JP6974679B2 - Photoelectric conversion element and solid-state image sensor - Google Patents

Photoelectric conversion element and solid-state image sensor Download PDF

Info

Publication number
JP6974679B2
JP6974679B2 JP2016164162A JP2016164162A JP6974679B2 JP 6974679 B2 JP6974679 B2 JP 6974679B2 JP 2016164162 A JP2016164162 A JP 2016164162A JP 2016164162 A JP2016164162 A JP 2016164162A JP 6974679 B2 JP6974679 B2 JP 6974679B2
Authority
JP
Japan
Prior art keywords
charge
region
electric field
field control
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164162A
Other languages
Japanese (ja)
Other versions
JP2018033008A (en
JP2018033008A5 (en
Inventor
祥二 川人
▲みん▼雄 徐
啓太 安富
雄也 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2016164162A priority Critical patent/JP6974679B2/en
Priority to PCT/JP2017/030414 priority patent/WO2018038230A1/en
Priority to US16/327,364 priority patent/US10636822B2/en
Priority to CN201780052386.2A priority patent/CN109691086B/en
Publication of JP2018033008A publication Critical patent/JP2018033008A/en
Publication of JP2018033008A5 publication Critical patent/JP2018033008A5/ja
Application granted granted Critical
Publication of JP6974679B2 publication Critical patent/JP6974679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光信号を電子又は正孔(ホール)からなる信号電荷に変換する光電変換素子、及びこの光電変換素子又はこの光電変換素子と等価な構造を有する画素を、1次元又は2次元に配列した固体撮像装置に関する。 In the present invention, a photoelectric conversion element that converts an optical signal into a signal charge consisting of electrons or holes (holes), and a photoelectric conversion element or a pixel having a structure equivalent to the photoelectric conversion element are made one-dimensional or two-dimensional. The present invention relates to an arranged solid-state image sensor.

光の飛行時間を用いて距離画像を取得する光飛行時間型(TOF型)距離センサでは、MOS構造を用いてゲート電極直下のポテンシャルを縦方向(垂直方向)に制御している。例えば、p型半導体層上に埋め込まれたn型の電荷生成埋込領域、電荷輸送埋込領域、電荷読み出し埋込領域と、これらの上を被覆する絶縁膜と、絶縁膜上に配置され、信号電荷を電荷輸送埋込領域へ転送する転送電極と、絶縁膜上に配置され、信号電荷を電荷読み出し埋込領域へ転送する読み出しゲート電極とを備え、電荷生成埋込領域で、パルス光を受光し、電荷生成埋込領域直下の半導体層で光信号を信号電荷に光電変換し、電荷転送埋込領域に蓄積された電荷の配分比から対象物までの距離を測定するCMOS測距素子やこれを用いたTOF型イメージセンサが提案されている(特許文献1参照。)。 In the optical time-of-flight type (TOF type) distance sensor that acquires a distance image using the flight time of light, the potential directly under the gate electrode is controlled in the vertical direction (vertical direction) by using a MOS structure. For example, an n-type charge generation embedding region, a charge transport embedding region, a charge readout embedding region embedded on a p-type semiconductor layer, an insulating film covering the above, and an insulating film arranged on the insulating film. It is equipped with a transfer electrode that transfers the signal charge to the charge transport embedding region and a read gate electrode that is arranged on the insulating film and transfers the signal charge to the charge readout embedding region, and emits pulsed light in the charge generation embedding region. A CMOS ranging element that receives light and photoelectrically converts an optical signal into signal charge in the semiconductor layer directly under the charge generation embedded region, and measures the distance from the charge distribution ratio stored in the charge transfer embedded region to the object. A TOF type image sensor using this has been proposed (see Patent Document 1).

これらのCMOS測距素子やこれを用いたTOF型イメージセンサにおいては、転送電極直下の界面欠陥や界面準位等に起因した雑音や暗電流の発生の問題が懸念される。更に、特許文献1に記載されたような転送電極を用いる場合は、長い距離にわたるポテンシャル勾配の制御が困難で、電荷転送チャネルの長い距離にわたって、電界をほぼ一定にするのは、現実的には無理であった。このため、長い電荷転送チャネルを有する測距素子等の光電変換素子においては、電荷転送チャネルの途中でキャリアが止まり、期待した性能が得にくくなるような不都合が発生していた。 In these CMOS ranging elements and TOF type image sensors using the same, there is a concern about the problem of noise and dark current generation due to interface defects and interface states directly under the transfer electrode. Further, when a transfer electrode as described in Patent Document 1 is used, it is difficult to control the potential gradient over a long distance, and it is practically possible to make the electric field substantially constant over a long distance of the charge transfer channel. It was impossible. For this reason, in a photoelectric conversion element such as a distance measuring element having a long charge transfer channel, carriers have stopped in the middle of the charge transfer channel, which causes a problem that it is difficult to obtain the expected performance.

また近年,バイオメディカルの世界において時間分解イメージセンサの活躍の場は更なる拡がりを見せている。時間分解イメージセンサを用いた手法の中に、細胞内分子に励起光を当てることで発生した蛍光の強度を測定して蛍光が減衰する時間(蛍光寿命)を計測する蛍光寿命顕微法(FLIM)がある。このFLIMを応用することによって医療,予防医学の分野に多大なインパクトを与えることが期待できる。 In recent years, the field of activity of time-resolved image sensors has expanded further in the world of biomedical. Fluorescence lifetime microspectroscopy (FLIM), which measures the time during which fluorescence decays (fluorescence lifetime) by measuring the intensity of fluorescence generated by irradiating intracellular molecules with excitation light, in a method using a time-resolved image sensor. There is. By applying this FLIM, it can be expected to have a great impact on the fields of medical treatment and preventive medicine.

本発明者らは、高い信号雑音比(SN比)を保ちながら、4つの短時間の時間窓で連続した時間分解成分を低ノイズで取得できる4タップ横方向電界制御型の光電変換素子を既に提案した(特許文献2参照)。特許文献2に開示された光電変換素子では、受光領域の中心に関して対象となる4つの位置にそれぞれ設けられた電荷蓄積領域と、それぞれの電荷蓄積領域に至る経路の両側にそれぞれ設けられた電界制御電極(ゲート電極)対とを備え、光電変換により発生した電荷の移動先を第1〜4の電荷蓄積領域に順次設定して輸送する。一つの時間窓をサブナノ秒とし、同時にシングルショットで3乃至4の時間窓の測定を行い、次にその3乃至4の時間窓を全体として遅延させて1回目の時間窓の直後の測定時間レンジの測定を行い、これらを数回繰り返してつなぎ、蛍光寿命測定に必要なサブナノ秒の時間分解能と数ナノ秒の測定時間レンジを実現することができる。 The present inventors have already provided a 4-tap lateral electric field control type photoelectric conversion element capable of acquiring continuous time-resolved components with low noise in four short-time time windows while maintaining a high signal-to-noise ratio (SN ratio). Proposed (see Patent Document 2). In the photoelectric conversion element disclosed in Patent Document 2, the charge storage regions provided at each of the four target positions with respect to the center of the light receiving region and the electric field control provided on both sides of the path leading to the respective charge storage regions. A pair of electrodes (gate electrodes) is provided, and the transfer destinations of the charges generated by the photoelectric conversion are sequentially set in the first to fourth charge storage regions and transported. One time window is sub-nanosecond, and 3 to 4 time windows are measured at the same time with a single shot, and then the 3 to 4 time windows are delayed as a whole to measure the measurement time range immediately after the first time window. It is possible to realize the time resolution of sub-nanoseconds and the measurement time range of several nanoseconds required for the fluorescence lifetime measurement by performing the measurements and connecting them several times.

特許文献2の技術によれば、電荷転送チャネルの長い距離にわたって、電界をほぼ一定にするための電位分布の制御が容易で、長い電荷転送チャネル中を信号電荷が、複数の領域に対称性よく高速に輸送され、しかも、半導体表面の界面における界面欠陥や界面準位等に起因した雑音や暗電流の発生の問題や輸送速度の低下の問題が回避できる光電変換素子、及びこの光電変換素子の複数個を配列した低雑音、高分解能で、応答速度の速い固体撮像装置を提供することができる。しかし、4タップの光電変換素子では、シングルショットの場合、複数の蛍光時間分解成分のうち3成分若しくは4成分しか取得できないという問題がある。またシングルショットの繰り返しで取得する場合には、トータルの計測時間が長くなるという問題がある。 According to the technique of Patent Document 2, it is easy to control the potential distribution for making the electric field almost constant over a long distance of the charge transfer channel, and the signal charge is symmetric in a plurality of regions in the long charge transfer channel. A photoelectric conversion element that can be transported at high speed and can avoid the problems of noise and dark current generation caused by interface defects and interface states at the interface of the semiconductor surface and the problem of decrease in transportation speed, and the photoelectric conversion element of this photoelectric conversion element. It is possible to provide a solid-state imaging device having a plurality of arrangements with low noise, high resolution, and a high response speed. However, the 4-tap photoelectric conversion element has a problem that only 3 or 4 components out of a plurality of fluorescence time decomposition components can be acquired in the case of a single shot. Further, when acquiring by repeating a single shot, there is a problem that the total measurement time becomes long.

国際公開第2007/119626号パンフレットInternational Publication No. 2007/11926 Pamphlet 国際公開第2015/118884号パンフレットInternational Publication No. 2015/118884 Pamphlet

本発明は上記の問題に鑑み、トータルの計測時間を短くすることが可能な光電変換素子及びこの光電変換素子を用いた固体撮像装置を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a photoelectric conversion element capable of shortening the total measurement time and a solid-state image pickup device using the photoelectric conversion element.

上記目的を達成するために、本発明の第1態様は、(a)第1導電型の素子形成層と素子形成層の上部に埋め込まれた第2導電型の表面埋込領域からなる埋め込みフォトダイオードを含む撮像領域と、(b)撮像領域の中央部に定義される受光領域を囲む5つ以上の位置に互いに離間して設けられた、素子形成層よりも高不純物密度で第2導電型の複数の電荷読出領域と、(c)受光領域から複数の電荷読出領域のそれぞれに独立した経路で至る、複数の第2導電型の電荷転送チャネルと、(d)受光領域を囲む位置において、複数の電荷転送チャネルのそれぞれの両側に対をなして配置された複数の電界制御電極と、を備える光電変換素子であることを要旨とする。第1態様に係る光電変換素子は、複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、表面埋込領域及び複数の電荷転送チャネルの空乏化電位を順次変化させることにより、表面埋込領域中で発生した多数キャリアの移動先を複数の電荷読出領域のいずれかに順次設定するように制御する。 In order to achieve the above object, the first aspect of the present invention is (a) an embedded photo composed of a first conductive type element forming layer and a second conductive type surface embedded region embedded in the upper part of the element forming layer. A second conductive type with a higher impurity density than the element forming layer, which is provided at five or more positions surrounding the imaging region including the diode and (b) the light receiving region defined in the center of the imaging region. In a position surrounding the plurality of charge reading regions, (c) a plurality of second conductive type charge transfer channels extending from the light receiving region to the plurality of charge reading regions by independent paths, and (d) the light receiving region. The gist is that the photoelectric conversion element includes a plurality of electric field control electrodes arranged in pairs on both sides of each of the plurality of charge transfer channels. The photoelectric conversion element according to the first aspect periodically and sequentially applies electric field control pulses having different phases to each of a plurality of electric field control electrodes, and sequentially applies depletion potentials of a surface-embedded region and a plurality of charge transfer channels. By changing it, it is controlled so that the movement destination of the large number of carriers generated in the surface embedded region is sequentially set in one of the plurality of charge reading regions.

本発明の第2態様は、第1態様に係る光電変換素子を画素とし、画素の複数個が同一半導体チップ上に配列された固体撮像装置であることを要旨とする。第2態様に係る固体撮像装置を構成する画素のそれぞれにおいて、複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、表面埋込領域及び複数の電荷転送チャネルの空乏化電位を順次変化させることにより、表面埋込領域中で発生した多数キャリアの移動先を複数の電荷読出領域のいずれかに順次設定するように制御する。 A second aspect of the present invention is a solid-state image pickup device in which the photoelectric conversion element according to the first aspect is a pixel and a plurality of pixels are arranged on the same semiconductor chip. In each of the pixels constituting the solid-state imaging device according to the second aspect, electric field control pulses having different phases from each other are periodically and sequentially applied to a plurality of electric field control electrodes, and a surface-embedded region and a plurality of charge transfer channels are applied. By sequentially changing the depletion potential of, the movement destination of a large number of carriers generated in the surface-embedded region is controlled to be sequentially set to one of a plurality of charge reading regions.

本発明によれば、トータルの計測時間を短くすることが可能な光電変換素子及びこの光電変換素子を用いた固体撮像装置を提供できる。 According to the present invention, it is possible to provide a photoelectric conversion element capable of shortening the total measurement time and a solid-state image pickup device using the photoelectric conversion element.

本発明の第1実施形態に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on 1st Embodiment of this invention. 図1のA−A方向から見た第1実施形態に係る光電変換素子の概略構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the schematic structure of the photoelectric conversion element which concerns on 1st Embodiment seen from the AA direction of FIG. 本発明の第1実施形態に係る光電変換素子の動作を説明するタイミング図である。It is a timing diagram explaining the operation of the photoelectric conversion element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る光電変換素子のゲート信号を整形する回路を説明するタイミング図である。It is a timing diagram explaining the circuit which shapes the gate signal of the photoelectric conversion element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る光電変換素子の動作を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the operation of the photoelectric conversion element which concerns on 1st Embodiment of this invention. 図5のB−B方向から見た第1実施形態の変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。It is a figure which shows the potential distribution of the lower end part (bottom part) of the conduction band of the photoelectric conversion element which concerns on the modification of 1st Embodiment seen from the BB direction of FIG. 図5のC−C方向から見た第1実施形態の変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。It is a figure which shows the potential distribution of the lower end part (bottom part) of the conduction band of the photoelectric conversion element which concerns on the modification of 1st Embodiment seen from the CC direction of FIG. 本発明の第1実施形態に係る固体撮像装置の半導体チップ上のレイアウトの概略を説明する模式的平面図である。It is a schematic plan view explaining the outline of the layout on the semiconductor chip of the solid-state image pickup apparatus which concerns on 1st Embodiment of this invention. 図8に示した固体撮像装置に用いられている画素の内部構造の概略を説明する模式的平面図である。It is a schematic plan view explaining the outline of the internal structure of the pixel used in the solid-state image pickup apparatus shown in FIG. 本発明の第1実施形態の第1変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on 1st modification of 1st Embodiment of this invention. 図10のD−D方向から見た第1実施形態の第1変形例に係る光電変換素子の概略構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the schematic structure of the photoelectric conversion element which concerns on the 1st modification of 1st Embodiment seen from the DD direction of FIG. 図10のD−D方向から見た第1実施形態の第1変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。It is a figure which shows the potential distribution of the lower end part (bottom part) of the conduction band of the photoelectric conversion element which concerns on the 1st modification of 1st Embodiment seen from the DD direction of FIG. 本発明の第1実施形態の第2変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on the 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第3変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on the 3rd modification of 1st Embodiment of this invention. 図14のE−E方向から見た第1実施形態の第3変形例に係る光電変換素子の概略構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the schematic structure of the photoelectric conversion element which concerns on the 3rd modification of 1st Embodiment seen from the EE direction of FIG. 本発明の第1実施形態の第3変形例に係る光電変換素子の動作を説明するタイミング図である。It is a timing diagram explaining the operation of the photoelectric conversion element which concerns on the 3rd modification of 1st Embodiment of this invention. 図17(a)は、図14のE−E方向から見た第1実施形態の第3変形例に係る光電変換素子の、電荷転送時における、伝導帯の下端部(底部)のポテンシャル分布を示す図であり、図17(b)は、図14のF−F方向から見た第1実施形態の変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。FIG. 17A shows the potential distribution of the lower end (bottom) of the conduction band at the time of charge transfer of the photoelectric conversion element according to the third modification of the first embodiment as viewed from the EE direction of FIG. 17 (b) is a diagram showing the potential distribution of the lower end (bottom) of the conduction band of the photoelectric conversion element according to the modification of the first embodiment as viewed from the FF direction of FIG. be. 図18(a)は、図14のE−E方向から見た第1実施形態の第3変形例に係る光電変換素子の、背景光電荷の排出時における、伝導帯の下端部(底部)のポテンシャル分布を示す図であり、図18(b)は、図14のF−F方向から見た第1実施形態の変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。FIG. 18A shows the lower end (bottom) of the conduction band of the photoelectric conversion element according to the third modification of the first embodiment as viewed from the EE direction of FIG. 14 when the background light charge is discharged. It is a figure which shows the potential distribution, and FIG. It is a figure which shows. 本発明の第1実施形態の第3変形例に係る固体撮像装置に用いられている画素の内部構造の概略を説明する模式的平面図である。It is a schematic plan view explaining the outline of the internal structure of the pixel used in the solid-state image pickup apparatus which concerns on the 3rd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第4変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on the 4th modification of 1st Embodiment of this invention. 第1実施形態の第4変形例に係る光電変換素子の撮像領域の上方から見たX−Y面内の等電位線と、この等電位線の電位分布によって設定される電子の電荷輸送路を示す図である。The isopotential lines in the XY planes seen from above the imaging region of the photoelectric conversion element according to the fourth modification of the first embodiment, and the electron charge transport path set by the potential distribution of the equipotential lines. It is a figure which shows. 本発明の第2実施形態に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on 2nd Embodiment of this invention. 図22のG−G方向から見た第2実施形態に係る光電変換素子の概略構造を説明する模式的な断面図である。22 is a schematic cross-sectional view illustrating the schematic structure of the photoelectric conversion element according to the second embodiment as viewed from the GG direction of FIG. 22. 図22のI−I方向から見た第2実施形態に係る光電変換素子の概略構造を説明する模式的な断面図である。22 is a schematic cross-sectional view illustrating the schematic structure of the photoelectric conversion element according to the second embodiment as viewed from the I-I direction of FIG. 22. 図25(a)は、図22のG−G方向から見た第2実施形態に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図であり、図25(b)は、図22のH−H方向から見た第2実施形態に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図であり、図25(c)は、図22のI−I方向から見た第2実施形態に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を示す図である。25 (a) is a diagram showing the potential distribution of the lower end (bottom) of the conduction band of the photoelectric conversion element according to the second embodiment seen from the GG direction of FIG. 22, and FIG. 25 (b) is a diagram. 22 is a diagram showing the potential distribution of the lower end (bottom) of the conduction band of the photoelectric conversion element according to the second embodiment as viewed from the HH direction of FIG. 22, and FIG. 25 (c) is a diagram showing I- of FIG. 22. It is a figure which shows the potential distribution of the lower end part (bottom part) of the conduction band of the photoelectric conversion element which concerns on 2nd Embodiment seen from the I direction. 本発明の第2実施形態の第1変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on 1st modification of 2nd Embodiment of this invention. 第2実施形態の第1変形例に係る光電変換素子の撮像領域の上方から見たX−Y面内の等電位線と、この等電位線の電位分布によって設定される電子の電荷輸送路を示す図である。The equipotential lines in the XY planes seen from above the imaging region of the photoelectric conversion element according to the first modification of the second embodiment and the electron charge transport path set by the potential distribution of the equipotential lines. It is a figure which shows. 図27の等電位線の一部を拡大して示す図である。It is a figure which shows the part of the isobaric line of FIG. 27 enlarged. 第2実施形態の第1変形例に係る光電変換素子の伝導帯の下端部(底部)のポテンシャル分布を3次元メッシュ構造で示す図である。It is a figure which shows the potential distribution of the lower end part (bottom part) of the conduction band of the photoelectric conversion element which concerns on the 1st modification of 2nd Embodiment by the 3D mesh structure. 本発明の第2実施形態の第2変形例に係る光電変換素子の概略構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the schematic structure of the photoelectric conversion element which concerns on the 2nd modification of the 2nd Embodiment of this invention. 本発明の第2実施形態の第3変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on the 3rd modification of the 2nd Embodiment of this invention. 本発明の第2実施形態の第4変形例に係る光電変換素子の概略を説明する模式的平面図(上面図)である。It is a schematic plan view (top view) explaining the outline of the photoelectric conversion element which concerns on the 4th modification of the 2nd Embodiment of this invention.

次に、図面を参照して、本発明の第1及び第2実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, the first and second embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that parts having different dimensional relationships and ratios are included between the drawings.

又、以下に示す第1及び第2実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。 Further, the first and second embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material of a component. The shape, structure, arrangement, etc. are not specified to the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims described in the claims. Further, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of explanation, and do not limit the technical idea of the present invention. So, for example, if you rotate the paper 90 degrees, "left and right" and "up and down" are read interchangeably, and if you rotate the paper 180 degrees, "left" becomes "right" and "right" becomes "left". Of course it will be.

又、図面において、n又はpを冠した領域や層が半導体領域や半導体層等の半導体を材料とする部材や構成要素を意味することは、当業者には自明な事項である。又、図面中でnやpに付した+の上付き文字は、+が付記されていない半導体領域に比して、相対的に不純物密度が高い半導体領域であることを意味し、nやpの右上に付した−の上付き文字は、−が付記されていない半導体領域に比して、相対的に不純物密度が低い半導体領域であることを意味する。またnとnのように同じ表記であっても、必ずしも同じ不純物密度であることが示されている訳ではない。 Further, in the drawings, it is obvious to those skilled in the art that the region or layer labeled with n or p means a member or a component made of a semiconductor such as a semiconductor region or a semiconductor layer. Further, the + superscript attached to n or p in the drawing means that the semiconductor region has a relatively high impurity density as compared with the semiconductor region to which + is not added, and n or p. The-superscript attached to the upper right of is a semiconductor region with a relatively low impurity density compared to the semiconductor region not marked with-. Further, even if the same notation such as n + and n + is used, it does not necessarily indicate that the impurity densities are the same.

<第1実施形態>
(光電変換素子の構造)
図1の平面図及び図2の断面図等に示すように、本発明の第1実施形態に係る光電変換素子は、第1導電型(p型)の素子形成層2、素子形成層2の上部の一部に埋め込まれた第2導電型(n型)の表面埋込領域3、表面埋込領域3の中央に設けられたp型高不純物密度の電位丘設定部7、及び表面埋込領域3の表面に接して設けられた、p型のピニング層5を含む撮像領域(2,3,5,7)と、撮像領域(2,3,5,7)上に設けられた絶縁膜9と、撮像領域(2,3,5,7)の中央部に定義される受光領域PDを囲むように、受光領域PDの中心位置に関して対称となる8つの位置のそれぞれに互いに離間して設けられた、素子形成層2よりも高不純物密度でn型の第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8と、受光領域PDを囲む位置において、絶縁膜9上に受光領域PDの中心位置から第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれに至る8本の電荷転送チャネルのそれぞれの両側に対をなして配置された第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8と、を備える。
<First Embodiment>
(Structure of photoelectric conversion element)
As shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2, the photoelectric conversion element according to the first embodiment of the present invention is the element forming layer 2 and the element forming layer 2 of the first conductive type (p type). A second conductive type (n-type) surface-embedded region 3 embedded in a part of the upper part, a p-type high-impurity density potential hill setting portion 7 provided in the center of the surface-embedded region 3, and surface embedding. An imaging region (2,3,5,7) including a p-type pinning layer 5 provided in contact with the surface of the region 3 and an insulating film provided on the imaging region (2,3,5,7). 9 and the eight positions symmetrical with respect to the center position of the light receiving region PD are provided so as to surround the light receiving region PD defined in the central portion of the imaging region (2, 3, 5, 7) at a distance from each other. N-type first charge storage region SD1, second charge storage region SD2, third charge storage region SD3, ..., 8th charge storage region SD8, and a light receiving region, which have a higher impurity density than the element forming layer 2. At a position surrounding the PD, from the center position of the light receiving region PD on the insulating film 9, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8, respectively. 1st electric field control electrode G1, 2nd electric field control electrode G2, 3rd electric charge control electrode G3, ..., 8th electric charge control electrode G8 arranged in pairs on both sides of each of the eight charge transfer channels leading to And prepare.

8本の電荷転送チャネルは、8個の第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8のうち隣り合う2個の電界制御電極に挟まれて形成される。例えば図1中の最上部に位置する第1電荷転送チャネルR1は、第8電界制御電極G8及び第1電界制御電極G1に挟まれた領域である。図1中で第1電荷転送チャネルR1の左側に表れる第2電荷転送チャネルR2は、第1電界制御電極G1及び第2電界制御電極G2に挟まれた領域である。図2中には、図1中で左右方向に水平に同一直線上に表れる第3電荷転送チャネルR3及び第7電荷転送チャネルR7が例示されている。 The eight charge transfer channels are two adjacent electric field controls among the eight first electric field control electrodes G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8. It is formed by being sandwiched between electrodes. For example, the first charge transfer channel R1 located at the uppermost part in FIG. 1 is a region sandwiched between the eighth electric field control electrode G8 and the first electric field control electrode G1. The second charge transfer channel R2 appearing on the left side of the first charge transfer channel R1 in FIG. 1 is a region sandwiched between the first electric field control electrode G1 and the second electric field control electrode G2. In FIG. 2, a third charge transfer channel R3 and a seventh charge transfer channel R7 appearing horizontally on the same straight line in the left-right direction in FIG. 1 are exemplified.

第1実施形態に係る光電変換素子は、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に対し、図3(b)に示すような、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、表面埋込領域3の空乏化電位を順次変化させることにより、電荷転送チャネルのいずれかに、図6及び図7に示したような、電荷が輸送される電位勾配を順次形成して、表面埋込領域3中で発生した多数キャリアの移動先を第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のいずれかに順次設定するように制御する。則ち、第1実施形態に係る光電変換素子は、電荷輸送路を横断する方向に静電誘導効果で電界制御を行う8つのゲートである第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8によって、平面パターンでのほぼ正八角形状の受光領域PDで発生した光電子を、それぞれが受光領域PDの中心から外側に放射状に延びる8本の電荷転送チャネルに沿って、電界制御により高速に移動させて、電荷変調を行う。 The photoelectric conversion element according to the first embodiment is shown in FIG. 3 (b) with respect to the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8. As shown in FIGS. 6 and 7, electric field control pulses having different phases from each other are periodically and sequentially applied to sequentially change the depletion potential of the surface-embedded region 3 to one of the charge transfer channels. As shown, a potential gradient in which charges are transported is sequentially formed, and the destinations of the majority carriers generated in the surface embedded region 3 are set to the first charge storage region SD1, the second charge storage region SD2, and the third charge. Control is performed so that the storage regions SD3, ..., And the eighth charge storage region SD8 are sequentially set. That is, the photoelectric conversion element according to the first embodiment is the first electric field control electrode G1 and the second electric field control electrode G2, which are eight gates that control the electric field by the electrostatic induction effect in the direction crossing the charge transport path. 8 Along the charge transfer channel of the book, it is moved at high speed by electric field control to perform charge modulation.

図1の平面図から分かるように、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8の配置トポロジーは、受光領域PDの中心位置に関して8回回転対称が好ましいが、必ずしも正確な8回回転対称である必要はない。図1に示した第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7のそれぞれは、表面埋込領域3中で発生した多数キャリアを信号電荷として蓄積する信号電荷蓄積領域として機能し、第8電荷蓄積領域SD8は、背景光により表面埋込領域3中で発生した背景光電荷を排出する電荷排出領域として機能する。 As can be seen from the plan view of FIG. 1, the arrangement topology of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the eighth charge storage region SD8 is the center of the light receiving region PD. Eight-fold rotational symmetry is preferred with respect to position, but it does not necessarily have to be accurate eight-fold rotational symmetry. Each of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the seventh charge storage region SD7 shown in FIG. 1 has a large number of carriers generated in the surface embedded region 3. Functions as a signal charge storage region that stores the above as a signal charge, and the eighth charge storage region SD8 functions as a charge discharge region that discharges the background light charge generated in the surface embedded region 3 by the background light.

第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれの外側の端部には、高不純物密度のn型の第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第8電荷読出領域FD8が浮遊状態で設けられて7出力の光電変換素子が実現されている。第1実施形態に係る7出力の光電変換素子においては、第8電荷読出領域FD8は、電荷排出領域(ドレイン領域)として機能する。 At the outer ends of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the eighth charge storage region SD8, n-type first charges having a high impurity density are present. A 7-output photoelectric conversion element is realized by providing a read area FD1, a second charge read area FD2, a third charge read area FD3, ..., And an eighth charge read area FD8 in a floating state. In the 7-output photoelectric conversion element according to the first embodiment, the eighth charge read region FD8 functions as a charge discharge region (drain region).

第1実施形態に係る光電変換素子においては、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれの両側の絶縁膜9の内側には、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8への電荷の蓄積を促進する電界が印加される補助電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82が設けられているが、補助電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82は省略してもよい。 In the photoelectric conversion element according to the first embodiment, the insulating films 9 on both sides of the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8, respectively. Inside, an auxiliary electrode to which an electric field that promotes charge accumulation in the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the eighth charge storage region SD8 is applied. CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 are provided, but the auxiliary electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 may be omitted.

図1に示すように、第1実施形態に係る光電変換素子においては、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8から、対応する第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第8電荷読出領域FD8に至る8本のn型の電荷読出チャネルが形成される。補助電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82の外側で、複数の電荷読出チャネルのそれぞれの両側には、横方向電界制御を行う転送電極TX11,TX21,TX31,……,TX81;TX12,TX22,TX32,……,TX82が対をなして配置されている。 As shown in FIG. 1, in the photoelectric conversion element according to the first embodiment, from the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The eighth charge storage region SD8. , The corresponding first charge read area FD1, the second charge read area FD2, the third charge read area FD3, ..., The eighth charge read area FD8, and eight n-type charge read channels are formed. Auxiliary electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82, on both sides of each of the plurality of charge read channels, transfer electrodes TX11, TX21 that perform lateral electric field control. , TX31, ..., TX81; TX12, TX22, TX32, ..., TX82 are arranged in pairs.

転送電極TX11,TX21,TX31,……,TX81;TX12,TX22,TX32,……,TX82に対しては、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8から対応する第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第8電荷読出領域FD8へ多数キャリアを転送する電荷転送パルスを一斉に印加され、第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第8電荷読出領域FD8への電荷の転送を促進する電界が印加される。 For the transfer electrodes TX11, TX21, TX31, ..., TX81; TX12, TX22, TX32, ..., TX82, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ... ..., Charge transfer pulse that transfers a large number of carriers from the 8th charge storage area SD8 to the corresponding 1st charge read area FD1, 2nd charge read area FD2, 3rd charge read area FD3, ..., 8th charge read area FD8. Are applied all at once, and an electric charge that promotes charge transfer to the first charge read region FD1, the second charge read region FD2, the third charge read region FD3, ..., The eighth charge read region FD8 is applied.

図1及び図2等に示すように、絶縁膜9の上方に遮蔽板11が更に備えられている。この遮蔽板11の開口部を介して、撮像領域(2,3,5,7)の中央部に受光領域PDの平面パターンが定義され、この受光領域PDに対し選択的に光が照射される。図1の平面図においては、撮像領域(2,3,5,7)の中央部に、遮蔽板11の開口部としての受光領域PDが定義されている。遮蔽板11で覆われた撮像領域(2,3,5,7)に水平方向(X方向)に第3電荷転送チャネルR3及び第7電荷転送チャネルR7が受光領域PDに連続するように設定された場合が例示されている。同様に、遮蔽板11の下方となる撮像領域(2,3,5,7)に、水平方向の電荷転送チャネルに直交する垂直方向(Y方向)に沿って、第1電荷転送チャネルR1及び第5電荷転送チャネルR5が受光領域PDに連続するように設定される。 As shown in FIGS. 1 and 2, a shielding plate 11 is further provided above the insulating film 9. A planar pattern of the light receiving region PD is defined in the central portion of the imaging region (2, 3, 5, 7) through the opening of the shielding plate 11, and the light receiving region PD is selectively irradiated with light. .. In the plan view of FIG. 1, a light receiving region PD as an opening of the shielding plate 11 is defined in the central portion of the imaging region (2, 3, 5, 7). The third charge transfer channel R3 and the seventh charge transfer channel R7 are set to be continuous with the light receiving region PD in the horizontal direction (X direction) in the imaging region (2, 3, 5, 7) covered with the shielding plate 11. Is illustrated. Similarly, in the imaging region (2, 3, 5, 7) below the shielding plate 11, the first charge transfer channel R1 and the first charge transfer channel R1 and the first along the vertical direction (Y direction) orthogonal to the horizontal charge transfer channel. 5 The charge transfer channel R5 is set to be continuous with the light receiving region PD.

またX方向及びY方向を直交座標系とした際のy=xとなる45°方向の直線上の位置には、第4電荷転送チャネルR4及び第8電荷転送チャネルR8が受光領域PDに連続するように設定され、y=−xとなる−45°方向の直線上の位置には、第2電荷転送チャネルR2及び第6電荷転送チャネルR6が受光領域PDに連続するように設定される。そのため図1の平面図では、受光領域PDから、隣り合う電荷転送チャネルと中心軸どうしが45°の角度をなして外側に放射状に延びる8本の電荷転送チャネルが定義される。そして、第1電荷転送チャネルR1,第2電荷転送チャネルR2,第3電荷転送チャネルR3,……,第8電荷転送チャネルR8の8つの端部にそれぞれ、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8が接続される。 Further, the fourth charge transfer channel R4 and the eighth charge transfer channel R8 are continuous with the light receiving region PD at the positions on the straight line in the 45 ° direction where y = x when the X direction and the Y direction are used in the Cartesian coordinate system. The second charge transfer channel R2 and the sixth charge transfer channel R6 are set to be continuous with the light receiving region PD at the position on the straight line in the −45 ° direction where y = −x. Therefore, in the plan view of FIG. 1, eight charge transfer channels extending radially outward from the light receiving region PD so that the adjacent charge transfer channels and the central axes form an angle of 45 ° are defined. Then, at the eight ends of the first charge transfer channel R1, the second charge transfer channel R2, the third charge transfer channel R3, ..., And the eighth charge transfer channel R8, the first charge storage region SD1, the second charge, respectively. The storage area SD2, the third charge storage area SD3, ..., The eighth charge storage area SD8 are connected.

(光電変換素子の動作)
第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8は、所望の電荷輸送路の中心軸に対して対称に位置する電界制御電極どうしが対となって、同じ大きさのゲート信号が印加される。例えば受光領域PDで生成された信号電荷を、第7電荷転送チャネルR7に沿って、図5に示す第7電荷蓄積領域SD7を経由して第7電荷読出領域FD7へと電荷を移動させたい場合、第7電荷転送チャネルR7の中心軸をなすB−B線を対称軸として、第1制御電極対(G2、G3)、第2制御電極対(G1、G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)が定義され、第1制御電極対(G2、G3)、第2制御電極対(G1、G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)に順次異なるレベルの電圧が印加される。尚、受光領域PDの正八角形の最大幅は4.5μm程度である。
(Operation of photoelectric conversion element)
The first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The eighth electric field control electrode G8 is an electric field control electrode located symmetrically with respect to the central axis of the desired charge transport path. Gate signals of the same magnitude are applied in pairs. For example, when it is desired to transfer the signal charge generated in the light receiving region PD along the seventh charge transfer channel R7 to the seventh charge reading region FD7 via the seventh charge storage region SD7 shown in FIG. , 1st control electrode pair (G2, G3), 2nd control electrode pair (G1, G4), 3rd control electrode pair (G8) with the BB line forming the central axis of the 7th charge transfer channel R7 as the axis of symmetry. , G5) and 4th control electrode pair (G7, G6) are defined, 1st control electrode pair (G2, G3), 2nd control electrode pair (G1, G4), 3rd control electrode pair (G8, G5). And a different level of charge is sequentially applied to the fourth control electrode pair (G7, G6). The maximum width of the regular octagon of the light receiving region PD is about 4.5 μm.

図5において、第1制御電極対(G2、G3)には、第1電位レベルL(−1V)のゲート信号が印加された状態が例示されている。このとき、第2制御電極対(G1、G4)には、第1電位レベルLより高い第2電位レベルM(0.5V)のゲート信号が印加される。第3制御電極対(G8、G5)には、第2電位レベルMより高い第3電位レベルH(1.0V)のゲート信号が印加される。第4制御電極対(G7、G6)には、第3電位レベルHより高い第4電位レベルV(2.3V)のゲート信号が印加される。 In FIG. 5, a state in which a gate signal of the first potential level L (-1V) is applied to the first control electrode pair (G2, G3) is exemplified. At this time, a gate signal having a second potential level M (0.5 V) higher than the first potential level L is applied to the second control electrode pair (G1, G4). A gate signal of a third potential level H (1.0 V) higher than the second potential level M is applied to the third control electrode pair (G8, G5). A gate signal of a fourth potential level V (2.3 V) higher than the third potential level H is applied to the fourth control electrode pair (G7, G6).

すなわち図5に示した第1制御電極対(G2、G3)、第2制御電極対(G1、G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)の配置において、第1制御電極対(G2、G3)から、終点側である第4制御電極対(G7、G6)に向かって、順次、印加される電位が高くなるように、8個の電界制御電極によって上下対称となるように4個の制御電極対が構成され、4個の制御電極対にそれぞれに印加される電圧が異なるレベルに制御されている。 That is, of the first control electrode pair (G2, G3), the second control electrode pair (G1, G4), the third control electrode pair (G8, G5) and the fourth control electrode pair (G7, G6) shown in FIG. In the arrangement, eight electric field controls are sequentially applied from the first control electrode pair (G2, G3) toward the fourth control electrode pair (G7, G6) on the end point side so that the applied potential increases. Four control electrode pairs are configured so as to be vertically symmetrical by the electrodes, and the voltage applied to each of the four control electrode pairs is controlled to different levels.

第7電荷転送チャネルR7を用いる場合の第1制御電極対(G2,G3)、第2制御電極対(G1,G4)、第3制御電極対(G8、G5)及び第4制御電極対(G7、G6)に対し、第1電界制御パルスg1,第2電界制御パルスg2,第3電界制御パルスg3,……,第8電界制御パルスg8から整形回路によって生成された互いに異なる電界制御電圧を、それぞれ印加し、横方向の静電誘導効果によって、受光領域PD及び電荷転送チャネルの空乏化電位を変化させることにより、図6及び図7に示したような、領域によって異なる電位勾配が形成されて、撮像領域(2,3,5,7)中を電位の谷に沿って輸送される信号電荷の移動方向が順次、制御される。 First control electrode pair (G2, G3), second control electrode pair (G1, G4), third control electrode pair (G8, G5) and fourth control electrode pair (G7) when the seventh charge transfer channel R7 is used. , G6), the different electric field control voltages generated by the shaping circuit from the first electric field control pulse g1, the second electric field control pulse g2, the third electric field control pulse g3, ..., The eighth electric field control pulse g8. By applying each of them and changing the depletion potential of the light receiving region PD and the charge transfer channel by the electrostatic induction effect in the lateral direction, different potential gradients are formed depending on the region as shown in FIGS. 6 and 7. , The moving direction of the signal charge transported along the valley of potential in the imaging region (2, 3, 5, 7) is sequentially controlled.

図5に示すように、電子に対するポテンシャルが高い電位丘設定部7の周囲を回るように形成された電位の谷に沿って受光領域PDで生成された信号電荷が移動し、第4制御電極対(G7,G6)の間に定義される第7電荷転送チャネルR7の入り口に到達する。そして、受光領域PDで生成された信号電荷は第7電荷転送チャネルR7を経由して、第7電荷蓄積領域SD7に移動する。このとき図6に示すように、第1制御電極対(G2,G3)の間に定義される第3電荷転送チャネルR3の電子に対するポテンシャルは浅く、第7電荷転送チャネルR7側の電子に対するポテンシャルが最も深くなるような滑らかに下降する電位勾配が、横方向の静電誘導効果によって形成される。そして、第7電荷蓄積領域SD7の不純物密度を高く設定することにより、図6に示すように、第7電荷転送チャネルR7から第7電荷蓄積領域SD7へ下降する電位勾配が形成される。 As shown in FIG. 5, the signal charge generated in the light receiving region PD moves along the potential valley formed so as to orbit around the potential hill setting portion 7 having a high potential for electrons, and the fourth control electrode pair It reaches the inlet of the seventh charge transfer channel R7 defined between (G7, G6). Then, the signal charge generated in the light receiving region PD moves to the seventh charge storage region SD7 via the seventh charge transfer channel R7. At this time, as shown in FIG. 6, the potential for the electrons of the third charge transfer channel R3 defined between the first control electrode pair (G2, G3) is shallow, and the potential for the electrons on the seventh charge transfer channel R7 side is shallow. The deepest, smoothly descending potential gradient is formed by the lateral electrostatic induction effect. Then, by setting the impurity density of the 7th charge storage region SD7 high, as shown in FIG. 6, a potential gradient that descends from the 7th charge transfer channel R7 to the 7th charge storage region SD7 is formed.

すなわち図5に例示したような電圧がそれぞれ印加された4個の制御電極対の配置において、図6は第3電荷転送チャネルR3に連続する第3電荷蓄積領域SD3へのゲートは閉まっており、第7電荷蓄積領域SD7へのゲートは開いている電位分布を示している。図6において、第3電荷転送チャネルR3の電子に対するポテンシャルが最も浅いことが示されている。一方、図7に示すように、第5電荷転送チャネルR5及び第1電荷転送チャネルR1の電子に対するポテンシャルは、いずれも第3電荷転送チャネルR3のポテンシャルよりも深いが、第7電荷転送チャネルR7のポテンシャルより浅い。図6及び図7は、第3電荷転送チャネルR3と電位丘設定部7の間、第5電荷転送チャネルR5と電位丘設定部7の間、及び第1電荷転送チャネルR1と電位丘設定部7の間に電位の谷が、電位丘設定部7の周囲を回るように、横方向の静電誘導効果によって形成されていることを示している。第3電荷転送チャネルR3の入り口から第2電荷転送チャネルR2の入り口、第1電荷転送チャネルR1の入り口、第8電荷転送チャネルR8の入り口を経て第7電荷転送チャネルR7の入り口に至るなだらかな電位勾配を有する第1の電位の谷が受光領域PDの上側のルート(電荷輸送路)として、横方向静電誘導効果によって形成される。図5では図示を省略しているが、第3電荷転送チャネルR3の入り口から第4電荷転送チャネルR4の入り口、第5電荷転送チャネルR5の入り口、第6電荷転送チャネルR6の入り口を経て第7電荷転送チャネルR7の入り口に至るなだらかな電位勾配を有する第2の電位の谷が、受光領域PDの下側のルート(電荷輸送路)として上側のルートに対称のトポロジーで、横方向静電誘導効果によって形成される。そして、このとき、第1電荷転送チャネルR1、第2電荷転送チャネルR2、第3電荷転送チャネルR3、第4電荷転送チャネルR4、第5電荷転送チャネルR5、第6電荷転送チャネルR6、第8電荷転送チャネルR8には電荷の移動を阻害する電位障壁がそれぞれ横方向静電誘導効果によって形成される。 That is, in the arrangement of the four control electrode pairs to which the voltage as illustrated in FIG. 5 is applied, the gate to the third charge storage region SD3 continuous with the third charge transfer channel R3 is closed in FIG. The gate to the seventh charge storage region SD7 shows an open potential distribution. FIG. 6 shows that the third charge transfer channel R3 has the shallowest potential for electrons. On the other hand, as shown in FIG. 7, the potentials of the fifth charge transfer channel R5 and the first charge transfer channel R1 with respect to electrons are both deeper than the potential of the third charge transfer channel R3, but that of the seventh charge transfer channel R7. Shallower than the potential. 6 and 7 show the third charge transfer channel R3 and the potential hill setting unit 7, the fifth charge transfer channel R5 and the potential hill setting unit 7, and the first charge transfer channel R1 and the potential hill setting unit 7. It is shown that the valley of the potential is formed by the electrostatic induction effect in the lateral direction so as to go around the potential hill setting portion 7. A gentle potential from the entrance of the third charge transfer channel R3 to the entrance of the second charge transfer channel R2, the entrance of the first charge transfer channel R1, the entrance of the eighth charge transfer channel R8, and the entrance of the seventh charge transfer channel R7. A first potential valley with a gradient is formed by the lateral electrostatic induction effect as a route (charge transport path) above the light receiving region PD. Although not shown in FIG. 5, the seventh charge transfer channel R3 is passed through the entrance of the third charge transfer channel R3, the entrance of the fourth charge transfer channel R4, the entrance of the fifth charge transfer channel R5, and the entrance of the sixth charge transfer channel R6. A second potential valley with a gentle potential gradient leading to the entrance of the charge transfer channel R7 is a transverse electrostatic induction in a topology symmetric to the upper route as the lower route (charge transport path) of the light receiving region PD. Formed by the effect. At this time, the first charge transfer channel R1, the second charge transfer channel R2, the third charge transfer channel R3, the fourth charge transfer channel R4, the fifth charge transfer channel R5, the sixth charge transfer channel R6, and the eighth charge In the transfer channel R8, potential barriers that hinder the movement of electric charges are formed by the lateral electrostatic induction effect.

すなわち第5電荷転送チャネルR5に設定される第5電荷蓄積領域SD5へのゲート、及び、第1電荷転送チャネルR1に設定される第1電荷蓄積領域SD1へのゲートはいずれも閉まっている。同様に、例えば図5中の最下部の第5電荷転送チャネルR5を用いて第5電荷蓄積領域SD5、及び第5電荷読出領域FD5へと電荷を移動させたい場合、第5電荷転送チャネルR5の中心軸をなすC−C線に沿って、新たに、第1制御電極対(G8、G1)、第2制御電極対(G2、G7)、第3制御電極対(G3、G6)及び第4制御電極対(G4、G5)がそれぞれ定義され、所定のレベルの電圧が分配される。 That is, the gate to the fifth charge storage region SD5 set in the fifth charge transfer channel R5 and the gate to the first charge storage region SD1 set in the first charge transfer channel R1 are both closed. Similarly, for example, when it is desired to transfer the charge to the fifth charge storage region SD5 and the fifth charge read region FD5 using the lowermost fifth charge transfer channel R5 in FIG. 5, the fifth charge transfer channel R5 is used. Along the CC line forming the central axis, the first control electrode pair (G8, G1), the second control electrode pair (G2, G7), the third control electrode pair (G3, G6) and the fourth control electrode pair are newly added. Control electrode pairs (G4, G5) are defined respectively and a predetermined level of charge is distributed.

第5電荷読出領域FD5へと電荷を移動させたい場合は、電位谷の深さが最も浅い第1制御電極対(G8、G1)から、終点側である第4制御電極対(G4、G5)に向かって、順次、印加される電位が高くなるように、4個の制御電極対に印加する電圧を制御すれば、信号電荷を第5電荷読出領域FD5まで移動できる電位谷が横方向の静電誘導効果で設定できる。図示を省略するが、横方向静電誘導効果による空乏化電位を効率良く変化させるため、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の直下の部分の絶縁膜9の厚さは他の部分より薄く、いわゆる「ゲート絶縁膜」として機能している。
実際には、図24に示すように、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8等は絶縁膜9の内部に埋め込まれ、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の直下は他の部分より薄くなっている。
When it is desired to move the charge to the fifth charge reading region FD5, the first control electrode pair (G8, G1) having the shallowest potential valley depth to the fourth control electrode pair (G4, G5) on the end point side. By controlling the voltage applied to the four control electrode pairs so that the applied potential increases in sequence toward, the potential valley that can move the signal charge to the fifth charge read region FD5 is horizontal static. It can be set by the electric induction effect. Although not shown, in order to efficiently change the depletion potential due to the lateral electrostatic induction effect, the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The eighth electric field The thickness of the insulating film 9 in the portion directly below the control electrode G8 is thinner than the other portions, and functions as a so-called “gate insulating film”.
Actually, as shown in FIG. 24, the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., the eighth electric field control electrode G8 and the like are embedded inside the insulating film 9. The area directly below the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8 is thinner than the other parts.

図2に示すとおり、図1に示した撮像領域(2,3,5,7)は、p型の素子形成層2と、素子形成層2の上部に埋め込まれた、n型の表面埋込領域3とでpn接合フォトダイオードを構成し、pn接合フォトダイオードによる光電変換で表面埋込領域3中の多数キャリアとして生成された電子が、信号電荷として表面埋込領域3中を輸送される。より具体的には、図1において、遮蔽板11が定義する破線で示したアパーチャの内部に露出するp型の素子形成層2の一部と、n型の表面埋込領域3の一部とが、埋込フォトダイオードを構成している。図1では、いずれも八角形の破線で遮蔽板11の外縁部及び開口部であるアパーチャを示している。表面埋込領域3の表面に接して、p型のピニング層5が設けられている。図2に示すとおり、第1実施形態に係る光電変換素子の断面構造は、3層構造の撮像領域(2,3,5,7)が、更にp型の半導体基板1上に形成されているので、実際は4層構造の例示となっている。 As shown in FIG. 2, the imaging region (2, 3, 5, 7) shown in FIG. 1 has a p-type element forming layer 2 and an n-type surface embedding embedded in the upper part of the element forming layer 2. A pn junction photodiode is formed by the region 3, and electrons generated as a large number of carriers in the surface embedded region 3 by photoelectric conversion by the pn junction photodiode are transported in the surface embedded region 3 as signal charges. More specifically, in FIG. 1, a part of the p-type element forming layer 2 exposed inside the aperture shown by the broken line defined by the shielding plate 11 and a part of the n-type surface embedded region 3 However, it constitutes an embedded photodiode. In FIG. 1, an octagonal broken line indicates an aperture that is an outer edge portion and an opening portion of the shielding plate 11. A p-type pinning layer 5 is provided in contact with the surface of the surface embedding region 3. As shown in FIG. 2, in the cross-sectional structure of the photoelectric conversion element according to the first embodiment, an imaging region (2, 3, 5, 7) having a three-layer structure is further formed on a p-type semiconductor substrate 1. Therefore, it is actually an example of a four-layer structure.

図2では、素子形成層2が、p型の半導体基板1上にエピタキシャル成長等により堆積された構造を例示しているが、素子形成層2はn型の半導体基板1上に設けられていても構わない。更に、素子形成層2と半導体基板1との間等に他の層を含んで、5層以上の構造としても構わない。ピニング層5において、信号電荷と反対導電型のキャリアである正孔(ホール)の密度が、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に印加される電圧による静電誘導効果で、受光領域PDの周辺部の電荷輸送路及び8本の電荷転送チャネルの空乏化電位を制御することによって変化する。 FIG. 2 illustrates a structure in which the element forming layer 2 is deposited on the p-type semiconductor substrate 1 by epitaxial growth or the like, but even if the element forming layer 2 is provided on the n-type semiconductor substrate 1. I do not care. Further, another layer may be included between the element forming layer 2 and the semiconductor substrate 1 to form a structure having five or more layers. In the pinning layer 5, the density of holes, which are carriers opposite to the signal charge, is the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., Eighth. The electrostatic induction effect due to the voltage applied to the electric field control electrode G8 changes by controlling the charge transport path in the peripheral portion of the light receiving region PD and the depletion potential of the eight charge transfer channels.

図1の平面図では絶縁膜9が図示されていないが、図2から第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8は絶縁膜9の上に配置されていることが理解できる。隣り合う第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の間にはそれぞれ電荷転送チャネルが8本定義される。第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8は、8本の電荷転送チャネルとして機能する表面埋込領域3を平面パターン上で挟み、平面パターンとしては信号電荷の輸送方向と直交する方向に沿って互いに対向配置されるトポロジーになるが、断面図上では、撮像領域(2,3,5,7)上に絶縁膜9を介して配列されている。 Although the insulating film 9 is not shown in the plan view of FIG. 1, the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8 are shown in FIG. It can be understood that it is arranged on the insulating film 9. Eight charge transfer channels are defined between the adjacent first electric field control electrode G1, second electric field control electrode G2, third electric field control electrode G3, ..., And eighth electric field control electrode G8. The first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The eighth electric field control electrode G8 has a surface embedded region 3 functioning as eight charge transfer channels on a plane pattern. The plane pattern is such that they are arranged facing each other along a direction orthogonal to the transport direction of the signal charge, but on the cross-sectional view, the insulating film 9 is placed on the imaging region (2, 3, 5, 7). Are arranged via.

図1では、遮蔽板11のアパーチャ直下の受光領域PDとして機能する埋込フォトダイオード領域を取り巻くように、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8が配置されている。図3に示すように、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に加える電位を変化させたとき、受光領域PDを構成している表面埋込領域3の空乏化電位を横方向の静電誘導効果によって、電荷輸送路となる電位の谷を形成するように制御し、更に8本の電荷転送チャネルの空乏化電位を制御することができる。 In FIG. 1, the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ... , The eighth electric field control electrode G8 is arranged. As shown in FIG. 3, when the potential applied to the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8 is changed, the light receiving region PD is changed. The depletion potential of the constituent surface-embedded region 3 is controlled to form a potential valley that serves as a charge transport path by the electrostatic induction effect in the lateral direction, and the depletion potential of eight charge transfer channels is further controlled. Can be controlled.

図示を省略するが、第1電荷読出領域FD1には、第1信号読出トランジスタ(増幅トランジスタ)のゲート電極が、絶縁膜9中に設けられたコンタクト窓を介して接続される。第1信号読出トランジスタ(増幅トランジスタ)のドレイン電極は電源VDDに接続され、ソース電極は画素選択用の第1スイッチングトランジスタSEL1のドレイン電極に接続されている。第1スイッチングトランジスタSEL1のソース電極は、垂直信号線に接続され、ゲート電極には水平ラインの選択用制御信号SL(i)が、図9に示した垂直シフトレジスタ23から与えられる。 Although not shown, the gate electrode of the first signal reading transistor (amplifying transistor) is connected to the first charge reading region FD1 via a contact window provided in the insulating film 9. The drain electrode of the first signal read transistor (amplification transistor) is connected to the power supply VDD, and the source electrode is connected to the drain electrode of the first switching transistor SEL1 for pixel selection. The source electrode of the first switching transistor SEL1 is connected to a vertical signal line, and a control signal SL (i) for selecting a horizontal line is given to the gate electrode from the vertical shift register 23 shown in FIG.

選択用制御信号SL(i)をハイ(H)レベルにすることにより、第1スイッチングトランジスタSEL1が導通し、第1信号読出トランジスタで増幅された第1電荷読出領域FD1の電位に対応する電流が垂直信号線に流れる。更に、第1電荷読出領域FD1には、第1リセットトランジスタRT1のソース電極が接続されている。第1リセットトランジスタRT1のドレイン電極は電源VDDに接続され、第1リセットトランジスタRT1のゲート電極にはリセット信号RT1(i)が図8に示した垂直シフトレジスタ23から与えられる。リセット信号RT1(i)をハイ(H)レベルにして、第1リセットトランジスタRT1が第1電荷読出領域FD1に蓄積された電荷を吐き出し、第1電荷読出領域FD1をリセットする。 By setting the selection control signal SL (i) to the high (H) level, the first switching transistor SEL1 becomes conductive, and the current corresponding to the potential of the first charge read region FD1 amplified by the first signal read transistor becomes. It flows in the vertical signal line. Further, the source electrode of the first reset transistor RT1 is connected to the first charge read region FD1. The drain electrode of the first reset transistor RT1 is connected to the power supply VDD, and the reset signal RT 1 (i) is given to the gate electrode of the first reset transistor RT1 from the vertical shift register 23 shown in FIG. The reset signal RT 1 (i) is set to the high (H) level, and the first reset transistor RT1 discharges the charge accumulated in the first charge read region FD1 to reset the first charge read region FD1.

一方、第2電荷読出領域FD2,第3電荷読出領域FD3,第4電荷読出領域FD4,……,第7電荷読出領域FD7にも、第1電荷読出領域FD1と同様に、いずれも第1信号読出トランジスタ(増幅トランジスタ)と等価な、第2信号読出トランジスタ,第3信号読出トランジスタ,第4信号読出トランジスタ,……,第7信号読出トランジスタが接続されている。また第2電荷読出領域FD2,第3電荷読出領域FD3,第4電荷読出領域FD4,……,第7電荷読出領域FD7には、いずれも第1スイッチングトランジスタSEL1と等価な第2スイッチングトランジスタSEL2,第3スイッチングトランジスタSEL3,第4スイッチングトランジスタSEL4,……,第7スイッチングトランジスタSEL7と、いずれも第1リセットトランジスタRT1と等価な第2リセットトランジスタRT2,第3リセットトランジスタRT3,第4リセットトランジスタRT4,……,第7リセットトランジスタRT7が接続されている。 On the other hand, in the second charge read area FD2, the third charge read area FD3, the fourth charge read area FD4, ..., the seventh charge read area FD7, as in the first charge read area FD1, all of the first signals A second signal read transistor, a third signal read transistor, a fourth signal read transistor, ..., And a seventh signal read transistor, which are equivalent to a read transistor (amplification transistor), are connected. Further, in the second charge read area FD2, the third charge read area FD3, the fourth charge read area FD4, ..., and the seventh charge read area FD7, the second switching transistor SEL2 equivalent to the first switching transistor SEL1 is used. The third switching transistor SEL3, the fourth switching transistor SEL4, ..., the seventh switching transistor SEL7, the second reset transistor RT2, which is equivalent to the first reset transistor RT1, the third reset transistor RT3, the fourth reset transistor RT4, ..., The 7th reset transistor RT7 is connected.

第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に与える電圧によって、受光領域PDで発生した電子の移動の制御を自在に行うためには、電荷輸送路及び対向する電界制御電極の対に挟まれた電荷転送チャネルの空乏化電位(埋め込みダイオード内の空乏化電位)が、制御電極対に加える電圧によって大きく変動するように構成すればよい。これは、基板の不純物密度を低く設定し、表面のホールピニングのためのピニング層5を比較的低不純物密度に選ぶことによって行える。こうした光電変換素子の電界制御電極及びピニング層の内部のキャリアの濃度の変化等については、特許文献2中で「第1電界制御電極対41a,41b」を用いて代表的に説明したものと原理的に等価であるため、重複説明を省略する。 The movement of electrons generated in the light receiving region PD can be freely controlled by the voltage applied to the first electric charge control electrode G1, the second electric potential control electrode G2, the third electric potential control electrode G3, ..., And the eighth electric charge control electrode G8. For this purpose, the depletion potential (depletion potential in the embedded diode) of the charge transfer channel sandwiched between the charge transport path and the pair of opposite electric field control electrodes is configured to fluctuate greatly depending on the voltage applied to the control electrode pair. do it. This can be done by setting the impurity density of the substrate low and selecting the pinning layer 5 for surface hole pinning to have a relatively low impurity density. The change in the concentration of the carrier inside the electric field control electrode and the pinning layer of the photoelectric conversion element is typically described using "first electric field control electrode pairs 41a, 41b" in Patent Document 2 in principle. Since they are equivalent to each other, duplicate explanations will be omitted.

通常の固体撮像装置においては、ピニング層は、ダーク時の表面でのキャリアの生成や信号キャリアの捕獲を抑制する層であり、ダーク電流や信号キャリアの捕獲の削減のために好ましい層として、従来用いられているが、第1実施形態に係る光電変換素子のピニング層5は、これらの従来周知の機能に留まらず、表面埋込領域3の空乏化電位を第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の電圧で大きく変化させる作用をなす重要な層として機能している。 In a normal solid-state imaging device, the pinning layer is a layer that suppresses carrier generation and signal carrier capture on the surface during darkness, and has been conventionally used as a preferable layer for reducing dark current and signal carrier capture. Although it is used, the pinning layer 5 of the photoelectric conversion element according to the first embodiment is not limited to these conventionally known functions, and the depletion potential of the surface embedded region 3 is set to the first electric field control electrodes G1 and the second. It functions as an important layer that greatly changes the voltage of the electric field control electrodes G2, the third electric field control electrodes G3, ..., And the eighth electric field control electrode G8.

図5に例示したような四対の制御電極対に、それぞれ異なった電圧レベルのゲート電圧を加えることで、遮蔽板11の開口部(アパーチャ)に入射した光で、埋込フォトダイオード領域で発生したキャリア(電子)を、受光領域PDから延びる八方向の中の所望の電荷転送チャネルに振り分けるように高速に移動させる電荷変調素子等を実現することができる。 By applying gate voltages of different voltage levels to the four pairs of control electrodes as illustrated in FIG. 5, the light incident on the opening (aperture) of the shielding plate 11 is generated in the embedded photodiode region. It is possible to realize a charge modulation element or the like that moves the carriers (electrons) at high speed so as to be distributed to a desired charge transfer channel in eight directions extending from the light receiving region PD.

則ち、第1実施形態に係る光電変換素子においては、図5に示すように、中心軸が45°ずつの角度をなして設けられた8本の電荷転送チャネルのうち7本の電荷転送チャネルの端部には、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7が設けられているので、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に、それぞれ異なった第1〜第4電位レベルのゲート電圧を加えることができるようにすることで、7本の電荷転送チャネルの起点側に位置する埋込フォトダイオード領域で発生したキャリア(電子)の信号電荷を、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に加える電界制御電圧によって、高速に振り分けて移動させる光飛行時間(TOF)型距離センサの動作を実現することができる。 That is, in the photoelectric conversion element according to the first embodiment, as shown in FIG. 5, seven charge transfer channels out of eight charge transfer channels provided with the central axes at an angle of 45 ° each. Since the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., and the seventh charge storage region SD7 are provided at the ends of the above, the first electric field control electrode G1, By making it possible to apply different gate voltages of the first to fourth potential levels to the second electric field control electrode G2, the third electric field control electrode G3, ..., And the eighth electric field control electrode G8, 7 The signal charge of the carrier (electron) generated in the embedded photodiode region located on the starting point side of the charge transfer channel of the book is used as the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ... ..., The operation of the optical flight time (TOF) type distance sensor that is distributed and moved at high speed can be realized by the electric field control voltage applied to the eighth electric field control electrode G8.

又、8本の電荷転送チャネルのうち残る1本の電荷転送チャネルの端部には、図5に示すように、電荷排出領域SD8が設けられている。このため、図3に示したような、それぞれ異なった第1〜第4電位レベルのゲート電圧を第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に加えることで、埋込フォトダイオード領域で発生した背景光による背景光電荷を、残る1本の電荷転送チャネルの入り口に高速に移動させ、背景光電荷を電荷排出領域SD8に排出することができる。 Further, as shown in FIG. 5, a charge discharge region SD8 is provided at the end of the remaining one charge transfer channel among the eight charge transfer channels. Therefore, as shown in FIG. 3, different gate voltages of the first to fourth potential levels are applied to the first electric charge control electrode G1, the second electric charge control electrode G2, the third electric charge control electrode G3, ..., The first. By adding the 8 electric potential control electrode G8, the background light charge generated by the background light generated in the embedded photodiode region is moved at high speed to the entrance of the remaining one charge transfer channel, and the background light charge is transferred to the charge discharge region SD8. Can be discharged.

第1電荷読出領域FD1には、第1信号読出トランジスタ(増幅トランジスタ)のゲート電極が、接続されているので、第1電荷読出領域FD1に輸送された電荷量に相当する電圧によって、第1信号読出トランジスタ(増幅トランジスタ)で増幅された出力が、第1スイッチングトランジスタSEL1を介して外部に出力される。同様に、第2電荷読出領域FD2には、第2信号読出トランジスタ(増幅トランジスタ)のゲート電極が接続されているので、第2電荷読出領域FD2に輸送された電荷量に相当する電圧によって、第2信号読出トランジスタ(増幅トランジスタ)で増幅された出力が、第2スイッチングトランジスタを介して外部に出力される。 Since the gate electrode of the first signal read transistor (amplification transistor) is connected to the first charge read region FD1, the first signal is generated by the voltage corresponding to the amount of charge transported to the first charge read region FD1. The output amplified by the read transistor (amplification transistor) is output to the outside via the first switching transistor SEL1. Similarly, since the gate electrode of the second signal read transistor (amplification transistor) is connected to the second charge read region FD2, the voltage corresponding to the amount of charge transported to the second charge read region FD2 causes the second charge. The output amplified by the two-signal read transistor (amplification transistor) is output to the outside via the second switching transistor.

例えば、TOF型距離センサへの応用においては、TOF距離センサに設けられた光源から繰り返しパルス信号として光を対象物に照射し、対象物によって反射された光の往復に要する遅延時間Tdを測定すればよい。則ち、TOF距離センサへの応用では、上記のように、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に、図3に示すようなそれぞれ互いに位相の異なる第1電界制御パルスg1,第2電界制御パルスg2,第3電界制御パルスg3,……,第8電界制御パルスg8から整形回路によって生成された互いに異なる電界制御電圧を順次印加する動作を、出力光の光パルスの繰り返し周期と同期して、周期的に繰り返して遅延時間Tdを測定する。遅延時間Tdの測定については、特許文献2における「遅延時間Tdの測定」と同様の原理を使用できる。 For example, in the application to the TOF type distance sensor, the light source provided in the TOF distance sensor repeatedly irradiates the object with light as a pulse signal, and measures the delay time Td required for the round trip of the light reflected by the object. do it. That is, in the application to the TOF distance sensor, as described above, the first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The eighth electric field control electrode G8 are shown in FIG. First electric field control pulse g1, second electric field control pulse g2, third electric field control pulse g3, ..., Eighth electric field control pulse g8 having different phases as shown in The operation of sequentially applying the electric field is synchronized with the repetition period of the optical pulse of the output light, and the delay time Td is measured by repeating the operation periodically. For the measurement of the delay time T d, it can be used the same principle as "measurement of the delay time T d" in Patent Document 2.

第1実施形態に係る光電変換素子は、比較的デューティの狭いパルス光を用いて動作させる。図3に示すように、到来光の光パルスを受けて、光電変換素子で変調された電荷を蓄積する期間では、第1電界制御パルスg1,第2電界制御パルスg2,第3電界制御パルスg3,……,第8電界制御パルスg8を、整形回路によって整形し、第1電位レベルL、第2電位レベルM、第3電位レベルH及び第4電位レベルVの4段階の出力レベルをそれぞれ生成して、8つのゲート信号を図3に示すように周期的に与えて動作させる。 The photoelectric conversion element according to the first embodiment is operated by using pulsed light having a relatively narrow duty. As shown in FIG. 3, during the period in which the light pulse of the incoming light is received and the charge modulated by the photoelectric conversion element is accumulated, the first electric field control pulse g1, the second electric field control pulse g2, and the third electric field control pulse g3 , ..., The eighth electric field control pulse g8 is shaped by a shaping circuit to generate four output levels of first potential level L, second potential level M, third potential level H, and fourth potential level V, respectively. Then, eight gate signals are periodically applied and operated as shown in FIG.

4段階の出力レベルの信号は、例えば図4に示すような論理回路を組み合わせて実現できる。図4中には、クロックからの、第1電界制御パルスg1,第2電界制御パルスg2,第3電界制御パルスg3,……,第8電界制御パルスg8のうち、第2電界制御パルスg2と第3電界制御パルスg3、第7電界制御パルスg7と第8電界制御パルスg8、第3電界制御パルスg3と第4電界制御パルスg4、第6電界制御パルスg6と第7電界制御パルスg7、をそれぞれ対とし、各対からの入力を4つの2入力AND回路にそれぞれ入力している。更に図4に示すように、上段側の2つの2入力AND回路の出力が上段側に配置した第1の2入力OR回路に入力され、下段側の2つの2入力AND回路の出力が下段側に配置した第2の2入力OR回路に入力している。そして、2つの2入力OR回路の出力がNOR回路に入力されている。そして、2つの2入力OR回路の出力を直接、選択回路15の2つの1.0V入力端子に入力し、同時にNOR回路の出力を選択回路15の−1.0V入力端子に入力して波形整形している。図4に示す選択回路15を介して第1電界制御電極G1に入力するゲート信号を生成することが可能である。図3(b)に示す第2電界制御電極G2,第3電界制御電極G3,第4電界制御電極G4,……,第8電界制御電極G8に入力するゲート信号も同様な、論理回路の構成で生成することが可能である。 A four-stage output level signal can be realized by combining, for example, a logic circuit as shown in FIG. In FIG. 4, among the first electric field control pulse g1, the second electric field control pulse g2, the third electric field control pulse g3, ..., The eighth electric field control pulse g8, and the second electric field control pulse g2 from the clock. A third electric field control pulse g3, a seventh electric field control pulse g7 and an eighth electric field control pulse g8, a third electric field control pulse g3 and a fourth electric field control pulse g4, a sixth electric field control pulse g6 and a seventh electric field control pulse g7. Each pair is paired, and the input from each pair is input to each of the four two-input AND circuits. Further, as shown in FIG. 4, the outputs of the two 2-input AND circuits on the upper stage side are input to the first two-input OR circuit arranged on the upper stage side, and the outputs of the two two-input AND circuits on the lower stage side are on the lower stage side. It is input to the second 2 input OR circuit arranged in. Then, the outputs of the two 2-input OR circuits are input to the NOR circuit. Then, the outputs of the two 2-input OR circuits are directly input to the two 1.0V input terminals of the selection circuit 15, and at the same time, the outputs of the NOR circuit are input to the -1.0V input terminals of the selection circuit 15 to perform waveform shaping. doing. It is possible to generate a gate signal to be input to the first electric field control electrode G1 via the selection circuit 15 shown in FIG. A logic circuit configuration similar to that of the gate signal input to the second electric field control electrode G2, the third electric field control electrode G3, the fourth electric field control electrode G4, ..., The eighth electric field control electrode G8 shown in FIG. 3B. It can be generated with.

以上のように、第1実施形態に係る光電変換素子によれば、従来のMOS構造を用いてゲート電極直下のポテンシャルを縦方向(垂直方向)に制御する場合に比し、横方向(電荷転送チャネルに直交する)の静電誘導効果による電界制御を用いているので、電荷転送チャネルの長い距離にわたって電界がほぼ一定になるようにして、信号電荷が対称性を維持しながら高速に輸送される。又、第1実施形態に係る光電変換素子によれば、平面パターンでほぼ八角形状の受光領域PDを設け、この受光領域PDの中心からそれぞれの中心軸が放射状に延びる8本の電荷転送チャネルが形成される。8本の電荷転送チャネルは、いずれも同じ形状で対称的に形成されているので、トータルの計測時間を短くすることが可能で、且つ広い受光領域PDと電荷の高速転送とを両立できる8タップ型横方向電界制御型光電変換素子を提供できる。 As described above, according to the photoelectric conversion element according to the first embodiment, the potential under the gate electrode is controlled in the vertical direction (vertical direction) by using the conventional MOS structure, as compared with the case where the potential is controlled in the horizontal direction (charge transfer). Since the electric field control by the electrostatic induction effect (perpendicular to the channel) is used, the signal charge is transported at high speed while maintaining the symmetry by making the electric field almost constant over a long distance of the charge transfer channel. .. Further, according to the photoelectric conversion element according to the first embodiment, a light receiving region PD having a substantially octagonal shape in a plane pattern is provided, and eight charge transfer channels whose central axes extend radially from the center of the light receiving region PD are provided. It is formed. Since the eight charge transfer channels are all formed symmetrically with the same shape, the total measurement time can be shortened, and the eight taps can achieve both a wide light receiving area PD and high-speed charge transfer. A type lateral electric field control type photoelectric conversion element can be provided.

このように受光領域PDを大きくできるため、感度を高めることが出来、高精度な蛍光寿命の計測が可能になる。また高めた感度を積算回数の減少に使えば、従来と同じ蛍光発光の場合であっても計測時間を短くできる。また、より高速な電荷転送により、蛍光寿命の時間分解能を上げることが出来る。そのため、蛍光寿命の計測を一層高速且つ高精度に実行できる。則ち、第1実施形態に係る光電変換素子をTOF距離センサに応用すると、従来の埋め込みフォトダイオードを用いたCMOS型TOF距離画像センサに比べて、電荷転送チャネルの長さを長くとることができるので、アパーチャの実質的な開口率が向上して、高感度化が図れる。 Since the light receiving region PD can be increased in this way, the sensitivity can be increased and the fluorescence lifetime can be measured with high accuracy. Moreover, if the increased sensitivity is used to reduce the number of integrations, the measurement time can be shortened even in the case of the same fluorescence emission as in the past. In addition, the time resolution of the fluorescence lifetime can be improved by faster charge transfer. Therefore, the fluorescence lifetime can be measured at higher speed and with higher accuracy. That is, when the photoelectric conversion element according to the first embodiment is applied to the TOF distance sensor, the length of the charge transfer channel can be made longer than that of the CMOS type TOF distance image sensor using the conventional embedded photodiode. Therefore, the substantial aperture ratio of the aperture is improved, and high sensitivity can be achieved.

更に、従来のMOS構造を用いてゲート電極直下のポテンシャルを縦方向に制御する構造においては、ゲート酸化膜とシリコン表面の界面における界面欠陥や界面準位等に起因した雑音や暗電流があったが、第1実施形態に係る光電変換素子によれば、横方向の静電誘導効果による電界制御を用いているので、ゲート酸化膜とシリコン表面の界面における界面欠陥や界面準位等に起因した雑音や暗電流の発生の問題や輸送速度の低下の問題が回避できる。 Furthermore, in the structure in which the potential directly under the gate electrode is controlled in the vertical direction using the conventional MOS structure, there are noises and dark currents due to interface defects, interface states, etc. at the interface between the gate oxide film and the silicon surface. However, according to the photoelectric conversion element according to the first embodiment, since the electric current control by the electrostatic induction effect in the lateral direction is used, it is caused by the interface defect and the interface state at the interface between the gate oxide film and the silicon surface. The problem of noise and dark current generation and the problem of slow transportation speed can be avoided.

又、第1実施形態に係る光電変換素子によれば、受光領域PDの中心位置から放射状に延びる8本の電荷転送チャネルのうち7本の端部に位置する第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7に対し、信号電荷を順次、高速に振り分けて輸送し、8本のうち残る1本の電荷輸送路の端部に位置する電荷排出領域に、背景光に依拠した背景光電荷を排出することができるので、TOF距離センサに限られず、極短時間に同じ現象が繰り返されるような物理現象の観測に応用することができる。例えば、第1実施形態に係る光電変換素子は、蛍光物質の寿命を測定する素子として応用すれば、電荷転送チャネルの長い距離にわたって電界がほぼ一定になるようにして、信号電荷を高速に輸送していることから、より精度の高い測定が実現できる。 Further, according to the photoelectric conversion element according to the first embodiment, the first charge storage regions SD1 and the second are located at the ends of seven of the eight charge transfer channels extending radially from the center position of the light receiving region PD. The signal charges are sequentially distributed and transported at high speed to the charge storage region SD2, the third charge storage region SD3, ..., and the seventh charge storage region SD7, and the end of the remaining one of the eight charge transport paths. Since it is possible to discharge the background light charge depending on the background light to the charge discharge region located in, it is not limited to the TOF distance sensor, but it can be applied to the observation of physical phenomena in which the same phenomenon is repeated in a very short time. Can be done. For example, if the photoelectric conversion element according to the first embodiment is applied as an element for measuring the life of a fluorescent substance, the electric field is made substantially constant over a long distance of the charge transfer channel, and the signal charge is transported at high speed. Therefore, more accurate measurement can be realized.

−固体撮像装置−
第1実施形態に係る光電変換素子は、固体撮像装置(光飛行時間距離画像センサ)の画素Xijに適用可能であり、固体撮像装置の画素Xijに適用することにより、各画素Xijの内部において、高速の信号電荷の転送が可能になる。図8は、第1実施形態に係る光電変換素子を画素Xijとし、この画素Xijをマトリクス状に複数個配列した固体撮像装置の構成例である。
-Solid image sensor-
The photoelectric conversion element according to the first embodiment is applicable to a pixel X ij of the solid-state imaging device (light time of flight range image sensor), by applying to the pixel X ij of the solid-state imaging device, for each pixel X ij Internally, high-speed signal charge transfer is possible. FIG. 8 is a configuration example of a solid-state image pickup device in which the photoelectric conversion element according to the first embodiment is a pixel X ij and a plurality of the pixels X ij are arranged in a matrix.

7出力光電変換素子の内部において、埋込フォトダイオード構造を用いて、横方向電界制御型(LEF)電荷変調ドライバ24から出力される第1電界制御パルスg1,第2電界制御パルスg2,第3電界制御パルスg3,……,第8電界制御パルスg8から整形回路によって生成された互いに異なる電界制御電圧を、それぞれ互いに異なる位相関係で、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8に順次印加することにより、横方向の電界による静電誘導効果によって、電荷輸送路及び8本の電荷転送チャネルの空乏化電位を順次変化させ、信号電荷を選択された電荷転送チャネル中を高速に輸送して、順次、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7に蓄積し、背景光電荷を電荷排出領域をなす第8電荷蓄積領域SD8に排出することができる。 Inside the 7-output photoelectric conversion element, the first electric field control pulse g1, the second electric field control pulse g2, and the third are output from the lateral electric charge control type (LEF) charge modulation driver 24 by using the embedded photodiode structure. The first electric charge control electrodes G1, the second electric charge control electrodes G2, and the second electric charge control voltages generated by the shaping circuit from the electric charge control pulses g3, ... 3 By sequentially applying to the electric field control electrodes G3, ..., 8th electric field control electrode G8, the depletion potentials of the charge transport path and the eight charge transfer channels are sequentially changed by the electrostatic induction effect due to the lateral electric charge. Then, the signal charges are transported at high speed in the selected charge transfer channel, and sequentially, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The seventh charge storage region. It can be accumulated in SD7 and the background light charge can be discharged to the eighth charge storage region SD8 forming the charge discharge region.

図9に示すように、7出力光電変換素子の出力端子となる第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第7電荷読出領域FD7は、画素Xijの画素内でソースフォロワアンプのゲートに接続され、アクティブピクセル型の回路により、信号が周辺の読み出し回路に読み出される。 As shown in FIG. 9, the first charge read area FD1, the second charge read area FD2, the third charge read area FD3, ..., And the seventh charge read area FD7, which are the output terminals of the 7-output photoelectric conversion element, are pixels. It is connected to the gate of the source follower amplifier in the pixel of X ij , and the signal is read out to the peripheral read circuit by the active pixel type circuit.

なお、図9に示すように、7出力光電変換素子の第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第7電荷読出領域FD7のノードには、第1リセットトランジスタRT1,第2リセットトランジスタRT2,第3リセットトランジスタRT3,……,第7リセットトランジスタRT7も接続され、読み出した後、7出力光電変換素子の第1電荷読出領域FD1,第2電荷読出領域FD2,第3電荷読出領域FD3,……,第7電荷読出領域FD7の電荷をリセットする。この動作は、ノイズキャンセルにも利用する。 As shown in FIG. 9, the nodes of the first charge read area FD1, the second charge read area FD2, the third charge read area FD3, ..., And the seventh charge read area FD7 of the 7-output photoelectric conversion element are The first reset transistor RT1, the second reset transistor RT2, the third reset transistor RT3, ..., The seventh reset transistor RT7 are also connected, and after reading, the first charge read area FD1 and the second charge of the 7-output photoelectric conversion element. Read area FD2, 3rd charge read area FD3, ..., 7th charge read area FD7 resets the charge. This operation is also used for noise cancellation.

本発明の第1実施形態に係る固体撮像装置を光飛行時間距離画像センサとして構成する場合について例示すれば、図8に示すように、画素アレイ部と周辺回路部(21,22,23,24)とを同一半導体チップ上に配置し、集積化した構造として示すことが可能である。画素アレイ部例えば、方形状の領域として定義することが可能であり、図9に示した画素Xij(i=1〜n;j=1〜m:n,mはそれぞれ整数である。)を2次元マトリクス状に多数配列できる。画素アレイ部の下辺部には、図8において水平方向に示した画素行X11,12,……X1m;X21,22,……X2m;……Xn1,n2,……Xnm方向に沿ってカラム並列折り返し積分/巡回型A/D変換器22と、このカラム並列折り返し積分/巡回型A/D変換器22に接続される水平シフトレジスタ21が設けられている。画素アレイ部の左辺部には、図8において垂直方向に示した画素列X11,X21,……,Xn1;X12,X22,……,Xn2;……;X1m,X2m,……,Xnm方向に沿って垂直シフトレジスタ23が設けられている。垂直シフトレジスタ23及び水平シフトレジスタ21には、図示を省略したタイミング発生回路が接続されている。第1実施形態に係る固体撮像装置では、画素アレイ部の下辺部に設けられたカラム並列折り返し積分/巡回型A/D変換器22に信号を読み出してA/D変換を行い、更にノイズキャンセルする。これにより、光電荷による信号レベルが抽出され、固定パターンノイズや、時間的ランダムノイズの一部(リセットノイズ)がキャンセルされた信号を求める。 To show an example of the case where the solid-state image sensor according to the first embodiment of the present invention is configured as an optical flight time-distance image sensor, as shown in FIG. 8, a pixel array unit and a peripheral circuit unit (21, 22, 23, 24) are shown. ) Can be arranged on the same semiconductor chip and shown as an integrated structure. Pixel array unit For example, the pixel X ij (i = 1 to n; j = 1 to m: n, m are integers, respectively) shown in FIG. 9 can be defined as a rectangular area. Many can be arranged in a two-dimensional matrix. On the lower side of the pixel array section, the pixel rows X 11, X 12, ... X 1m ; X 21, X 22, ... X 2m ; ... X n1, X n2, ... ... A column parallel folding integral / cyclic A / D converter 22 and a horizontal shift register 21 connected to the column parallel folding integral / cyclic A / D converter 22 are provided along the X nm direction. On the left side of the pixel array section, the pixel sequences X 11 , X 21, ……, X n1 ; X 12 , X 22, ……, X n2 ; ……; X 1m , X shown in the vertical direction in FIG. A vertical shift register 23 is provided along the 2 m, ..., X nm direction. A timing generation circuit (not shown) is connected to the vertical shift register 23 and the horizontal shift register 21. In the solid-state image sensor according to the first embodiment, a signal is read out to a column parallel folding integral / cyclic A / D converter 22 provided at the lower side of the pixel array portion to perform A / D conversion, and further noise cancellation is performed. .. As a result, the signal level due to the optical charge is extracted, and a signal in which fixed pattern noise and a part of temporal random noise (reset noise) are canceled is obtained.

既に説明したとおり、第1実施形態に係る固体撮像装置においては、第1実施形態に係る光電変換素子を画素Xijとして用いている。そして、従来のMOS構造を用いてゲート電極直下のポテンシャルを縦方向(半導体基板の表面に垂直方向)に制御する方式の単位画素で構成した場合に比し、第1実施形態に係る固体撮像装置では各画素Xijが横方向(半導体基板の表面に平行で電荷転送方向に直交する方向)の静電誘導効果による電界制御を用いているので、各画素Xijを構成する7出力光電変換素子のそれぞれ内部において、電荷輸送路に沿った長い距離にわたって電界がほぼ一定になるようにできる。このため、図3(b)に例示したタイミングチャートで画素Xij内の7出力光電変換素子を動作させることにより、トータルの計測時間を短くし、且つ信号電荷を高速に転送できる。 As described above, in the solid-state image pickup device according to the first embodiment, the photoelectric conversion element according to the first embodiment is used as the pixel X ij. Then, as compared with the case where the unit pixel of the method of controlling the potential directly under the gate electrode in the vertical direction (direction perpendicular to the surface of the semiconductor substrate) using the conventional MOS structure is used, the solid-state imaging device according to the first embodiment is used. Since each pixel X ij uses electric field control by the electrostatic induction effect in the lateral direction (direction parallel to the surface of the semiconductor substrate and orthogonal to the charge transfer direction), the 7-output photoelectric conversion element constituting each pixel X ij Within each of the above, the electric field can be made almost constant over a long distance along the charge transport path. Therefore, by operating the 7-output photoelectric conversion element in the pixel X ij with the timing chart illustrated in FIG. 3 (b), the total measurement time can be shortened and the signal charge can be transferred at high speed.

更に、従来のMOS構造を用いてゲート電極直下のポテンシャルを縦方向に制御する方式の単位画素を用いた構造においては、ゲート酸化膜とシリコン表面の界面における界面欠陥や界面準位等に起因した雑音や暗電流があったが、第1実施形態に係る固体撮像装置によれば、各画素Xijを構成する7出力光電変換素子のそれぞれが、横方向の静電誘導効果による電界制御を用いているので、各画素Xijを構成する7出力光電変換素子の内部において、ゲート酸化膜とシリコン表面の界面における界面欠陥や界面準位等に起因した雑音や暗電流の発生の問題や転送速度の低下の問題が回避でき、低雑音、高分解能で、応答速度の速い固体撮像装置を実現できる。 Further, in the structure using the unit pixel of the method of controlling the potential directly under the gate electrode in the vertical direction by using the conventional MOS structure, it is caused by the interface defect and the interface state at the interface between the gate oxide film and the silicon surface. Although there was noise and dark current, according to the solid-state imaging device according to the first embodiment, each of the seven output photoelectric conversion elements constituting each pixel X ij uses electric field control by a lateral electrostatic induction effect. Therefore, inside the 7-output photoelectric conversion element that constitutes each pixel X ij , there is a problem of noise and dark current generation due to interface defects and interface states at the interface between the gate oxide film and the silicon surface, and the transfer speed. It is possible to realize a solid-state imaging device with low noise, high resolution, and fast response speed by avoiding the problem of deterioration.

又、第1実施形態に係る固体撮像装置によれば、各画素Xijを構成する7出力光電変換素子の受光領域PDの中心位置から放射状に延びる8本の電荷転送チャネルのうち7本の端部に位置する第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7に対し、信号電荷を順次に、高速に転送することができるので、2次元TOF距離センサに限られず、極短時間に同じ現象が繰り返されるような物理現象の観測に応用して2次元画像を、トータルの計測時間を短くして撮像することができる。特に、第1実施形態に係る固体撮像装置は、蛍光物質の寿命を測定する素子として応用すれば、電荷転送方向の長い距離にわたって電界がほぼ一定になるようにして、信号電荷を高速に転送していることから、より蛍光物質の寿命の計測時間を短くして、精度の高い2次元画像を撮像できる。 Further, according to the solid-state imaging device according to the first embodiment, seven ends of eight charge transfer channels extending radially from the center position of the light receiving region PD of the seven-output photoelectric conversion element constituting each pixel X ij. Signal charges can be sequentially and rapidly transferred to the first charge storage area SD1, the second charge storage area SD2, the third charge storage area SD3, ..., and the seventh charge storage area SD7 located in the unit. Therefore, it is not limited to the two-dimensional TOF distance sensor, and it can be applied to the observation of a physical phenomenon in which the same phenomenon is repeated in an extremely short time, and a two-dimensional image can be captured with a short total measurement time. In particular, if the solid-state image sensor according to the first embodiment is applied as an element for measuring the life of a fluorescent substance, the electric field is made substantially constant over a long distance in the charge transfer direction, and the signal charge is transferred at high speed. Therefore, it is possible to capture a highly accurate two-dimensional image by shortening the measurement time of the life of the fluorescent substance.

(第1実施形態の第1変形例)
図10及び図11に示した本発明の第1実施形態の第1変形例に係る光電変換素子のように、受光領域PDの内側にp領域からなる電位丘設定部7を設けなくても、本発明に係る光電変換素子を実現できる。第1実施形態の第1変形例に係る光電変換素子においても、図9に示した光電変換素子の場合と同様に、所望の電荷転送チャネルの中心軸に沿って4対の制御電極対を形成し、それぞれの制御電極対に4段階の出力レベルのゲート信号を周期的に与えて動作できる。第1実施形態の第1変形例に係る光電変換素子によっても、図1〜図9に示した光電変換素子と同様に、広い受光領域PDと高速転送を両立できる。
(First modification of the first embodiment)
Unlike the photoelectric conversion element according to the first modification of the first embodiment of the present invention shown in FIGS. 10 and 11, it is not necessary to provide the potential hill setting portion 7 composed of the p + region inside the light receiving region PD. , The photoelectric conversion element according to the present invention can be realized. Also in the photoelectric conversion element according to the first modification of the first embodiment, four pairs of control electrodes are formed along the central axis of the desired charge transfer channel, as in the case of the photoelectric conversion element shown in FIG. Then, each control electrode pair can be operated by periodically applying a gate signal having four output levels. Similar to the photoelectric conversion element shown in FIGS. 1 to 9, the photoelectric conversion element according to the first modification of the first embodiment can achieve both a wide light receiving region PD and high-speed transfer at the same time.

ただし第1変形例の場合、図12中に第7電荷蓄積領域SD7への電荷の転送の場合で例示したように、第7電荷転送チャネルR7から第7電荷蓄積領域SD7への移行部において、やや平坦なポテンシャル領域が形成される場合がある。よって図6のポテンシャル図に示したように、電子を移動させる電荷輸送路から電荷蓄積領域の間に平坦なポテンシャル領域が形成されない、図1で示した光電変換素子の方がより有利である。 However, in the case of the first modification, as illustrated in the case of charge transfer to the seventh charge storage region SD7 in FIG. 12, in the transition portion from the seventh charge transfer channel R7 to the seventh charge storage region SD7, A slightly flat potential region may be formed. Therefore, as shown in the potential diagram of FIG. 6, the photoelectric conversion element shown in FIG. 1 is more advantageous because a flat potential region is not formed between the charge transport path for moving electrons and the charge storage region.

(第1実施形態の第2変形例)
図1で示した光電変換素子の場合、8個の電界制御電極により4対の制御電極対を形成して、8本の電荷転送チャネルへの電子の移動を制御した。しかし図13に示した本発明の第1実施形態の第2変形例に係る光電変換素子のように、電荷転送チャネルの本数より多い個数の電界制御電極を設けて、電子の移動を制御してもよい。
(Second variant of the first embodiment)
In the case of the photoelectric conversion element shown in FIG. 1, four pairs of control electrodes were formed by eight electric field control electrodes to control the movement of electrons to eight charge transfer channels. However, as in the photoelectric conversion element according to the second modification of the first embodiment of the present invention shown in FIG. 13, a number of electric field control electrodes larger than the number of charge transfer channels is provided to control the movement of electrons. May be good.

図13中には、16本の電界制御電極G1a,G2a,G3a,……,G8a;G1b,G2b,G3b,……,G8bにより8対の制御電極対を形成した場合が例示されている。電界制御電極G8aと電界制御電極G1bの間に第1電荷転送チャネルR1が定義される。更に電界制御電極G1aと電界制御電極G2bの間に第2電荷転送チャネルR2が定義され、電界制御電極G2aと電界制御電極G3bの間に第3電荷転送チャネルR3が定義され、電界制御電極G3aと電界制御電極G4bの間に第4電荷転送チャネルR4が定義される。そして、電界制御電極G4aと電界制御電極G5bの間に第5電荷転送チャネルR5が、電界制御電極G5aと電界制御電極G6bの間に第6電荷転送チャネルR6が、電界制御電極G6aと電界制御電極G7bの間に第7電荷転送チャネルR4が、電界制御電極G7aと電界制御電極G8bの間に第8電荷転送チャネルR8が、定義される。第1実施形態の第2変形例に係る光電変換素子の場合、図9に示した光電変換素子の場合と同様に、所望の電荷転送チャネルの中心軸に沿って8対の制御電極対を形成し、8対の制御電極対中に分配された隣接する電界制御電極を同一電位にして、それぞれの制御電極対に4段階の出力レベルのゲート信号を、図3(b)に例示したタイミングチャートにしたがって、周期的に印加することにより、図1〜図9に示した光電変換素子と同様に動作させ、トータルの計測時間を短くすることができる。更に、16個の電界制御電極G1a,G2a,G3a,……,G8a;G1b,G2b,G3b,……,G8bに対し、それぞれ独立した8個の制御電極対を選択し、8段階の出力レベルのゲート信号を、図3(b)に例示したタイミングチャートを拡張して、周期的に与えることにより、受光領域PDの周辺部に形成される電荷輸送路の電位分布が、より滑らかになり、受光領域PDにおける信号電荷の輸送を高速化できる。よって、8段階の出力レベルのゲート信号を用いることにより、図1〜図9に示した光電変換素子に比して、トータルの計測時間をより短くし、より広い受光領域PDとより高速転送が実現できる。 FIG. 13 illustrates a case where eight pairs of control electrodes are formed by 16 electric field control electrodes G1a, G2a, G3a, ..., G8a; G1b, G2b, G3b, ..., G8b. A first charge transfer channel R1 is defined between the electric field control electrode G8a and the electric field control electrode G1b. Further, a second charge transfer channel R2 is defined between the electric field control electrode G1a and the electric field control electrode G2b, and a third charge transfer channel R3 is defined between the electric field control electrode G2a and the electric field control electrode G3b. A fourth charge transfer channel R4 is defined between the electric field control electrodes G4b. Then, the fifth charge transfer channel R5 is located between the electric field control electrode G4a and the electric field control electrode G5b, the sixth charge transfer channel R6 is located between the electric field control electrode G5a and the electric field control electrode G6b, and the electric charge control electrode G6a and the electric field control electrode are connected. A seventh charge transfer channel R4 is defined between G7b, and an eighth charge transfer channel R8 is defined between the electric field control electrode G7a and the electric field control electrode G8b. In the case of the photoelectric conversion element according to the second modification of the first embodiment, eight pairs of control electrodes are formed along the central axis of the desired charge transfer channel, as in the case of the photoelectric conversion element shown in FIG. Then, the adjacent electric field control electrodes distributed in the eight pairs of control electrodes are set to the same potential, and the gate signal of the output level of four stages is shown for each control electrode pair in the timing chart illustrated in FIG. 3 (b). According to the above, by periodically applying the voltage, the photoelectric conversion elements shown in FIGS. 1 to 9 can be operated in the same manner, and the total measurement time can be shortened. Furthermore, 8 independent control electrode pairs are selected for each of the 16 electric field control electrodes G1a, G2a, G3a, ..., G8a; G1b, G2b, G3b, ..., G8b, and the output level is 8 steps. By periodically applying the gate signal of the above to the timing chart illustrated in FIG. 3 (b), the potential distribution of the charge transport path formed in the peripheral portion of the light receiving region PD becomes smoother. The transport of signal charges in the light receiving region PD can be speeded up. Therefore, by using a gate signal with eight output levels, the total measurement time is shorter than that of the photoelectric conversion elements shown in FIGS. 1 to 9, and a wider light receiving area PD and higher speed transfer can be achieved. realizable.

(第1実施形態の第3変形例)
図14に示した本発明の第1実施形態の第3変形例のように、表面埋込領域3の上部で、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8から離間した位置に電荷排出領域(ドレイン領域)D0を設ければ、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8をすべて用いた8出力光電変換素子を実現できる。
(Third variant of the first embodiment)
As in the third modification of the first embodiment of the present invention shown in FIG. 14, in the upper part of the surface embedded region 3, the first charge storage region SD1, the second charge storage region SD2, and the third charge storage region SD3 , ..., If the charge discharge region (drain region) D0 is provided at a position separated from the eighth charge storage region SD8, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ... ..., an 8-output photoelectric conversion element using all of the 8th charge storage region SD8 can be realized.

図15に示すように、電荷排出領域D0は表面埋込領域3の上部の中央に、表面埋込領域3から僅かに離間して設けられた高不純物密度のn型の半導体領域である。電荷排出電極TD0は、電荷排出領域D0及び表面埋込領域3の間の絶縁膜9の上部に、電荷排出領域D0を囲むように、平面パターンでリング状に設けられた絶縁ゲート構造の電極である。 As shown in FIG. 15, the charge discharge region D0 is an n-type semiconductor region having a high impurity density provided in the center of the upper part of the surface embedding region 3 slightly separated from the surface embedding region 3. The charge discharge electrode TD0 is an electrode having an insulating gate structure provided in a ring shape with a planar pattern on the upper portion of the insulating film 9 between the charge discharge region D0 and the surface embedded region 3 so as to surround the charge discharge region D0. be.

図16に示すように、蓄積期間中は、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8には、図3(b)に示した場合と同様に、4段階の出力レベルの信号が順次与えられる。第7電荷蓄積領域SD7及び第8電荷蓄積領域SD8に第4電位レベルV(2.3V)が印加される期間の経過後、第8電荷蓄積領域SD8及び第1電荷蓄積領域SD1に第4電位レベルV(2.3V)が印加される期間の到来前の間のドレイン期間に、電荷排出電極TD0がオンになる。 As shown in FIG. 16, during the storage period, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8 are shown in FIG. 3 (b). As in the case shown in the above, signals of four output levels are sequentially given. After the period in which the fourth potential level V (2.3 V) is applied to the seventh charge storage region SD7 and the eighth charge storage region SD8, the fourth potential is applied to the eighth charge storage region SD8 and the first charge storage region SD1. The charge discharge electrode TD0 is turned on during the drain period before the arrival of the period in which the level V (2.3 V) is applied.

図17中には、第7電荷蓄積領域SD7への電荷転送の場合のポテンシャルが例示されている。すなわち電荷排出電極TD0がオフ状態のときには、図17(a)に示すように、第7電荷転送チャネルR7のゲートは開き、第7電荷蓄積領域SD7へ電荷が移動する。一方、図17(b)中に例示した第5電荷転送チャネルR5及び第1電荷転送チャネルR1のような他の電荷転送チャネルのゲートは閉じており、それぞれの電荷蓄積領域への電荷の移動は阻害され、電荷は第7電荷蓄積領域SD7への移動するように促される。 FIG. 17 illustrates the potential in the case of charge transfer to the seventh charge storage region SD7. That is, when the charge discharge electrode TD0 is in the off state, as shown in FIG. 17A, the gate of the 7th charge transfer channel R7 opens and the charge moves to the 7th charge storage region SD7. On the other hand, the gates of other charge transfer channels such as the fifth charge transfer channel R5 and the first charge transfer channel R1 exemplified in FIG. 17B are closed, and the transfer of charge to each charge storage region is It is inhibited and the charge is urged to move to the seventh charge storage region SD7.

一方、図18中には、背景光電荷の排出時、すなわち電荷排出電極TD0がオン状態の場合の電位分布が例示されている。図18(a)及び図18(b)に示すように、第1電荷転送チャネルR1,第2電荷転送チャネルR2,第3電荷転送チャネルR3,……,第8電荷転送チャネルR8のすべての電荷転送チャネルのゲートは閉じており、それぞれの電荷蓄積領域への電荷の移動は阻害され、電荷は電荷排出領域D0へのみ移動する。 On the other hand, FIG. 18 illustrates the potential distribution when the background light charge is discharged, that is, when the charge discharge electrode TD0 is on. As shown in FIGS. 18A and 18B, all the charges of the first charge transfer channel R1, the second charge transfer channel R2, the third charge transfer channel R3, ..., And the eighth charge transfer channel R8. The gate of the transfer channel is closed, the transfer of charge to each charge storage region is hindered, and the charge moves only to the charge discharge region D0.

図19中には、第1実施形態の第3変形例に係る光電変換素子を用いた固体撮像装置の内部構造が例示されている。図4に示した固体撮像装置の場合と異なるのは、電荷変調ドライバ24から、第8電界制御電極G8及び電荷排出電極TD0への信号がそれぞれ別箇に入力される点と、光電変換素子の出力端子が、第8電荷蓄積領域SD8によって1個増えた点である。 FIG. 19 illustrates the internal structure of a solid-state image pickup device using a photoelectric conversion element according to a third modification of the first embodiment. The difference from the case of the solid-state imaging device shown in FIG. 4 is that the signals from the charge modulation driver 24 to the eighth electric field control electrode G8 and the charge discharge electrode TD0 are separately input, and that the photoelectric conversion element is used. The number of output terminals is increased by one due to the eighth charge storage region SD8.

第8電荷蓄積領域SD8には、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第7電荷蓄積領域SD7と同様に、第8増幅トランジスタ、第8スイッチングトランジスタ及び第8リセットトランジスタがそれぞれ接続され、8出力光電変換素子が実現されている。第1実施形態の第3変形例に係る光電変換素子によっても、図1〜図9に示した光電変換素子と同様に、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。 The eighth charge storage region SD8 includes a first charge storage region SD1, a second charge storage region SD2, a third charge storage region SD3, ... A switching transistor and an eighth reset transistor are connected to each other to realize an eight-output photoelectric conversion element. Similar to the photoelectric conversion elements shown in FIGS. 1 to 9, the photoelectric conversion element according to the third modification of the first embodiment also has a short total measurement time and can achieve both a wide light receiving region PD and high-speed transfer. Can produce the effect.

(第1実施形態の第4変形例)
図20に示した本発明の第1実施形態の第4変形例のように、表面埋込領域3の上部で、隣り合う電荷転送チャネルの間においてそれぞれの電界制御電極の外側に8個のゲート下電荷排出領域GD1,GD2,GD3,……,GD8を設けても、8出力光電変換素子を実現できる。ゲート下電荷排出領域GD1,GD2,GD3,……,GD8は、電荷が電荷転送チャネルを転送される際にゲート下に漏れた電荷を排出するための電荷排出領域である。図21は、図20に示した8出力光電変換素子のレイアウト構造を用いて行ったシミュレーション結果を示す。
(Fourth modification of the first embodiment)
Eight gates outside each electric field control electrode between adjacent charge transfer channels at the top of the surface-embedded region 3, as in the fourth variant of the first embodiment of the invention shown in FIG. An 8-output photoelectric conversion element can be realized even if the lower charge discharge regions GD1, GD2, GD3, ..., GD8 are provided. The charge discharge region under the gate GD1, GD2, GD3, ..., GD8 is a charge discharge region for discharging the charge leaked under the gate when the charge is transferred to the charge transfer channel. FIG. 21 shows the results of a simulation performed using the layout structure of the 8-output photoelectric conversion element shown in FIG.

図21中には、第7電荷蓄積領域SD7への電荷転送の場合に、電位丘設定部7の周囲を、上側及び下側からそれぞれ回り込んで移動する電子の電荷輸送路が太い破線によって例示されている。図21に示したポテンシャルの等電位線から、電位丘設定部7の周囲に設定される電子の電荷輸送路となる電位谷の電位変化が滑らかであり、効率良く、第7電荷蓄積領域SD7への電荷転送が出来ることが分かる。第1実施形態の第4変形例に係る光電変換素子によっても、図1〜図9に示した光電変換素子と同様に、電位谷の電位変化を滑らかにし、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。 In FIG. 21, in the case of charge transfer to the seventh charge storage region SD7, the charge transport path of electrons moving around the potential hill setting unit 7 from the upper side and the lower side, respectively, is illustrated by a thick broken line. Has been done. From the isobaric line of potential shown in FIG. 21, the potential change of the potential valley, which is the charge transport path for electrons set around the potential hill setting unit 7, is smooth and efficient, and goes to the 7th charge storage region SD7. It can be seen that the charge can be transferred. Similar to the photoelectric conversion element shown in FIGS. 1 to 9, the photoelectric conversion element according to the fourth modification of the first embodiment also smoothes the potential change of the potential valley, and the total measurement time is short and wide. It is possible to achieve the effect that both the light receiving area PD and high-speed transfer can be achieved.

<第2実施形態>
(光電変換素子の構造)
図22の平面図並びに図23及び図24の断面図等に示すように、本発明の第2実施形態に係る光電変換素子は、p型の素子形成層2、素子形成層2の上部に埋め込まれた、n型の表面埋込領域3、表面埋込領域3の周囲に設けられた、平面パターンでドーナツ型の表面埋込領域3よりも高不純物密度でn型のガイド領域13、及び表面埋込領域3の表面に接して設けられた、p型のピニング層5を含む撮像領域(2,3,5,7)と、撮像領域(2,3,5,7)上に設けられた絶縁膜9と、撮像領域(2,3,5,7)の中央部に定義される受光領域PDを囲むように互いに離間して設けられた、素子形成層2よりも高不純物密度でn型の第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8を備える。第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8は、受光領域PDの中心位置に関して対称となる8つ位置に配置されている。そして、受光領域PDを囲む位置において、絶縁膜9上に受光領域PDの中心位置から第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第8電荷蓄積領域SD8のそれぞれに至る8本の電荷転送チャネルのそれぞれの両側に対をなして、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8を配置している。
<Second Embodiment>
(Structure of photoelectric conversion element)
As shown in the plan view of FIG. 22 and the cross-sectional views of FIGS. 23 and 24, the photoelectric conversion element according to the second embodiment of the present invention is embedded in the upper part of the p-type element forming layer 2 and the element forming layer 2. The n-type surface embedding region 3 and the n-type guide region 13 having a higher impurity density than the donut-shaped surface embedding region 3 in a planar pattern provided around the surface embedding region 3 and the surface. An imaging region (2,3,5,7) including a p-type pinning layer 5 provided in contact with the surface of the embedded region 3 and an imaging region (2,3,5,7). N-type with a higher impurity density than the element forming layer 2 provided so as to surround the insulating film 9 and the light receiving region PD defined in the central portion of the imaging region (2, 3, 5, 7). The first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., And the eighth charge storage region SD8 are provided. The first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The eighth charge storage region SD8 are arranged at eight positions symmetrical with respect to the center position of the light receiving region PD. .. Then, at a position surrounding the light receiving region PD, the first charge storage region SD1, the second charge storage region SD2, the third charge storage region SD3, ..., The eighth charge storage from the center position of the light receiving region PD on the insulating film 9. The first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The eighth electric field control are paired on both sides of each of the eight charge transfer channels leading to each of the regions SD8. The electrode G8 is arranged.

第2実施形態に係る光電変換素子は、第1実施形態に係る光電変換素子のような電位丘設定部7を有さないが、代わりにドーナツ型(リング状)のガイド領域13を受光領域PDの周辺に備える。すなわち、第2実施形態に係る光電変換素子の受光領域PDは、内側の正八角形の表面埋込領域3と外側のドーナツ型(リング状)のガイド領域13を備えることにより、不純物密度が2段階に変化する点が、第1実施形態に係る光電変換素子と異なる。第2実施形態に係る光電変換素子の他の構造については、第1実施形態における同名の部材と等価であるので、重複説明を省略する。 The photoelectric conversion element according to the second embodiment does not have the potential hill setting unit 7 like the photoelectric conversion element according to the first embodiment, but instead has a donut-shaped (ring-shaped) guide region 13 as a light receiving region PD. Prepare for the surrounding area. That is, the light receiving region PD of the photoelectric conversion element according to the second embodiment includes an inner regular octagonal surface embedded region 3 and an outer donut-shaped (ring-shaped) guide region 13, so that the impurity density has two stages. It is different from the photoelectric conversion element according to the first embodiment in that it changes to. Since the other structures of the photoelectric conversion element according to the second embodiment are equivalent to the members having the same name in the first embodiment, duplicate description will be omitted.

図25中には、第1電位レベルL=−1.0V、第2電位レベルM=0.0V、第3電位レベルH=1.5V、第4電位レベルV=2.3Vの場合の、第7電荷蓄積領域SD7への電荷転送時のポテンシャルが例示されている。図25(a)に示すように、第7電荷転送チャネルR7のゲートは開き、第7電荷蓄積領域SD7へ電荷が転送される。このときの転送時間は、0.26nsであった。また図25(b)に示したように、第8電荷転送チャネルR8の位置には、電子の転送を阻害する障壁が形成される。Jが付された破線の円の中には、上側に僅かに突出する部分が障壁として示されている。また図25(c)中には、第4電界制御電極G4及び第8電界制御電極G8の下のポテンシャルが例示されている。 In FIG. 25, when the first potential level L = −1.0V, the second potential level M = 0.0V, the third potential level H = 1.5V, and the fourth potential level V = 2.3V, The potential at the time of charge transfer to the seventh charge storage region SD7 is exemplified. As shown in FIG. 25 (a), the gate of the seventh charge transfer channel R7 is opened, and the charge is transferred to the seventh charge storage region SD7. The transfer time at this time was 0.26 ns. Further, as shown in FIG. 25 (b), a barrier that hinders the transfer of electrons is formed at the position of the eighth charge transfer channel R8. In the broken line circle with J, the part slightly protruding upward is shown as a barrier. Further, in FIG. 25 (c), the potential under the fourth electric field control electrode G4 and the eighth electric field control electrode G8 is exemplified.

第2実施形態に係る光電変換素子によれば、従来のMOS構造を用いてゲート電極直下のポテンシャルを縦方向(垂直方向)に制御する場合に比し、横方向(電荷転送チャネルに直交する)の静電誘導効果による電界制御を用いているので、電荷転送チャネルの長い距離にわたって電界がほぼ一定になるようにして、信号電荷が対称性を維持しながら高速に輸送される。又、第2実施形態に係る光電変換素子によれば、平面パターンでほぼ八角形状の受光領域PDを設け、この受光領域PDの中心からそれぞれの中心軸が放射状に延びる8本の電荷転送チャネルが形成される。8本の電荷転送チャネルは、いずれも同じ形状で対称的に形成されているので、第1実施形態に係る光電変換素子と同様に、トータルの計測時間を短くすることが可能で、且つ広い受光領域PDと電荷の高速転送とを両立できる8タップ型横方向電界制御型光電変換素子を提供できる。第2実施形態に係る光電変換素子のその他の効果については、第1実施形態に係る光電変換素子の場合と同様である。また第1実施形態に係る光電変換素子の場合と同様に、第2実施形態に係る光電変換素子を用いて、固体撮像装置を実現することができる。 According to the photoelectric conversion element according to the second embodiment, the potential directly under the gate electrode is controlled in the vertical direction (vertical direction) by using the conventional MOS structure, and the potential is in the horizontal direction (perpendicular to the charge transfer channel). Since the electric field control by the electrostatic induction effect of is used, the electric field is made almost constant over a long distance of the charge transfer channel, and the signal charge is transported at high speed while maintaining the symmetry. Further, according to the photoelectric conversion element according to the second embodiment, a light receiving region PD having a substantially octagonal shape in a plane pattern is provided, and eight charge transfer channels whose central axes extend radially from the center of the light receiving region PD are provided. It is formed. Since all of the eight charge transfer channels have the same shape and are symmetrically formed, the total measurement time can be shortened and a wide range of light reception can be received, as in the case of the photoelectric conversion element according to the first embodiment. It is possible to provide an 8-tap type lateral electric field control type photoelectric conversion element capable of achieving both region PD and high-speed charge transfer. Other effects of the photoelectric conversion element according to the second embodiment are the same as those of the photoelectric conversion element according to the first embodiment. Further, as in the case of the photoelectric conversion element according to the first embodiment, the solid-state image pickup device can be realized by using the photoelectric conversion element according to the second embodiment.

(第2実施形態の第1変形例)
第2実施形態の第1変形例に係る光電変換素子は、図26に示すように、受光領域PDが内側の表面埋込領域3と表面埋込領域3の外側のドーナツ型のガイド領域13を備え、第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の径方向の外側にゲート下電荷排出領域GD1,GD2,GD3,……,GD8を備える構成である。すなわち、第2実施形態の第1変形例に係る光電変換素子は、図22で示したn型高不純物密度のガイド領域13を有する光電変換素子の構造に、図20で示した第1電界制御電極G1,第2電界制御電極G2,第3電界制御電極G3,……,第8電界制御電極G8の外側に8個のゲート下電荷排出領域GD1,GD2,GD3,……,GD8を有する構造を組み合わせた構成に対応する。ゲート下電荷排出領域GD1,GD2,GD3,……,GD8は、図20で示した平面レイアウトと同様に、放射状の8本の電荷転送チャネルを有し、この隣り合う電荷転送チャネルの長手方向に挟まれる位置に設けられている。この8出力光電変換素子のレイアウト構造を用いて、第7電荷蓄積領域SD7へ電子を転送するシミュレーションを行った場合の、X−Y面内全体の等電位線を図27に示す。
(First modification of the second embodiment)
In the photoelectric conversion element according to the first modification of the second embodiment, as shown in FIG. 26, the light receiving region PD has a surface embedded region 3 inside and a donut-shaped guide region 13 outside the surface embedded region 3. The first electric field control electrode G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., The subgate charge discharge region GD1, GD2, GD3, ... ..., It is a configuration including GD8. That is, the photoelectric conversion element according to the first modification of the second embodiment has the structure of the photoelectric conversion element having the guide region 13 having the n-type high impurity density shown in FIG. 22, and the first electric field control shown in FIG. 20. A structure having eight subgate charge discharge regions GD1, GD2, GD3, ..., GD8 outside the electrodes G1, the second electric field control electrode G2, the third electric field control electrode G3, ..., and the eighth electric field control electrode G8. Corresponds to the configuration that combines. Under-gate charge discharge regions GD1, GD2, GD3, ..., GD8 have eight radial charge transfer channels, similar to the planar layout shown in FIG. 20, in the longitudinal direction of the adjacent charge transfer channels. It is provided at the position where it is sandwiched. FIG. 27 shows the equipotential lines of the entire XY plane when a simulation of transferring electrons to the seventh charge storage region SD7 is performed using the layout structure of the 8-output photoelectric conversion element.

図27中には、受光領域PD中の第3電荷転送チャネルR3寄りの位置で光電変換により発生した信号電荷が、ほぼ水平に右方向の第7電荷蓄積領域SD7へ向かって転送された軌跡と、第8電荷転送チャネルR8寄りの位置で発生した信号電荷が、円弧状に斜め下方に第7電荷蓄積領域SD7に向かって転送された軌跡とが模式的に例示されている。また図28は、図27で示した等電位線の上側の領域の拡大図である。すなわち、図28も左側が第3電荷転送チャネルR3の第3電荷蓄積領域SD3を含む電位分布であり、右側が第7電荷転送チャネルR7の第7電荷蓄積領域SD7を含む電位分布である。又、図28の中央の上側は、第1電荷転送チャネルR1の電位分布である。 In FIG. 27, the locus of the signal charge generated by the photoelectric conversion at the position near the third charge transfer channel R3 in the light receiving region PD is transferred almost horizontally toward the seventh charge storage region SD7 in the right direction. , The locus of the signal charge generated at the position closer to the eighth charge transfer channel R8 is transferred diagonally downward in an arc shape toward the seventh charge storage region SD7. Further, FIG. 28 is an enlarged view of the region above the equipotential lines shown in FIG. 27. That is, also in FIG. 28, the left side is the potential distribution including the third charge storage region SD3 of the third charge transfer channel R3, and the right side is the potential distribution including the seventh charge storage region SD7 of the seventh charge transfer channel R7. Further, the upper side of the center of FIG. 28 is the potential distribution of the first charge transfer channel R1.

図28に示すように、第7電荷蓄積領域SD7には、全体の中で最も深い電位が形成されている。更に図26及び図27の右下側に配置された第5電界制御電極G5,第6電界制御電極G6,第7電界制御電極G7周辺のポテンシャル状態を、図29に模式的に示す。図29の3次元メッシュ構造のポテンシャルプロファイルに示すように、第7電荷転送チャネルR7を定義する第6電界制御電極G6と第7電界制御電極G7の間の谷領域の電位が全体の中で最も深い。第2実施形態の第1変形例に係る光電変換素子によっても、図22〜図25に示した光電変換素子と同様に、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。 As shown in FIG. 28, the deepest potential is formed in the seventh charge storage region SD7. Further, FIG. 29 schematically shows the potential states around the fifth electric field control electrode G5, the sixth electric field control electrode G6, and the seventh electric field control electrode G7 arranged on the lower right side of FIGS. 26 and 27. As shown in the potential profile of the three-dimensional mesh structure of FIG. 29, the potential in the valley region between the sixth electric field control electrode G6 and the seventh electric field control electrode G7 defining the seventh charge transfer channel R7 is the highest in the whole. deep. Similar to the photoelectric conversion elements shown in FIGS. 22 to 25, the photoelectric conversion element according to the first modification of the second embodiment also has a short total measurement time, and can achieve both a wide light receiving region PD and high-speed transfer. Can produce the effect.

(第2実施形態の第2変形例)
第2実施形態に係る光電変換素子を用いた固体撮像装置としては、図30に示すように、遮蔽板11の上側に、対象物からの光を収束して受光領域PDに入射させるマイクロレンズ17を設けてもよい。マイクロレンズ17を介して光を入射させることにより、開口率を向上させることができるので、固体撮像装置の高感度化を図ることができる。
(Second variant of the second embodiment)
As a solid-state image pickup device using the photoelectric conversion element according to the second embodiment, as shown in FIG. 30, a microlens 17 that converges light from an object and causes it to enter the light receiving region PD on the upper side of the shielding plate 11. May be provided. By injecting light through the microlens 17, the aperture ratio can be improved, so that the sensitivity of the solid-state image sensor can be increased.

第2実施形態の第2変形例に係る光電変換素子によっても、図22〜図25に示した光電変換素子と同様に、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。尚、マイクロレンズは、図30に例示したような単層構造に限定されることなく、2段以上の複合構造で光電変換素子に組み合わせて、更に微細化を図ることもできる。 Similar to the photoelectric conversion elements shown in FIGS. 22 to 25, the photoelectric conversion element according to the second modification of the second embodiment also has a short total measurement time, and can achieve both a wide light receiving region PD and high-speed transfer. Can produce the effect. The microlens is not limited to the single-layer structure as illustrated in FIG. 30, and can be further miniaturized by combining it with a photoelectric conversion element having a composite structure of two or more stages.

(第2実施形態の第3変形例)
図1〜図30では、8タップ横方向電界制御型の光電変換素子を例示したが、これに限定されず、本発明は5つ以上の位置に受光領域PDから離間した電荷転送チャネルを設けることができる。図31中には、平面パターンで、内側にほぼ正五角形の表面埋込領域3aと、表面埋込領域3aの外側に設けられた外縁がほぼ正五角形のドーナツ型のガイド領域13aとが設けられた、第2実施形態の第3変形例に係る5タップ横方向電界制御型の光電変換素子が例示されている。
(Third variant of the second embodiment)
FIGS. 1 to 30 illustrate an 8-tap lateral electric field control type photoelectric conversion element, but the present invention is not limited to this, and the present invention provides charge transfer channels separated from the light receiving region PD at five or more positions. Can be done. In FIG. 31, a surface-embedded region 3a having a substantially regular pentagon inside and a donut-shaped guide region 13a having a substantially regular pentagonal outer edge provided on the outside of the surface-embedded region 3a are provided in a planar pattern. Further, a 5-tap lateral electric field control type photoelectric conversion element according to a third modification of the second embodiment is exemplified.

第2実施形態の第3変形例に係る光電変換素子においても、図1〜図30で説明したそれぞれの光電変換素子の場合と同様に、第1電荷蓄積領域SD1,第2電荷蓄積領域SD2,第3電荷蓄積領域SD3,……,第5電荷蓄積領域SD5のうちの1個の電荷蓄積領域を電荷排出領域として用いれば、4出力光電変換素子を実現できる。第2実施形態の第3変形例に係る4出力光電変換素子によっても、図22〜図25に示した光電変換素子と同様に、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。 Also in the photoelectric conversion element according to the third modification of the second embodiment, the first charge storage region SD1 and the second charge storage region SD2 are the same as in the case of the respective photoelectric conversion elements described with reference to FIGS. 1 to 30. A 4-output photoelectric conversion element can be realized by using one charge storage region of the third charge storage region SD3, ..., And the fifth charge storage region SD5 as the charge discharge region. Similar to the photoelectric conversion elements shown in FIGS. 22 to 25, the 4-output photoelectric conversion element according to the third modification of the second embodiment also has a short total measurement time, a wide light receiving area PD, and high-speed transfer. The effect of being compatible can be achieved.

(第2実施形態の第4変形例)
図32中に示す第2実施形態の第4変形例に係る光電変換素子においては、図20の場合と同様に、受光領域PDの外側に16本の電界制御電極G1a,G2a,G3a,……,G8a;G1b,G2b,G3b,……,G8bを備える。電界制御電極G8aと電界制御電極G1bの間に第1電荷転送チャネルR1が定義される。更に電界制御電極G1aと電界制御電極G2bの間に第2電荷転送チャネルR2が定義され、電界制御電極G2aと電界制御電極G3bの間に第3電荷転送チャネルR3が定義され、電界制御電極G3aと電界制御電極G4bの間に第4電荷転送チャネルR4が定義される。そして、電界制御電極G4aと電界制御電極G5bの間に第5電荷転送チャネルR5が、電界制御電極G5aと電界制御電極G6bの間に第6電荷転送チャネルR6が、電界制御電極G6aと電界制御電極G7bの間に第7電荷転送チャネルR4が、電界制御電極G7aと電界制御電極G8bの間に第8電荷転送チャネルR8が、定義される。第2実施形態の第4変形例に係る光電変換素子においては、図32中に示すように、隣り合う電界制御電極G1bと電界制御電極G1aの間に、互いに隙間を空けて第1電荷排出電極TD1が配置されている。更に隣り合う電界制御電極G2bと電界制御電極G2aの間に、互いに隙間を空けて第2電荷排出電極TD2が配置され、隣り合う電界制御電極G3bと電界制御電極G3aの間に第3電荷排出電極TD3が配置され、隣り合う電界制御電極G4bと電界制御電極G4aの間に第4電荷排出電極TD4が配置されている。そして、隣り合う電界制御電極G5bと電界制御電極G5aの間に第5電荷排出電極TD5が、隣り合う電界制御電極G6bと電界制御電極G6aの間に第6電荷排出電極TD6が、隣り合う電界制御電極G7bと電界制御電極G7aの間に第7電荷排出電極TD7が、隣り合う電界制御電極G8bと電界制御電極G8aの間に第8電荷排出電極TD8が配置されている。
(Fourth variant of the second embodiment)
In the photoelectric conversion element according to the fourth modification of the second embodiment shown in FIG. 32, 16 electric field control electrodes G1a, G2a, G3a, ... , G8a; G1b, G2b, G3b, ..., G8b. A first charge transfer channel R1 is defined between the electric field control electrode G8a and the electric field control electrode G1b. Further, a second charge transfer channel R2 is defined between the electric field control electrode G1a and the electric field control electrode G2b, and a third charge transfer channel R3 is defined between the electric field control electrode G2a and the electric field control electrode G3b. A fourth charge transfer channel R4 is defined between the electric field control electrodes G4b. Then, the fifth charge transfer channel R5 is located between the electric field control electrode G4a and the electric field control electrode G5b, the sixth charge transfer channel R6 is located between the electric field control electrode G5a and the electric field control electrode G6b, and the electric charge control electrode G6a and the electric field control electrode are connected. A seventh charge transfer channel R4 is defined between G7b, and an eighth charge transfer channel R8 is defined between the electric field control electrode G7a and the electric field control electrode G8b. In the photoelectric conversion element according to the fourth modification of the second embodiment, as shown in FIG. 32, a first charge discharge electrode is provided with a gap between the adjacent electric field control electrodes G1b and the electric field control electrode G1a. TD1 is arranged. Further, the second charge discharge electrode TD2 is arranged between the adjacent electric field control electrodes G2b and the electric field control electrode G2a with a gap between them, and the third charge discharge electrode is arranged between the adjacent electric field control electrodes G3b and the electric field control electrode G3a. The TD3 is arranged, and the fourth charge discharge electrode TD4 is arranged between the adjacent electric field control electrodes G4b and the electric field control electrode G4a. Then, the fifth charge discharge electrode TD5 is placed between the adjacent electric field control electrodes G5b and the electric field control electrode G5a, and the sixth charge discharge electrode TD6 is placed between the adjacent electric field control electrodes G6b and the electric field control electrode G6a. A seventh charge discharge electrode TD7 is arranged between the electrodes G7b and the electric field control electrode G7a, and an eighth charge discharge electrode TD8 is arranged between the adjacent electric field control electrodes G8b and the electric field control electrode G8a.

隣り合う電界制御電極G1bと電界制御電極G1aの放射状延長方向の間の第1電荷排出電極TD1の径方向外側端部に第1電荷排出領域RD1が配置されている。更に隣り合う電界制御電極G2bと電界制御電極G2aの放射状延長方向の間の第2電荷排出電極TD2の径方向外側端部に第2電荷排出領域RD2が配置され、隣り合う電界制御電極G3bと電界制御電極G3aの放射状延長方向の間の第3電荷排出電極TD3の径方向外側端部に第3電荷排出領域RD3が配置され、隣り合う電界制御電極G4bと電界制御電極G4aの放射状延長方向の間の第4電荷排出電極TD4の径方向外側端部に第4電荷排出領域RD4が配置されている。そして、隣り合う電界制御電極G5bと電界制御電極G5aの放射状延長方向の間の第5電荷排出電極TD5の径方向外側端部に第5電荷排出領域RD5が、隣り合う電界制御電極G6bと電界制御電極G6aの放射状延長方向の間の第6電荷排出電極TD6の径方向外側端部に第6電荷排出領域RD6が、隣り合う電界制御電極G7bと電界制御電極G7aの放射状延長方向の間の第7電荷排出電極TD7の径方向外側端部に第7電荷排出領域RD7が、隣り合う電界制御電極G8bと電界制御電極G8aの放射状延長方向の間の第8電荷排出電極TD8の径方向外側端部に第8電荷排出領域RD8が配置されている。 The first charge discharge region RD1 is arranged at the radial outer end of the first charge discharge electrode TD1 between the adjacent electric field control electrodes G1b and the electric field control electrode G1a in the radial extension direction. Further, the second charge discharge region RD2 is arranged at the radial outer end of the second charge discharge electrode TD2 between the adjacent electric field control electrodes G2b and the radial extension direction of the electric field control electrodes G2a, and the adjacent electric charge discharge regions G3b and the electric field are arranged. The third charge discharge region RD3 is arranged at the radial outer end of the third charge discharge electrode TD3 between the radial extension directions of the control electrode G3a, and is between the adjacent electric charge control electrodes G4b and the electric field control electrode G4a in the radial extension direction. The fourth charge discharge region RD4 is arranged at the radial outer end of the fourth charge discharge electrode TD4. Then, the fifth charge discharge region RD5 is located at the radial outer end of the fifth charge discharge electrode TD5 between the adjacent electric field control electrodes G5b and the electric field control electrode G5a in the radial extension direction, and the electric charge control electrode G6b and the adjacent electric charge discharge regions G6b are controlled by electric charges. The sixth charge discharge region RD6 is located at the radial outer end of the sixth charge discharge electrode TD6 between the radial extension directions of the electrodes G6a, and the seventh charge discharge region RD6 is located between the adjacent electric field control electrodes G7b and the electric field control electrode G7a in the radial extension direction. The seventh charge discharge region RD7 is located at the radial outer end of the charge discharge electrode TD7, and the seventh charge discharge region RD7 is located at the radial outer end of the eighth charge discharge electrode TD8 between the adjacent electric field control electrodes G8b and the radial extension direction of the electric charge discharge electrode G8a. The eighth charge discharge region RD8 is arranged.

16本の電界制御電極G1a,G2a,G3a,……,G8a;G1b,G2b,G3b,……,G8bにそれぞれ電圧を印加することにより、8本の電荷転送チャネルR1,R2,R3,……,R8のゲートの開閉が制御される。すなわち第2実施形態の第4変形例に係る光電変換素子は、図13に例示した第1実施形態の第2変形例に係る光電変換素子の場合と同様に、16個の電界制御電極G1a,G2a,G3a,……,G8a;G1b,G2b,G3b,……,G8bを備えているので、8対の制御電極対を選択し、電荷転送チャネルR1,R2,R3,……,R8を選択することが可能であると共に、背景光電荷の排出を個別に制御する8個の電荷排出電極TD1,TD2,TD3,……,TD8によって、所望のタイミングにおいて、背景光電荷を排出することができる。第2実施形態の第4変形例に係る光電変換素子によっても、図22〜図25に示した光電変換素子と同様に、トータルの計測時間が短く、しかも広い受光領域PDと高速転送が両立できるという効果を奏することができる。 By applying voltage to each of the 16 electric field control electrodes G1a, G2a, G3a, ..., G8a; G1b, G2b, G3b, ..., G8b, the eight charge transfer channels R1, R2, R3 ... , The opening and closing of the gate of R8 is controlled. That is, the photoelectric conversion element according to the fourth modification of the second embodiment has 16 electric field control electrodes G1a, as in the case of the photoelectric conversion element according to the second modification of the first embodiment illustrated in FIG. Since G2a, G3a, ..., G8a; G1b, G2b, G3b, ..., G8b are provided, eight pairs of control electrode pairs are selected, and charge transfer channels R1, R2, R3, ..., R8 are selected. The background light charge can be discharged at a desired timing by the eight charge discharge electrodes TD1, TD2, TD3, ..., TD8 that individually control the discharge of the background light charge. .. Similar to the photoelectric conversion elements shown in FIGS. 22 to 25, the photoelectric conversion element according to the fourth modification of the second embodiment also has a short total measurement time, and can achieve both a wide light receiving region PD and high-speed transfer. Can produce the effect.

(その他の実施形態)
上記のように、本発明は本発明の第1及び第2実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, the invention has been described by the first and second embodiments of the invention, but the statements and drawings that form part of this disclosure should not be understood as limiting the invention. This disclosure will reveal to those skilled in the art various alternative embodiments, examples and operational techniques.

既に述べた本発明の第1及び第2実施形態の説明では、第1導電型をp型、第2導電型をn型として説明したが、第1導電型をn型、第2導電型をp型としても、電気的な極性を反対にすれば同様な効果が得られることは容易に理解できるであろう。 In the description of the first and second embodiments of the present invention described above, the first conductive type is described as p type and the second conductive type is described as n type, but the first conductive type is referred to as n type and the second conductive type is referred to as n type. It can be easily understood that the same effect can be obtained by reversing the electrical polarity of the p-type.

第1及び第2実施形態の説明では、輸送、蓄積等の処理がされる信号電荷を電子とし、ポテンシャル図において、図の下方向(深さ方向)が、電位(ポテンシャル)の正方向としたが、電気的な極性を反対とする場合においては、処理をされる電荷は正孔となるため、光電変換素子内の電位障壁、ポテンシャル谷、ポテンシャル井戸等を示すポテンシャル形状は、図の下方向(深さ方向)が、電位の負方向として表現される。 In the description of the first and second embodiments, the signal charges to be processed such as transportation and storage are electrons, and in the potential diagram, the downward direction (depth direction) of the figure is the positive direction of the potential (potential). However, when the electrical polarity is reversed, the charged charge to be processed is holes, so the potential shape indicating the potential barrier, potential valley, potential well, etc. in the photoelectric conversion element is in the downward direction in the figure. (Depth direction) is expressed as the negative direction of the potential.

又、本発明の電荷輸送路や電荷転送チャネルが定義される半導体領域を構成する半導体材料はシリコン(Si)に限定されるものではない。特に、化合物半導体の場合は化合物半導体の表面と絶縁膜との界面における界面欠陥や界面準位が問題になるので、本発明の横方向の静電誘導効果を用いて半導体中の電位を制御する方式は、界面欠陥や界面準位の影響を回避できるので、III−V族間化合物半導体やII−VI族間化合物半導体等の種々の化合物半導体を用いた光電変換素子や固体撮像装置においても、第1及び第2実施形態で例示的に説明した光電変換素子や固体撮像装置の構造やその技術的思想は、重要な技術となる。 Further, the semiconductor material constituting the semiconductor region in which the charge transport path and the charge transfer channel of the present invention are defined is not limited to silicon (Si). In particular, in the case of a compound semiconductor, interface defects and interface levels at the interface between the surface of the compound semiconductor and the insulating film become problems, so the potential in the semiconductor is controlled by using the lateral electrostatic induction effect of the present invention. Since the method can avoid the influence of interface defects and interface states, even in photoelectric conversion elements and solid-state imaging devices using various compound semiconductors such as III-V group compound semiconductors and II-VI group compound semiconductors. The structures and technical ideas of the photoelectric conversion element and the solid-state image pickup apparatus exemplified in the first and second embodiments are important techniques.

なお、既に述べたとおり、図1〜図31の光電変換素子では、補助電極CA11,CA21,CA31,……,CA81;CA12,CA22,CA32,……,CA82を備える構造を例示的に説明したが、光電変換素子の応用の目的等により、これらは本発明の必須の構成ではない場合があり得ることに留意されたい。また図1〜図31に示した光電変換素子が含む部分的な構造を互いに組み合わせてもよい。以上のとおり、本発明は上記に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As already described, in the photoelectric conversion element of FIGS. 1 to 31, a structure including auxiliary electrodes CA11, CA21, CA31, ..., CA81; CA12, CA22, CA32, ..., CA82 has been exemplified. However, it should be noted that these may not be the essential configurations of the present invention depending on the purpose of application of the photoelectric conversion element and the like. Further, the partial structures included in the photoelectric conversion elements shown in FIGS. 1 to 31 may be combined with each other. As described above, the present invention includes various embodiments not described above, and the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description. It is a thing.

1 半導体基板
2 素子形成層
3,3a 表面埋込領域
5 ピニング層
7 電位丘設定部
9 絶縁膜
13,13a n領域
11 遮蔽板
15 選択回路
17 マイクロレンズ
21 水平シフトレジスタ
22 カラム並列折り返し積分/巡回型A/D変換器
23 垂直シフトレジスタ
24 電荷変調ドライバ
CA11,CA21,CA31,……,CA81 補助電極
CA12,CA22,CA32,……,CA82 補助電極
TX11,TX21,TX31,……,TX81 転送電極
TX12,TX22,TX32,……,TX82 転送電極
FD1〜FD8 第1電荷読出領域〜第8電荷読出領域
G1〜G8 第1電界制御電極〜第8電界制御電極
SD1〜SD8 第1電荷蓄積領域〜第8電荷蓄積領域(電荷排出領域)
RT1〜RT8 第1リセットトランジスタ〜第8リセットトランジスタ
SEL1〜SEL8 第1スイッチングトランジスタ〜第8スイッチングトランジスタ
D0,RD1〜RD8 電荷排出領域
TD0,TD1〜TD8 電荷排出電極
ij 画素
1 Semiconductor substrate 2 Element forming layer 3, 3a Surface embedded region 5 Pinning layer 7 Potential hill setting part 9 Insulation film 13, 13an + region 11 Shielding plate 15 Selection circuit 17 Microlens 21 Horizontal shift register 22 Column parallel folding integration / Circuit type A / D converter 23 Vertical shift register 24 Charge modulation driver CA11, CA21, CA31, ..., CA81 Auxiliary electrode CA12, CA22, CA32, ..., CA82 Auxiliary electrode TX11, TX21, TX31, ..., TX81 Transfer Electrodes TX12, TX22, TX32, ..., TX82 Transfer electrodes FD1 to FD8 1st charge read region to 8th charge read region G1 to G8 1st electric charge control electrode to 8th electric charge control electrode SD1 to SD8 1st charge storage region Eighth charge storage area (charge discharge area)
RT1 to RT8 1st reset transistor to 8th reset transistor SEL1 to SEL8 1st switching transistor to 8th switching transistor D0, RD1 to RD8 Charge discharge region TD0, TD1 to TD8 Charge discharge electrode X ij pixel

Claims (14)

第1導電型の素子形成層と前記素子形成層の上部に埋め込まれた第2導電型の表面埋込領域からなる埋め込みフォトダイオードを含む撮像領域と、
前記撮像領域の中央部に定義される受光領域を囲む5つ以上の位置に互いに離間して設けられた、前記素子形成層よりも高不純物密度で第2導電型の複数の電荷読出領域と、
前記受光領域から前記複数の電荷読出領域のそれぞれに独立した経路で至るように放射状に配列された複数の第2導電型の電荷転送チャネルと、
前記受光領域を囲む位置において、前記複数の電荷転送チャネルのそれぞれの両側に対をなして配置され、且つ前記対をなす一方のそれぞれが前記放射状の配列において互いに隣接する電荷転送チャネルに対する共通の電極として機能する複数の電界制御電極と、
を備え、前記複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、前記表面埋込領域及び前記複数の電荷転送チャネルの空乏化電位を順次変化させることにより、前記表面埋込領域中で発生した多数キャリアの移動先を前記複数の電荷読出領域のいずれかに順次設定するように制御することを特徴とする光電変換素子。
An imaging region including an embedded photodiode composed of a first conductive type element forming layer and a second conductive type surface embedded region embedded in the upper part of the element forming layer.
A plurality of second conductive type charge reading regions having a higher impurity density than the element forming layer, which are provided at five or more positions surrounding the light receiving region defined in the central portion of the imaging region and separated from each other.
A plurality of second conductive type charge transfer channels arranged radially so as to reach from the light receiving region to each of the plurality of charge reading regions by independent paths.
At a position surrounding the light receiving region, a pair of charge transfer channels are arranged on both sides of each of the plurality of charge transfer channels, and each of the paired electrodes is a common electrode for charge transfer channels adjacent to each other in the radial arrangement. With multiple electric field control electrodes that function as
By periodically and sequentially applying electric field control pulses having different phases to each of the plurality of electric field control electrodes, the depletion potentials of the surface-embedded region and the plurality of charge transfer channels are sequentially changed. , A photoelectric conversion element characterized in that the movement destination of a large number of carriers generated in the surface embedded region is controlled to be sequentially set in any one of the plurality of charge reading regions.
第1導電型の素子形成層と前記素子形成層の上部に埋め込まれた第2導電型の表面埋込領域からなる埋め込みフォトダイオードを含む撮像領域と、
前記撮像領域の中央部に定義される受光領域を囲む5つ以上の位置に互いに離間して設けられた、前記素子形成層よりも高不純物密度で第2導電型の複数の電荷読出領域と、
前記受光領域から前記複数の電荷読出領域のそれぞれに独立した経路で至る、複数の第2導電型の電荷転送チャネルと、
前記受光領域を囲む位置において、前記複数の電荷転送チャネルのそれぞれの両側に対をなして配置された複数の電界制御電極と、
前記複数の電荷転送チャネルと前記電荷読出領域との間に、前記素子形成層よりも高不純物密度で、且つ前記電荷読出領域よりも低不純物密度となる第2導電型の複数の電荷蓄積領域と、
前記複数の電荷蓄積領域から対応するそれぞれの前記電荷読出領域に至る、複数の第2導電型の電荷読出チャネルと、
前記複数の電荷読出チャネルのそれぞれに配置された複数の転送電極と
を備え、前記複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、前記表面埋込領域及び前記複数の電荷転送チャネルの空乏化電位を順次変化させることにより、前記表面埋込領域中で発生した多数キャリアの移動先を前記複数の電荷蓄積領域のいずれかに順次設定し、前記複数の転送電極に対しては、前記複数の電荷蓄積領域から対応する前記電荷読出領域へ前記多数キャリアを転送する電荷転送パルスを一斉に印加することを特徴とする光電変換素子。
An imaging region including an embedded photodiode composed of a first conductive type element forming layer and a second conductive type surface embedded region embedded in the upper part of the element forming layer.
A plurality of second conductive type charge reading regions having a higher impurity density than the element forming layer, which are provided at five or more positions surrounding the light receiving region defined in the central portion of the imaging region and separated from each other.
A plurality of second conductive type charge transfer channels extending from the light receiving region to each of the plurality of charge reading regions by independent paths.
A plurality of electric field control electrodes arranged in pairs on both sides of each of the plurality of charge transfer channels at a position surrounding the light receiving region.
Between the plurality of charge transfer channels and the charge read region, a plurality of second conductive type charge storage regions having a higher impurity density than the element forming layer and a lower impurity density than the charge read region. ,
A plurality of second conductive type charge read channels extending from the plurality of charge storage regions to the corresponding charge read regions.
A plurality of transfer electrodes arranged in each of the plurality of charge reading channels are provided, and electric field control pulses having different phases from each other are periodically and sequentially applied to the plurality of electric field control electrodes, and the surface-embedded region is formed. and by sequentially changing the depletion potential of said plurality of charge transfer channels, sequentially sets the destination of the multi-number of carriers generated in the surface buried region to one of said plurality of charge storage regions, wherein A photoelectric conversion element characterized in that charge transfer pulses for transferring a large number of carriers are simultaneously applied to a plurality of transfer electrodes from the plurality of charge storage regions to the corresponding charge read regions.
前記複数の転送電極は、前記複数の電荷読出チャネルのそれぞれの両側に対をなして配置されて横方向電界制御を行うことを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the plurality of transfer electrodes are arranged in pairs on both sides of each of the plurality of charge reading channels to perform lateral electric field control. 前記5つ以上の電荷蓄積領域の個数をn個としたとき、前記複数の電荷蓄積領域の配置トポロジーは、前記受光領域の中心位置に関してn回転対称であることを特徴とする請求項2又は3に記載の光電変換素子。 2. The photoelectric conversion element according to the above. 前記複数の電荷蓄積領域のうち(n−1)個の前記電荷蓄積領域のそれぞれは、前記表面埋込領域中で発生した多数キャリアを信号電荷として蓄積し、
残る1個の前記電荷読出領域は、背景光により前記表面埋込領域中で発生した背景光電荷を排出することを特徴とする請求項4に記載の光電変換素子。
Each of the (n-1) charge storage regions among the plurality of charge storage regions accumulates a large number of carriers generated in the surface-embedded region as signal charges.
The photoelectric conversion element according to claim 4, wherein the remaining one charge reading region discharges the background light charge generated in the surface embedded region by the background light.
前記複数の電荷蓄積領域のそれぞれから離間し、前記受光領域を囲む位置に配置された、前記素子形成層よりも高不純物密度で第2導電型の電荷排出領域を更に備え、
前記n個の電荷蓄積領域のそれぞれが、前記表面埋込領域中で発生した多数キャリアを信号電荷として蓄積することを特徴とする請求項4に記載の光電変換素子。
A second conductive type charge discharge region having a higher impurity density than the element forming layer, which is arranged at a position surrounding the light receiving region and separated from each of the plurality of charge storage regions, is further provided.
The photoelectric conversion element according to claim 4, wherein each of the n charge storage regions stores a large number of carriers generated in the surface-embedded region as signal charges.
前記受光領域の中央に、前記表面埋込領域に囲まれた第1導電型の電位丘設定部を更に備えることを特徴とする請求項1〜6のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, further comprising a first conductive type potential hill setting portion surrounded by the surface embedded region in the center of the light receiving region. 前記受光領域が、前記表面埋込領域の周囲を囲むように設けられた、前記表面埋込領域より高不純物密度の第2導電型のガイド領域を更に備えることを特徴とする請求項1〜6のいずれか1項に記載の光電変換素子。 Claims 1 to 6 further include a second conductive type guide region in which the light receiving region is provided so as to surround the periphery of the surface embedded region and has a higher impurity density than the surface embedded region. The photoelectric conversion element according to any one of the above items. 第1導電型の素子形成層と前記素子形成層の上部に埋め込まれた第2導電型の表面埋込領域からなる埋め込みフォトダイオードを含む撮像領域と、
前記撮像領域の中央部に定義される受光領域を囲む5つ以上の位置に互いに離間して設けられた、前記素子形成層よりも高不純物密度で第2導電型の複数の電荷読出領域と、
前記受光領域から前記複数の電荷読出領域のそれぞれに独立した経路で至るように放射状に配列された複数の第2導電型の電荷転送チャネルと、
前記受光領域を囲む位置において、前記複数の電荷転送チャネルのそれぞれの両側に対をなして配置され、且つ前記対をなす一方のそれぞれが前記放射状の配列において
互いに隣接する電荷転送チャネルに対する共通の電極として機能する複数の電界制御電極と、
を備える画素の複数個が同一半導体チップ上に配列され、
前記画素のそれぞれにおいて、前記複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、前記表面埋込領域及び前記複数の電荷転送チャネルの空乏化電位を順次変化させることにより、前記表面埋込領域中で発生した多数キャリアの移動先を前記複数の電荷読出領域のいずれかに順次設定するように制御することを特徴とする固体撮像装置。
An imaging region including an embedded photodiode composed of a first conductive type element forming layer and a second conductive type surface embedded region embedded in the upper part of the element forming layer.
A plurality of second conductive type charge reading regions having a higher impurity density than the element forming layer, which are provided at five or more positions surrounding the light receiving region defined in the central portion of the imaging region and separated from each other.
A plurality of second conductive type charge transfer channels arranged radially so as to reach from the light receiving region to each of the plurality of charge reading regions by independent paths.
At a position surrounding the light receiving region, a pair of charge transfer channels are arranged on both sides of each of the plurality of charge transfer channels, and each of the paired electrodes is a common electrode for charge transfer channels adjacent to each other in the radial arrangement. With multiple electric field control electrodes that function as
A plurality of pixels comprising are arranged on the same semiconductor chip,
In each of the pixels, electric field control pulses having different phases are periodically and sequentially applied to the plurality of electric field control electrodes, and the depletion potentials of the surface-embedded region and the plurality of charge transfer channels are sequentially changed. A solid-state imaging device characterized by controlling the movement destinations of a large number of carriers generated in the surface-embedded region so as to be sequentially set in any of the plurality of charge reading regions.
第1導電型の素子形成層と前記素子形成層の上部に埋め込まれた第2導電型の表面埋込領域からなる埋め込みフォトダイオードを含む撮像領域と、
前記撮像領域の中央部に定義される受光領域を囲む5つ以上の位置に互いに離間して設けられた、前記素子形成層よりも高不純物密度で第2導電型の複数の電荷読出領域と、
前記受光領域から前記複数の電荷読出領域のそれぞれに独立した経路で至る、複数の第2導電型の電荷転送チャネルと、
前記受光領域を囲む位置において、前記複数の電荷転送チャネルのそれぞれの両側に対をなして配置された複数の電界制御電極と、
前記複数の電荷転送チャネルと前記電荷読出領域との間に、前記素子形成層よりも高不純物密度で、且つ前記電荷読出領域よりも低不純物密度となる第2導電型の複数の電荷蓄積領域と、
前記複数の電荷蓄積領域から対応するそれぞれの前記電荷読出領域に至る、複数の第2導電型の電荷読出チャネルと、
前記複数の電荷読出チャネルのそれぞれに配置された複数の転送電極と
を備える画素の複数個が、同一半導体チップ上に配列され、
前記画素のそれぞれにおいて、前記複数の電界制御電極に対し、それぞれ互いに位相の異なる電界制御パルスを周期的に順次印加し、前記表面埋込領域及び前記複数の電荷転送チャネルの空乏化電位を順次変化させることにより、
前記表面埋込領域中で発生した多数キャリアの移動先を前記複数の電荷蓄積領域のいずれかに順次設定し、前記複数の転送電極に対しては、前記複数の電荷蓄積領域から対応する前記電荷読出領域へ前記多数キャリアを転送する電荷転送パルスを一斉に印加することを特徴とする固体撮像装置。
An imaging region including an embedded photodiode composed of a first conductive type element forming layer and a second conductive type surface embedded region embedded in the upper part of the element forming layer.
A plurality of second conductive type charge reading regions having a higher impurity density than the element forming layer, which are provided at five or more positions surrounding the light receiving region defined in the central portion of the imaging region and separated from each other.
A plurality of second conductive type charge transfer channels extending from the light receiving region to each of the plurality of charge reading regions by independent paths.
A plurality of electric field control electrodes arranged in pairs on both sides of each of the plurality of charge transfer channels at a position surrounding the light receiving region.
Between the plurality of charge transfer channels and the charge read region, a plurality of second conductive type charge storage regions having a higher impurity density than the element forming layer and a lower impurity density than the charge read region. ,
A plurality of second conductive type charge read channels extending from the plurality of charge storage regions to the corresponding charge read regions.
A plurality of pixels having a plurality of transfer electrodes arranged in each of the plurality of charge reading channels are arranged on the same semiconductor chip.
In each of the pixels, electric field control pulses having different phases are periodically and sequentially applied to the plurality of electric field control electrodes, and the depletion potentials of the surface-embedded region and the plurality of charge transfer channels are sequentially changed. By letting
Sequentially sets the destination of the multi-number of carriers generated in the surface buried region to one of said plurality of charge storage regions, wherein for multiple transfer electrodes, corresponding from said plurality of charge storage regions A solid-state image sensor, characterized in that charge transfer pulses for transferring a large number of carriers are simultaneously applied to the charge read region.
前記画素のそれぞれにおいて、
前記複数の転送電極は、前記複数の電荷読出チャネルのそれぞれの両側に対をなして配置されて横方向電界制御を行うことを特徴とする請求項10に記載の固体撮像装置。
In each of the pixels
The solid-state image pickup device according to claim 10, wherein the plurality of transfer electrodes are arranged in pairs on both sides of each of the plurality of charge reading channels to perform lateral electric field control.
前記画素を構成する前記5つ以上の電荷蓄積領域の個数をn個としたとき、前記複数の電荷蓄積領域の配置トポロジーは、前記受光領域の中心位置に関してn回転対称であることを特徴とする請求項10又は11に記載の固体撮像装置。 When the number of the five or more charge storage regions constituting the pixel is n, the arrangement topology of the plurality of charge storage regions is characterized by n rotational symmetry with respect to the center position of the light receiving region. The solid-state imaging device according to claim 10 or 11. 前記画素のそれぞれにおいて、
前記複数の電荷蓄積領域のうち(n−1)個の前記電荷蓄積領域のそれぞれは、前記表面埋込領域中で発生した多数キャリアを信号電荷として蓄積し、
残る1個の前記電荷蓄積領域は、背景光により前記表面埋込領域中で発生した背景光電荷を排出することを特徴とする請求項12に記載の固体撮像装置。
In each of the pixels
Each of the (n-1) charge storage regions among the plurality of charge storage regions accumulates a large number of carriers generated in the surface-embedded region as signal charges.
The solid-state image sensor according to claim 12, wherein the remaining one charge storage region discharges the background light charge generated in the surface-embedded region by the background light.
前記画素のそれぞれにおいて、
前記複数の電荷蓄積領域のそれぞれから離間し、前記受光領域を囲む位置に配置された、前記素子形成層よりも高不純物密度で第2導電型の電荷排出領域を更に備え、
前記n個の電荷蓄積領域のそれぞれが、前記表面埋込領域中で発生した多数キャリアを信号電荷として蓄積することを特徴とする請求項12に記載の固体撮像装置。
In each of the pixels
A second conductive type charge discharge region having a higher impurity density than the element forming layer, which is arranged at a position surrounding the light receiving region and separated from each of the plurality of charge storage regions, is further provided.
The solid-state image sensor according to claim 12, wherein each of the n charge storage regions stores a large number of carriers generated in the surface-embedded region as signal charges.
JP2016164162A 2016-08-24 2016-08-24 Photoelectric conversion element and solid-state image sensor Active JP6974679B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016164162A JP6974679B2 (en) 2016-08-24 2016-08-24 Photoelectric conversion element and solid-state image sensor
PCT/JP2017/030414 WO2018038230A1 (en) 2016-08-24 2017-08-24 Photoelectric conversion element and solid-state image capturing device
US16/327,364 US10636822B2 (en) 2016-08-24 2017-08-24 Photoelectric conversion element and solid-state image capturing device
CN201780052386.2A CN109691086B (en) 2016-08-24 2017-08-24 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164162A JP6974679B2 (en) 2016-08-24 2016-08-24 Photoelectric conversion element and solid-state image sensor

Publications (3)

Publication Number Publication Date
JP2018033008A JP2018033008A (en) 2018-03-01
JP2018033008A5 JP2018033008A5 (en) 2019-05-30
JP6974679B2 true JP6974679B2 (en) 2021-12-01

Family

ID=61303716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164162A Active JP6974679B2 (en) 2016-08-24 2016-08-24 Photoelectric conversion element and solid-state image sensor

Country Status (1)

Country Link
JP (1) JP6974679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006048A1 (en) * 2019-07-08 2021-01-14 ソニー株式会社 Signal processing device and signal processing method
JP2022071538A (en) * 2020-10-28 2022-05-16 凸版印刷株式会社 Distance image imaging element and distance image imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129559A1 (en) * 2012-02-29 2013-09-06 Etoh Takeharu Solid-state imaging device
US10230914B2 (en) * 2014-02-07 2019-03-12 National University Corporation Shizuoka University Charge modulation element and solid-state imaging device

Also Published As

Publication number Publication date
JP2018033008A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
CN109691086B (en) Photoelectric conversion element
JP6476138B2 (en) Charge modulation element and solid-state imaging device
JP5243100B2 (en) Pixel structure of solid-state image sensor
JP5283216B2 (en) High-speed charge transfer photodiode, lock-in pixel and solid-state imaging device
KR101098216B1 (en) Time-of-light flight type distance sensor
JP6696647B2 (en) Length measuring element and solid-state imaging device
JP6188679B2 (en) Solid-state imaging device
JP2008103647A (en) Semiconductor element and solid state imaging device
EP3664438B1 (en) Imaging device
JP6351097B2 (en) Electromagnetic wave detection element and solid-state imaging device
KR102613380B1 (en) photodetector
JP6974679B2 (en) Photoelectric conversion element and solid-state image sensor
JP6900598B2 (en) Photoelectric conversion element and solid-state image sensor
KR101957545B1 (en) Range sensor and range image sensor
JP6780206B2 (en) Insulated gate type semiconductor element and solid-state image sensor
JP7029037B2 (en) Solid-state image sensor
WO2019093208A1 (en) High-speed image sensor
JP6810319B2 (en) Charge storage device
JP2015026677A (en) Solid state imaging device
JP7093916B2 (en) Semiconductor device and solid-state image sensor
KR20210072003A (en) Photodetecting element and photodetecting device
CN110634902B (en) Ultra-high speed shutter semiconductor image sensor
KR20140138618A (en) Range sensor and range image sensor
JP2019161211A (en) High-speed image sensor
JP2017135167A (en) Semiconductor device and information processing system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211002

R150 Certificate of patent or registration of utility model

Ref document number: 6974679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150