JP6810319B2 - Charge storage device - Google Patents

Charge storage device Download PDF

Info

Publication number
JP6810319B2
JP6810319B2 JP2016164163A JP2016164163A JP6810319B2 JP 6810319 B2 JP6810319 B2 JP 6810319B2 JP 2016164163 A JP2016164163 A JP 2016164163A JP 2016164163 A JP2016164163 A JP 2016164163A JP 6810319 B2 JP6810319 B2 JP 6810319B2
Authority
JP
Japan
Prior art keywords
region
charge storage
charge
control electrode
storage region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164163A
Other languages
Japanese (ja)
Other versions
JP2018032749A (en
Inventor
川人 祥二
祥二 川人
▲みん▼雄 徐
▲みん▼雄 徐
啓太 安富
啓太 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2016164163A priority Critical patent/JP6810319B2/en
Priority to PCT/JP2017/030414 priority patent/WO2018038230A1/en
Priority to US16/327,364 priority patent/US10636822B2/en
Priority to CN201780052386.2A priority patent/CN109691086B/en
Publication of JP2018032749A publication Critical patent/JP2018032749A/en
Application granted granted Critical
Publication of JP6810319B2 publication Critical patent/JP6810319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は電荷蓄積素子に係り、特に光電変換素子や固体撮像素子への応用に好適な電荷蓄積素子に関する。 The present invention relates to a charge storage element, and particularly relates to a charge storage element suitable for application to a photoelectric conversion element or a solid-state image pickup device.

本発明者らは、4つの短時間の時間窓で連続した時間分解成分を低ノイズで取得できる4タップ横方向電界制御型の電荷変調素子を既に提案した(特許文献1参照)。特許文献1の技術を用いれば、一つの時間窓をサブナノ秒とし、同時にシングルショットで3乃至4の時間窓の測定を行い、次にその3乃至4の時間窓を全体として遅延させて1回目の時間窓の直後の測定時間レンジの測定を行い、これらを数回繰り返してつなぎ、蛍光寿命測定に必要なサブナノ秒の時間分解能と数ナノ秒の測定時間レンジを実現することができる。 The present inventors have already proposed a 4-tap lateral electric field control type charge modulation device capable of acquiring continuous time-resolved components with low noise in four short-time time windows (see Patent Document 1). According to the technique of Patent Document 1, one time window is set to sub-nanoseconds, and at the same time, 3 to 4 time windows are measured with a single shot, and then the 3 to 4 time windows are delayed as a whole for the first time. It is possible to measure the measurement time range immediately after the time window and connect these several times to realize the sub-nanosecond time resolution and several nanosecond measurement time range required for fluorescence lifetime measurement.

しかし特許文献1の電荷変調素子(電荷蓄積素子)は1段電荷転送になっており、ドレイン用のゲート電極、転送ゲート用のゲート電極は、いずれもON/OFF機能しか付いていない。また細胞内分子の蛍光寿命測定においては、励起光による細胞へのダメージを抑えるために励起光の強度を無制限には上げられず、一般に励起光に比して蛍光は微弱であるので、センサには高速、高感度に加えて、低ノイズが要求される。こうした低ノイズの要求に対する技術として、電荷読出領域の転送電極を介して電荷蓄積領域を設けた電荷蓄積素子が提案されている(特許文献2参照。)。 However, the charge modulation element (charge storage element) of Patent Document 1 has a one-stage charge transfer, and both the gate electrode for the drain and the gate electrode for the transfer gate have only an ON / OFF function. Further, in the measurement of the fluorescence lifetime of intracellular molecules, the intensity of the excitation light cannot be increased indefinitely in order to suppress damage to the cells due to the excitation light, and the fluorescence is generally weaker than that of the excitation light. Is required to have low noise in addition to high speed and high sensitivity. As a technique for meeting such a demand for low noise, a charge storage element in which a charge storage region is provided via a transfer electrode in the charge reading region has been proposed (see Patent Document 2).

特許文献2のような2段転送とすることで、電荷蓄積領域をリセットした際の電位と電荷蓄積電位の差分を相関2重サンプリングで読み出すことにより、リセットノイズをキャンセルした低ノイズの読出しを行うことが出来る。従って、特許文献1及び2を組み合わせれば、高速、高感度に加えて低ノイズで読出しが可能となり、蛍光寿命測定により適したセンサを提供できるが、このままでは、電荷蓄積領域の蓄積電荷容量が十分ではないという問題がある。 By using two-stage transfer as in Patent Document 2, the difference between the potential when the charge storage region is reset and the charge storage potential is read out by correlated double sampling, so that low noise with the reset noise canceled is read out. Can be done. Therefore, by combining Patent Documents 1 and 2, reading is possible with low noise in addition to high speed and high sensitivity, and a sensor more suitable for fluorescence lifetime measurement can be provided. However, as it is, the accumulated charge capacity in the charge storage region is increased. There is a problem that it is not enough.

国際公開第2015/118884号パンフレットInternational Publication No. 2015/118884 Pamphlet 国際公開第2014/021417号パンフレットInternational Publication No. 2014/021417 Pamphlet

本発明は上記の問題に鑑み、電荷転送チャネル中の蓄積電荷容量を増大できる電荷転送構造を備えた電荷蓄積素子を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a charge storage device having a charge transfer structure capable of increasing the stored charge capacity in the charge transfer channel.

上記目的を達成するために、本発明の第1態様は、(a)第1導電型の素子配置層と、(b)素子配置層の上部の一部に設けられ、電荷供給領域を構成する第2導電型の表面埋込領域と、(c)表面埋込領域に入力側を接続し、表面埋込領域よりも高不純物密度で第2導電型の電荷蓄積領域と、(d)電荷蓄積領域の出力側に接続され、電荷蓄積領域よりも高不純物密度で第2導電型の目的領域と、(e)電荷蓄積領域の入力側に定義される電荷転送チャネルの両側に対をなして対向配置され、電荷転送チャネルの空乏化電位を横方向静電誘導効果で制御して、表面埋込領域から信号電荷を電荷蓄積領域に導入する入力制御電極と、(f)入力制御電極に隣接し、電荷転送チャネルよりも出力側に位置して電荷蓄積領域の両側に対をなして対向配置され、電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御する容量拡大電極を備える電荷蓄積素子であることを要旨とする。本発明の第1態様に係る電荷蓄積素子において、容量拡大電極に印加する電圧により、電荷蓄積領域に蓄積される信号電荷の量を拡大する。 In order to achieve the above object, the first aspect of the present invention is provided in (a) a first conductive type element arrangement layer and (b) a part of the upper part of the element arrangement layer to form a charge supply region. The second conductive type surface embedding region and (c) the input side are connected to the surface embedding region, and the second conductive type charge storage region and (d) charge accumulation have a higher impurity density than the surface embedding region. The second conductive type target region, which is connected to the output side of the region and has a higher impurity density than the charge storage region, and (e) face each other in pairs on both sides of the charge transfer channel defined on the input side of the charge storage region. Adjacent to the input control electrode, which is arranged and controls the depletion potential of the charge transfer channel by the lateral electrostatic induction effect to introduce the signal charge from the surface-embedded region into the charge storage region, and (f) the input control electrode. , Charge storage with capacitance expansion electrodes located on the output side of the charge transfer channel, paired on both sides of the charge storage region, and controlling the depletion potential of the charge storage region with a lateral electrostatic induction effect. The gist is that it is an element. In the charge storage device according to the first aspect of the present invention, the amount of signal charge stored in the charge storage region is expanded by the voltage applied to the capacitance expansion electrode.

本発明の第2態様は、(a)第1導電型の素子配置層と、(b)素子配置層の上部の一部に設けられ、電荷供給領域を構成する第2導電型の表面埋込領域と、(c)表面埋込領域に入力側を接続し、表面埋込領域よりも高不純物密度で第2導電型の電荷蓄積領域と、(d)電荷蓄積領域の出力側に接続され、電荷蓄積領域よりも高不純物密度で第2導電型の目的領域と、(e)第1導電型の多結晶シリコン膜からなる領域と第2導電型の多結晶シリコン膜からなる領域とに区分され、電荷蓄積領域の両側に対称に配置され、電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御する入力制御電極を備える電荷蓄積素子であることを要旨とする。本発明の第2態様に係る電荷蓄積素子において、第1導電型の多結晶シリコン膜からなる領域が、電荷蓄積領域の入力側に定義される電荷転送チャネルの両側に対をなして対向配置され、電荷転送チャネルの空乏化電位を横方向静電誘導効果で制御して、表面埋込領域から信号電荷を電荷蓄積領域に導入する入力制御電極として機能する。又、第2導電型の多結晶シリコン膜からなる領域が、電荷蓄積領域の出力側の電荷蓄積領域に近接する位置に配置され、電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御することにより、電荷蓄積領域に蓄積される信号電荷の量を拡大する。 A second aspect of the present invention is to (a) a first conductive type element arrangement layer and (b) a second conductive type surface embedding provided in a part of the upper part of the element arrangement layer and forming a charge supply region. The input side is connected to the region and (c) the surface-embedded region, and the second conductive type charge storage region with a higher impurity density than the surface-embedded region and (d) the output side of the charge storage region are connected. It is divided into a second conductive type target region with a higher impurity density than the charge storage region, and (e) a region composed of a first conductive type polycrystalline silicon film and a region composed of a second conductive type polycrystalline silicon film. The gist is that the charge storage element is symmetrically arranged on both sides of the charge storage region and includes an input control electrode that controls the depletion potential of the charge storage region by a lateral electrostatic induction effect. In the charge storage element according to the second aspect of the present invention, regions made of a first conductive type polycrystalline silicon film are arranged in pairs on both sides of a charge transfer channel defined on the input side of the charge storage region. , The depletion potential of the charge transfer channel is controlled by the lateral electrostatic induction effect, and functions as an input control electrode that introduces signal charge from the surface-embedded region into the charge storage region. Further, a region made of a second conductive type polycrystalline silicon film is arranged at a position close to the charge storage region on the output side of the charge storage region, and the depletion potential of the charge storage region is controlled by the lateral electrostatic induction effect. By doing so, the amount of signal charge accumulated in the charge storage region is increased.

本発明によれば、電荷転送チャネル中の蓄積電荷容量を増大できる電荷転送構造を備えた電荷蓄積素子を提供できる。 According to the present invention, it is possible to provide a charge storage device having a charge transfer structure capable of increasing the stored charge capacity in the charge transfer channel.

実施形態に係る電荷蓄積素子を用いた光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element using the charge storage element which concerns on embodiment. 図1のA−A方向から見た実施形態に係る電荷蓄積素子を用いた光電変換素子の概略構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the schematic structure of the photoelectric conversion element using the charge storage element which concerns on embodiment seen from the AA direction of FIG. 実施形態に係る電荷蓄積素子を示す模式的平面図(上面図)である。It is a schematic plan view (top view) which shows the charge storage element which concerns on embodiment. 図3のY1−Y1方向から見た断面、Y2−Y2方向及びY3−Y3方向の見た断面における実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。The figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the cross section seen from the Y1-Y1 direction of FIG. 3, the cross section seen in the Y2-Y2 direction and the Y3-Y3 direction. Is. 図4の状態における実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the state of FIG. 図3のY1−Y1方向、Y2−Y2方向及びY3−Y3方向のそれぞれから見た断面における、実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the cross section seen from each of the Y1-Y1 direction, the Y2-Y2 direction and the Y3-Y3 direction of FIG. is there. 図6の状態における実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the state of FIG. 図3のY1−Y1方向、Y2−Y2方向及びY3−Y3方向のそれぞれから見た断面における、実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the cross section seen from each of the Y1-Y1 direction, the Y2-Y2 direction and the Y3-Y3 direction of FIG. is there. 図8の状態における実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the state of FIG. 8 by a three-dimensional mesh structure. 図3のY1−Y1方向、Y2−Y2方向及びY3−Y3方向のそれぞれから見た断面における、実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the cross section seen from each of the Y1-Y1 direction, the Y2-Y2 direction and the Y3-Y3 direction of FIG. is there. 図10の状態における実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on embodiment in the state of FIG. 10 by a three-dimensional mesh structure. 実施形態に係る電荷蓄積素子を用いた光電変換素子の動作を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the operation of the photoelectric conversion element using the charge storage element which concerns on embodiment. 実施形態の第1変形例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end part (bottom part) of the conduction band of the charge storage element which concerns on the 1st modification of embodiment with a 3D mesh structure. 図3のX1−X1方向から見た実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、容量拡大電極を備える場合と備えない場合で分けて説明する図である。The potential distribution of the lower end (bottom) of the conduction band of the charge accumulating element according to the embodiment viewed from the X1-X1 direction of FIG. 3 with respect to electrons will be described separately for the case where the capacitance expansion electrode is provided and the case where it is not provided. is there. 図3のX1−X1方向から見た実施形態に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、出力制御電極に印加する制御電圧の高低で分けて説明する図である。The potential distribution for electrons at the lower end (bottom) of the conduction band of the charge accumulating element according to the embodiment viewed from the X1-X1 direction of FIG. 3 is described separately according to the level of the control voltage applied to the output control electrode. is there. 実施形態の第1変形例に係る電荷蓄積素子の模式的平面図(上面図)である。It is a schematic plan view (top view) of the charge storage element which concerns on 1st modification of embodiment. 図15のX2−X2方向から見た実施形態の第1変形例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、容量拡大電極に印加する制御電圧の大きさで分けて説明する図である。The potential distribution for electrons at the lower end (bottom) of the conduction band of the charge storage device according to the first modification of the embodiment viewed from the X2-X2 direction of FIG. 15 is determined by the magnitude of the control voltage applied to the capacitance expansion electrode. It is a figure which explains separately. 図15のY4−Y4方向から見た実施形態の第1変形例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、容量拡大電極に印加する制御電圧の大きさで分けて説明する図である。The potential distribution for electrons at the lower end (bottom) of the conduction band of the charge storage device according to the first modification of the embodiment viewed from the Y4-Y4 direction in FIG. 15 is determined by the magnitude of the control voltage applied to the capacitance expansion electrode. It is a figure which explains separately. 第2変形例に係る電荷蓄積素子の模式的平面図(上面図)である。It is a schematic plan view (top view) of the charge storage element which concerns on 2nd modification. 図19のX3−X3方向から見た断面における、第2変形例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、出力制御電極に印加する制御電圧の大きさで分けて説明する図である。The potential distribution for electrons at the lower end (bottom) of the conduction band of the charge storage element according to the second modification in the cross section seen from the X3-X3 direction of FIG. 19 is determined by the magnitude of the control voltage applied to the output control electrode. It is a figure which explains separately. 図19のY5−Y5方向から見た断面における、第2変形例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、出力制御電極に印加する制御電圧の大きさで分けて説明する図である。The potential distribution for electrons at the lower end (bottom) of the conduction band of the charge storage device according to the second modification in the cross section seen from the Y5-Y5 direction in FIG. 19 is determined by the magnitude of the control voltage applied to the output control electrode. It is a figure which explains separately. 比較例に係る電荷蓄積素子の伝導帯の下端部(底部)の電子に対するポテンシャル分布を、出力制御電極に印加する制御電圧の大きさで分けて説明する図である。It is a figure explaining the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band of the charge storage element which concerns on a comparative example, divided by the magnitude of the control voltage applied to an output control electrode. 比較例に係る電荷蓄積素子の電荷転送構造を示す模式的平面図(上面図)である。It is a schematic plan view (top view) which shows the charge transfer structure of the charge storage element which concerns on a comparative example. 第3変形例に係る電荷蓄積素子の電荷転送構造を示す模式的平面図(上面図)である。It is a schematic plan view (top view) which shows the charge transfer structure of the charge storage element which concerns on 3rd modification. 実施形態の第4変形例に係る電荷蓄積素子の電荷転送構造を示す模式的平面図(上面図)である。It is a schematic plan view (top view) which shows the charge transfer structure of the charge storage element which concerns on 4th modification of embodiment. 図26(a)は、図25のY6−Y6方向から見た断面における、実施形態の第4変形例に係る電荷蓄積素子の概略構造を説明する模式的な断面図であり、図26(b)は、図26(a)で示した領域の伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。26 (a) is a schematic cross-sectional view for explaining the schematic structure of the charge storage element according to the fourth modification of the embodiment in the cross section seen from the Y6-Y6 direction of FIG. 25, and FIG. 26 (b). ) Is a diagram showing the potential distribution for electrons at the lower end (bottom) of the conduction band in the region shown in FIG. 26 (a). 図26(a)のZ−Z方向のレベルで見た断面における、伝導帯の下端部(底部)の電子に対するポテンシャル分布を示す図である。It is a figure which shows the potential distribution with respect to the electron of the lower end (bottom part) of the conduction band in the cross section seen at the level of the ZZ direction of FIG. 26A.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

又、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。 Further, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and arrangement of constituent parts. Etc. are not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims. Further, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of explanation, and do not limit the technical idea of the present invention. Therefore, for example, if the paper surface is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper surface is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course it will be.

又、図面において、n又はpを冠した領域や層が半導体領域や半導体層等の半導体を材料とする部材や構成要素を意味することは、当業者には自明な事項である。又、図面中でnやpに付した+の上付き文字は、+が付記されていない半導体領域に比して、相対的に不純物密度が高い半導体領域であることを意味し、nやpの右上に付した−の上付き文字は、−が付記されていない半導体領域に比して、相対的に不純物密度が低い半導体領域であることを意味する。またnとnのように同じ表記であっても、必ずしも同じ不純物密度であることが示されている訳ではない。 Further, in the drawings, it is obvious to those skilled in the art that the region or layer labeled n or p means a member or component made of a semiconductor such as a semiconductor region or a semiconductor layer. Further, the + superscript attached to n or p in the drawing means that the impurity density is relatively high in the semiconductor region as compared with the semiconductor region not marked with +, and n or p. The-superscript attached to the upper right of is a semiconductor region having a relatively low impurity density as compared with the semiconductor region not marked with-. Further, even if the same notation such as n + and n + is used, it does not necessarily indicate that the impurity densities are the same.

(電荷蓄積素子の構造)
図3の平面図及び図2の断面図等に示すように、本発明の実施形態に係る電荷蓄積素子は、第1導電型(p型)の素子配置層2と、素子配置層2の上部の一部に設けられ、電荷供給領域を構成する第2導電型(n型)の表面埋込領域3と、表面埋込領域3に入力側を接続し、表面埋込領域3よりも高不純物密度でn型の電荷蓄積領域SD7と、電荷蓄積領域SD7の出力側に接続され、電荷蓄積領域SD7よりも高不純物密度でn型の目的領域FD7と、電荷蓄積領域SD7の入力側に定義される電荷転送チャネルR7の両側に対をなして対向配置され、電荷転送チャネルR7の空乏化電位を横方向静電誘導効果で制御して、表面埋込領域3から信号電荷を電荷蓄積領域SD7に導入する入力制御電極G6,G7と、入力制御電極G6,G7に隣接し、電荷転送チャネルR7よりも出力側に位置して電荷蓄積領域SD7の両側に対をなして対向配置され、電荷蓄積領域SD7の空乏化電位を横方向静電誘導効果で制御する容量拡大電極CA71,CA72を備える。本発明の実施形態に係る電荷蓄積素子は、容量拡大電極CA71,CA72に印加する電圧により、電荷蓄積領域SD7に蓄積される信号電荷の量を拡大する。本発明の実施形態に係る電荷蓄積素子は、電荷蓄積領域SD7の出力側に設けられ、電荷蓄積領域SD7に蓄積された信号電荷を目的領域FD7に転送する出力制御電極TX71,TX72を更に備える。
(Structure of charge storage element)
As shown in the plan view of FIG. 3 and the cross-sectional view of FIG. 2, the charge storage element according to the embodiment of the present invention includes the first conductive type (p type) element arrangement layer 2 and the upper part of the element arrangement layer 2. A second conductive type (n-type) surface-embedded region 3 provided in a part of the surface and forming a charge supply region, and an input side connected to the surface-embedded region 3 to have higher impurities than the surface-embedded region 3. It is connected to the output side of the n-type charge storage region SD7 and the charge storage region SD7 in terms of density, and is defined on the input side of the n-type target region FD7 and the charge storage region SD7 with a higher impurity density than the charge storage region SD7. The charge transfer channels R7 are arranged in pairs on both sides, and the depletion potential of the charge transfer channel R7 is controlled by the lateral electrostatic induction effect, and the signal charge is transferred from the surface embedded region 3 to the charge storage region SD7. The input control electrodes G6 and G7 to be introduced are adjacent to the input control electrodes G6 and G7, are located on the output side of the charge transfer channel R7, are arranged in pairs on both sides of the charge storage area SD7, and are arranged to face each other. The capacitance expansion electrodes CA71 and CA72 that control the depletion potential of SD7 by the lateral electrostatic induction effect are provided. The charge storage element according to the embodiment of the present invention expands the amount of signal charge stored in the charge storage region SD7 by the voltage applied to the capacitance expansion electrodes CA71 and CA72. The charge storage element according to the embodiment of the present invention is provided on the output side of the charge storage region SD7, and further includes output control electrodes TX71 and TX72 that transfer the signal charge stored in the charge storage region SD7 to the target region FD7.

(電荷蓄積素子の応用例の構造)
図1の平面図及び図2の断面図等に示すように、実施形態に係る電荷蓄積素子を用いた光電変換素子は、p型の素子配置層2、素子配置層2の上部の一部に設けられた、n型の表面埋込領域3、表面埋込領域3の中央に設けられたp型で高不純物密度の電位丘形成部7、及び表面埋込領域3の表面に接して設けられた、p型のピニング層5を含む信号処理領域(2,3,5,7)と、信号処理領域(2,3,5,7)上に設けられた絶縁膜9と、信号処理領域(2,3,5,7)の中央部に定義される電荷供給領域PDを囲むように設けられた、素子配置層2よりも高不純物密度でn型の第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8を備える。第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8は、それぞれ電荷供給領域PDを囲むように電荷供給領域PDの中心位置に関して対称となる8つ位置のそれぞれに互いに離間して配置されている。
(Structure of application example of charge storage device)
As shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2, the photoelectric conversion element using the charge storage element according to the embodiment is provided on a part of the p-type element arrangement layer 2 and the upper part of the element arrangement layer 2. It is provided in contact with the surface of the n-type surface embedding region 3, the p-type high impurity density potential hill forming portion 7 provided in the center of the surface embedding region 3, and the surface embedding region 3. In addition, a signal processing region (2,3,5,7) including a p-type pinning layer 5, an insulating film 9 provided on the signal processing region (2,3,5,7), and a signal processing region (2,3,5,7) The n-type first charge storage region SD1 and second charge having a higher impurity density than the element arrangement layer 2 provided so as to surround the charge supply region PD defined in the central portion of 2, 3, 5, 7). It includes a storage area SD2, a third charge storage area SD3, ..., And an eighth charge storage area SD8. The first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8 are symmetrical with respect to the center position of the charge supply region PD so as to surround the charge supply region PD, respectively. They are arranged apart from each other at each of the eight positions.

実施形態に係る電荷蓄積素子を用いた光電変換素子においては、電荷供給領域PDを囲む位置において、電荷供給領域PDの中心位置から第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれに至る8本の電荷転送チャネルのそれぞれの両側に、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8が対をなして絶縁膜9上に配置されている。 In the photoelectric conversion element using the charge storage element according to the embodiment, at a position surrounding the charge supply region PD, the first charge storage region SD1, the second charge storage region SD2, and the third charge are located from the center position of the charge supply region PD. First input control electrode G1, second input control electrode G2, third input control electrode G3, on both sides of each of the eight charge transfer channels leading to each of the storage regions SD3, ..., 8th charge storage region SD8. ..., The eighth input control electrodes G8 are arranged in pairs on the insulating film 9.

8本の電荷転送チャネルは、8個の第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8のうち隣り合う2個の入力制御電極に挟まれて形成される。例えば図1中の最上部に位置する第1電荷転送チャネルR1は、第8入力制御電極G8及び第1入力制御電極G1に挟まれた領域である。図1中で第1電荷転送チャネルR1の左側に表れる第2電荷転送チャネルR2は、第1入力制御電極G1及び第2入力制御電極G2に挟まれた領域である。図2中には、図1中で左右方向に水平に同一直線上に表れる第3電荷転送チャネルR3及び第7電荷転送チャネルR7が例示されている。 The eight charge transfer channels are two adjacent input controls of the eight first input control electrodes G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8. It is formed by being sandwiched between electrodes. For example, the first charge transfer channel R1 located at the uppermost part in FIG. 1 is a region sandwiched between the eighth input control electrode G8 and the first input control electrode G1. The second charge transfer channel R2 appearing on the left side of the first charge transfer channel R1 in FIG. 1 is a region sandwiched between the first input control electrode G1 and the second input control electrode G2. In FIG. 2, a third charge transfer channel R3 and a seventh charge transfer channel R7 appearing horizontally on the same straight line in the left-right direction in FIG. 1 are exemplified.

実施形態に係る電荷蓄積素子を用いた光電変換素子は、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に印加し、表面埋込領域3の空乏化電位を順次変化させることにより、電荷転送チャネルのいずれかに、電荷が輸送される電位勾配を順次形成して、表面埋込領域3中で発生した多数キャリアの移動先を第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のいずれかに順次設定するように制御する。すなわち、実施形態に係る電荷蓄積素子を用いた光電変換素子は、電荷転送チャネルを横断する方向に静電誘導効果で横方向電界制御を行う8つのゲートである第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8によって、平面パターンでのほぼ正八角形状の電荷供給領域PDで発生した光電子を、それぞれが電荷供給領域PDの中心から外側に放射状に延びる8本の電荷転送チャネルに沿って、横方向電界制御により高速に移動させて、電荷変調を行う。 The photoelectric conversion element using the charge storage element according to the embodiment is used with respect to the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8, respectively. By periodically applying electric field control pulses having different phases and sequentially changing the depletion potential of the surface-embedded region 3, a potential gradient in which charges are transported is sequentially formed in one of the charge transfer channels. The destinations of the multiple carriers generated in the surface embedded region 3 are sequentially moved to one of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8. Control to set. That is, the photoelectric conversion element using the charge storage element according to the embodiment is the first input control electrode G1 and the second, which are eight gates that control the electric field in the lateral direction by the electrostatic induction effect in the direction across the charge transfer channel. The input control electrodes G2, the third input control electrodes G3, ..., and the eighth input control electrode G8 cause the photoelectrons generated in the almost regular octagonal charge supply region PD in the plane pattern to be centered on the charge supply region PD. Charge modulation is performed by moving at high speed by lateral electric field control along eight charge transfer channels radiating outward from the charge.

図1の平面図から分かるように、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8の配置トポロジーは、電荷供給領域PDの中心位置に関して8回回転対称である。図1に示した第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれは、表面埋込領域3中で発生した多数キャリアを信号電荷として蓄積して読み出す目的領域として機能する。 As can be seen from the plan view of FIG. 1, the arrangement topology of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The eighth charge storage region SD8 is that of the charge supply region PD. It is rotationally symmetric 8 times with respect to the center position. Each of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8 shown in FIG. 1 is a large number of carriers generated in the surface embedded region 3. Functions as a target area for accumulating and reading out as a signal charge.

第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれの外側の端部には、高不純物密度のn型の第1目的領域FD1,第2目的領域FD2,第3目的領域FD3,……,第8目的領域FD8が設けられている。第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれの両側の絶縁膜9の内側には、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8への電荷の蓄積を促進する横方向電界が印加される容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82が設けられている。容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82の外側には、第1目的領域FD1,第2目的領域FD2,第3目的領域FD3,……,第8目的領域FD8への電荷の転送を促進する横方向電界が印加される出力制御電極TX11,TX21,TX31,……,TX81;TX12,TX22,TX32,……,TX82が設けられている。 At the outer ends of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the eighth charge storage region SD8, an n-type primary purpose having a high impurity density is used. Regions FD1, second destination region FD2, third destination region FD3, ..., Eighth destination region FD8 are provided. Inside the insulating films 9 on both sides of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the eighth charge storage region SD8, the first charge storage region SD1, 2nd charge storage region SD2, 3rd charge storage region SD3, ..., Capacity expansion electrodes CA11, CA21, CA31, ..., to which a lateral electric field that promotes charge accumulation in the 8th charge storage region SD8 is applied. CA81; CA12, CA22, CA32, ..., CA82 are provided. On the outside of the capacitance expansion electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82, the first target area FD1, the second target area FD2, the third target area FD3, ..., Output control electrodes TX11, TX21, TX31, ..., TX81; TX12, TX22, TX32, ..., TX82 are provided, to which a lateral electric field is applied to promote the transfer of electric charges to the eighth target region FD8.

図1及び図2等に示すように、絶縁膜9の上方に遮蔽板11が更に備えられている。この遮蔽板11の開口部を介して、信号処理領域(2,3,5,7)の中央部に電荷供給領域PDの平面パターンが定義され、この電荷供給領域PDに対し選択的に光が照射される。図1の平面図においては、信号処理領域(2,3,5,7)の中央部に、遮蔽板11の開口部としての電荷供給領域PDが定義されているが、この電荷供給領域PD中に水平方向(X方向)に第3電荷転送チャネルR3及び第7電荷転送チャネルR7が設定される。水平方向の電荷転送チャネルに直交する垂直方向(Y方向)には、第1電荷転送チャネルR1及び第5電荷転送チャネルR5が設定される。 As shown in FIGS. 1 and 2, a shielding plate 11 is further provided above the insulating film 9. A planar pattern of the charge supply region PD is defined in the central portion of the signal processing region (2, 3, 5, 7) through the opening of the shielding plate 11, and light is selectively emitted to the charge supply region PD. Be irradiated. In the plan view of FIG. 1, a charge supply region PD as an opening of the shielding plate 11 is defined in the central portion of the signal processing region (2, 3, 5, 7), but in the charge supply region PD. The third charge transfer channel R3 and the seventh charge transfer channel R7 are set in the horizontal direction (X direction). The first charge transfer channel R1 and the fifth charge transfer channel R5 are set in the vertical direction (Y direction) orthogonal to the charge transfer channel in the horizontal direction.

またX方向及びY方向を直交座標系とした際のy=xの直線上の位置には、第4電荷転送チャネルR4及び第8電荷転送チャネルR8が設定され、y=−xの直線上の位置には、第2電荷転送チャネルR2及び第6電荷転送チャネルR6が設定される。そのため図1の平面図では、電荷供給領域PDから、隣り合う電荷転送チャネルと中心軸どうしが45°の角度をなして外側に放射状に延びる8本の電荷転送チャネルが定義される。そして、第1電荷転送チャネルR1〜第8電荷転送チャネルR8の4つの端部にそれぞれ、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8が接続される。 The fourth charge transfer channel R4 and the eighth charge transfer channel R8 are set at positions on the straight line of y = x when the X and Y directions are in the Cartesian coordinate system, and the fourth charge transfer channel R8 is set on the straight line of y = −x. A second charge transfer channel R2 and a sixth charge transfer channel R6 are set at the positions. Therefore, in the plan view of FIG. 1, eight charge transfer channels are defined from the charge supply region PD so that the adjacent charge transfer channels and the central axes form an angle of 45 ° and extend radially outward. Then, at the four ends of the first charge transfer channel R1 to the eighth charge transfer channel R8, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The eighth charge, respectively. The storage area SD8 is connected.

本発明の実施形態の冒頭の説明では、容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82を、第7電荷蓄積領域SD7の両側に設けられた一対の拡大電極対(CA71,CA72)に着目し、第7電荷蓄積領域SD7の周辺の構造を説明した。すなわち、実施形態に係る電荷蓄積素子は一対の拡大電極対(CA71,CA72)を備えるが、この一対の拡大電極対(CA71,CA72)を構成する容量拡大電極CA71,CA72のそれぞれは、図3に示すように、平面パターンでほぼ矩形状である。容量拡大電極CA71,CA72のそれぞれは、矩形状の第7電荷蓄積領域SD7と平行に、第7電荷蓄積領域SD7と僅かな隙間を空けて、第7目的領域FD7側へ延びている。また容量拡大電極CA71,CA72は、第6入力制御電極G6及び第7入力制御電極G7とも僅かな隙間を空けて配置されている。すなわち一対の拡大電極対(CA71,CA72)は、電荷の移動方向に直交する方向に並べて配置されている。 In the description at the beginning of the embodiment of the present invention, a pair of capacitance expanding electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 are provided on both sides of the seventh charge storage region SD7. Focusing on the magnifying electrode pairs (CA71, CA72), the structure around the 7th charge storage region SD7 was explained. That is, the charge storage element according to the embodiment includes a pair of magnifying electrode pairs (CA71, CA72), and each of the capacitance expanding electrodes CA71 and CA72 constituting the pair of magnifying electrodes (CA71, CA72) is shown in FIG. As shown in, the plane pattern is almost rectangular. Each of the capacitance expansion electrodes CA71 and CA72 extends in parallel with the rectangular seventh charge storage region SD7 and extends toward the seventh target region FD7 with a slight gap from the seventh charge storage region SD7. Further, the capacitance expansion electrodes CA71 and CA72 are arranged with a slight gap between the sixth input control electrode G6 and the seventh input control electrode G7. That is, the pair of magnifying electrodes (CA71, CA72) are arranged side by side in the direction orthogonal to the moving direction of the electric charge.

実施形態に係る電荷蓄積素子を構成する第7電荷蓄積領域SD7は、第7電荷転送チャネルR7から連続する第1の矩形状領域と、第1の矩形状領域から第7目的領域FD7へと延びる、第1の矩形状領域より狭幅の第2の矩形状領域とを備える段差形状の多角形である。容量拡大電極CA71,CA72の長辺の長さは第7電荷蓄積領域SD7の第1の矩形状領域の長辺の長さとほぼ同じである。 The seventh charge storage region SD7 constituting the charge storage element according to the embodiment extends from the seventh charge transfer channel R7 to the continuous first rectangular region and the first rectangular region to the seventh target region FD7. , A stepped polygon having a second rectangular region narrower than the first rectangular region. The length of the long side of the capacitance expansion electrodes CA71 and CA72 is substantially the same as the length of the long side of the first rectangular region of the seventh charge storage region SD7.

第7電荷蓄積領域SD7の第2の矩形状領域の両側には、一対の出力電極対(TX71,TX72)のそれぞれが、第7電荷蓄積領域SD7及び容量拡大電極CA71,CA72と離間して設けられている。容量拡大電極CA71,CA72及び出力制御電極TX71,TX72は、絶縁膜9の上部に設けられている。一対の拡大電極対(CA71,CA72)は、設定された制御電圧が印加されることにより、一対の拡大電極対(CA71,CA72)によって挟まれた電荷の移動経路(蓄積転送路)に沿って定義される第7電荷蓄積領域SD7中における蓄積電荷容量を増大させる。 A pair of output electrode pairs (TX71, TX72) are provided on both sides of the second rectangular region of the seventh charge storage region SD7 so as to be separated from the seventh charge storage region SD7 and the capacitance expansion electrodes CA71 and CA72. Has been done. The capacitance expansion electrodes CA71 and CA72 and the output control electrodes TX71 and TX72 are provided on the upper portion of the insulating film 9. The pair of magnifying electrode pairs (CA71, CA72) is applied along the charge transfer path (accumulation transfer path) sandwiched between the pair of magnifying electrode pairs (CA71, CA72) by applying a set control voltage. Increases the stored charge capacity in the defined seventh charge storage region SD7.

図4及び図5に示すように、一対の入力制御電極(G6,G7)がオン状態、一対の拡大電極対(CA71,CA72)がオン状態、及び一対の出力電極対(TX71,TX72)がオフ状態の場合、電荷の移動経路に沿った図3中の水平方向中央のY2−Y2方向から見た断面における位置での電子に対するポテンシャルが全体的に最も深い。次に電荷の移動経路中一対の入力制御電極(G6,G7)寄りとなる図3のY1−Y1方向から見た断面における位置が深く、電荷の移動経路中一対の出力電極対(TX71,TX72)寄りとなる図3のY3−Y3方向から見た断面における位置でのポテンシャルが最も浅くなる。 As shown in FIGS. 4 and 5, a pair of input control electrodes (G6, G7) is in an on state, a pair of magnifying electrode pairs (CA71, CA72) are in an on state, and a pair of output electrode pairs (TX71, TX72) are in an on state. In the off state, the potential for electrons at the position in the cross section seen from the Y2-Y2 direction in the center of the horizontal direction in FIG. 3 along the charge movement path is the deepest as a whole. Next, the position in the cross section seen from the Y1-Y1 direction in FIG. 3, which is closer to the pair of input control electrodes (G6, G7) in the charge transfer path, is deep, and the pair of output electrode pairs (TX71, TX72) in the charge transfer path. ) The potential at the position in the cross section seen from the Y3-Y3 direction of FIG.

また図6及び図7に示すように、一対の入力制御電極(G6,G7)がオフ状態、一対の拡大電極対(CA71,CA72)がオン状態、及び一対の出力電極対(TX71,TX72)がオフ状態の場合、図3の中央のY2−Y2方向から見た断面における位置での電子に対するポテンシャルが全体的に最も深い。図3のY3−Y3方向から見た断面における位置でのポテンシャルは、Y方向の中央位置では2番目に深いが、Y方向の両端の位置では、図3のY1−Y1方向から見た断面における位置でのポテンシャルより浅くなる。 Further, as shown in FIGS. 6 and 7, a pair of input control electrodes (G6, G7) are in an off state, a pair of magnifying electrode pairs (CA71, CA72) are in an on state, and a pair of output electrode pairs (TX71, TX72). When is off, the potential for electrons at the position in the cross section seen from the Y2-Y2 direction in the center of FIG. 3 is the deepest as a whole. The potential at the position in the cross section seen from the Y3-Y3 direction in FIG. 3 is the second deepest at the center position in the Y direction, but at the positions at both ends in the Y direction, in the cross section seen from the Y1-Y1 direction in FIG. It becomes shallower than the potential at the position.

また図8及び図9に示すように、一対の入力制御電極(G6,G7)がオフ状態、一対の拡大電極対(CA71,CA72)がオン状態、及び一対の出力電極対(TX71,TX72)がオン状態の場合、図3のY1−Y1方向から見た断面における位置での電子に対するポテンシャルが全体的に最も浅い。図3のY3−Y3方向から見た断面における位置でのポテンシャルは、Y方向の中央位置では最も深いが、Y方向の両端の位置では、図3のY2−Y2方向から見た断面における位置でのポテンシャルより浅くなる。 Further, as shown in FIGS. 8 and 9, a pair of input control electrodes (G6, G7) are in an off state, a pair of magnifying electrode pairs (CA71, CA72) are in an on state, and a pair of output electrode pairs (TX71, TX72). When is on, the potential for electrons at the position in the cross section seen from the Y1-Y1 direction in FIG. 3 is the shallowest as a whole. The potential at the position in the cross section seen from the Y3-Y3 direction in FIG. 3 is the deepest at the center position in the Y direction, but at the positions at both ends in the Y direction, the potential at the position in the cross section seen from the Y2-Y2 direction in FIG. It becomes shallower than the potential of.

また図10及び図11に示すように、一対の入力制御電極(G6,G7)がオフ状態、一対の拡大電極対(CA71,CA72)がオフ状態、及び一対の出力電極対(TX71,TX72)がオン状態の場合、図3のY方向の中央の位置では、Y3−Y3方向から見た断面における位置での電子に対するポテンシャルが全体的に最も深く、次に、図3のY2−Y2方向から見た断面における位置でのポテンシャル、最後に図3のY1−Y1方向から見た断面における位置でのポテンシャルの順に深い。一方、図3のY方向の両端位置では、最も深いが、図3のY1−Y1方向から見た断面における位置、図3のY2−Y2方向から見た断面における位置、図3のY3−Y3方向から見た断面における位置の順に、電子に対するポテンシャルが深くなる。 Further, as shown in FIGS. 10 and 11, a pair of input control electrodes (G6, G7) are in an off state, a pair of magnifying electrode pairs (CA71, CA72) are in an off state, and a pair of output electrode pairs (TX71, TX72). When is on, at the center position in the Y direction in FIG. 3, the potential for electrons at the position in the cross section seen from the Y3-Y3 direction is the deepest overall, and then from the Y2-Y2 direction in FIG. The potential at the position in the viewed cross section is deeper, and finally the potential at the position in the cross section seen from the Y1-Y1 direction in FIG. 3 is deeper. On the other hand, the positions at both ends in the Y direction in FIG. 3 are the deepest, but the positions in the cross section seen from the Y1-Y1 direction in FIG. 3, the positions in the cross section seen from the Y2-Y2 direction in FIG. 3, and Y3-Y3 in FIG. The potential for electrons increases in the order of position in the cross section viewed from the direction.

尚、容量拡大電極の形状は、図3に示した矩形に限定されず、第7電荷蓄積領域SD7に沿って延びる領域を有して、挟まれた領域中の蓄積電荷容量を増やす限り、楕円形や多角形等の他の形状であってよい。他の容量拡大電極の構造も、容量拡大電極CA71,CA72と等価な構造である。 The shape of the capacitance expansion electrode is not limited to the rectangle shown in FIG. 3, and is elliptical as long as it has a region extending along the seventh charge storage region SD7 and the stored charge capacity in the sandwiched region is increased. It may be another shape such as a shape or a polygon. The structures of the other capacitance expansion electrodes are also equivalent to those of the capacitance expansion electrodes CA71 and CA72.

(電荷蓄積素子の動作)
第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8は、所望の電荷転送チャネルの中心軸を通る対称軸に関して対称に位置する入力制御電極どうしが制御電極対となって、制御電極対に同じ大きさのゲート信号が印加される。図12に示すように、第7電荷転送チャネルR7に着目して、第7電荷蓄積領域SD7、及び第7目的領域FD7へと電荷を移動させ実施形態に係る電荷蓄積素子の動作を説明する。実施形態に係る電荷蓄積素子を用いた光電変換素子においては、第7電荷転送チャネルR7の中心軸をなすB−B線に沿って、第1制御電極対(G2、G3)、第2制御電極対(G1、G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)がそれぞれ形成される。尚、実施形態に係る電荷蓄積素子に信号電荷を供給する電荷供給領域PDの正八角形の最大幅は4.5μm程度である。
(Operation of charge storage element)
The first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The eighth input control electrode G8 are inputs located symmetrically with respect to the axis of symmetry passing through the central axis of the desired charge transfer channel. The control electrodes form a pair of control electrodes, and a gate signal of the same magnitude is applied to the pair of control electrodes. As shown in FIG. 12, focusing on the seventh charge transfer channel R7, the operation of the charge storage element according to the embodiment by moving the charge to the seventh charge storage region SD7 and the seventh target region FD7 will be described. In the photoelectric conversion element using the charge storage element according to the embodiment, the first control electrode pair (G2, G3) and the second control electrode are along the BB line forming the central axis of the seventh charge transfer channel R7. Pairs (G1, G4), third control electrode pairs (G8, G5) and fourth control electrode pairs (G7, G6) are formed, respectively. The maximum width of the regular octagon of the charge supply region PD that supplies the signal charge to the charge storage element according to the embodiment is about 4.5 μm.

第1制御電極対(G2、G3)には、第1電位レベルL(−1V)のゲート信号が印加される。第2制御電極対(G1、G4)には、第1電位レベルLより高い第2電位レベルM(0.5V)のゲート信号が印加される。第3制御電極対(G8、G5)には、第2電位レベルMより高い第3電位レベルH(1.0V)のゲート信号が印加される。第4制御電極対(G7、G6)には、第3電位レベルHより高い第4電位レベルV(2.3V)のゲート信号が印加される。 A gate signal of the first potential level L (-1V) is applied to the first control electrode pair (G2, G3). A gate signal of a second potential level M (0.5 V) higher than the first potential level L is applied to the second control electrode pair (G1, G4). A gate signal of a third potential level H (1.0 V) higher than the second potential level M is applied to the third control electrode pair (G8, G5). A gate signal of a fourth potential level V (2.3 V) higher than the third potential level H is applied to the fourth control electrode pair (G7, G6).

すなわち実施形態に係る電荷蓄積素子を構成する第7電荷転送チャネルR7の中心軸を通る対称軸を挟んだ両側で、第1制御電極対(G2、G3)から、電荷の移動の終点側である第4制御電極対(G7、G6)に向かって、順次、印加される電位が高くなるように、8個の入力制御電極による4個の制御電極対が構成され、4個の制御電極対のそれぞれに印加される電圧が制御される。 That is, it is the end point side of charge transfer from the first control electrode pair (G2, G3) on both sides of the axis of symmetry passing through the central axis of the seventh charge transfer channel R7 constituting the charge storage element according to the embodiment. Four control electrode pairs consisting of eight input control electrodes are configured so that the applied potential increases in sequence toward the fourth control electrode pair (G7, G6), and the four control electrode pairs of the four control electrode pairs. The voltage applied to each is controlled.

実施形態に係る電荷蓄積素子を構成する第7電荷転送チャネルR7を用いる場合は、第1制御電極対(G2,G3)、第2制御電極対(G1,G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)に対し、互いに異なる電界制御電圧を第1制御パルス,第2制御パルス,第3制御パルス,……,第8制御パルスによって、それぞれ印加し、それぞれの電荷転送チャネルの空乏化電位を変化させる。この結果、図5及び図6に示したような、実施形態に係る電荷蓄積素子中の着目位置によって異なる電位勾配が形成されて、電荷供給領域PDから供給される信号電荷の移動方向が順次、制御される。 When the seventh charge transfer channel R7 constituting the charge storage element according to the embodiment is used, the first control electrode pair (G2, G3), the second control electrode pair (G1, G4), and the third control electrode pair (G8) are used. , G5) and the fourth control electrode pair (G7, G6), different electric field control voltages are applied by the first control pulse, the second control pulse, the third control pulse, ..., The eighth control pulse, respectively. , Change the depletion potential of each charge transfer channel. As a result, different potential gradients are formed depending on the position of interest in the charge storage element according to the embodiment as shown in FIGS. 5 and 6, and the moving directions of the signal charges supplied from the charge supply region PD are sequentially changed. Be controlled.

信号電荷は、電位丘形成部7の周囲を回るように移動し、最後に第4制御電極対(G7,G6)の間の第7電荷転送チャネルR7を経由して、実施形態に係る電荷蓄積素子を構成する第7電荷蓄積領域SD7に移動する。このとき第3電荷転送チャネルR3の電子に対するポテンシャルは浅く、第7電荷転送チャネルR7の電子に対するポテンシャルは深く、図13に示すような、第7電荷転送チャネルR7から第7電荷蓄積領域SD7へ、更に第7目的領域FD7へ連続して下降する電位勾配が形成される。すなわち第7電荷蓄積領域SD7へのゲートは開いているが、第7電荷蓄積領域SD7以外のゲートはいずれも閉まっている。第7電荷蓄積領域SD7以外の電荷転送チャネルの電子に対するポテンシャルはいずれも浅く、電荷の移動を阻害する電位勾配がそれぞれ形成される。 The signal charge travels around the potential hill forming portion 7, and finally via the seventh charge transfer channel R7 between the fourth control electrode pair (G7, G6), the charge accumulation according to the embodiment. It moves to the seventh charge storage region SD7 constituting the element. At this time, the potential of the third charge transfer channel R3 for electrons is shallow, and the potential of the seventh charge transfer channel R7 for electrons is deep. As shown in FIG. 13, from the seventh charge transfer channel R7 to the seventh charge storage region SD7, Further, a potential gradient that continuously descends to the seventh target region FD7 is formed. That is, the gate to the 7th charge storage region SD7 is open, but all the gates other than the 7th charge storage region SD7 are closed. The potentials of the charge transfer channels other than the seventh charge storage region SD7 for electrons are shallow, and potential gradients that hinder the movement of charges are formed.

一方、例えば図1中の最下部の第5電荷転送チャネルR5を用いて第5電荷蓄積領域SD5、及び第5目的領域FD5へと電荷を移動させたい場合、第5電荷転送チャネルR5の中心軸に沿って、第1制御電極対(G8、G1)、第2制御電極対(G2、G7)、第3制御電極対(G3、G6)及び第4制御電極対(G4、G5)がそれぞれ形成される。 On the other hand, for example, when it is desired to transfer the charge to the fifth charge storage region SD5 and the fifth target region FD5 using the lowermost fifth charge transfer channel R5 in FIG. 1, the central axis of the fifth charge transfer channel R5. The first control electrode pair (G8, G1), the second control electrode pair (G2, G7), the third control electrode pair (G3, G6), and the fourth control electrode pair (G4, G5) are formed along the above. Will be done.

そして第1制御電極対(G8、G1)から、電荷の移動の終点側である第4制御電極対(G4、G5)に向かって、順次、印加される電位が高くなるように、8個の入力制御電極の対に印加する電圧を制御すれば、信号電荷を第5目的領域FD5まで移動できる。図示を省略するが、空乏化電位を効率良く変化させるため、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8の直下の部分の絶縁膜9の厚さは他の部分より薄く、いわゆる「ゲート絶縁膜」として機能している。実際には、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8等は絶縁膜9の内部に埋め込まれ、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8の直下は他の部分より薄くなっている。 Then, eight control electrode pairs (G8, G1) are sequentially applied from the first control electrode pair (G8, G1) toward the fourth control electrode pair (G4, G5), which is the end point side of the charge transfer, so that the applied potential increases. By controlling the voltage applied to the pair of input control electrodes, the signal charge can be moved to the fifth target region FD5. Although not shown, in order to efficiently change the depletion potential, the portion directly below the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The eighth input control electrode G8. The thickness of the insulating film 9 is thinner than that of other parts, and functions as a so-called "gate insulating film". Actually, the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., the eighth input control electrode G8, etc. are embedded inside the insulating film 9, and the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The area directly below the eighth input control electrode G8 is thinner than the other parts.

図2に示すとおり、図1に示した信号処理領域(2,3,5,7)は、p型の素子配置層2と、素子配置層2の上部の一部に設けられた、n型の表面埋込領域3とを備え、表面埋込領域3中の多数キャリアである電子が、信号電荷として表面埋込領域3中を輸送される。電荷転送チャネルとして機能する表面埋込領域3の表面に接して、p型のピニング層5が設けられている。図2に示すとおり、実施形態に係る電荷蓄積素子を用いた光電変換素子の断面構造は、3層構造の信号処理領域(2,3,5,7)が、更にp型の半導体基板1上に形成されているので、実際は4層構造である。 As shown in FIG. 2, the signal processing region (2, 3, 5, 7) shown in FIG. 1 is provided with a p-type element arrangement layer 2 and an n-type provided in a part of the upper part of the element arrangement layer 2. The electron, which is a large number of carriers in the surface-embedded region 3, is transported in the surface-embedded region 3 as a signal charge. A p-type pinning layer 5 is provided in contact with the surface of the surface-embedded region 3 that functions as a charge transfer channel. As shown in FIG. 2, the cross-sectional structure of the photoelectric conversion element using the charge storage element according to the embodiment has a three-layered signal processing region (2, 3, 5, 7) on the p-type semiconductor substrate 1. Since it is formed in, it actually has a four-layer structure.

図2では、素子配置層2が、p型の半導体基板1上にエピタキシャル成長等により堆積された構造を例示しているが、素子配置層2はn型の半導体基板1上に設けられていても構わない。更に、素子配置層2と半導体基板1との間等に他の層を含んで、5層以上の構造としても構わない。ピニング層5において、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に印加される電圧によって電荷転送チャネルの空乏化電位が制御されることにより、信号電荷と反対導電型のキャリアである正孔(ホール)の密度が変化する。 FIG. 2 illustrates a structure in which the element arrangement layer 2 is deposited on the p-type semiconductor substrate 1 by epitaxial growth or the like, but the element arrangement layer 2 may be provided on the n-type semiconductor substrate 1. I do not care. Further, another layer may be included between the element arrangement layer 2 and the semiconductor substrate 1 to form a structure having five or more layers. In the pinning layer 5, the depletion potential of the charge transfer channel is controlled by the voltage applied to the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The eighth input control electrode G8. By doing so, the density of holes, which are carriers of the opposite conductivity type to the signal charge, changes.

図1の平面図では絶縁膜9が図示されていないが、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8は、絶縁膜9を介して、信号処理領域(2,3,5,7)上に配列されている。隣り合う第8入力制御電極G8と第1入力制御電極G1の間に第1電荷転送チャネルR1が定義され、隣り合う第1入力制御電極G1と第2入力制御電極G2の間に第2電荷転送チャネルR2が定義される。又、隣り合う第2入力制御電極G2と第3入力制御電極G3の間に第3電荷転送チャネルR3が定義され、隣り合う第3入力制御電極G3と第4入力制御電極G4の間に第4電荷転送チャネルR4が定義される。更に、第4入力制御電極G4と第5入力制御電極G5の間に第5電荷転送チャネルR5が、第5入力制御電極G5と第6入力制御電極G6の間に第6電荷転送チャネルR6が、第6入力制御電極G6と第7入力制御電極G7の間に第7電荷転送チャネルR7が、第7入力制御電極G7と第8入力制御電極G8の間に第8電荷転送チャネルR8が定義される。 Although the insulating film 9 is not shown in the plan view of FIG. 1, the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8 are insulating films. It is arranged on the signal processing region (2, 3, 5, 7) via 9. A first charge transfer channel R1 is defined between the adjacent eighth input control electrode G8 and the first input control electrode G1, and a second charge transfer is performed between the adjacent first input control electrode G1 and the second input control electrode G2. Channel R2 is defined. Further, a third charge transfer channel R3 is defined between the adjacent second input control electrode G2 and the third input control electrode G3, and a fourth charge transfer channel R3 is defined between the adjacent third input control electrode G3 and the fourth input control electrode G4. The charge transfer channel R4 is defined. Further, a fifth charge transfer channel R5 is provided between the fourth input control electrode G4 and the fifth input control electrode G5, and a sixth charge transfer channel R6 is provided between the fifth input control electrode G5 and the sixth input control electrode G6. A seventh charge transfer channel R7 is defined between the sixth input control electrode G6 and the seventh input control electrode G7, and an eighth charge transfer channel R8 is defined between the seventh input control electrode G7 and the eighth input control electrode G8. ..

第8入力制御電極G8と第1入力制御電極G1は、第1電荷転送チャネルR1として機能する表面埋込領域3を挟むように、信号電荷の転送方向と直交する方向に沿って配置されている。同様に、第1入力制御電極G1と第2入力制御電極G2は第2電荷転送チャネルR2として機能する表面埋込領域3を挟むように、信号電荷の転送方向と直交する方向に沿って配置されている。更に、第2入力制御電極G2と第3入力制御電極G3は第3電荷転送チャネルR3として機能する表面埋込領域3を挟むように、第3入力制御電極G3と第4入力制御電極G4は第4電荷転送チャネルR4として機能する表面埋込領域3を挟むように、第4入力制御電極G4と第5入力制御電極G5は、第5電荷転送チャネルR5として機能する表面埋込領域3を挟むように、第5入力制御電極G5と第6入力制御電極G6は第6電荷転送チャネルR6として機能する表面埋込領域3を挟むように、第6入力制御電極G6と第7入力制御電極G7は第7電荷転送チャネルR7として機能する表面埋込領域3を挟むように、第7入力制御電極G7と第8入力制御電極G8は第8電荷転送チャネルR8として機能する表面埋込領域3を挟むように信号電荷の転送方向と直交する方向に沿って配置されている。 The eighth input control electrode G8 and the first input control electrode G1 are arranged along a direction orthogonal to the signal charge transfer direction so as to sandwich the surface embedded region 3 functioning as the first charge transfer channel R1. .. Similarly, the first input control electrode G1 and the second input control electrode G2 are arranged along a direction orthogonal to the signal charge transfer direction so as to sandwich the surface embedded region 3 functioning as the second charge transfer channel R2. ing. Further, the third input control electrode G3 and the fourth input control electrode G4 are arranged so that the second input control electrode G2 and the third input control electrode G3 sandwich the surface embedded region 3 that functions as the third charge transfer channel R3. 4 The fourth input control electrode G4 and the fifth input control electrode G5 sandwich the surface embedded region 3 functioning as the fifth charge transfer channel R5 so as to sandwich the surface embedded region 3 functioning as the fourth charge transfer channel R4. The sixth input control electrode G6 and the seventh input control electrode G7 are arranged so that the fifth input control electrode G5 and the sixth input control electrode G6 sandwich the surface embedded region 3 that functions as the sixth charge transfer channel R6. 7 The 7th input control electrode G7 and the 8th input control electrode G8 sandwich the surface embedded region 3 functioning as the 8th charge transfer channel R8 so as to sandwich the surface embedded region 3 functioning as the 7 charge transfer channel R7. It is arranged along a direction orthogonal to the transfer direction of the signal charge.

図1の平面図には、いずれも八角形の破線で遮蔽板11の外縁部及び開口部であるアパーチャを示した。図1の平面図において、アパーチャの内部の直下に位置するp型の素子配置層2の一部と、n型の表面埋込領域3の一部とが、埋込フォトダイオード領域を構成している。図1では、このアパーチャ直下の電荷供給領域PDとして機能する埋込フォトダイオード領域を取り巻くように、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8が配置されている。このため、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に加える電位を変化させて、電荷供給領域PDの周辺に位置する表面埋込領域3の空乏化電位、及び電荷転送チャネルの空乏化電位を、静電誘導効果で制御して変化させることができる。 In the plan view of FIG. 1, the outer edge portion and the opening portion of the shielding plate 11 are shown by an octagonal broken line. In the plan view of FIG. 1, a part of the p-type element arrangement layer 2 located directly below the inside of the aperture and a part of the n-type surface embedded region 3 form an embedded photodiode region. There is. In FIG. 1, the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., No. 1 so as to surround the embedded photodiode region that functions as the charge supply region PD directly under the aperture. The 8-input control electrode G8 is arranged. Therefore, the potential applied to the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8 is changed to be located around the charge supply region PD. The depletion potential of the surface-embedded region 3 and the depletion potential of the charge transfer channel can be controlled and changed by the electrostatic induction effect.

図示を省略するが、第1目的領域FD1には、第1読出トランジスタ(増幅トランジスタ)のゲート電極が、絶縁膜9中に設けられたコンタクト窓を介して接続される。第1読出トランジスタのドレイン電極は電源VDDに接続され、ソース電極は画素選択用の第1スイッチングトランジスタSEL1のドレイン電極に接続されている。第1スイッチングトランジスタSEL1のソース電極は、垂直信号線に接続され、ゲート電極には水平ラインの選択用制御信号SL(i)が、図示を省略する垂直シフトレジスタから与えられる。 Although not shown, the gate electrode of the first read transistor (amplification transistor) is connected to the first target region FD1 via a contact window provided in the insulating film 9. The drain electrode of the first read transistor is connected to the power supply VDD, and the source electrode is connected to the drain electrode of the first switching transistor SEL1 for pixel selection. The source electrode of the first switching transistor SEL1 is connected to a vertical signal line, and a horizontal line selection control signal SL (i) is given to the gate electrode from a vertical shift register (not shown).

選択用制御信号SL(i)を高レベルにすることにより、第1スイッチングトランジスタSEL1が導通し、第1読出トランジスタで増幅された第1目的領域FD1の電位に対応する電流が垂直信号線に流れる。更に、第1目的領域FD1には、第1リセットトランジスタRT1のソース電極が接続されている。第1リセットトランジスタRT1のドレイン電極は電源VDDに接続され、第1リセットトランジスタRT1のゲート電極にはリセット信号RT1(i)が垂直シフトレジスタから与えられる。リセット信号RT1(i)を高レベルにして、第1リセットトランジスタRT1が第1目的領域FD1に蓄積された電荷を吐き出し、第1目的領域FD1をリセットする。 By raising the selection control signal SL (i) to a high level, the first switching transistor SEL1 becomes conductive, and the current corresponding to the potential of the first target region FD1 amplified by the first read transistor flows in the vertical signal line. .. Further, the source electrode of the first reset transistor RT1 is connected to the first target region FD1. The drain electrode of the first reset transistor RT1 is connected to the power supply VDD, and the reset signal RT 1 (i) is given to the gate electrode of the first reset transistor RT1 from the vertical shift register. The reset signal RT 1 (i) is set to a high level, and the first reset transistor RT1 discharges the electric charge accumulated in the first target region FD1 to reset the first target region FD1.

一方、第2目的領域FD2,第3目的領域FD3,第4目的領域FD4,……,第7目的領域FD7にも、第1目的領域FD1と同様に、いずれも第1読出トランジスタと等価な、第2読出トランジスタ,第3読出トランジスタ,第4読出トランジスタ,……,第7読出トランジスタが接続されている。また第2目的領域FD2,第3目的領域FD3,第4目的領域FD4,……,第7目的領域FD7には、いずれも第1スイッチングトランジスタSEL1と等価な第2スイッチングトランジスタSEL2,第3スイッチングトランジスタSEL3,第4スイッチングトランジスタSEL4,……,第7スイッチングトランジスタSEL7と、いずれも第1リセットトランジスタRT1と等価な第2リセットトランジスタRT2,第3リセットトランジスタRT3,第4リセットトランジスタRT4,……,第7リセットトランジスタRT7とが接続されている。 On the other hand, the second target area FD2, the third target area FD3, the fourth target area FD4, ..., The seventh target area FD7 are also equivalent to the first read transistor, as in the first target area FD1. The second read transistor, the third read transistor, the fourth read transistor, ..., The seventh read transistor are connected. Further, in the second target area FD2, the third target area FD3, the fourth target area FD4, ..., And the seventh target area FD7, the second switching transistor SEL2 and the third switching transistor equivalent to the first switching transistor SEL1 are all included. SEL3, 4th switching transistor SEL4, ..., 7th switching transistor SEL7, 2nd reset transistor RT2, 3rd reset transistor RT3, 4th reset transistor RT4, ..., which are equivalent to the 1st reset transistor RT1. 7 The reset transistor RT7 is connected.

第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に与える電圧によって、電荷供給領域PDで発生した電子の移動の制御を自在に行うためには、制御電極対で挟まれた電荷転送チャネルの空乏化電位や埋め込みダイオード内の空乏化電位が、制御電極対に加える電圧によって大きく変動するように構成すればよい。これは、基板の不純物密度を低く設定し、表面のホールピニングのためのpピニング層5を比較的低不純物密度に選ぶことによって行える。こうした電荷蓄積素子の入力制御電極及びピニング層の内部のキャリアの濃度の変化等については、特許文献1中で「入力制御電極対41a,41b」を用いて代表的に説明したものと原理的に等価であるため、重複説明を省略する。 The movement of electrons generated in the charge supply region PD can be freely controlled by the voltage applied to the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8. In order to do so, the depletion potential of the charge transfer channel sandwiched between the control electrode pairs and the depletion potential in the embedded diode may be configured to vary greatly depending on the voltage applied to the control electrode pair. This can be done by setting the impurity density of the substrate low and selecting the p + pinning layer 5 for surface hole pinning to a relatively low impurity density. In principle, changes in the concentration of carriers inside the input control electrode and the pinning layer of the charge storage element are typically described using "input control electrode pairs 41a and 41b" in Patent Document 1. Since they are equivalent, duplicate explanations will be omitted.

通常の固体撮像装置においては、ピニング層は、ダーク時の表面でのキャリアの生成や信号キャリアの捕獲を抑制する層であり、ダーク電流や信号キャリアの捕獲の削減のために好ましい層として、従来用いられているが、実施形態に係る電荷蓄積素子を用いた光電変換素子のピニング層5は、これらの従来周知の機能に留まらず、表面埋込領域3の空乏化電位や電荷転送チャネルの空乏化電位を第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8の電圧で大きく変化させる作用をなす重要な層として機能している。 In a normal solid-state imaging device, the pinning layer is a layer that suppresses carrier generation and signal carrier capture on the surface during darkness, and has been conventionally used as a preferable layer for reducing dark current and signal carrier capture. Although used, the pinning layer 5 of the photoelectric conversion element using the charge storage element according to the embodiment is not limited to these conventionally known functions, and the depletion potential of the surface embedded region 3 and the depletion of the charge transfer channel are depleted. It functions as an important layer that greatly changes the conversion potential with the voltage of the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8. ..

図12に例示したような4対の制御電極対に、それぞれ異なった電圧レベルのゲート電圧を加えることで、遮蔽板11の開口部(アパーチャ)に入射した光で、埋込フォトダイオード領域で発生したキャリア(電子)を、電荷供給領域PDから延びる8方向の中の所望の移動経路に振り分けるように高速に移動させる電荷変調素子等を実現することができる。 By applying gate voltages of different voltage levels to each of the four control electrode pairs as illustrated in FIG. 12, light incident on the opening (aperture) of the shielding plate 11 is generated in the embedded photodiode region. It is possible to realize a charge modulation element or the like that moves the carriers (electrons) at high speed so as to distribute them to a desired movement path in eight directions extending from the charge supply region PD.

すなわち、実施形態に係る電荷蓄積素子を用いた光電変換素子においては、図12に示すように、中心軸が45°ずつ角度をなして設けられた8本の電荷転送チャネルの端部には、第1目的領域FD1〜第8目的領域FD8が設けられているので、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に、それぞれ異なった第1〜第4電位レベルのゲート電圧を加えることで、8本の電荷転送チャネルの起点側に位置する埋込フォトダイオード領域で発生したキャリア(電子)の信号電荷を、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に加える電界制御電圧によって、高速に振り分けて移動させる光飛行時間(TOF)型距離センサの動作を実現することができる。 That is, in the photoelectric conversion element using the charge storage element according to the embodiment, as shown in FIG. 12, at the ends of the eight charge transfer channels provided with the central axes at an angle of 45 ° each, Since the first target area FD1 to the eighth target area FD8 are provided, the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The eighth input control electrode G8 By applying different gate voltages of the first to fourth potential levels, the signal charges of carriers (electrons) generated in the embedded photodiode region located on the starting point side of the eight charge transfer channels are input to the first input. Control electrode G1, 2nd input control electrode G2, 3rd input control electrode G3, ..., Optical flight time (TOF) type distance sensor that is distributed and moved at high speed by the electric charge control voltage applied to the 8th input control electrode G8. The operation can be realized.

第1目的領域FD1には、第1読出トランジスタのゲート電極が、接続されているので、第1目的領域FD1に輸送された電荷量に相当する電圧によって、第1読出トランジスタで増幅された出力が、第1スイッチングトランジスタSEL1を介して外部に出力される。同様に、第2目的領域FD2には、第2読出トランジスタのゲート電極が接続されているので、第2目的領域FD2に輸送された電荷量に相当する電圧によって、第2読出トランジスタで増幅された出力が、第2スイッチングトランジスタを介して外部に出力される。 Since the gate electrode of the first read transistor is connected to the first target region FD1, the output amplified by the first read transistor is generated by the voltage corresponding to the amount of electric charge transported to the first target region FD1. , It is output to the outside via the first switching transistor SEL1. Similarly, since the gate electrode of the second read transistor is connected to the second target region FD2, it is amplified by the second read transistor by the voltage corresponding to the amount of electric charge transported to the second target region FD2. The output is output to the outside via the second switching transistor.

例えば、TOF型距離センサへの応用においては、TOF距離センサに設けられた光源から繰り返しパルス信号として光を対象物に照射し、対象物によって反射された光の往復に要する遅延時間Tdを測定すればよい。すなわち、TOF距離センサへの応用では、上記のように、第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に、それぞれ互いに位相の異なる第1制御パルス,第2制御パルス,第3制御パルス,……,第8制御パルスを印加する動作を、出力光の光パルスの繰り返し周期と同期して、周期的に繰り返して遅延時間Tdを測定する。遅延時間Tdの測定については、特許文献1における「遅延時間Tdの測定」と同様の原理を使用できる。 For example, in application to a TOF type distance sensor, light is repeatedly irradiated to an object as a pulse signal from a light source provided in the TOF distance sensor, and the delay time T d required for the reciprocation of the light reflected by the object is measured. do it. That is, in the application to the TOF distance sensor, as described above, the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., And the eighth input control electrode G8 are in phase with each other. The operation of applying the first control pulse, the second control pulse, the third control pulse, ..., The eighth control pulse, which are different from each other, is periodically repeated in synchronization with the repetition period of the optical pulse of the output light, and the delay time. Measure T d . For the measurement of the delay time T d, it can be used the same principle as "measurement of the delay time T d" in Patent Document 1.

実施形態に係る電荷蓄積素子を用いた光電変換素子は、比較的デューティの狭いパルス光を用いて動作させる。到来光の光パルスを受けて、電荷蓄積素子で変調された電荷を蓄積する期間では、第1制御パルス,第2制御パルス,第3制御パルス,……,第8制御パルスを、整形回路によって整形し、第1電位レベルL、第2電位レベルM、第3電位レベルH及び第4電位レベルVの4段階の出力レベルをそれぞれ生成して、8つのゲート信号を周期的に与えて動作させる。4段階の出力レベルの信号は、例えば複数の論理回路を適宜組み合わせて実現すればよい。 The photoelectric conversion element using the charge storage element according to the embodiment is operated by using pulsed light having a relatively narrow duty. During the period in which the light pulse of the incoming light is received and the charge modulated by the charge storage element is stored, the first control pulse, the second control pulse, the third control pulse, ..., The eighth control pulse are generated by a shaping circuit. It is shaped to generate four output levels of first potential level L, second potential level M, third potential level H, and fourth potential level V, respectively, and eight gate signals are periodically applied for operation. .. The four-stage output level signal may be realized, for example, by appropriately combining a plurality of logic circuits.

第1入力制御電極G1,第2入力制御電極G2,第3入力制御電極G3,……,第8入力制御電極G8に印加される制御電圧によって、所望の電荷転送チャネルに移動した電荷は、容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82に印加される制御電圧によって、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれへ蓄積される。そして、それぞれの電荷蓄積領域の両側に設けられた一対の拡大電極対CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82に高レベルの電位を印加すると、ビルトインポテンシャル(拡散電位)または横方向電界に依存したポテンシャルが生じ、図14中に実線の軌跡で示すように、所望の電荷蓄積領域SD1,SD2,SD3,……,SD8の電子に対するポテンシャルを深くできる。このとき一定の容積を有する電荷蓄積領域SD1,SD2,SD3,……,SD8にそれぞれ蓄積可能な電子数は、シミュレーションにより算出すると、1912個であった。 The charge transferred to the desired charge transfer channel by the control voltage applied to the first input control electrode G1, the second input control electrode G2, the third input control electrode G3, ..., The eighth input control electrode G8 is a capacitance. The first charge storage region SD1, the second charge storage region SD2, and the third charge storage region depend on the control voltage applied to the magnifying electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82. It is stored in each of SD3, ..., And the eighth charge storage region SD8. Then, when a high level potential is applied to the pair of magnifying electrode pairs CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 provided on both sides of each charge storage region, the built-in potential is applied. A potential depending on the (diffusion potential) or the lateral electric field is generated, and as shown by the solid line trajectory in FIG. 14, the potentials of the desired charge storage regions SD1, SD2, SD3, ..., SD8 can be deepened. At this time, the number of electrons that can be stored in each of the charge storage regions SD1, SD2, SD3, ..., SD8 having a constant volume was 1912 when calculated by simulation.

一方、一対の拡大電極対を設けない電荷蓄積素子の場合、電荷蓄積領域SD1,SD2,SD3,……,SD8の電子に対するポテンシャルは深くならず、図14中に破線の軌跡で示したように、実施形態に係る電荷蓄積素子を用いた光電変換素子の場合よりも最大で0.56V程度浅くなる。また本発明の実施形態の場合と同じ容積の電荷蓄積領域SD1,SD2,SD3,……,SD8に対して蓄積可能な電子数は、シミュレーションにより算出すると、820個であった。すなわち容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82を設けた電荷蓄積素子の方が、電子を1092個多く蓄積できる。 On the other hand, in the case of a charge storage element without a pair of magnifying electrodes, the potential of the charge storage regions SD1, SD2, SD3, ..., SD8 with respect to electrons is not deep, and as shown by the broken line locus in FIG. The maximum thickness is about 0.56 V shallower than that of the photoelectric conversion element using the charge storage element according to the embodiment. The number of electrons that can be stored in the charge storage regions SD1, SD2, SD3, ..., SD8 having the same volume as that of the embodiment of the present invention was 820 when calculated by simulation. That is, the charge storage element provided with the capacitance expansion electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 can store 1092 more electrons.

また図15に示すように、入力制御電極G1,G2,G3,……,G8に印加する電圧を低レベルとし、更に容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82に印加する電圧を例えば2.58V程度の低レベルとした状態で、出力制御電極TX11,TX21,TX31,……,TX81;TX12,TX22,TX32,……,TX82を低レベルから高レベルにすると、電荷蓄積領域SD1,SD2,SD3,……,SD8から目的領域へ向かって、電子に対するポテンシャルの傾きを急峻に変化させることが可能になる。このように電荷蓄積領域SD1,SD2,SD3,……,SD8から目的領域FD1,FD2,FD3,……,FD8への電子に対するポテンシャルの傾斜を強めることにより、目的領域FD1,FD2,FD3,……,FD8への電荷の転送を促進するように補助することができる。 Further, as shown in FIG. 15, the voltage applied to the input control electrodes G1, G2, G3, ..., G8 is set to a low level, and the capacitance expansion electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32 , ..., with the voltage applied to CA82 at a low level of, for example, about 2.58V, the output control electrodes TX11, TX21, TX31, ..., TX81; TX12, TX22, TX32, ..., TX82 are at a low level. From SD1, SD2, SD3, ..., SD8 to the target region, the slope of the potential with respect to the electrons can be changed sharply. In this way, by strengthening the slope of the potential for electrons from the charge storage regions SD1, SD2, SD3, ..., SD8 to the target regions FD1, FD2, FD3, ..., FD8, the target regions FD1, FD2, FD3, ... ..., can assist in facilitating the transfer of charge to the FD8.

実施形態に係る電荷蓄積素子を用いた光電変換素子は、電荷蓄積領域SD1,SD2,SD3,……,SD8の近傍に電荷の転送を補助する容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82を設けている。そして容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82に高レベルの電位を印加することで、ビルトインポテンシャル(拡散電位)または横方向電界に依存したポテンシャルを得て、蓄積可能な電子数を増やすことができる。よって実施形態に係る電荷蓄積素子を用いた光電変換素子によれば、電荷の移動経路中の蓄積電荷容量を増大させることにより、それぞれの電荷蓄積領域SD1,SD2,SD3,……,SD8に十分な蓄積電荷容量を実現することができる。 The photoelectric conversion element using the charge storage element according to the embodiment has capacitance expansion electrodes CA11, CA21, CA31, ..., CA81 that assist the transfer of charges in the vicinity of the charge storage regions SD1, SD2, SD3, ..., SD8. ; CA12, CA22, CA32, ..., CA82 are provided. Then, by applying a high level potential to the capacitance expansion electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82, a built-in potential (diffusion potential) or a potential dependent on the lateral electric field is applied. The number of electrons that can be stored can be increased. Therefore, according to the photoelectric conversion element using the charge storage element according to the embodiment, by increasing the accumulated charge capacity in the charge movement path, the respective charge storage regions SD1, SD2, SD3, ..., SD8 are sufficient. Accumulated charge capacity can be realized.

また実施形態に係る電荷蓄積素子を用いた光電変換素子によれば、電荷蓄積領域SD1,SD2,SD3,……,SD8から目的領域FD1,FD2,FD3,……,FD8への電荷の転送時には、容量拡大電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82を低レベルの電位とすることで、目的領域FD1,FD2,FD3,……,FD8への傾斜を強め、目的領域FD1,FD2,FD3,……,FD8への電荷の転送を補助することもできる。 Further, according to the photoelectric conversion element using the charge storage element according to the embodiment, when the charge is transferred from the charge storage region SD1, SD2, SD3, ..., SD8 to the target region FD1, FD2, FD3, ..., FD8. By setting the capacitance expansion electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 to low-level potentials, the inclination to the target region FD1, FD2, FD3, ..., FD8 Can be strengthened to assist the transfer of electric charge to the target regions FD1, FD2, FD3, ..., FD8.

(第1変形例)
図1〜図15に示した電荷蓄積素子の出力制御電極TX11,TX21,TX31,……,TX81;TX12,TX22,TX32,……,TX82は、いずれも電荷蓄積領域SD1,SD2,SD3,……,SD8のそれぞれの第2の矩形状領域を挟むように一対で設けられていた。しかし図16の、第7電荷蓄積領域SD7を中心とした領域の拡大図で例示するように、第7電荷蓄積領域SD7の第1の矩形状領域及び狭幅の第2の矩形状領域の上に同時に重なるように設けられた、一枚からなる通常の絶縁ゲート構造の出力制御電極TX70を設けてもよい。
(First modification)
The output control electrodes TX11, TX21, TX31, ..., TX81; TX12, TX22, TX32, ..., TX82 of the charge storage elements shown in FIGS. 1 to 15 all have charge storage regions SD1, SD2, SD3, ... ..., SD8 was provided in pairs so as to sandwich the second rectangular region of each. However, as illustrated in the enlarged view of the region centered on the seventh charge storage region SD7 in FIG. 16, above the first rectangular region and the narrow second rectangular region of the seventh charge storage region SD7. The output control electrode TX70 having a normal insulated gate structure composed of one sheet may be provided so as to overlap with each other at the same time.

図17及び図18は、第6入力制御電極G6及び第7入力制御電極G7に−1V、通常の絶縁ゲート構造の出力制御電極TX70に−1Vの電圧それぞれ印加した状態で、一対の拡大電極対(CA71,CA72)に印加する電圧を、約−1.0V〜約2.3Vの間で変化させた場合に得られた電子に対するポテンシャルの状態を、図16のX2−X2方向から見た断面の位置及びY4−Y4方向から見た断面の位置のそれぞれについて示す。図17及び図18に示すように、一対の拡大電極対(CA71,CA72)に印加する電圧を大きくするほど、電子に対するポテンシャルの最深部の深さは深くなる。図17及び図18から分かるように、一対の拡大電極対(CA71,CA72)に印加する電圧が約−1.0V〜約2.3Vの間で変化する場合、約2.58V〜約3.12Vの変調効果を得ることができた。 17 and 18 show a pair of magnifying electrodes with a voltage of -1V applied to the sixth input control electrode G6 and the seventh input control electrode G7 and a voltage of -1V applied to the output control electrode TX70 having a normal insulated gate structure. The cross section of the potential state for electrons obtained when the voltage applied to (CA71, CA72) is changed between about -1.0 V and about 2.3 V, as viewed from the X2-X2 direction of FIG. The position of and the position of the cross section seen from the Y4-Y4 direction are shown. As shown in FIGS. 17 and 18, the greater the voltage applied to the pair of magnifying electrode pairs (CA71, CA72), the deeper the depth of the deepest potential for electrons. As can be seen from FIGS. 17 and 18, when the voltage applied to the pair of magnifying electrode pairs (CA71, CA72) varies between about -1.0V and about 2.3V, it is about 2.58V to about 3. A modulation effect of 12V could be obtained.

このように一枚の出力制御電極TX70を設けた実施形態の第1変形例に係る電荷蓄積素子によっても、図1〜図15に示した電荷蓄積素子と同様に、電荷の移動経路中の蓄積電荷容量を増大させると共に、目的領域FD1,FD2,FD3,……,FD8への電荷の転送を補助できる。 Similarly to the charge storage element shown in FIGS. 1 to 15, the charge storage element according to the first modification of the embodiment provided with the single output control electrode TX70 also accumulates the charge in the movement path. It is possible to increase the charge capacity and assist the transfer of charge to the target regions FD1, FD2, FD3, ..., FD8.

(第2変形例)
また図19の、第7電荷蓄積領域SD7を中心とした領域の拡大図で例示するように、実施形態の第2変形例に係る電荷蓄積素子においては、第7電荷蓄積領域SD7をほぼ矩形状領域のみで構成し、この矩形状領域から第7目的領域FD7に向かって延びる、第7電荷蓄積領域SD7より高不純物密度のn型(n++)の電荷蓄積補助領域XD7を設けて、電子に対するポテンシャルが深くなるようにしてもよい。
(Second modification)
Further, as illustrated in the enlarged view of the region centered on the seventh charge storage region SD7 in FIG. 19, in the charge storage element according to the second modification of the embodiment, the seventh charge storage region SD7 has a substantially rectangular shape. An n-type (n ++ ) charge storage auxiliary region XD7 having a higher impurity density than the seventh charge storage region SD7, which is composed of only regions and extends from this rectangular region toward the seventh target region FD7, is provided for electrons. The potential may be deepened.

電荷蓄積補助領域XD7は、図19に示すように、平面パターンでほぼ十字架状であり、十字架の縦棒の横棒より下側に相当する領域が、第7電荷蓄積領域SD7と部分的に重なるように配置され、電子に対するポテンシャルがより深くなる。電荷蓄積補助領域XD7の十字架の縦棒の横棒より上側に相当する領域は、出力側の第7目的領域FD7と接している。電荷蓄積補助領域XD7の十字架の横棒の左右に張り出す部分に相当する領域は、それぞれ一対の出力電極対(TX71,TX72)と端部が部分的に重なるように配置されている。 As shown in FIG. 19, the charge storage auxiliary region XD7 has a substantially crucifix shape in a planar pattern, and the region corresponding to the lower side of the horizontal bar of the vertical bar of the cross partially overlaps with the seventh charge storage area SD7. The potential for electrons becomes deeper. The region corresponding to the upper side of the horizontal bar of the vertical bar of the cross of the charge storage auxiliary region XD7 is in contact with the seventh target region FD7 on the output side. The region corresponding to the left and right protruding portions of the horizontal bar of the cross of the charge storage auxiliary region XD7 is arranged so that the pair of output electrode pairs (TX71, TX72) and the end portions partially overlap each other.

図20及び図21は、第6入力制御電極G6及び第7入力制御電極G7及び一対の拡大電極対(CA71,CA72)に印加する電圧をいずれも低レベルとした状態で、一対の出力電極対(TX71,TX72)に印加する電圧を約−2.0V〜約3.0Vの間で変化させた場合に得られた、図19のX3−X3方向から見た断面の位置及びY5−Y5方向から見た断面の位置におけるそれぞれの電子に対するポテンシャルの状態を示す。図20及び図21に示すように、一対の出力電極対(TX71,TX72)に印加する電圧を大きくするほど、出力側の第7目的領域FD7への電子に対するポテンシャルの傾斜は強くなる。 20 and 21 show a pair of output electrode pairs with the voltage applied to the sixth input control electrode G6, the seventh input control electrode G7, and the pair of magnifying electrode pairs (CA71, CA72) at low levels. The position of the cross section and the Y5-Y5 direction as seen from the X3-X3 direction of FIG. 19 obtained when the voltage applied to (TX71, TX72) was changed between about -2.0V and about 3.0V. The state of the potential for each electron at the position of the cross section seen from is shown. As shown in FIGS. 20 and 21, the larger the voltage applied to the pair of output electrode pairs (TX71, TX72), the stronger the inclination of the potential for electrons to the seventh target region FD7 on the output side.

一方、図22に示すように、一対の拡大電極対(CA71,CA72)が設けられていない電荷蓄積素子の場合には、例えば一対の出力電極対(TX71,TX72)に印加する電圧が約3.3Vの場合、第7電荷蓄積領域SD7と第7目的領域FD7の境界にほぼ平坦なポテンシャル領域が生じる。この平坦なポテンシャル領域には、比較的多くの電荷が滞留するため、図22に示すように、一対の出力電極対(TX71,TX72)に印加する電圧が例えば約−1.0Vに変化すると、この平坦なポテンシャル領域の電位が浅くなり、滞留した電荷の一部は第7目的領域FD7に落下するものの、一部は第7電荷蓄積領域SD7側へ落下する、いわゆる出力側からの「戻り電荷」が多く発生することになる。戻り電荷はノイズの増大につながる。 On the other hand, as shown in FIG. 22, in the case of a charge storage element in which a pair of magnifying electrode pairs (CA71, CA72) is not provided, for example, the voltage applied to the pair of output electrode pairs (TX71, TX72) is about 3. In the case of .3V, a substantially flat potential region is generated at the boundary between the 7th charge storage region SD7 and the 7th target region FD7. Since a relatively large amount of electric charge stays in this flat potential region, as shown in FIG. 22, when the voltage applied to the pair of output electrode pairs (TX71, TX72) changes to, for example, about −1.0 V, The potential of this flat potential region becomes shallow, and a part of the accumulated charge falls to the 7th target region FD7, but a part of it falls to the 7th charge storage region SD7 side, that is, the so-called "return charge" from the output side. Will occur a lot. The return charge leads to increased noise.

この点、第2変形例に係る電荷蓄積素子の場合、一対の拡大電極対(CA71,CA72)を備えた状態で、一対の出力電極対(TX71,TX72)に印加する電圧が変化するので、一対の出力電極対(TX71,TX72)の電圧が低レベルであっても、第7目的領域FD7への電子に対するポテンシャルの傾斜は強く、図22で示したような平坦なポテンシャル領域が出力側に生じない。よって第2変形例に係る電荷蓄積素子によれば、図1〜図15に示した電荷蓄積素子の効果に加え、更に戻り電荷の発生を抑制し、電荷蓄積素子のノイズを低減することができる。 In this regard, in the case of the charge storage element according to the second modification, the voltage applied to the pair of output electrode pairs (TX71, TX72) changes with the pair of magnifying electrode pairs (CA71, CA72) provided. Even if the voltage of the pair of output electrode pairs (TX71, TX72) is low, the potential gradient with respect to the electron to the 7th target region FD7 is strong, and the flat potential region as shown in FIG. 22 is on the output side. Does not occur. Therefore, according to the charge storage element according to the second modification, in addition to the effects of the charge storage elements shown in FIGS. 1 to 15, it is possible to further suppress the generation of return charge and reduce the noise of the charge storage element. ..

(比較例)
また図23は、一対の拡大電極対を独立して設けることなく、入力側の電荷供給領域PDから連なるn型の第7電荷転送チャネルR7に第7電荷蓄積領域SD7が接続された構造に、一対の制御電極対(G6A,G7A)によって1段の電荷転送構造を電荷転送チャネルに沿って長く構成した、比較例に係る電荷蓄積素子を示す。比較例に係る電荷蓄積素子においては、入力側の電荷供給領域PDから第7電荷転送チャネルR7へ信号電荷を転送すると共に、第7電荷転送チャネルR7中の蓄積電荷容量を増大させ、出力側の第7目的領域FD7への信号電荷の転送を補助する一対の制御電極対(G6A,G7A)を備える構造が示されている。
(Comparison example)
Further, FIG. 23 shows a structure in which the seventh charge storage region SD7 is connected to the n-type seventh charge transfer channel R7 connected to the charge supply region PD on the input side without independently providing a pair of magnifying electrodes. A charge storage element according to a comparative example is shown in which a one-stage charge transfer structure is formed long along a charge transfer channel by a pair of control electrode pairs (G6A, G7A). In the charge storage element according to the comparative example, the signal charge is transferred from the charge supply region PD on the input side to the seventh charge transfer channel R7, and the stored charge capacity in the seventh charge transfer channel R7 is increased to increase the charge capacity on the output side. A structure is shown that includes a pair of control electrode pairs (G6A, G7A) that assist in the transfer of signal charges to the seventh objective region FD7.

一対の制御電極対(G6A,G7A)を構成する入力制御電極G6A,G7Aは、第7電荷転送チャネルR7及び第7電荷蓄積領域SD7を挟んで両側に、第7電荷転送チャネルR7から僅かに離間して設けられている。入力制御電極G6A,G7Aのそれぞれは、平面図として矩形状パターンであり、それぞれの矩形状パターンの第7目的領域FD7寄りであって第7電荷蓄積領域SD7に近接する出力側の領域は、n型の不純物を添加した多結晶シリコン(ドープド・ポリシリコン)で構成された複合構造を構成している。n型ドープド・ポリシリコン領域で両側を挟まれた第7目的領域FD7寄りの第7電荷蓄積領域SD7のゼロバイアスにおける電位はn型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して深くなっている。入力制御電極G6A,G7Aの複合構造のそれぞれにおける、n型ドープド・ポリシリコン領域以外は、p型ドープド・ポリシリコン領域で構成されている。p型ドープド・ポリシリコン領域で両側を挟まれた左側寄りの入力側の第7電荷蓄積領域SD7及び第7電荷転送チャネルR7のゼロバイアスにおける電位はp型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して浅くなっている。 The input control electrodes G6A and G7A constituting the pair of control electrode pairs (G6A, G7A) are slightly separated from the seventh charge transfer channel R7 on both sides of the seventh charge transfer channel R7 and the seventh charge storage region SD7. It is provided. Each of the input control electrodes G6A and G7A has a rectangular pattern as a plan view, and the output-side region near the seventh target region FD7 of each rectangular pattern and close to the seventh charge storage region SD7 is n. It constitutes a composite structure composed of polycrystalline silicon (doped polysilicon) to which + -type impurities are added. n + -type potential at zero bias of the seventh charge storage region SD7 of the seventh object region FD7 Towards sandwiched on both sides by doped polysilicon region deeper rely on surface potential by the n + type doped polysilicon region ing. Input control electrode G6A, in each of the composite structure of G7A, except n + -type doped polysilicon region is composed of p + type doped polysilicon region. p + -type doped poly surface potential level by a p + -type doped polysilicon region at zero bias of the silicon region on both sides of the sandwiched left side of the input side of the seventh charge storage region SD7 and seventh charge transfer channel R7 It is shallow depending on.

(第3変形例)
図23に示した1段の電荷転送構造を有する電荷蓄積素子に対し、第7電荷蓄積領域SD7を設けた第3変形例に係る電荷蓄積素子を図24に示す。図24に示すように、一対の拡大電極対(CA71,CA72)と共に、n型ドープド・ポリシリコンの領域を有する一対の制御電極対(G6A,G7A)を、第7目的領域FD7に部分的に近接配置してもよい。図24の左側に示した一対の制御電極対(G6A,G7A)を構成する入力制御電極G6A,G7Aは、段差形状をなす第7電荷転送チャネルR7と第7電荷蓄積領域SD7の左側の細い部分との接続箇所を挟んで両側に、第7電荷蓄積領域SD7の左側部分から僅かに離間して設けられている。入力制御電極G6A,G7Aのそれぞれは、平面図として矩形状パターンであるが、図23に示した構造よりも小面積であり、第7電荷蓄積領域SD7の左側部分に近接する一部の領域は、n型ドープド・ポリシリコンで構成された複合構造を構成している。n型ドープド・ポリシリコン領域で両側を挟まれた第7電荷蓄積領域SD7の左側部分のゼロバイアスにおける電位はn型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して深くなっている。入力制御電極G6A,G7Aの複合構造のそれぞれにおける、n型ドープド・ポリシリコン領域以外は、p型ドープド・ポリシリコン領域で構成されている。p型ドープド・ポリシリコン領域で両側を挟まれた第7電荷転送チャネルR7のゼロバイアスにおける電位はp型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して浅くなっている。
(Third modification example)
FIG. 24 shows a charge storage element according to a third modification in which a seventh charge storage region SD7 is provided for the charge storage element having the one-stage charge transfer structure shown in FIG. 23. As shown in FIG. 24, a pair of control electrode pairs (G6A, G7A) having a region of n + type doped polysilicon, together with a pair of magnifying electrode pairs (CA71, CA72), are partially provided in the seventh target region FD7. It may be placed close to. The input control electrodes G6A and G7A constituting the pair of control electrode pairs (G6A and G7A) shown on the left side of FIG. 24 have a stepped seventh charge transfer channel R7 and a narrow portion on the left side of the seventh charge storage region SD7. The seventh charge storage region SD7 is provided on both sides of the connection portion with a slight distance from the left side portion. Each of the input control electrodes G6A and G7A has a rectangular pattern as a plan view, but has a smaller area than the structure shown in FIG. 23, and a part of the region close to the left side portion of the seventh charge storage region SD7 is , N + -type doped polysilicon constitutes a composite structure. potential at zero bias on the left side portion of the seventh charge storage region SD7 sandwiched on both sides by n + -type doped polysilicon region is deeper rely on surface potential by the n + type doped polysilicon region. Input control electrode G6A, in each of the composite structure of G7A, except n + -type doped polysilicon region is composed of p + type doped polysilicon region. potential at zero bias of the seventh charge transfer channel R7 sandwiched on both sides by p + -type doped polysilicon region is shallower rely on surface potential by the p + -type doped polysilicon region.

既に図17及び図18に示したのと同様に、第7電荷蓄積領域SD7の右側の太い部分に近接する一対の拡大電極対CA71,CA72に印加する電圧を大きくするほど、第7電荷蓄積領域SD7の右側の太い部分における電子に対するポテンシャルの深さを深く制御でき、第7電荷蓄積領域SD7に蓄積される電荷量を増大できる。図24に示すように、電荷蓄積領域SD1,SD2,SD3,……,SD8の近傍に、一対の拡大電極対CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82及び一対の拡大電極対を構成する入力制御電極G6A,G7Aを対向配置した第3変形例に係る電荷蓄積素子によっても、図1〜図15に示した電荷蓄積素子と同様に、電荷の移動経路中の蓄積電荷容量を増大させると共に、目的領域FD1,FD2,FD3,……,FD8への信号電荷の転送を補助できる。 Similar to those already shown in FIGS. 17 and 18, the larger the voltage applied to the pair of enlarged electrode pairs CA71 and CA72 close to the thick portion on the right side of the seventh charge storage region SD7, the larger the seventh charge storage region. The depth of potential for electrons in the thick portion on the right side of SD7 can be deeply controlled, and the amount of charge stored in the seventh charge storage region SD7 can be increased. As shown in FIG. 24, a pair of magnifying electrodes pairs CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 in the vicinity of the charge storage regions SD1, SD2, SD3, ..., SD8. And the charge storage element according to the third modification in which the input control electrodes G6A and G7A constituting the pair of magnifying electrodes are arranged so as to face each other also has a charge transfer path similar to the charge storage element shown in FIGS. While increasing the accumulated charge capacity inside, it is possible to assist the transfer of signal charge to the target regions FD1, FD2, FD3, ..., FD8.

(第4変形例)
また図25及び図26(a)に示すように、一対の拡大電極対(CA71,CA72の下の素子配置層2の上部に、n型の電荷蓄積促進領域SD71,SD72を表面埋込領域3に接して設けてもよい。図25及び図26(a)中に例示した、比較例に係る電荷蓄積素子の一対の拡大電極対(CA71,CA72)は、第7電荷転送チャネルR7に近接する一部の矩形状領域が、n型ドープド・ポリシリコンで構成されている。
(Fourth modification)
Further, as shown in FIGS. 25 and 26 (a), n + type charge accumulation promoting regions SD71 and SD72 are surface-embedded regions on the upper part of the element arrangement layer 2 under the pair of enlarged electrode pairs (CA71 and CA72). A pair of magnifying electrode pairs (CA71, CA72) of the charge storage element according to the comparative example illustrated in FIGS. 25 and 26 (a) may be provided in contact with the third charge transfer channel R7. A part of the rectangular region to be formed is composed of n + type doped polysilicon.

図25の右側に示した一対の拡大電極対(CA71,CA72)を構成する容量拡大電極CA71,CA72は、第7電荷蓄積領域SD7の右側の部分を挟んで両側に、第7電荷蓄積領域SD7の右側部分から僅かに離間して設けられている。容量拡大電極CA71,CA72のそれぞれは、平面図として矩形状パターンである。容量拡大電極CA71,CA72の第7電荷蓄積領域SD7の右側部分に近接する出力側の一部の領域は、n型ドープド・ポリシリコンで構成された複合構造を構成している。n型ドープド・ポリシリコン領域で両側を挟まれた第7電荷蓄積領域SD7の右側部分のゼロバイアスにおける電位はn型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して深くなっている。容量拡大電極CA71,CA72の複合構造のそれぞれにおける、n型ドープド・ポリシリコン領域以外は、p型ドープド・ポリシリコン領域で構成されている。p型ドープド・ポリシリコン領域で両側を挟まれた第7電荷蓄積領域SD7のゼロバイアスにおける電位はp型ドープド・ポリシリコン領域による表面ポテンシャルに依拠して浅くなっている。 The capacitance expansion electrodes CA71 and CA72 constituting the pair of expansion electrode pairs (CA71, CA72) shown on the right side of FIG. 25 sandwich the right portion of the seventh charge storage region SD7 on both sides of the seventh charge storage region SD7. It is provided slightly away from the right side of the. Each of the capacitance expansion electrodes CA71 and CA72 has a rectangular pattern as a plan view. A part of the output side region close to the right side portion of the seventh charge storage region SD7 of the capacitance expansion electrodes CA71 and CA72 constitutes a composite structure composed of n + type doped polysilicon. potential at zero bias of the right portion of the seventh charge storage region SD7 sandwiched on both sides by n + -type doped polysilicon region is deeper rely on surface potential by the n + type doped polysilicon region. In each of the composite structure of capacity expansion electrodes CA71, CA72, except n + -type doped polysilicon region is composed of p + type doped polysilicon region. potential at zero bias of the seventh charge storage region SD7 sandwiched on both sides by p + -type doped polysilicon region is shallower rely on surface potential by the p + -type doped polysilicon region.

図26(b)及び図27中の斜線を付した部分で示すように、比較例に係る電荷蓄積素子では、一対の拡大電極対(CA71,CA72)の下にも、電荷蓄積のための電子に対するポテンシャル井戸が形成可能である。図27中には、絶縁膜9と電荷蓄積促進領域SD72の上部との間にΦ1分の電子に対するポテンシャルが深く形成された状態が例示されている。第4変形例に係る電荷蓄積素子によれば、図1〜図15に示した電荷蓄積素子の効果に加え、更に電荷蓄積量を増大することができる。 As shown by the shaded areas in FIGS. 26 (b) and 27, in the charge storage element according to the comparative example, electrons for charge storage are also under the pair of magnifying electrode pairs (CA71, CA72). A potential well can be formed. FIG. 27 illustrates a state in which a deep potential for electrons of Φ1 is formed between the insulating film 9 and the upper portion of the charge accumulation promoting region SD72. According to the charge storage element according to the fourth modification, in addition to the effect of the charge storage element shown in FIGS. 1 to 15, the charge storage amount can be further increased.

(その他の実施形態)
本発明は上記した実施形態によって説明したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。例えば図1〜図27では、8タップ横方向電界制御型の光電変換素子の受光領域が、電荷蓄積素子の電荷供給領域PDとなる場合を例示して説明したが、電荷蓄積素子の入力側に接続される電荷供給領域PDとしては、8タップ横方向電界制御型の光電変換素子に限定されず、1タップ型や5タップ型等、タップ数は任意に変更できる。入力側に接続される電荷供給領域PDが光電変換素子の受光領域である必要はなく、信号電荷を供給可能な領域であれば、他の半導体領域でも構わない。
(Other embodiments)
Although the present invention has been described by the embodiments described above, the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure. For example, in FIGS. 1 to 27, a case where the light receiving region of the 8-tap lateral electric field control type photoelectric conversion element is the charge supply region PD of the charge storage element has been described as an example, but the input side of the charge storage element The connected charge supply region PD is not limited to the 8-tap lateral electric field control type photoelectric conversion element, and the number of taps can be arbitrarily changed such as 1-tap type and 5-tap type. The charge supply region PD connected to the input side does not have to be the light receiving region of the photoelectric conversion element, and may be another semiconductor region as long as it can supply signal charges.

また入力側に接続される電荷供給領域PDの形状は正八角形として説明したが、これに限定されず、タップ数等の電荷蓄積素子の仕様に応じて適宜変更してよい。また図1〜図27に示した電荷蓄積素子が含む部分的な構造を互いに組み合わせても、本発明に係る電荷蓄積素子を実現できる。 Further, the shape of the charge supply region PD connected to the input side has been described as a regular octagon, but the shape is not limited to this, and may be appropriately changed according to the specifications of the charge storage element such as the number of taps. Further, the charge storage element according to the present invention can be realized by combining the partial structures included in the charge storage elements shown in FIGS. 1 to 27 with each other.

既に述べた本発明の実施形態の説明では、第1導電型をp型、第2導電型をn型として説明したが、第1導電型をn型、第2導電型をp型としても、電気的な極性を反対にすれば同様な効果が得られることは容易に理解できるであろう。 In the description of the embodiment of the present invention described above, the first conductive type is defined as p type and the second conductive type is defined as n type. However, the first conductive type may be defined as n type and the second conductive type may be defined as p type. It is easy to understand that the same effect can be obtained by reversing the electrical polarity.

既に述べた本発明の実施形態の説明では、輸送、蓄積等の処理がされる信号電荷を電子とし、ポテンシャル図において、図の下方向(深さ方向)が、電位(ポテンシャル)の正方向としたが、電気的な極性を反対とする場合においては、処理をされる電荷は正孔となるため、光電変換素子内の電位障壁、ポテンシャル谷、ポテンシャル井戸等を示すポテンシャル形状は、図の下方向(深さ方向)が、電位の負方向として表現される。 In the description of the embodiment of the present invention described above, the signal charge to be transported, stored, etc. is an electron, and in the potential diagram, the downward direction (depth direction) of the figure is the positive direction of the potential (potential). However, when the electrical polarity is reversed, the electric charge to be processed becomes holes, so the potential shape indicating the potential barrier, potential valley, potential well, etc. in the photoelectric conversion element is shown below the figure. The direction (depth direction) is expressed as the negative direction of the potential.

以上のとおり、本発明は上記に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention includes various embodiments not described above, and the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description. It is a thing.

1 半導体基板
2 素子配置層
3 表面埋込領域
5 ピニング層
7 電位丘形成部
9 絶縁膜
11 遮蔽板
CA11〜CA81,CA12〜CA82,G6A,G7A 容量拡大電極
TX11〜TX81,TX12〜TX82,TX70 出力制御電極
FD1〜FD8 第1目的領域〜第8目的領域
G1〜G8 第1入力制御電極〜第8入力制御電極
SD1〜SD8 第1電荷蓄積領域〜第8電荷蓄積領域
SD71,SD72 電荷蓄積促進領域
XD7 電荷蓄積補助領域
1 Semiconductor substrate 2 Element placement layer 3 Surface embedded region 5 Pinning layer 7 Potential hill forming portion 9 Insulation film 11 Shielding plate CA11 to CA81, CA12 to CA82, G6A, G7A Capacity expansion electrodes TX11 to TX81, TX12 to TX82, TX70 Output Control electrodes FD1 to FD8 1st target area to 8th target area G1 to G8 1st input control electrode to 8th input control electrode SD1 to SD8 1st charge storage area to 8th charge storage area SD71, SD72 Charge storage promotion area XD7 Charge storage auxiliary area

Claims (9)

第1導電型の素子配置層と、
前記素子配置層の上部の一部に設けられ、電荷供給領域を構成する第2導電型の表面埋込領域と、
前記表面埋込領域に入力側を接続し、前記表面埋込領域よりも高不純物密度で第2導電型の電荷蓄積領域と、
前記電荷蓄積領域の出力側に接続され、前記電荷蓄積領域よりも高不純物密度で第2導電型の目的領域と、
前記電荷蓄積領域の入力側に定義される電荷転送チャネルの両側に対をなして対向配置され、前記電荷転送チャネルの空乏化電位を横方向静電誘導効果で制御して、前記表面埋込領域から信号電荷を前記電荷蓄積領域に導入する入力制御電極と、
前記入力制御電極に隣接し、前記電荷転送チャネルよりも出力側に位置して前記電荷蓄積領域の両側に対をなして対向配置され、前記電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御する容量拡大電極と、
を備え、前記容量拡大電極に印加する電圧により、前記電荷蓄積領域に蓄積される信号電荷の量を拡大することを特徴とする電荷蓄積素子。
The first conductive type element arrangement layer and
A second conductive type surface-embedded region provided in a part of the upper part of the element arrangement layer and forming a charge supply region,
An input side is connected to the surface-embedded region, and a second conductive type charge storage region having a higher impurity density than the surface-embedded region and
A second conductive type target region connected to the output side of the charge storage region and having a higher impurity density than the charge storage region.
The charge transfer channels are arranged in pairs on both sides of the charge transfer channel defined on the input side of the charge storage region, and the depletion potential of the charge transfer channels is controlled by the lateral electrostatic induction effect to control the surface-embedded region. The input control electrode that introduces the signal charge into the charge storage region from
Adjacent to the input control electrode, located on the output side of the charge transfer channel and arranged in pairs on both sides of the charge storage region, the depletion potential of the charge storage region is laterally electrostatically induced. With the capacitance expansion electrode controlled by
A charge storage element comprising the above, wherein the amount of signal charge accumulated in the charge storage region is expanded by a voltage applied to the capacity expansion electrode.
前記容量拡大電極が第1導電型の多結晶シリコン膜からなる領域と第2導電型の多結晶シリコン膜からなる領域とに区分されていることを特徴とする請求項1に記載の電荷蓄積素子。 The charge storage element according to claim 1, wherein the capacitance expanding electrode is divided into a region made of a first conductive type polycrystalline silicon film and a region made of a second conductive type polycrystalline silicon film. .. 前記第2導電型の多結晶シリコン膜からなる領域が、前記電荷蓄積領域の出力側の前記電荷蓄積領域に近接する位置に配置されていることを特徴とする請求項2に記載の電荷蓄積素子。 The charge storage device according to claim 2, wherein the region made of the second conductive type polycrystalline silicon film is arranged at a position close to the charge storage region on the output side of the charge storage region. .. 前記入力制御電極が第1導電型の多結晶シリコン膜からなる領域と第2導電型の多結晶シリコン膜からなる領域とに区分されていることを特徴とする請求項1に記載の電荷蓄積素子。 The charge storage element according to claim 1, wherein the input control electrode is divided into a region made of a first conductive type polycrystalline silicon film and a region made of a second conductive type polycrystalline silicon film. .. 前記第2導電型の多結晶シリコン膜からなる領域が、前記電荷転送チャネルの入力側から離れた方向の位置に配置されていることを特徴とする請求項4に記載の電荷蓄積素子。 The charge storage device according to claim 4, wherein the region made of the second conductive type polycrystalline silicon film is arranged at a position in a direction away from the input side of the charge transfer channel. 第2導電型で、前記電荷蓄積領域よりも高不純物密度の電荷蓄積促進領域が、前記電荷蓄積領域の出力側において、前記容量拡大電極の下方の前記素子配置層の上部の一部に、絶縁膜を介して配置されていることを特徴とする請求項1〜5のいずれか1項に記載の電荷蓄積素子。 In the second conductive type, the charge accumulation promoting region having a higher impurity density than the charge accumulation region is insulated on the output side of the charge storage region by a part of the upper part of the element arrangement layer below the capacitance expansion electrode. The charge accumulating element according to any one of claims 1 to 5, wherein the charge accumulating element is arranged via a film. 第1導電型の素子配置層と、
前記素子配置層の上部の一部に設けられ、電荷供給領域を構成する第2導電型の表面埋込領域と、
前記表面埋込領域に入力側を接続し、前記表面埋込領域よりも高不純物密度で第2導電型の電荷蓄積領域と、
前記電荷蓄積領域の出力側に接続され、前記電荷蓄積領域よりも高不純物密度で第2導電型の目的領域と、
第1導電型の多結晶シリコン膜からなる領域と第2導電型の多結晶シリコン膜からなる領域とに区分され、前記電荷蓄積領域の両側に対称に配置され、前記電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御する入力制御電極と、
を備え、前記第1導電型の多結晶シリコン膜からなる領域が、前記電荷蓄積領域の入力側に定義される電荷転送チャネルの両側に対をなして対向配置され、前記電荷転送チャネルの空乏化電位を横方向静電誘導効果で制御して、前記表面埋込領域から信号電荷を前記電荷蓄積領域に導入する入力制御電極として機能し、前記第2導電型の多結晶シリコン膜からなる領域が、前記電荷蓄積領域の出力側の前記電荷蓄積領域に近接する位置に配置され、前記電荷蓄積領域の空乏化電位を横方向静電誘導効果で制御することにより、前記電荷蓄積領域に蓄積される信号電荷の量を拡大することを特徴とする電荷蓄積素子。
The first conductive type element arrangement layer and
A second conductive type surface-embedded region provided in a part of the upper part of the element arrangement layer and forming a charge supply region,
An input side is connected to the surface-embedded region, and a second conductive type charge storage region having a higher impurity density than the surface-embedded region and
A second conductive type target region connected to the output side of the charge storage region and having a higher impurity density than the charge storage region.
It is divided into a region composed of a first conductive type polycrystalline silicon film and a region composed of a second conductive type polycrystalline silicon film, which are symmetrically arranged on both sides of the charge storage region and have a depletion potential of the charge storage region. With an input control electrode that controls the lateral electrostatic induction effect,
The region made of the first conductive type polycrystalline silicon film is arranged in pairs on both sides of the charge transfer channel defined on the input side of the charge storage region, and the charge transfer channel is depleted. The region formed of the second conductive type polycrystalline silicon film functions as an input control electrode that controls the potential by the lateral electrostatic induction effect and introduces the signal charge from the surface-embedded region into the charge storage region. , It is arranged at a position close to the charge storage region on the output side of the charge storage region, and is accumulated in the charge storage region by controlling the depletion potential of the charge storage region by the lateral electrostatic induction effect. A charge storage element characterized by increasing the amount of signal charge.
前記電荷蓄積領域の出力側に設けられ、前記電荷蓄積領域に蓄積された信号電荷を前記目的領域に転送する出力制御電極を更に備えることを特徴とする請求項1〜7のいずれか1項に記載の電荷蓄積素子。 The present invention according to any one of claims 1 to 7, further comprising an output control electrode provided on the output side of the charge storage region and transferring the signal charge accumulated in the charge storage region to the target region. The charge storage element according to the description. 平面パターン上、前記電荷蓄積領域の内部に前記電荷蓄積領域の出力側の領域を含むように設けられ、前記電荷蓄積領域よりも高不純物密度で第2導電型の電荷蓄積補助領域を更に備えることを特徴とする請求項1〜8のいずれか1項に記載の電荷蓄積素子。 On the plane pattern, the charge storage region is provided so as to include the output side region of the charge storage region, and a second conductive type charge storage auxiliary region having a higher impurity density than the charge storage region is further provided. The charge storage device according to any one of claims 1 to 8.
JP2016164163A 2016-08-24 2016-08-24 Charge storage device Active JP6810319B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016164163A JP6810319B2 (en) 2016-08-24 2016-08-24 Charge storage device
PCT/JP2017/030414 WO2018038230A1 (en) 2016-08-24 2017-08-24 Photoelectric conversion element and solid-state image capturing device
US16/327,364 US10636822B2 (en) 2016-08-24 2017-08-24 Photoelectric conversion element and solid-state image capturing device
CN201780052386.2A CN109691086B (en) 2016-08-24 2017-08-24 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164163A JP6810319B2 (en) 2016-08-24 2016-08-24 Charge storage device

Publications (2)

Publication Number Publication Date
JP2018032749A JP2018032749A (en) 2018-03-01
JP6810319B2 true JP6810319B2 (en) 2021-01-06

Family

ID=61303668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164163A Active JP6810319B2 (en) 2016-08-24 2016-08-24 Charge storage device

Country Status (1)

Country Link
JP (1) JP6810319B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030588A1 (en) * 2020-08-07 2022-02-10 株式会社 Rosnes Imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147862A1 (en) * 2008-06-04 2009-12-10 本田技研工業株式会社 Imaging device
WO2013129559A1 (en) * 2012-02-29 2013-09-06 Etoh Takeharu Solid-state imaging device
US10230914B2 (en) * 2014-02-07 2019-03-12 National University Corporation Shizuoka University Charge modulation element and solid-state imaging device

Also Published As

Publication number Publication date
JP2018032749A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
CN109691086B (en) Photoelectric conversion element
JP5243100B2 (en) Pixel structure of solid-state image sensor
JP6476138B2 (en) Charge modulation element and solid-state imaging device
KR101098216B1 (en) Time-of-light flight type distance sensor
US10008621B2 (en) Controlling of photo-generated charge carriers
US9202902B2 (en) Semiconductor element and solid-state imaging device
JP5205002B2 (en) Pixel structure of solid-state image sensor
CN104303304B (en) PN grid demodulation pixel
EP3664438B1 (en) Imaging device
US11222911B2 (en) Photoelectric conversion element and solid-state imaging device
JP4786924B2 (en) Photonic mixer device
JP6351097B2 (en) Electromagnetic wave detection element and solid-state imaging device
US11054522B2 (en) Distance measuring device
DE102012216433A1 (en) PHOTODETECTOR AND METHOD FOR MANUFACTURE THEREOF
US8884394B2 (en) Range sensor and range image sensor
JP6810319B2 (en) Charge storage device
JP6348272B2 (en) Charge coupled device, method for manufacturing the same, and solid-state imaging device
US9664780B2 (en) Distance sensor and distance image sensor
JP6974679B2 (en) Photoelectric conversion element and solid-state image sensor
US9053998B2 (en) Range sensor and range image sensor
US20220238581A1 (en) Semiconductor element, semiconductor element preparing method, and solid state imaging apparatus
EP2867923B1 (en) Image sensor and apparatus comprising such image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6810319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250