or the rigidity and strength required for the cured adhesive layer may be insufficient. This epoxy equivalent is a value measured in accordance with JIS K 7236 (ISO 3001). If the epoxy compound is a high-purity monomer, the theoretical amount can be calculated from its molecular weight.
活性エネルギー線硬化性化合物としては、複数のエポキシ化合物、例えば、脂環式エポキシ化合物と、脂環式エポキシ化合物以外のエポキシ化合物とを併用することにより、偏光フィルムと延伸ポリエステルフィルムとの密着性を向上させることができる。 As the active energy ray-curable compound, a plurality of epoxy compounds, for example, an alicyclic epoxy compound and an epoxy compound other than the alicyclic epoxy compound are used in combination to improve the adhesion between the polarizing film and the stretched polyester film. Can be improved.
活性エネルギー線硬化性化合物としては、オキセタン化合物を用いることができる。オキセタン化合物は、活性エネルギー線硬化性組成物の硬化速度を向上させることができる。オキセタン化合物としては、オキセタン環を有する化合物であって、活性エネルギー線硬化性であれば特に限定されるものではないが、たとえば、1,4−ビス{[(3−エチルオキセタン−3−イル)メトキシ]メチル}ベンゼン、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン、ビス(3−エチル−3−オキセタニルメチル)エーテル、3−エチル−3−(フェノキシメチル)オキセタン、3−エチル−3−(シクロヘキシロキシメチル)オキセタン、フェノールノボラックオキセタン、および1,3−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン等が挙げられる。 As the active energy ray-curable compound, an oxetane compound can be used. The oxetane compound can improve the curing rate of the active energy ray-curable composition. The oxetane compound is a compound having an oxetane ring and is not particularly limited as long as it is active energy ray-curable, but for example, 1,4-bis {[(3-ethyloxetane-3-yl)). Methoxy] methyl} benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl Examples thereof include -3- (cyclohexyloxymethyl) oxetane, phenol novolac oxetane, and 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene.
このようなオキセタン化合物は、市販品を容易に入手することが可能であり、たとえば、それぞれ商品名で、「アロンオキセタン」(東亞合成株式会社製)、および「ETERNACOLL」(宇部興産株式会社製)等が挙げられる。 Commercially available products of such oxetane compounds can be easily obtained. For example, "Aron Oxetane" (manufactured by Toagosei Co., Ltd.) and "ETERNACOLL" (manufactured by Ube Industries, Ltd.), respectively, have trade names. And so on.
エポキシ化合物やオキセタン化合物を含む活性エネルギー線硬化性組成物は、活性エネルギー線によって硬化するために、カチオン重合開始剤を配合するのが好ましい。カチオン重合開始剤は、可視光線、紫外線、X線、および電子線等の活性エネルギー線の照射によってカチオン種またはルイス酸を発生し、エポキシ基、オキセタンの重合反応を開始させるものである。 The active energy ray-curable composition containing an epoxy compound or an oxetane compound is preferably blended with a cationic polymerization initiator in order to be cured by the active energy rays. The cationic polymerization initiator is one that generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group and an oxetane.
このカチオン重合開始剤は、潜在性が付与されていることが好ましい。潜在性の付与によって本発明に用いられる活性エネルギー線硬化性組成物の可使時間が長くなり、作業性も良好になる。 It is preferable that the cationic polymerization initiator has a potential. The addition of potential prolongs the pot life of the active energy ray-curable composition used in the present invention and improves workability.
活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物としては、特に限定されるものではないが、たとえば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩のようなオニウム塩、および鉄−アレン錯体等を挙げることができる。 The compound that produces a cationic species or Lewis acid by irradiation with active energy rays is not particularly limited, and is, for example, an aromatic diazonium salt, an aromatic iodonium salt, an onium salt such as an aromatic sulfonium salt, and iron. -Allene complex and the like can be mentioned.
芳香族ジアゾニウム塩としては、たとえば、ベンゼンジアゾニウム ヘキサフルオロアンチモネート、ベンゼンジアゾニウム ヘキサフルオロホスフェート、およびベンゼンジアゾニウム ヘキサフルオロボレート等が挙げられる。 Examples of the aromatic diazonium salt include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, benzenediazonium hexafluoroborate and the like.
芳香族ヨードニウム塩としては、たとえば、ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアンチモネート、およびジ(4−ノニルフェニル)ヨードニウム ヘキサフルオロホスフェート等が挙げられる。 Examples of the aromatic iodonium salt include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, and di (4-nonylphenyl) iodonium hexafluorophosphate.
芳香族スルホニウム塩としては、たとえば、トリフェニルスルホニウム ヘキサフルオロホスフェート、トリフェニルスルホニウム ヘキサフルオロアンチモネート、トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル[4−(フェニルチオ)フェニル]スルフォニウム ヘキサフルオロアンチモネート、4,4’−ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、4,4’−ビス〔ジ(β−ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、4,4’−ビス〔ジ(β−ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、7−〔ジ(p−トルイル)スルホニオ〕−2−イソプロピルチオキサントン ヘキサフルオロアンチモネート、7−〔ジ(p−トルイル)スルホニオ〕−2−イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、4−フェニルカルボニル−4’−ジフェニルスルホニオ−ジフェニルスルフィド ヘキサフルオロホスフェート、4−(p−tert−ブチルフェニルカルボニル)−4’−ジフェニルスルホニオ−ジフェニルスルフィド ヘキサフルオロアンチモネート、および4−(p−tert−ブチルフェニルカルボニル)−4’−ジ(p−トルイル)スルホニオ−ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic sulfonium salt include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate, and the like. 4,4'-bis [diphenylsulfonio] diphenylsulfide bishexafluorophosphate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4'-bis [Di (β-hydroxyethoxy) phenylsulfonium] diphenylsulfide bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfonium ] -2-Isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfonio -Diphenylsulfide Hexafluoroantimonate, 4- (p-tert-butylphenylcarbonyl) -4'-di (p-toluyl) sulfonio-diphenylsulfide tetrakis (pentafluorophenyl) borate and the like can be mentioned.
鉄−アレン錯体としては、たとえば、キシレン−シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン−シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、およびキシレン−シクロペンタジエニル鉄(II)−トリス(トリフルオロメチルスルホニル)メタナイド等が挙げられる。 Examples of the iron-allene complex include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, and xylene-cyclopentadienyl iron (II)-. Examples thereof include tris (trifluoromethylsulfonyl) metanide.
これらのカチオン重合開始剤は、それぞれ単独で使用してもよいし、2種以上を混合して使用してもよい。中でも、特に芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する硬化物層を与えることができるため、好ましく用いられる。 Each of these cationic polymerization initiators may be used alone, or two or more thereof may be mixed and used. Among them, aromatic sulfonium salts are particularly preferably used because they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and thus can provide a cured product layer having excellent curability and good mechanical strength and adhesive strength. ..
カチオン重合開始剤の配合量は、活性エネルギー線硬化性化合物の合計100重量部に対して、通常、0.5〜20重量部であり、1〜15重量部が好ましい。その量が0.5重量部を下回ると、硬化が不十分になり、硬化物層の機械強度や接着強度が低下する場合がある。また、その量が20重量部を超えると、硬化物層中のイオン性物質が増加することで硬化物層の吸湿性が高くなり、得られる偏光板の耐久性能が低下する場合がある。 The blending amount of the cationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the total active energy ray-curable compound. If the amount is less than 0.5 parts by weight, the curing becomes insufficient, and the mechanical strength and the adhesive strength of the cured product layer may decrease. On the other hand, if the amount exceeds 20 parts by weight, the amount of ionic substances in the cured product layer increases, so that the hygroscopicity of the cured product layer increases, and the durability performance of the obtained polarizing plate may decrease.
これらのカチオン重合開始剤は、市販品を容易に入手することが可能であり、たとえば、それぞれ商品名で、「カヤラッド」(日本化薬株式会社製)、「サイラキュア」(ユニオンカーバイド社製)、光酸発生剤「CPI」(サンアプロ株式会社製)、光酸発生剤「TAZ」、「BBI」、「DTS」(以上、ミドリ化学株式会社製)、「アデカオプトマー」(株式会社ADEKA製)、および「RHODORSIL」(ローディア社製)等が挙げられる。 Commercially available products of these cationic polymerization initiators are easily available. For example, the trade names are "Kayarad" (manufactured by Nippon Kayaku Co., Ltd.), "Syracure" (manufactured by Union Carbide), and so on. Photoacid generator "CPI" (manufactured by Sun Appro Co., Ltd.), photoacid generator "TAZ", "BBI", "DTS" (manufactured by Midori Chemical Co., Ltd.), "ADEKA PUTMER" (manufactured by ADEKA Corporation) , And "RHODORSIL" (manufactured by Rhodia) and the like.
((メタ)アクリレート化合物等のラジカル重合性モノマー)
ラジカル重合性モノマーとしては、例えばアクリレート化合物、メタクリレート化合物(以下、アクリレートとメタアクリレートとの両方を含む意味で(メタ)アクリレートとも記載する)、アリルウレタン化合物、不飽和ポリエステル化合物、スチレン系化合物が挙げられる。入手がしやすく扱いやすい点で(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(ポリ)エステル(メタ)アクリレート、(ポリ)エーテル(メタ)アクリレート、アルコール類の(メタ)アクリレート、その他の(メタ)アクリレートが挙げられる。
(Radical polymerizable monomer such as (meth) acrylate compound)
Examples of the radically polymerizable monomer include an acrylate compound, a methacrylate compound (hereinafter, also referred to as (meth) acrylate in the sense of including both acrylate and methacrylate), an allyl urethane compound, an unsaturated polyester compound, and a styrene compound. Be done. (Meta) acrylates are preferred because they are easily available and easy to handle. Examples of (meth) acrylates include epoxy (meth) acrylates, urethane (meth) acrylates, (poly) ester (meth) acrylates, (poly) ether (meth) acrylates, alcoholic (meth) acrylates, and other (meth) acrylates. Acrylate can be mentioned.
上記の(メタ)アクリレート化合物として例示したエポキシ(メタ)アクリレートとは、1種または2種以上のエポキシ樹脂とアクリル酸またはメタクリル酸(以下、両方を含む意味で(メタ)アクリル酸とも記載する)とのエステル化合物である。ここでエステルを誘導するエポキシ樹脂は特に制限されず、芳香族エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、エポキシノボラック樹脂等、分子中に1個または2個以上のエポキシ基を有するものを用いることができる。 The epoxy (meth) acrylate exemplified as the above (meth) acrylate compound is one or more kinds of epoxy resins and acrylic acid or methacrylic acid (hereinafter, also referred to as (meth) acrylic acid in the sense of including both). It is an ester compound with. Here, the epoxy resin for inducing the ester is not particularly limited, and one having one or more epoxy groups in the molecule, such as an aromatic epoxy resin, an alicyclic epoxy resin, an aliphatic epoxy resin, and an epoxy novolak resin. Can be used.
また、ウレタン(メタ)アクリレートとは、1種または2種以上の(ポリ)エステルポリオール、(ポリ)エーテルポリオール、多価アルコール等のポリオールと(メタ)アクリル酸とのエステル化合物である水酸基含有(メタ)アクリレートと1種または2種以上の(ポリ)イソシアネート化合物とを反応させて得ることができる(メタ)アクリレート;1種または2種以上の(ポリ)エステルポリオール、(ポリ)エーテルポリオール、多価アルコール等のポリオールと水酸基含有(メタ)アクリレートとイソシアネート類とを反応させて得られる(メタ)アクリレート等の、ウレタン結合を有するエステル化合物である。 The urethane (meth) acrylate contains a hydroxyl group which is an ester compound of one or more kinds of (poly) ester polyols, (poly) ether polyols, polyhydric alcohols and the like and (meth) acrylic acid. A (meth) acrylate obtained by reacting a meta) acrylate with one or more (poly) isocyanate compounds; one or more (poly) ester polyols, (poly) ether polyols, many. It is an ester compound having a urethane bond, such as (meth) acrylate obtained by reacting a polyol such as a valent alcohol with a hydroxyl group-containing (meth) acrylate and isocyanates.
(ポリ)エステルポリオールを誘導する多価アルコールとしては、例えば1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。(ポリ)エステルポリオールを誘導するポリカルボン酸としては、例えば、アジピン酸、テレフタル酸、無水フタル酸、トリメリット酸、トリメシン酸等が挙げられる。 Examples of the polyhydric alcohol that induces the (poly) ester polyol include 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, and polypropylene. Examples thereof include glycol, polybutylene glycol, trimethylolpropane, glycerin, pentaerythritol, dipentaerythritol and the like. Examples of the polycarboxylic acid that induces the (poly) ester polyol include adipic acid, terephthalic acid, phthalic anhydride, trimellitic acid, and trimesic acid.
(ポリ)エーテルポリオールとしては、前述した多価アルコールに、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加させたものが挙げられる。(ポリ)イソシアネート化合物としては、1価または2価以上のイソシアネートが挙げられ、2価以上のイソシアネートが好ましい。 Examples of the (poly) ether polyol include those obtained by adding an alkylene oxide such as ethylene oxide, propylene oxide, or butylene oxide to the above-mentioned polyhydric alcohol. Examples of the (poly) isocyanate compound include monovalent or divalent or higher valent isocyanate, and divalent or higher valent isocyanate is preferable.
2価以上のイソシアネートとしては、2,4−および/または2,6−トリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、p−フェニレンジイソシアネート、キシリレンジイソシアネート、1,5−ナフチレンジイソシアネート、3,3’−ジメチルジフェニル−4,4’−ジイソシアネート、ジアニシジンジイソシアネート、テトラメチルキシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、トランスおよび/またはシス−1,4−シクロヘキサンジイソシアネート、ノルボルネンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、2,2,4および/または(2,4,4)−トリメチルヘキサメチレンジイソシアネート、リシンジイソシアネート、トリフェニルメタントリイソシアネート、1−メチルベンゾール−2,4,6−トリイソシアネート、ジメチルトリフェニルメタンテトライソシアネートが挙げられる。 Examples of divalent or higher valent isocyanates include 2,4- and / or 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, p-phenylenediocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, and 3 , 3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, tetramethylxylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, trans and / or cis-1,4-cyclohexanediisocyanate, Norbornen diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4 and / or (2,4,4) -trimethylhexamethylene diisocyanate, lysine diisocyanate, triphenylmethane triisocyanate, 1-methylbenzol-2,4 Examples thereof include 6-triisocyanate and dimethyltriphenylmethanetetraisocyanate.
また、(ポリ)エステル(メタ)アクリレートとは、分子中に1個または2個以上の水酸基を有する(ポリ)エステルと(メタ)アクリル酸とのエステル化合物である。分子中に1個または2個以上の水酸基を有する(ポリ)エステルとしては、1種または2種以上の多価アルコールと、1種または2種以上のモノカルボン酸またはポリカルボン酸とのエステル化合物が挙げられる。 The (poly) ester (meth) acrylate is an ester compound of a (poly) ester having one or two or more hydroxyl groups in the molecule and a (meth) acrylic acid. As a (poly) ester having one or more hydroxyl groups in the molecule, an ester compound of one or more polyhydric alcohols and one or more monocarboxylic acids or polycarboxylic acids. Can be mentioned.
分子中に1個または2個以上の水酸基を有する(ポリ)エステルを誘導する多価アルコールとしては、前述した化合物と同様のものが挙げられ、モノカルボン酸としては、例えばギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、カプリル酸、2−エチルヘキサン酸、安息香酸等が挙げられる。ポリカルボン酸としては、前述した化合物と同様のものが挙げられる。 Examples of the polyvalent alcohol for inducing a (poly) ester having one or more hydroxyl groups in the molecule include the same compounds as those described above, and examples of the monocarboxylic acid include formic acid, acetic acid, and propionic acid. , Butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, benzoic acid and the like. Examples of the polycarboxylic acid include the same compounds as those described above.
また、(ポリ)エーテル(メタ)アクリレートとは、分子中に1個または2個以上の水酸基を有する(ポリ)エーテルと(メタ)アクリル酸とのエステル化合物である。分子中に1個または2個以上の水酸基を有する(ポリ)エーテルとしては、2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、多価アルコールに1種または2種以上のアルキレンオキサイドを付加することによって得られるもの等が挙げられる。多価アルコールおよびアルキレンオキサイドとしては、前述した化合物と同様のものが挙げられる。具体的には、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Further, the (poly) ether (meth) acrylate is an ester compound of (poly) ether having one or two or more hydroxyl groups in the molecule and (meth) acrylic acid. As the (poly) ether having one or more hydroxyl groups in the molecule, one or more alkylene oxides are added to 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, and polyhydric alcohol. Examples include those obtained by doing so. Examples of the polyhydric alcohol and the alkylene oxide include the same compounds as those described above. Specifically, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, propylene. Examples thereof include oxide-modified trimethylolpropane tri (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
また、アルコール類の(メタ)アクリレートとは、分子中に1個または2個以上の水酸基を有するアルコール(特に、脂肪族アルコールまたは芳香族アルコール)類と(メタ)アクリレートとのエステル化合物である。例えば、2−エチルヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボニル(メタ)アクリレート、ベンジル(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 The (meth) acrylate of alcohols is an ester compound of alcohols (particularly aliphatic alcohols or aromatic alcohols) having one or more hydroxyl groups in the molecule and (meth) acrylate. For example, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isooctyl (meth). Acrylate, tetrahydrofurfuryl (meth) acrylate, isobonyl (meth) acrylate, benzyl (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di Examples thereof include (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylpropantri (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
その他のアクリレートとしては、ε−カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、フルオレン誘導体ジ(メタ)アクリレート、カルバゾール誘導体ジ(メタ)アクリレート等が挙げられる。 Examples of other acrylates include ε-caprolactone-modified dipentaerythritol hexa (meth) acrylate, fluorene derivative di (meth) acrylate, and carbazole derivative di (meth) acrylate.
上記のラジカル重合性モノマーは、硬化速度を調節するために使用することができる。なお、ラジカル重合性モノマーを用いる場合、光ラジカル重合開始剤を少なくとも用いる。 The radically polymerizable monomer described above can be used to control the curing rate. When a radically polymerizable monomer is used, at least a photoradical polymerization initiator is used.
光ラジカル重合開始剤としては、アセトフェノン系化合物、ベンジル系化合物、べンゾフェノン系化合物、チオキサントン系化合物等のケトン系化合物を挙げることができる。 Examples of the photoradical polymerization initiator include ketone compounds such as acetophenone compounds, benzyl compounds, benzophenone compounds, and thioxanthone compounds.
アセトフェノン系化合物としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、4’−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、2−ヒドロキシメチル−2−メチルプロピオフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、p−ジメチルアミノアセトフェノン、P−ターシャリブチルジクロロアセトフェノン、p−ターシャリブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパノン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル等が挙げられ、ベンジル系化合物としては、ベンジル、アニシル等が挙げられ、ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラーケトン、4,4’−ビスジエチルアミノベンゾフェノン、4,4’−ジクロロベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルスルフィド等が挙げられ、チオキサントン系化合物としては、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、2,4−ジエチルチオキサントン等が挙げられる。 Examples of the acetophenone compound include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4'-isopropyl-2-hydroxy-2-methylpropiophenone, and 2-hydroxymethyl-. 2-Methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, p-dimethylaminoacetophenone, P-tershalibutyldichloroacetophenone, p-tershaributyltrichloroacetophenone, p-azidopen Zaracetophenone, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether and the like, and examples of the benzyl-based compound include benzyl, anisyl and the like, and benzophenone-based. Examples of the compound include benzophenone, methyl o-benzoylbenzoate, Michler ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenylsulfide and the like, and thioxanthone. Examples of the system compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2,4-diethylthioxanthone and the like.
これらの光ラジカル重合開始剤は、1種あるいは2種以上のものを所望の性能に応じて配合して使用することができ、ラジカル重合性モノマーに対して、好ましくは0.05〜10質量%、より好ましくは0.1〜10質量%配合される。ラジカル重合性モノマーに対する光ラジカル重合開始剤の配合量が0.05質量%以上である場合、光硬化性接着剤の硬化をより良好に進行させることができ、10質量%以下である場合、光硬化性接着剤を硬化させて形成した接着剤層の物理的強度が良好である。 One or more of these photoradical polymerization initiators can be blended and used according to desired performance, and preferably 0.05 to 10% by mass with respect to the radically polymerizable monomer. , More preferably 0.1 to 10% by mass. When the blending amount of the photoradical polymerization initiator with respect to the radically polymerizable monomer is 0.05% by mass or more, the curing of the photocurable adhesive can proceed more satisfactorily, and when it is 10% by mass or less, light The physical strength of the adhesive layer formed by curing the curable adhesive is good.
活性エネルギー線硬化性組成物に含有される全塩素量は、0.1ppm〜15000ppmの範囲が好ましく、0.5ppm〜2000ppmの範囲がより好ましく、1.0〜1000ppmの範囲がさらに好ましい。活性エネルギー線硬化性組成物に含有される全塩素量が0.1ppmを下回ると、その組成物の硬化速度が極端に遅くなる場合がある。また、15000ppmを超えると、その塩素の影響により、塗工装置が腐食したり、液晶パネルの金属部品が腐食したりする場合がある。なお、この全塩素量は、JIS K 7243−3(ISO 21627−3)に準拠して測定する値である。 The total amount of chlorine contained in the active energy ray-curable composition is preferably in the range of 0.1 ppm to 15000 ppm, more preferably in the range of 0.5 ppm to 2000 ppm, and even more preferably in the range of 1.0 to 1000 ppm. If the total amount of chlorine contained in the active energy ray-curable composition is less than 0.1 ppm, the curing rate of the composition may become extremely slow. If it exceeds 15,000 ppm, the coating device may be corroded or the metal parts of the liquid crystal panel may be corroded due to the influence of chlorine. The total amount of chlorine is a value measured in accordance with JIS K 7243-3 (ISO 21627-3).
用いられる活性エネルギー線としては、たとえば、波長が1pm〜10nmのX線、10〜400nmの紫外線、および400〜800nmの可視光線等が挙げられる。中でも、利用の容易さ、活性エネルギー線硬化性組成物の調整の容易さおよびその安定性、ならびにその硬化性能の点で紫外線が好ましく用いられる。 Examples of the active energy rays used include X-rays having a wavelength of 1 pm to 10 nm, ultraviolet rays having a wavelength of 10 to 400 nm, and visible light having a wavelength of 400 to 800 nm. Among them, ultraviolet rays are preferably used in terms of ease of use, ease of adjustment of the active energy ray-curable composition and its stability, and its curing performance.
本発明で用いられる活性エネルギー線硬化性組成物は、活性エネルギー線の照射によって固化(硬化)し、該硬化物層を狭持するフィルム同士に接着力を与える硬化性組成物である。 The active energy ray-curable composition used in the present invention is a curable composition that is solidified (cured) by irradiation with active energy rays and imparts adhesive force to films sandwiching the cured product layer.
用いる光源は、特に限定されるものではないが、たとえば、波長400nm以下に発光分布を有する、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、およびメタルハライドランプ等が挙げられる。 The light source used is not particularly limited, but for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, and a microwave-excited mercury lamp having an emission distribution at a wavelength of 400 nm or less. And metal halide lamps and the like.
照射強度は、活性エネルギー線硬化性組成物や照射時間によって決定されるものであり、特に制限されるものではないが、たとえば、開始剤の活性化に有効な波長領域の照射強度が0.1〜1000mW/cm2であることが好ましい。活性エネルギー線硬化性組成物への光照射強度が0.1mW/cm2未満であると、硬化反応時間が長くなる、すなわち長い照射時間をかけなければ硬化せず、生産性向上に不利となる場合がある。また、1000mW/cm2を超えると、ランプから輻射される熱、および活性エネルギー線硬化性組成物の重合時の発熱により、活性エネルギー線硬化性組成物の黄変や偏光フィルムの劣化を生じる場合がある。 The irradiation intensity is determined by the active energy ray-curable composition and the irradiation time, and is not particularly limited. For example, the irradiation intensity in the wavelength region effective for activating the initiator is 0.1. It is preferably ~ 1000 mW / cm 2 . If the light irradiation intensity of the active energy ray-curable composition is less than 0.1 mW / cm 2 , the curing reaction time becomes long, that is, it does not cure unless a long irradiation time is taken, which is disadvantageous in improving productivity. In some cases. Further, if it exceeds 1000 mW / cm 2 , the heat radiated from the lamp and the heat generated during the polymerization of the active energy ray-curable composition may cause yellowing of the active energy ray-curable composition or deterioration of the polarizing film. There is.
照射時間は、活性エネルギー線硬化性組成物や照射強度によって決定されるものであり、特に制限されるものではないが、たとえば、照射強度と照射時間の積として表される積算光量が10〜5,000mJ/cm2となるように設定されることが好ましい。活性エネルギー線硬化性組成物への積算光量が10mJ/cm2未満であると、開始剤由来の活性種の発生が十分でなく、得られる接着剤層の硬化が不十分となる場合がある。また、5,000mJ/cm2を超えると、照射時間が非常に長くなり、生産性向上に不利となる場合がある。 The irradiation time is determined by the active energy ray-curable composition and the irradiation intensity, and is not particularly limited. For example, the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 5. It is preferably set to 000 mJ / cm 2 . If the integrated amount of light to the active energy ray-curable composition is less than 10 mJ / cm 2 , the generation of the active species derived from the initiator may not be sufficient, and the resulting adhesive layer may be insufficiently cured. Further, if it exceeds 5,000 mJ / cm 2 , the irradiation time becomes very long, which may be disadvantageous in improving productivity.
本発明で用いられる活性エネルギー線硬化性組成物は、必要に応じて光増感剤を併用することができる。光増感剤を使用することで、反応性が向上し、硬化物層の機械強度や接着強度を向上させることができる。 The active energy ray-curable composition used in the present invention can be used in combination with a photosensitizer, if necessary. By using the photosensitizer, the reactivity can be improved, and the mechanical strength and the adhesive strength of the cured product layer can be improved.
光増感剤としては、特に限定されるものではないが、たとえば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、ならびに光還元性色素等が挙げられる。 The photosensitizer is not particularly limited, and examples thereof include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreducing dyes. ..
カルボニル化合物としては、たとえば、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、およびα,α−ジメトキシ−α−フェニルアセトフェノンのようなベンゾイン誘導体; 9,10−ジブトキシアントラセンのようなアントラセン化合物; ベンゾフェノン、2,4−ジクロロベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、および4,4’−ビス(ジエチルアミノ)ベンゾフェノンのようなベンゾフェノン誘導体; 2−クロロアントラキノンおよび2−メチルアントラキノンのようなアントラキノン誘導体; N−メチルアクリドンおよびN−ブチルアクリドンのようなアクリドン誘導体; α,α−ジエトキシアセトフェノンのようなアセトフェノン誘導体; キサントン誘導体; ならびにフルオレノン誘導体等が挙げられる。 Carbonyl compounds include, for example, benzoin methyl ether, benzoin isopropyl ether, and benzoin derivatives such as α, α-dimethoxy-α-phenylacetophenone; anthracene compounds such as 9,10-dibutoxyanthracene; benzophenone, 2,4. Benzophenone derivatives such as -dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, and 4,4'-bis (diethylamino) benzophenone; of 2-chloroanthraquinone and 2-methylanthraquinone. Such anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; acetophenone derivatives such as α, α-diethoxyacetophenone; xanthone derivatives; and fluorenone derivatives and the like.
有機硫黄化合物としては、たとえば、2−クロロチオキサントンおよび2−イソプロピルチオキサントンのようなチオキサントン誘導体が挙げられる。その他には、ベンジル化合物およびウラニル化合物等も挙げられる。 Examples of the organic sulfur compound include thioxanthone derivatives such as 2-chlorothioxanthone and 2-isopropylthioxanthone. Other examples include benzyl compounds and uranyl compounds.
光増感剤は、それぞれ単独で使用してもよいし、混合して使用してもよい。光増感剤は、活性エネルギー線硬化性組成物を100重量部とした場合に、0.1〜20重量部の範囲で含有するのが好ましい。 The photosensitizers may be used alone or in combination. The photosensitizer is preferably contained in the range of 0.1 to 20 parts by weight when the active energy ray-curable composition is 100 parts by weight.
本発明に用いる活性エネルギー線硬化性組成物には、本発明の効果を損なわない限り、各種の添加剤を配合することができる。各種の添加剤としては、たとえば、イオントラップ剤、酸化防止剤、連鎖移動剤、増感剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、および消泡剤等が挙げられる。 Various additives can be added to the active energy ray-curable composition used in the present invention as long as the effects of the present invention are not impaired. Examples of various additives include ion trapping agents, antioxidants, chain transfer agents, sensitizers, tackifiers, thermoplastic resins, fillers, flow regulators, plasticizers, defoamers and the like. Be done.
イオントラップ剤としては、たとえば、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、カルシウム系、チタン系、およびこれらの混合系等の無機化合物が挙げられる。酸化防止剤としては、たとえば、ヒンダードフェノール系酸化防止剤等が挙げられる。 Examples of the ion trap agent include powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and inorganic compounds such as a mixture thereof. Examples of the antioxidant include a hindered phenolic antioxidant and the like.
熱可塑性樹脂としては、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。 Examples of the thermoplastic resin include acrylic resin, urethane resin, polyester resin and the like.
以上に示される活性エネルギー線硬化性組成物からなる層(硬化前の接着剤層)を偏光フィルムまたは偏光子保護フィルム上に形成する方法は、特に限定されるものではないが、たとえば、偏光フィルムもしくは偏光子保護フィルム上に該組成物を塗工する方法、該組成物を吹き付ける方法、またはあらかじめフィルム状に形成した該組成物を貼合する方法等が採用される。中でも、組成物を塗工する方法またはフィルム状組成物を貼合する方法が比較的塗膜の均質性の高いことから好ましく、組成物を塗工する方法が比較的生産性が高いことからより好ましい。 The method for forming the layer (adhesive layer before curing) composed of the active energy ray-curable composition shown above on the polarizing film or the polarizer protective film is not particularly limited, but for example, the polarizing film. Alternatively, a method of coating the composition on the polarizer protective film, a method of spraying the composition, a method of laminating the composition previously formed into a film, and the like are adopted. Among them, the method of applying the composition or the method of laminating the film-like composition is preferable because the uniformity of the coating film is relatively high, and the method of applying the composition is relatively high in productivity. preferable.
塗工する方法としては、特に限定されるものではないが、たとえば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、およびグラビアコーター等の、種々の塗工方式が採用される。 The coating method is not particularly limited, but various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater are adopted.
塗工された硬化前の接着剤層の厚さは、通常、0.1〜20μmであり、0.2〜10μmが好ましく、0.5〜5μmがより好ましい。厚みが0.1μmを下回ると、硬化させた接着剤層による偏光フィルムと偏光子保護フィルムとの間の密着力が不足する場合がある。また、厚みが20μmを超えると、接着剤層の硬化が十分進行しなかったり、硬化してもその厚みによりフィルムの屈曲性が悪化したり、薄肉化の効果が得られなかったりする場合がある。 The thickness of the coated adhesive layer before curing is usually 0.1 to 20 μm, preferably 0.2 to 10 μm, and more preferably 0.5 to 5 μm. If the thickness is less than 0.1 μm, the adhesive force between the polarizing film and the polarizer protective film due to the cured adhesive layer may be insufficient. Further, if the thickness exceeds 20 μm, the curing of the adhesive layer may not proceed sufficiently, or even if the adhesive layer is cured, the flexibility of the film may be deteriorated due to the thickness, or the effect of thinning may not be obtained. ..
接着剤層の厚みは10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。下限は、5nm以上が好ましく、10nm以上がより好ましく、20nm以上がさらに好ましい。 The thickness of the adhesive layer is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The lower limit is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more.
以下、実施例を参照して本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、以下の実施例における物性の評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples, and is carried out with appropriate modifications to the extent that it can be adapted to the gist of the present invention. It is also possible, all of which are within the technical scope of the invention. The method for evaluating the physical properties in the following examples is as follows.
(1)ポリエステルフィルムの屈折率
分子配向計(王子計測器株式会社製、MOA−6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:Ny、進相軸(遅相軸方向と直交する方向の屈折率):Nx)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR−4T、測定波長589nm)によって求めた。
(1) Refractive coefficient of polyester film Using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.), determine the slow axis direction of the film, and the slow axis direction is the long side of the sample for measurement. A rectangle of 4 cm × 2 cm was cut out so as to be parallel to the above, and used as a measurement sample. For this sample, the refractive indexes of the two orthogonal axes (refractive index in the slow axis direction: Ny, refractive index in the phase advance axis (refractive index in the direction orthogonal to the slow axis direction): Nx), and the refractive index in the thickness direction ( Nz) was determined by an Abbe refractive index meter (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
(2)リタデーション(Re)
リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|Nx−Ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測器株式会社製、MOA−6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:Ny,遅相軸方向と直交する方向の屈折率:Nx)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR−4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|Nx−Ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。
(2) Reference (Re)
The retardation is a parameter defined by the product (ΔNxy × d) of the anisotropy of the refractive indexes of the two orthogonal axes on the film (ΔNxy = | Nx−Ny |) and the film thickness d (nm). Yes, it is a scale showing optical isotropic and anisotropy. The biaxial refractive index anisotropy (ΔNxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.), determine the slow-phase axial direction of the film, and 4 cm so that the slow-phase axial direction is parallel to the long side of the measurement sample. A rectangle of × 2 cm was cut out and used as a measurement sample. For this sample, the refractive index of two orthogonal axes (refractive index in the slow axis direction: Ny, refractive index in the direction orthogonal to the slow axis direction: Nx), and the refractive index in the thickness direction (Nz) are abbe refraction. It was determined by a rate meter (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm), and the absolute value (| Nx-Ny |) of the difference in refractive index between the two axes was defined as the refractive index anisotropy (ΔNxy). The thickness d (nm) of the film was measured using an electric micrometer (Millitron 1245D manufactured by Finereuf), and the unit was converted to nm. The retardation (Re) was determined from the product (ΔNxy × d) of the anisotropy of the refractive index (ΔNxy) and the thickness d (nm) of the film.
(3)厚さ方向リタデーション(Rth)
厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|Nx−Nz|)、△Nyz(=|Ny−Nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。リタデーションの測定と同様の方法でNx、Ny、Nzとフィルム厚みd(nm)を求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めた。
(3) Thickness direction retardation (Rth)
The thickness direction retardation is obtained by multiplying two birefringences ΔNxz (= | Nx−Nz |) and ΔNyz (= | Ny−Nz |) when viewed from a cross section in the film thickness direction by the film thickness d, respectively. It is a parameter indicating the average of the refraction obtained. Nx, Ny, Nz and the film thickness d (nm) are obtained by the same method as the measurement of retardation, and the average value of (ΔNxz × d) and (ΔNyz × d) is calculated to perform thickness direction retardation (Rth). ) Was asked.
(4)バックライト光源の発光スペクトルの測定
各実施例で使用する液晶表示装置には、SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)を用いた。この液晶表示装置のバックライト光源の発光スペクトルを、浜松ホトニクス製 マルチチャンネル分光器 PMA−12を用いて測定したところ、450nm、528nm、630nm付近にピークトップを有する発光スペクトルが観察され、各ピークトップの半値幅は17nm〜34nmであった。なお、スペクトル測定の際の露光時間は20msecとした。
(4) Measurement of Emission Spectrum of Backlit Light Source The liquid crystal display device used in each embodiment is a liquid crystal display having a BRAVIA KDL-40W920A manufactured by SONY (a light source that emits excitation light and a backlight source that includes quantum dots). Device) was used. When the emission spectrum of the backlight source of this liquid crystal display device was measured using a multi-channel spectroscope PMA-12 manufactured by Hamamatsu Photonics, emission spectra having peak tops near 450 nm, 528 nm, and 630 nm were observed, and each peak top was observed. The half-value width of was 17 nm to 34 nm. The exposure time for spectrum measurement was 20 msec.
(5)虹斑観察
各実施例で得られた液晶表示装置を、正面、及び斜め方向から暗所で目視観察し、虹斑の発生有無について、以下のように判定した。
(5) Observation of rainbow spots The liquid crystal display devices obtained in each example were visually observed in a dark place from the front and diagonal directions, and the presence or absence of rainbow spots was determined as follows.
○: 虹斑が観察されない
△: 虹斑が僅かに観察される
×: 虹斑が観察される
××: 虹斑が著しく観察される
◯: No rainbow spots are observed △: Slight rainbow spots are observed ×: Rainbow spots are observed × ×: Rainbow spots are significantly observed
(6)接着剤層の屈折率
ガラス板に接着剤を塗布した後、実加工と同条件にて固化させ、数μm程度の塗膜を作製した。ガラス板から塗膜を剥がし、アッベ屈折計(アタゴ社製、NAR−1T SOLID、測定波長589nm)にて屈折率を測定した。
(6) Refractive Index of Adhesive Layer After applying the adhesive to the glass plate, it was solidified under the same conditions as the actual processing to prepare a coating film of about several μm. The coating film was peeled off from the glass plate, and the refractive index was measured with an Abbe refractometer (NAR-1T SOLID manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
(製造例1−ポリエステルA)
エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部およびエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
(Production Example 1-Polyester A)
When the temperature of the esterification reaction can reached 200 ° C., 86.4 parts by mass of terephthalic acid and 64.6 parts by mass of ethylene glycol were charged, and 0.017 parts by mass of antimony trioxide was used as a catalyst while stirring. 0.064 parts by mass of magnesium acetate tetrahydrate and 0.16 parts by mass of triethylamine were charged. Then, the pressure was raised and the pressure esterification reaction was carried out under the conditions of a gauge pressure of 0.34 MPa and 240 ° C., the esterification reaction can was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Further, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 parts by mass of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and after 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, and a polycondensation reaction was carried out under reduced pressure at 280 ° C.
重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。) After completion of the polycondensation reaction, filtration is performed with a Naslon filter having a 95% cut diameter of 5 μm, extruded into a strand shape from a nozzle, and cooled and solidified using cooling water that has been previously filtered (pore diameter: 1 μm or less). , Cut into pellets. The intrinsic viscosity of the obtained polyethylene terephthalate resin (A) was 0.62 dl / g, and the inert particles and internally precipitated particles were substantially not contained. (Hereafter, it is abbreviated as PET (A).)
(製造例2−ポリエステルB)
乾燥させた紫外線吸収剤(2,2’−(1,4−フェニレン)ビス(4H−3,1−ベンズオキサジノン−4−オン)10質量部、粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た。(以後、PET(B)と略す。)
(Production Example 2-Polyester B)
10 parts by mass of dried UV absorber (2,2'-(1,4-phenylene) bis (4H-3,1-benzoxadinone-4-one), particle-free PET (A) (intrinsic viscosity) 0.62 dl / g) 90 parts by mass was mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
(製造例3−接着性改質塗布液の調整)
常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5−スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n−ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
(Manufacturing Example 3-Adhesive Modification Coating Liquid Adjustment)
The ester exchange reaction and the polycondensation reaction were carried out by a conventional method, and 46 mol% of terephthalic acid, 46 mol% of isophthalic acid and 8 mol% of sodium 5-sulfonatoisophthalate were carried out as dicarboxylic acid components (relative to the entire dicarboxylic acid component). A water-dispersible metal sulfonate metal base-containing copolymer resin having a composition of 50 mol% of ethylene glycol and 50 mol% of neopentyl glycol as the glycol component was prepared. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cell solution, and 0.06 parts by mass of a nonionic surfactant are mixed, and then heated and stirred. When the temperature reaches 77 ° C., the above After adding 5 parts by mass of a water-dispersible metal sulfonic acid base-containing copolymerized polyester resin and continuing stirring until the resin clumps disappear, the resin water dispersion is cooled to room temperature to have a solid content concentration of 5.0% by mass. A uniform water-dispersible copolymerized polyester resin solution was obtained. Further, after 3 parts by mass of aggregate silica particles (Syricia 310 manufactured by Fuji Silicia Co., Ltd.) are dispersed in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolymerized polyester resin liquid is added to Syricia 310. 0.54 parts by mass of an aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain an adhesive modification coating liquid.
(偏光子保護フィルム1)
基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 1)
After 90 parts by mass of PET (A) resin pellets containing no particles and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber were dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours as raw materials for the base film intermediate layer. , It was supplied to the extruder 2 (for the intermediate layer II layer), and the PET (A) was dried by a conventional method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), respectively, and melted at 285 ° C. .. These two types of polymers are filtered through a stainless steel sintered filter medium (nominal filtration accuracy of 10 μm particles 95% cut), laminated in a two-type three-layer confluence block, extruded into a sheet from the base, and then extruded. An unstretched film was prepared by winding it around a casting drum having a surface temperature of 30 ° C. and cooling and solidifying it using an electrostatic application casting method. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10.
次いで、リバースロール法によりこの未延伸PETフィルムの両面に乾燥後の塗布量が0.08g/m2になるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。 Next, the adhesive modification coating liquid was applied to both sides of the unstretched PET film by the reverse roll method so that the coating amount after drying was 0.08 g / m 2 , and then dried at 80 ° C. for 20 seconds. ..
この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、10秒間で処理し、さらに幅方向に3.0%の緩和処理を行い、フィルム厚み約100μmの一軸延伸PETフィルムを得た。得られたフィルムのReは10300nm、Rthは12350nm、Re/Rthは0.83、Nx=1.588、Ny=1.691であった。 The unstretched film on which the coating layer was formed was guided to a tenter stretching machine, and while gripping the end of the film with a clip, it was guided to a hot air zone having a temperature of 125 ° C. and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a relaxation treatment of 3.0% in the width direction to obtain a uniaxially stretched PET film having a film thickness of about 100 μm. It was. The Re of the obtained film was 10300 nm, Rth was 12350 nm, Re / Rth was 0.83, Nx = 1.588, and Ny = 1.691.
(偏光子保護フィルム2)
ラインスピードを変更して未延伸フィルムの厚みを変えた以外は偏光子保護フィルム1と同様にして製膜し、フィルム厚みが約80μmの一軸延伸PETフィルムを得た。得られたフィルムのReは8080nm、Rthは9960nm、Re/Rthは0.81、Nx=1.589、Ny=1.690であった。
(Polarizer protective film 2)
A film was formed in the same manner as the polarizer protective film 1 except that the line speed was changed to change the thickness of the unstretched film, and a uniaxially stretched PET film having a film thickness of about 80 μm was obtained. The Re of the obtained film was 8080 nm, Rth was 9960 nm, Re / Rth was 0.81, Nx = 1.589, and Ny = 1.690.
(偏光子保護フィルム3)
ラインスピードを変更して未延伸フィルムの厚みを変えた以外は偏光子保護フィルム1と同様にして製膜し、フィルム厚みが約60μmの一軸延伸PETフィルムを得た。得られたフィルムのReは6060nm、Rthは7470nm、Re/Rthは0.81、Nx=1.589、Ny=1.690であった。
(Polarizer protective film 3)
A film was formed in the same manner as the polarizer protective film 1 except that the line speed was changed to change the thickness of the unstretched film, to obtain a uniaxially stretched PET film having a film thickness of about 60 μm. The Re of the obtained film was 6060 nm, Rth was 7470 nm, Re / Rth was 0.81, Nx = 1.589, and Ny = 1.690.
(偏光子保護フィルム4)
ラインスピードを変更して未延伸フィルムの厚みを変えた以外は偏光子保護フィルム1と同様にして製膜し、フィルム厚みが約40μmの一軸延伸PETフィルムを得た。得られたフィルムのReは4160nm、Rthは4920nm、Re/Rthは0.85、Nx=1.587、Ny=1.691であった。
(Polarizer protective film 4)
A film was formed in the same manner as the polarizer protective film 1 except that the line speed was changed to change the thickness of the unstretched film, to obtain a uniaxially stretched PET film having a film thickness of about 40 μm. The Re of the obtained film was 4160 nm, the Rth was 4920 nm, the Re / Rth was 0.85, Nx = 1.587, and Ny = 1.691.
(偏光子保護フィルム5)
偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に1.5倍延伸した後、温度130℃の熱風ゾーンに導き幅方向に4.0倍延伸して、偏光子保護フィルム1と同様の方法でフィルム厚み約100μmの二軸延伸PETフィルムを得た。得られたフィルムのReは7820nm、Rthは13890nm、Re/Rthは0.56、Nx=1.608、Ny=1.686であった。
(Polarizer protective film 5)
The unstretched film produced by the same method as the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then 1.5 in the traveling direction in the roll group having a peripheral speed difference. After double-stretching, the film was guided to a hot air zone at a temperature of 130 ° C. and stretched 4.0 times in the width direction to obtain a biaxially stretched PET film having a film thickness of about 100 μm in the same manner as in the polarizer protective film 1. The Re of the obtained film was 7820 nm, the Rth was 13890 nm, the Re / Rth was 0.56, Nx = 1.608, and Ny = 1.686.
(偏光子保護フィルム6)
偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2.0倍延伸した後、温度135℃の熱風ゾーンに導き幅方向に4.0倍延伸し、偏光子保護フィルム1と同様の方法でフィルム厚み約100μmの二軸延伸PETフィルムを得た。得られたフィルムのReは6400nm、Rthは14600nm、Re/Rthは0.44、Nx=1.617、Ny=1.681であった。
(Polarizer protective film 6)
The unstretched film produced by the same method as the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then 2.0 in the traveling direction in the roll group having a peripheral speed difference. After double stretching, the film was guided to a hot air zone at a temperature of 135 ° C. and stretched 4.0 times in the width direction to obtain a biaxially stretched PET film having a film thickness of about 100 μm in the same manner as the polarizer protective film 1. The Re of the obtained film was 6400 nm, Rth was 14600 nm, Re / Rth was 0.44, Nx = 1.617, and Ny = 1.681.
(偏光子保護フィルム7)
偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2.8倍延伸した後、温度140℃の熱風ゾーンに導き幅方向に4.0倍延伸し、偏光子保護フィルム1と同様の方法でフィルム厚み約100μmの二軸延伸PETフィルムを得た。得られたフィルムのReは5400nm、Rthは15900nm、Re/Rthは0.34、Nx=1.631、Ny=1.685であった。
(Polarizer protective film 7)
The unstretched film produced by the same method as the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then 2.8 in the traveling direction in the roll group having a peripheral speed difference. After double-stretching, the film was guided to a hot air zone at a temperature of 140 ° C. and stretched 4.0 times in the width direction to obtain a biaxially stretched PET film having a film thickness of about 100 μm in the same manner as the polarizer protective film 1. The Re of the obtained film was 5400 nm, Rth was 15900 nm, Re / Rth was 0.34, Nx = 1.631, and Ny = 1.685.
(偏光子保護フィルム8)
偏光子保護フィルム1と同様の方法により作製された未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に3.3倍延伸した後、温度140℃の熱風ゾーンに導き幅方向に4.0倍延伸し、偏光子保護フィルム1と同様の方法でフィルム厚み約100μmの二軸延伸PETフィルムを得た。得られたフィルムのReは4800nm、Rthは16700nm、Re/Rthは0.29、Nx=1.640、Ny=1.688であった。
(Polarizer protective film 8)
The unstretched film produced by the same method as the polarizer protective film 1 is heated to 105 ° C. using a heated roll group and an infrared heater, and then 3.3 in the traveling direction in the roll group having a peripheral speed difference. After double-stretching, the film was guided to a hot air zone at a temperature of 140 ° C. and stretched 4.0 times in the width direction to obtain a biaxially stretched PET film having a film thickness of about 100 μm in the same manner as the polarizer protective film 1. The Re of the obtained film was 4800 nm, Rth was 16700 nm, Re / Rth was 0.29, Nx = 1.640, and Ny = 1.688.
偏光子保護フィルム1〜8を用いて後述するように液晶表示装置を作成した。 A liquid crystal display device was created using the polarizer protective films 1 to 8 as described later.
(実施例1)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム1を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板1を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の視認側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板1に置き換えて、液晶表示装置を作成した。なお、偏光板1の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Example 1)
A polarizing element protective film 1 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 1 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the visual side of the BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source containing quantum dots) manufactured by SONY is used with the polyester film on the opposite side (distal) to the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 1 with the above-mentioned polarizing plate 1. The direction of the transmission axis of the polarizing plate 1 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before the replacement.
(実施例2)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム2を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板2を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板1を偏光板2に変えた以外は実施例1と同様にして、液晶表示装置を作成した。
(Example 2)
A polarizing element protective film 2 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 2 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate 1 was changed to the polarizing plate 2.
(実施例3)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板3を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板1を偏光板3に変えた以外は実施例1と同様にして、液晶表示装置を作成した。
(Example 3)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 3 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate 1 was changed to the polarizing plate 3.
(実施例4)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板3を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の光源側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板3に置き換えて、液晶表示装置を作成した。なお、偏光板3の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Example 4)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 3 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the light source side of BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source including quantum dots) manufactured by SONY is used with a polyester film on the opposite side (distal) to the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 3 with the above-mentioned polarizing plate 3. The direction of the transmission axis of the polarizing plate 3 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before replacement.
(実施例5)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板3を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の視認側及び光源側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板3に置き換えて、液晶表示装置を作成した。なお、偏光板3の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Example 5)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 3 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the visual side and the light source side of the BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source including quantum dots) manufactured by SONY, and the polyester film is on the opposite side (far) from the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 3 with the above-mentioned polarizing plate 3 so as to be (position). The direction of the transmission axis of the polarizing plate 3 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before replacement.
(実施例6)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム4を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板4を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板1を偏光板4に変えた以外は実施例1と同様にして、液晶表示装置を作成した。
(Example 6)
A polarizing element protective film 4 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 4 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate 1 was changed to the polarizing plate 4.
(実施例7)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム5を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板5を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板1を偏光板5に変えた以外は実施例1と同様にして、液晶表示装置を作成した。
(Example 7)
A polarizing element protective film 5 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 5 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate 1 was changed to the polarizing plate 5.
(実施例8)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム6を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板6を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板1を偏光板6に変えた以外は実施例1と同様にして、液晶表示装置を作成した。
(Example 8)
A polarizing element protective film 6 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 6 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate 1 was changed to the polarizing plate 6.
(比較例1)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム1を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板7を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の視認側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板7に置き換えて、液晶表示装置を作成した。なお、偏光板7の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Comparative Example 1)
A polarizing element protective film 1 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 7 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the visual side of the BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source containing quantum dots) manufactured by SONY is used with the polyester film on the opposite side (distal) to the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 7 with the above-mentioned polarizing plate 7. The direction of the transmission axis of the polarizing plate 7 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before replacement.
(比較例2)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム2を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板8を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板7を偏光板8に変えた以外は比較例1と同様にして、液晶表示装置を作成した。
(Comparative Example 2)
A polarizing element protective film 2 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 8 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the polarizing plate 7 was changed to the polarizing plate 8.
(比較例3)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板9を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板7を偏光板9に変えた以外は比較例1と同様にして、液晶表示装置を作成した。
(Comparative Example 3)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 9 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the polarizing plate 7 was changed to the polarizing plate 9.
(比較例4)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板9を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の光源側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板9に置き換えて、液晶表示装置を作成した。なお、偏光板9の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Comparative Example 4)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 9 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the light source side of BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source including quantum dots) manufactured by SONY is used with a polyester film on the opposite side (distal) to the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 9 with the above-mentioned polarizing plate 9. The direction of the transmission axis of the polarizing plate 9 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before replacement.
(比較例5)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム3を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板9を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
SONY社製のBRAVIA KDL−40W920A(励起光を出射する光源と量子ドットを含むバックライト光源を有する液晶表示装置)の視認側及び光源側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記偏光板9に置き換えて、液晶表示装置を作成した。なお、偏光板9の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
(Comparative Example 5)
A polarizing element protective film 3 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. A polarizing plate 9 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
The polarizing plate on the visual side and the light source side of the BRAVIA KDL-40W920A (a liquid crystal display device having a light source that emits excitation light and a backlight light source including quantum dots) manufactured by SONY, and the polyester film is on the opposite side (far) from the liquid crystal. A liquid crystal display device was created by replacing the polarizing plate 9 with the above-mentioned polarizing plate 9 so as to be (position). The direction of the transmission axis of the polarizing plate 9 was replaced so as to be the same as the direction of the transmission axis of the polarizing plate before replacement.
(比較例6)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム4を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板10を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板7を偏光板10に変えた以外は比較例1と同様にして、液晶表示装置を作成した。
(Comparative Example 6)
A polarizing element protective film 4 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are perpendicular to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 10 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the polarizing plate 7 was changed to the polarizing plate 10.
(比較例7)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム7を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板11を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板7を偏光板11に変えた以外は比較例1と同様にして、液晶表示装置を作成した。
(Comparative Example 7)
A polarizing element protective film 7 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 11 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the polarizing plate 7 was changed to the polarizing plate 11.
(比較例8)
PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム8を偏光子の透過軸とフィルムの進相軸が平行になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板12を作成した。偏光子と偏光子保護フィルム、TACフィルムは、ポリビニルアルコール4部、メラミン1部、水95部からなる水溶液(ポリビニルアルコール系接着剤)を介して貼り合せ、60℃で3分乾燥した。このポリビニルアルコール系接着剤の屈折率は、1.490であった。
偏光板7を偏光板12に変えた以外は比較例1と同様にして、液晶表示装置を作成した。
(Comparative Example 8)
A polarizing element protective film 8 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the phase advance axis of the film are parallel to each other, and TAC film (Fuji Film Co., Ltd.) is attached to the opposite surface. The polarizing plate 12 was prepared by pasting (manufactured by 80 μm in thickness). The polarizer, the polarizer protective film, and the TAC film were bonded together via an aqueous solution (polyvinyl alcohol-based adhesive) consisting of 4 parts of polyvinyl alcohol, 1 part of melamine, and 95 parts of water, and dried at 60 ° C. for 3 minutes. The refractive index of this polyvinyl alcohol-based adhesive was 1.490.
A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the polarizing plate 7 was changed to the polarizing plate 12.
各実施例で得た液晶表示装置について、虹斑観察を測定した結果を以下の表1に示す。 Table 1 below shows the results of measuring rainbow spot observations for the liquid crystal display devices obtained in each example.
本発明の液晶表示装置及び偏光板は、いずれの観察角度においても虹状の色斑の発生が有意に抑制された良好な視認性を確保することができ、産業上の利用可能性は極めて高い。 The liquid crystal display device and the polarizing plate of the present invention can ensure good visibility in which the occurrence of iridescent color spots is significantly suppressed at any observation angle, and have extremely high industrial applicability. ..
Claims (3)
前記バックライト光源は、400nm以上495nm未満、495nm以上600nm未満及び600nm以上750nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有し、各ピークの半値幅が5nm以上120nm以下であり、
前記2つの偏光板のうち少なくとも一方の偏光板は、偏光子の液晶セル側とは反対側の面に接着剤層を介してポリエステルフィルムが積層されたものであり、
前記ポリエステルフィルムのリタデーションは4000nm以上であり、
前記接着剤層の屈折率と、前記偏光子の透過軸と平行な方向における前記ポリエステルフィルムの屈折率との差が0.13以下である、
液晶表示装置。 A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell arranged between the two polarizing plates.
The backlight source has a peak top of the emission spectrum in each wavelength region of 400 nm or more and less than 495 nm, 495 nm or more and less than 600 nm, and 600 nm or more and 750 nm or less, and the half width of each peak is 5 nm or more and 120 nm or less .
At least one of the two polarizing plates has a polyester film laminated on the surface of the polarizing element opposite to the liquid crystal cell side via an adhesive layer.
The retardation of the polyester film is 4000 nm or more, and the retardation is 4000 nm or more.
The difference between the refractive index of the adhesive layer and the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is 0.13 or less.
Liquid crystal display device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015080667 | 2015-04-10 | ||
JP2015080667 | 2015-04-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017025967A Division JP2017107225A (en) | 2015-04-10 | 2017-02-15 | Liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016200816A JP2016200816A (en) | 2016-12-01 |
JP6812655B2 true JP6812655B2 (en) | 2021-01-13 |
Family
ID=57422728
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016077987A Active JP6812655B2 (en) | 2015-04-10 | 2016-04-08 | Liquid crystal display device |
JP2017025967A Pending JP2017107225A (en) | 2015-04-10 | 2017-02-15 | Liquid crystal display device |
JP2020200499A Active JP7131597B2 (en) | 2015-04-10 | 2020-12-02 | liquid crystal display |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017025967A Pending JP2017107225A (en) | 2015-04-10 | 2017-02-15 | Liquid crystal display device |
JP2020200499A Active JP7131597B2 (en) | 2015-04-10 | 2020-12-02 | liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP6812655B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6433637B1 (en) * | 2017-03-31 | 2018-12-05 | 株式会社巴川製紙所 | Sealing member for light guide plate and planar light source device or illumination device using the same |
JP7187963B2 (en) * | 2018-01-11 | 2022-12-13 | 東洋紡株式会社 | LAMINATED FILM AND POLARIZING PLATE USING THE SAME |
JP7259216B2 (en) * | 2018-06-04 | 2023-04-18 | 三菱ケミカル株式会社 | Polarizer protective film |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5977401A (en) * | 1982-09-22 | 1984-05-02 | Nitto Electric Ind Co Ltd | Polarizing plate |
JP4341163B2 (en) * | 2000-10-10 | 2009-10-07 | コニカミノルタホールディングス株式会社 | Polarizing plate protective film, polarizing plate using the same, manufacturing method, and liquid crystal display device |
JP4032346B2 (en) * | 2002-06-07 | 2008-01-16 | 富士フイルム株式会社 | Cellulose acylate film and polarizing plate using the same |
JP2006138894A (en) * | 2004-11-10 | 2006-06-01 | Konica Minolta Opto Inc | Polarizing plate with adhesion layer, polarizing plate with integral adhesion layer, and color liquid crystal display using it |
KR20080008346A (en) * | 2005-03-30 | 2008-01-23 | 다이니폰 인사츠 가부시키가이샤 | Polarizing plate |
JP2007272056A (en) * | 2006-03-31 | 2007-10-18 | Kaneka Corp | Method for manufacturing optical retardation film, and optical compensation polarizing plate |
JP2008004145A (en) * | 2006-06-21 | 2008-01-10 | Epson Toyocom Corp | Optical element and optical head device provided with optical element |
JP2006293399A (en) * | 2006-07-12 | 2006-10-26 | Nitto Denko Corp | Wide viewing angle polarizing plate |
JP2009025575A (en) * | 2007-07-20 | 2009-02-05 | Toyo Ink Mfg Co Ltd | Laminate |
KR20110014515A (en) * | 2009-08-05 | 2011-02-11 | 제일모직주식회사 | Polarizer and liquid crystal display provided with the same |
JP5566425B2 (en) * | 2012-07-02 | 2014-08-06 | 大日本印刷株式会社 | Liquid crystal display device and polarizing plate protective film |
KR20130074559A (en) * | 2011-12-26 | 2013-07-04 | 동우 화인켐 주식회사 | Liquid crystal display device without nonuniform display |
JP6167480B2 (en) * | 2012-07-09 | 2017-07-26 | 大日本印刷株式会社 | Optical film, polarizing plate, liquid crystal panel, and image display device |
JP2014209162A (en) * | 2013-03-28 | 2014-11-06 | 富士フイルム株式会社 | Polarizing plate and image display device |
JP5990128B2 (en) * | 2013-05-01 | 2016-09-07 | 富士フイルム株式会社 | Liquid crystal display |
JP6000916B2 (en) * | 2013-08-12 | 2016-10-05 | 富士フイルム株式会社 | Liquid crystal display device, retardation film and polarizing plate |
KR20180098698A (en) * | 2013-08-26 | 2018-09-04 | 후지필름 가부시키가이샤 | Luminance-enhancing film, optical sheet member, and liquid crystal display device |
JP2015055833A (en) * | 2013-09-13 | 2015-03-23 | 東洋紡株式会社 | Polarizer protective film, polarizing plate, and liquid crystal display device |
-
2016
- 2016-04-08 JP JP2016077987A patent/JP6812655B2/en active Active
-
2017
- 2017-02-15 JP JP2017025967A patent/JP2017107225A/en active Pending
-
2020
- 2020-12-02 JP JP2020200499A patent/JP7131597B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7131597B2 (en) | 2022-09-06 |
JP2017107225A (en) | 2017-06-15 |
JP2021063987A (en) | 2021-04-22 |
JP2016200816A (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7230953B2 (en) | Liquid crystal display device and polarizing plate | |
JP7323564B2 (en) | Liquid crystal display device and polarizing plate | |
JP7201026B2 (en) | liquid crystal display | |
JP7131597B2 (en) | liquid crystal display | |
KR20150022692A (en) | Photocurable adhesive composition, polarizer and process for producing thereof, optical member, and liquid crystal display device | |
JP6950731B2 (en) | Liquid crystal display and polarizing plate | |
JP7131598B2 (en) | liquid crystal display | |
JP2018060230A (en) | Liquid crystal display device, polarizing plate, and polarizer protection film | |
TWI790203B (en) | Liquid crystal display device | |
JP6965746B2 (en) | Liquid crystal display and polarizing plate | |
JP6880548B2 (en) | Liquid crystal display device | |
JP2022173328A (en) | Liquid crystal display device and polarizer | |
JP6642553B2 (en) | Polarizing plate and liquid crystal display device using the same | |
KR102455802B1 (en) | liquid crystal display | |
JP2016200716A (en) | Liquid crystal display | |
JP2014224852A (en) | Polarization plate and liquid crystal display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201130 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6812655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |