JP6809668B2 - Mechanical hydraulic back pressure and diversion device in forging machines - Google Patents

Mechanical hydraulic back pressure and diversion device in forging machines Download PDF

Info

Publication number
JP6809668B2
JP6809668B2 JP2017255486A JP2017255486A JP6809668B2 JP 6809668 B2 JP6809668 B2 JP 6809668B2 JP 2017255486 A JP2017255486 A JP 2017255486A JP 2017255486 A JP2017255486 A JP 2017255486A JP 6809668 B2 JP6809668 B2 JP 6809668B2
Authority
JP
Japan
Prior art keywords
hydraulic
back pressure
pressure
cylinder
ram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017255486A
Other languages
Japanese (ja)
Other versions
JP2019118931A (en
Inventor
秦雄 岡田
秦雄 岡田
卓 鈴木
卓 鈴木
Original Assignee
株式会社阪村機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社阪村機械製作所 filed Critical 株式会社阪村機械製作所
Priority to JP2017255486A priority Critical patent/JP6809668B2/en
Publication of JP2019118931A publication Critical patent/JP2019118931A/en
Application granted granted Critical
Publication of JP6809668B2 publication Critical patent/JP6809668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、鍛造機におけるメカ油圧式背圧兼分流装置、詳しくは主として複数の鍛造ステーションに供給されたブランクを鍛造により所定形状の製品に成形する横型多段式鍛造機のメカ油圧式背圧兼分流装置に関するものである。 The present invention is a mechanical hydraulic back pressure and diversion device in a forging machine, specifically, a mechanical hydraulic back pressure and flow dividing device of a horizontal multi-stage forging machine that mainly forms a blank supplied to a plurality of forging stations into a product having a predetermined shape by forging. It relates to a flow dividing device.

一般に、横型多段式鍛造機は、機台フレームの所定位置に固設されたダイブロックに複数のダイが並設される一方、このダイブロックに対して前進後退するラムの前面に各ダイにそれぞれ対向させて複数のパンチが取り付けられ、これらの対応するダイとパンチにより複数段の鍛造ステーションが構成されている。そして、所定長さのブランクを鍛造ステーション側に供給し、供給したブランクを複数の並設された鍛造ステーションで順次段階的に鍛造して求める所定形状の製品に段階的に成形するようになされている。 In general, in a horizontal multi-stage forging machine, a plurality of dies are arranged side by side on a die block fixed at a predetermined position on the machine base frame, and each die is placed in front of a ram that moves forward and backward with respect to the die block. A plurality of punches are mounted facing each other, and these corresponding dies and punches constitute a multi-stage forging station. Then, a blank having a predetermined length is supplied to the forging station side, and the supplied blank is sequentially forged at a plurality of juxtaposed forging stations in a stepwise manner to form a product having a predetermined shape. There is.

ところで、上記した従来の横型多段式鍛造機を用いて例えば図10に示すような形状が非常に複雑な多数の平歯a…aと軸孔bをもつ平ギヤGを成形しようとした場合、図11に示す平ギヤG´のように、平歯aの両端部分が寸足らずで両端側へ行くほど中心側へ丸くカーブし、かつ平歯aの角部部分にまでも至らず欠肉が生じ、求めるシャープな平ギヤ形状とは程遠い丸みを帯びた不正確な形状となり、高精度な平ギヤを鍛造することが困難であった。その理由としては、据え込み加工した円柱状のブランクを一度の鍛造工程で半径方向に大きく押し出して形状が複雑な平歯aの部分を正確に成形するといったことが非常に困難であり、また、複数の鍛造ステーションで複数回にわたって平歯a…aの部分を段階的に成形しようとしても、鍛造回数が増えるごとにブランクに硬化現象が生じるので二度目以降の鍛造による成形量が極端に小さく、かつより大きな成形荷重も必要なり、求める精度の高いシャープな平歯a…aの成形が困難となるためであった。以上のことから、現在では図10のような多数のシャープな平歯a…aを有する平ギヤGやこれと同様の複雑形状製品を上記した従来の横型多段式鍛造機により高精度に成形することは困難とされ、ほとんど行なわれておらず、フライス盤やホブ盤などによる切削加工により形成されているのが現状である。 By the way, when it is attempted to form a spur gear G having a large number of spur teeth a ... a and a shaft hole b having a very complicated shape as shown in FIG. 10, for example, by using the conventional horizontal multi-stage forging machine described above. As shown in the spur gear G'shown in FIG. 11, both end portions of the spur tooth a are not short enough and are curved round toward the center side toward both end sides, and the corner portion of the spur tooth a is not reached, resulting in a lack of meat. The rounded and inaccurate shape was far from the desired sharp spur gear shape, and it was difficult to forge a highly accurate spur gear. The reason is that it is very difficult to accurately form the part of the flat tooth a having a complicated shape by extruding a columnar blank that has been embedded and greatly extruded in the radial direction in one forging process. Even if an attempt is made to form the portions of the flat teeth a ... a stepwise over a plurality of times at a plurality of forging stations, a hardening phenomenon occurs in the blank as the number of forgings increases, so that the amount of forming by the second and subsequent forgings is extremely small. In addition, a larger molding load is also required, which makes it difficult to mold sharp flat teeth a ... a with high accuracy. From the above, at present, a spur gear G having a large number of sharp flat teeth a ... A as shown in FIG. 10 and a product having a complicated shape similar to the spur gear G are molded with high accuracy by the above-mentioned conventional horizontal multi-stage forging machine. It is difficult to do this, and it is rarely done, and it is currently formed by cutting with a milling machine or hobbing machine.

そこで、本発明は、上記した問題を解消するため、ダイブロック内部にダイブロックシリンダーを内蔵しかつラムの動きで油圧を発生させてメカ油圧式に背圧鍛造と分流鍛造との両方が行なえるように工夫し、鍛造機により平ギヤのような複雑形状部品の成形を可能にすると共に、鍛造荷重の低減化と型寿命の向上を図り、さらに、加工速度の制御による高速使用に際しても背圧鍛造と分流鍛造との動作制御を正確に行うことができる鍛造機におけるメカ油圧式背圧兼分流装置の提供を課題とする。 Therefore, in order to solve the above-mentioned problems, the present invention can perform both back pressure forging and diversion forging mechanically hydraulically by incorporating a die block cylinder inside the die block and generating hydraulic pressure by the movement of the ram. In addition to making it possible to form complex shaped parts such as spur gears with a forging machine, the forging load is reduced and the mold life is improved, and back pressure is also achieved during high-speed use by controlling the machining speed. An object of the present invention is to provide a mechanical hydraulic back pressure and diversion device in a forging machine capable of accurately controlling the operation of forging and diversion forging.

上記した問題を解決するため、本願の請求項1記載の発明は、機台に固設のダイブロックに設けられたダイと、ダイに対向するようにラムの前面に取り付けられたパンチとの間でブランクを所定形状の製品に鍛造する鍛造機におけるメカ油圧式背圧兼分流装置であって、初期圧供給用油圧ポンプと、ダイと一緒にユニット化された状態でダイブロックに内蔵されかつブランクに成形荷重に対抗する背圧を付与する背圧工具付ピストンを有するダイブロックシリンダーと、背圧を所望の圧力に設定する調圧用油圧シリンダーと、背圧を開放する開放用シリンダーとを備え、初期圧供給用油圧ポンプがダイブロックシリンダーに第1油圧配管を介して連通連結されると共に、第1油圧配管の途中に、調圧用油圧シリンダーと開放用シリンダーとが第2油圧配管と第3油圧配管とを介してそれぞれ連通連結され、これら第1〜第3油圧配管により背圧兼分流用の油圧回路が形成されている一方、第3油圧配管の途中に、ラムが前死点手前に位置するタイミングで開いて作動油を開放用シリンダー内に解放させ油圧回路内の圧力を低減しかつラムが前死点通過後のタイミングで閉じる背圧解放用メカバルブと、第1油圧配管から開放用シリンダーへの作動油の逆流を阻止するチェック弁と並列に設けられていると共に、ラムに、該ラムの後退途中から後死点に至るタイミングで開放用シリンダーを短縮してそのシリンダー内の作動油を第1油圧配管に戻す押圧部材が設けられており、さらに、背圧工具付ピストンは、初期圧供給用油圧ポンプによるダイブロックシリンダーにおけるシリンダー室への作動油の初期圧供給によりダイ内に進入すると共にラムの前進時における成形開始時から前死点手前までにおいは作動油を圧縮することによる高作動圧化と調圧用油圧シリンダーによる調圧とによりブランクに成形荷重に対抗する背圧を付与しまたラムが前死点手前から前死点までにおいては開放用シリンダーへの作動油の開放による低作動圧化によりダイ内から後退するように構成されていることを特徴とする。 In order to solve the above problem, the invention according to claim 1 of the present application is between a die provided on a die block fixed to the machine base and a punch attached to the front surface of the ram so as to face the die. It is a mechanical hydraulic back pressure and diversion device in a forging machine that forges a blank into a product of a predetermined shape, and is built into a die block in a unitized state together with a hydraulic pump for initial pressure supply and a blank. It is equipped with a die block cylinder having a piston with a back pressure tool that applies back pressure against the molding load, a pressure adjustment hydraulic cylinder that sets the back pressure to a desired pressure, and an opening cylinder that releases the back pressure. The initial pressure supply hydraulic pump is connected to the die block cylinder via the first hydraulic pipe, and in the middle of the first hydraulic pipe, the pressure adjusting hydraulic cylinder and the opening cylinder are connected to the second hydraulic pipe and the third hydraulic pressure. The rams are located in front of the front dead point in the middle of the third hydraulic pipe, while the hydraulic circuits for back pressure and diversion are formed by these first to third hydraulic pipes, which are connected to each other via the pipes. A mechanical valve for releasing back pressure that opens at the timing of opening to release the hydraulic oil into the opening cylinder to reduce the pressure in the hydraulic circuit and closes at the timing after the ram passes the front dead point, and a cylinder for releasing from the first hydraulic pipe. with a check valve for preventing backflow of the hydraulic oil is provided in parallel to, the ram, hydraulic oil within the cylinder to reduce the open cylinder at a timing that leads to the rear dead center from the middle retraction of the ram Is provided with a pressing member that returns the flood control to the first hydraulic pipe, and the piston with back pressure tool enters the die by supplying the initial pressure of hydraulic oil to the cylinder chamber of the die block cylinder by the hydraulic pump for initial pressure supply. At the same time, from the start of molding to just before the front dead point when the ram is moving forward, the blank is given a back pressure that opposes the molding load by increasing the working pressure by compressing the hydraulic oil and adjusting the pressure by the pressure adjusting hydraulic cylinder. It is also characterized in that the ram is configured to retreat from the inside of the die from the front to the front dead point by lowering the operating pressure by releasing the hydraulic oil to the opening cylinder.

本願の請求項2記載の発明は、上記請求項1記載の発明における背圧解放用メカバルブが、駆動カムを有し機械の駆動系に連動して回転する駆動軸と、駆動カムに常時当接し駆動カムの回転により鍛造動作に同期して進退動するバルブ作動杆を備え、カム駆動によるメカ式のバルブ制御により開閉が行われるように構成されていることを特徴とする。 In the invention according to claim 2 of the present application, the back pressure release mechanical valve according to the invention according to claim 1 always comes into contact with a drive shaft having a drive cam and rotating in conjunction with the drive system of the machine. It is characterized by having a valve operating rod that moves forward and backward in synchronization with the forging operation by the rotation of the drive cam, and is configured to be opened and closed by mechanical valve control by the cam drive.

本願の請求項3記載の発明は、上記請求項1記載の発明における第2油圧配管の途中に、ラムが前死点から後退を始めるタイミングで開いて調圧用油圧シリンダー内の作動油を第1油圧配管に戻しかつラムが後死点手前に位置するタイミングで閉じる電磁弁と、調圧用油圧シリンダーから第1油圧配管への作動油の逆流を阻止するチェック弁とが並列に設けられていることを特徴とする。 In the invention according to claim 3 of the present application, the hydraulic oil in the pressure adjusting hydraulic cylinder is first opened in the middle of the second hydraulic pipe according to the invention according to claim 1 at the timing when the ram starts to retreat from the front dead point. A solenoid valve that returns to the flood control pipe and closes when the ram is located before the rear dead point and a check valve that prevents the backflow of hydraulic oil from the pressure adjusting hydraulic cylinder to the first hydraulic pipe are provided in parallel. It is characterized by.

本願の請求項1記載の発明によれば、上記したようにダイブロック内部にダイブロックシリンダーを内蔵し、ラムの動きで油圧を発生させてメカ油圧式に背圧鍛造と分流鍛造を行うように構成したから、つまり、ラムの前進動作時における鍛造開始から前死点手前までにおいては、調圧用油圧シリンダーで設定した高作動圧の背圧をダイブロックシリンダーの背圧工具付ピストンに付与して背圧鍛造を行い、残りのラムの前死点手前から前死点までにおいては、背圧解放用メカバルブを開いて背圧を解放しダイブロックシリンダーの背圧工具付ピストンのダイ内からの後退を許して分流鍛造が行えるように構成したから、平ギヤのような複雑形状部品を欠肉がなく求める精度の高いシャープな平歯を有する平ギヤを成形することができる。また、鍛造荷重の低減を図ることができて、型寿命も向上できる。しかも、ラムの動きで油圧を発生させてメカ油圧式に背圧鍛造と分流鍛造を行うように構成しているので、加工速度の制御による高速使用に際しても背圧鍛造と分流鍛造との動作制御を正確に行うことができる。その上、動作制御機構に何らかの不具合が生じても、高度で専門的な知識を必要とせず、これにより現場での作業者によるメンテナンス性を向上できると共に、省スペース化と低コスト化を図ることができる。 According to the invention according to claim 1 of the present application, the die block cylinder is built in the die block as described above, and the movement of the ram generates hydraulic pressure to perform back pressure forging and diversion forging in a mechanical hydraulic manner. Because of the configuration, that is, from the start of forging to just before the front dead center during the forward movement of the ram, the back pressure of the high operating pressure set by the pressure adjusting hydraulic cylinder is applied to the back pressure tool piston of the die block cylinder. Back pressure forging is performed, and from the front dead center to the front dead center of the remaining ram, the back pressure release mechanical valve is opened to release the back pressure, and the back pressure tool piston of the die block cylinder retreats from the die. Since it is configured so that the diversion forging can be performed, it is possible to form a spur gear having sharp spur teeth with high accuracy, which requires a complicated shape part such as a spur gear without any thinning. In addition, the forging load can be reduced and the mold life can be improved. Moreover, since it is configured to generate hydraulic pressure by the movement of the ram and perform back pressure forging and diversion forging in a mechanical hydraulic system, the operation control between back pressure forging and diversion forging even during high-speed use by controlling the machining speed. Can be done accurately. In addition, even if something goes wrong with the motion control mechanism, it does not require advanced and specialized knowledge, which can improve maintainability by workers in the field, and save space and cost. Can be done.

本願の請求項2記載の発明によれば、背圧解放用メカバルブが、カム駆動によるメカ式のバルブ制御により開閉が行われるように構成されているので、特に機械の駆動源としてサーボモータを用い、ラムの鍛造時の前進速度を所定速度に維持しつつ、後退時にはその速度を速めるといったラムの速度制御を行う場合にあっても、機械の駆動系に連動する駆動軸に設けられた駆動カムの回転速度に合わせて背圧解放用メカバルブを開閉させることができる。これにより常に適正なタイミングで背圧鍛造と分流鍛造とが行われ、生産性の向上を図ることができる。 According to the invention according to claim 2 of the present application, the back pressure release mechanical valve is configured to be opened and closed by a mechanical valve control by a cam drive. Therefore, a servomotor is particularly used as a drive source of the machine. , Even when controlling the speed of the ram, such as maintaining the forward speed during forging of the ram at a predetermined speed and increasing the speed when retreating, the drive cam provided on the drive shaft linked to the drive system of the machine. The back pressure release mechanical valve can be opened and closed according to the rotation speed of. As a result, back pressure forging and diversion forging are always performed at an appropriate timing, and productivity can be improved.

本願の請求項3記載の発明によれば、第2油圧配管の途中に、ラムが前死点から後退を始めるタイミングで開いて調圧用油圧シリンダー内の作動油を第1油圧配管に戻しかつラムが後死点手前に位置するタイミングで閉じる電磁弁と、調圧用油圧シリンダーから第1油圧配管への作動油の逆流を阻止するチェック弁とが並列に設けられているから、ラムの1ストロークごとで一旦調圧用油圧シリンダー内の作動油を第1油圧配管に戻し、ラムのストロークごとに背圧を新たに設定し直し、常に同じ背圧を付与する状態で背圧鍛造を行うことができる。 According to the invention according to claim 3 of the present application, the ram is opened in the middle of the second hydraulic pipe at the timing when the ram starts to retreat from the front dead point, and the hydraulic oil in the pressure adjusting hydraulic cylinder is returned to the first hydraulic pipe and the ram. Since an electromagnetic valve that closes at the timing before the rear dead point and a check valve that prevents the backflow of hydraulic oil from the pressure regulating hydraulic cylinder to the first hydraulic pipe are provided in parallel, each stroke of the ram The hydraulic oil in the pressure adjusting hydraulic cylinder is once returned to the first hydraulic pipe, the back pressure is newly set for each stroke of the ram, and the back pressure forging can be performed in a state where the same back pressure is always applied.

本発明に係るメカ油圧式背圧兼分流装置を備えた多段式横型鍛造機の概略平面図である。It is a schematic plan view of the multi-stage horizontal forging machine provided with the mechanical hydraulic back pressure and diversion device which concerns on this invention. 同鍛造機による工程図である。It is a process diagram by the forging machine. 第4工程の鍛造ステーションに設けられるメカ油圧式背圧兼分流装置の油圧回路図である。It is a hydraulic circuit diagram of the mechanical hydraulic back pressure and diversion device provided in the forging station of the 4th process. 第4工程の鍛造ステーションの説明図である。It is explanatory drawing of the forging station of the 4th process. 同鍛造ステーションの動作説明図である。It is operation explanatory drawing of the forging station. 同鍛造ステーションでの平歯の成形工程図である。It is a molding process diagram of the flat tooth at the forging station. 同鍛造ステーションでのラム前死点直前の分流動作回路図である。It is a diversion operation circuit diagram just before the dead center before the ram at the forging station. 同鍛造ステーションでのラム後退開始時の油圧回路図である。It is a flood control circuit diagram at the start of ram retreat at the forging station. 同鍛造ステーションでのラム後死点直前の油圧回路図である。It is a flood control circuit diagram just before the dead center after the ram at the forging station. 求める平ギヤの説明図である。It is explanatory drawing of the required spur gear. 従来の平ギヤの説明図である。It is explanatory drawing of the conventional spur gear.

以下本発明の実施の形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係るメカ油圧式背圧兼分流装置を備えた横型多段式鍛造機を示すもので、この鍛造機1は、機台フレーム2の所定位置に固設されたダイブロック3に複数のダイ4a…4gが並設され、このダイブロック3に対して前進後退するラム5を配置し、ラム5の前面に各ダイ4a…4gにそれぞれ対向させて複数のパンチ6a…6gが並設されている。そして、各対応するダイ4a…4gとパンチ6a…6gにより複数段(図では7段)の鍛造ステーションS1〜S7が構成されている。 FIG. 1 shows a horizontal multi-stage forging machine provided with a mechanical hydraulic back pressure and diversion device according to the present invention, and the forging machine 1 is a die block 3 fixed at a predetermined position of a machine base frame 2. A plurality of dies 4a ... 4g are arranged side by side, and a ram 5 that moves forward and backward with respect to the die block 3 is arranged, and a plurality of punches 6a ... 6g are arranged in front of the ram 5 so as to face each die 4a ... 4g. It is installed side by side. A plurality of stages (7 stages in the figure) of forging stations S1 to S7 are configured by the corresponding dies 4a ... 4 g and punches 6a ... 6 g.

機台フレーム2の一側部にはクイル7が設けられると共に、クイル7の直前にクイル7を横切って線材Aを切断する切断機構8が配設され、この切断機構8によって線材Aを所定寸法に切断することによりブランクBが形成される。なお、実施例では線材Aを切断機構8で切断して所定寸法のブランクBを形成し、そのブランクBを鍛造ステーションS1〜S7で鍛造するようにしているが、切断機構8を設けず予め所定寸法に形成されたブランクBを直接用いるようにしてもよい。 A quill 7 is provided on one side of the machine base frame 2, and a cutting mechanism 8 for cutting the wire A across the quill 7 is provided immediately before the quill 7, and the cutting mechanism 8 cuts the wire A into a predetermined size. Blank B is formed by cutting into. In the embodiment, the wire rod A is cut by the cutting mechanism 8 to form a blank B having a predetermined size, and the blank B is forged by the forging stations S1 to S7. However, the cutting mechanism 8 is not provided and the blank B is predetermined in advance. The blank B formed in the dimensions may be used directly.

そして、上記したブランクBが素材移送用チャック(図示しない)により上記鍛造ステーションS1〜7に順次供給され、各鍛造ステーションS1〜7で所定の成形が施されることにより図10に示すような求める精度の高いシャープな多数の平歯を有する平ギヤが形成されるようになされている。具体的には、鍛造ステーションS1〜S3において、図2の(イ)に示す切断ブランクBに据え込み加工が施されて図2の(ロ)、(ハ)、(ニ)に示すようなブランクB1〜B3が形成され、次に、ブランクB3は180度方向転換されたうえで第4工程の鍛造ステーションS4において、後述する本発明のメカ油圧式背圧兼分流装置10により背圧鍛造と分流鍛造との両方が行われ、図2の(ホ)に示すような求める精度の高いシャープな多数の平歯a…aを有するブランクB4が形成される。その後、鍛造ステーションS5〜S7においてブランクB4の中心部に所定径の軸孔bがブランクB5のように穴抜き加工され、さらに、ブランクB6、Gようにアイドル工程を経て図2の(チ)に示すような高精度の平ギヤ(最終製品)Gが形成される。なお、図に示す実施例では、ブランクB3を180度方向転換させて第4工程の鍛造ステーションS4に移送するようにしたものについて説明したけれども、180度方向転換させることなく平行状態のまま移送して成形するようにしてもよいことは勿論である。
また、図示していないが、機械の駆動源としてサーボモータを用い、例えばラム5の鍛造時の前進速度を所定速度に維持しつつ、後退時にはその速度を速めるといったようにラム5のサイクルタイムを制御可能な構成とし、生産性の向上を図る構成としている。
Then, the blank B is sequentially supplied to the forging stations S1 to 7 by a material transfer chuck (not shown), and predetermined molding is performed at each forging station S1 to 7 to obtain the blank B as shown in FIG. Spur gears having a large number of sharp, highly accurate spur teeth are formed. Specifically, in the forging stations S1 to S3, the cutting blank B shown in (a) of FIG. 2 is subjected to a stationary process, and the blank as shown in (b), (c), and (d) of FIG. B1 to B3 are formed, and then the blank B3 is turned 180 degrees and then back pressure forging and diversion are performed by the mechanical hydraulic back pressure and diversion device 10 of the present invention described later at the forging station S4 in the fourth step. Both forging and forging are performed to form a blank B4 having a large number of sharp flat teeth a ... a with high accuracy as shown in FIG. 2 (e). After that, in the forging stations S5 to S7, a shaft hole b having a predetermined diameter is punched in the center of the blank B4 as in the blank B5, and further, through an idle process like the blanks B6 and G, as shown in FIG. A high-precision spur gear (final product) G as shown is formed. In the embodiment shown in the figure, the blank B3 is turned 180 degrees and transferred to the forging station S4 in the fourth step, but the blank B3 is transferred in a parallel state without being turned 180 degrees. Of course, it may be formed by molding.
Further, although not shown, a servomotor is used as a drive source of the machine, and the cycle time of the ram 5 is increased, for example, while maintaining the forward speed at the time of forging the ram 5 at a predetermined speed and increasing the speed at the time of backward movement. It has a controllable configuration to improve productivity.

次に、本発明の特徴部分を構成する第4工程における鍛造ステーションS4のメカ油圧式背圧兼分流装置10について説明する。 Next, the mechanical hydraulic back pressure and diversion device 10 of the forging station S4 in the fourth step constituting the characteristic portion of the present invention will be described.

メカ油圧式背圧兼分流装置10は、図3に示すように初期圧供給用油圧ポンプ11と、ダイ12(このダイ12は基本的には先に説明したダイ4dに相当するものであり、以下ダイ12という)と一緒にユニット化された状態でダイブロック3に交換可能に内蔵されかつラム5が前進して作動油を圧縮することによる高作動圧によりダイ12内に進入してブランクB4に成形荷重に対抗する背圧を付与しまた低作動圧化によりダイ12内から後退してブランクB4への背圧を解放する背圧工具13付のピストン14を有するダイブロックシリンダー15と、背圧を所望の圧力に設定するための調圧用油圧シリンダー16及び調圧用エアーシリンダー17と、背圧を解放する一端が大気開放の開放用油圧シリンダー18とを備えている。 As shown in FIG. 3, the mechanical hydraulic back pressure and diversion device 10 includes an initial pressure supply hydraulic pump 11 and a die 12 (this die 12 basically corresponds to the die 4d described above. It is interchangeably built in the die block 3 in a unitized state together with the die 12), and the ram 5 moves forward to compress the hydraulic oil, so that it enters the die 12 and enters the blank B4. A die block cylinder 15 having a piston 14 with a back pressure tool 13 that retreats from the inside of the die 12 to release the back pressure on the blank B4 by applying a back pressure to counter the molding load and lowering the operating pressure. It includes a pressure adjusting hydraulic cylinder 16 and a pressure adjusting air cylinder 17 for setting a pressure to a desired pressure, and an opening hydraulic cylinder 18 having one end that releases back pressure to the atmosphere.

ダイブロックシリンダー15は、図4に示すようにダイ12と油圧シリンダーとがユニット化されたもので、ダイブロック3の第4工程位置に内蔵されている。ダイブロックシリンダー15の前部には平歯用成形用の成形孔12aを有するダイ12が設けられていると共に、後部にシリンダー室15aが形成され、そのシリンダー室15a内にピストン14が前後方向に往復動可能内装されている。ピストンの14の先端部には、ノックアウトピンを兼用する背圧工具13が配設されている。背圧工具13は、ダイ12の後部側に形成される軸孔12bに軸方向に対して往復動可能に支持されると共に、ピストン14の往動時、図4に示すようにダイ12の成形孔12a内にその先端部が進入して、成形時にブランクB4に対し背圧を付与して背圧鍛造を可能にし、また、ピストン14の復動時、ダイ12の成形孔12a内から外方に後退して、ラム5の前死点直前の動作タイミングでブランクB4への背圧を解放し分流鍛造を可能にするように構成されている。なお、ピストン14の中心部には、成形終了後、パンチ6dがダイ12から後退する動作に合わせて背圧工具13でブランクB4をダイ12内から蹴り出すためのノックアウトピン機構を構成する蹴り出し部材19が内装されている。このノックアウトピン機構については周知の構成であるのでその構造及び作用の説明については省略する。 As shown in FIG. 4, the die block cylinder 15 is a unitized die 12 and a hydraulic cylinder, and is built in the die block 3 at the fourth process position. A die 12 having a forming hole 12a for forming flat teeth is provided in the front portion of the die block cylinder 15, a cylinder chamber 15a is formed in the rear portion, and a piston 14 is moved in the front-rear direction in the cylinder chamber 15a. The interior is reciprocating. A back pressure tool 13 that also serves as a knockout pin is arranged at the tip of the piston 14. The back pressure tool 13 is supported by a shaft hole 12b formed on the rear side of the die 12 so as to be reciprocating in the axial direction, and when the piston 14 moves forward, the die 12 is formed as shown in FIG. The tip portion enters the hole 12a to apply back pressure to the blank B4 at the time of molding to enable back pressure forging, and when the piston 14 is restored, the die 12 is outward from the inside of the molding hole 12a. It is configured to release the back pressure on the blank B4 at the operation timing immediately before the front dead center of the ram 5 to enable diversion forging. A kickout pin mechanism is formed at the center of the piston 14 to kick the blank B4 out of the die 12 with the back pressure tool 13 in accordance with the operation of the punch 6d retracting from the die 12 after the molding is completed. The member 19 is incorporated. Since this knockout pin mechanism has a well-known configuration, the description of its structure and operation will be omitted.

そして、図3に示すように初期圧供給用油圧ポンプ11がダイブロックシリンダー15のシリンダ室15aに第1油圧配管20により連通連結されると共に、第1油圧配管20の途中に、調圧用油圧シリンダー16が第2油圧配管21を介しまた開放用シリンダー18が第3油圧配管22を介してそれぞれ連通連結され、これらの第1〜第3油圧配管20〜22により背圧兼分流鍛造用の油圧回路が形成されている。 Then, as shown in FIG. 3, the initial pressure supply hydraulic pump 11 is communicated and connected to the cylinder chamber 15a of the die block cylinder 15 by the first hydraulic pipe 20, and the pressure adjusting hydraulic cylinder is connected in the middle of the first hydraulic pipe 20. 16 is communicated and connected via a second hydraulic pipe 21 and an opening cylinder 18 is communicated with each other via a third hydraulic pipe 22, and these first to third hydraulic pipes 20 to 22 are hydraulic circuits for back pressure and diversion forging. Is formed.

第2油圧配管21の途中には、ラム5が前死点から後退を始めるタイミングで開いて調圧用油圧シリンダー16内の作動油を第1油圧配管20に戻しかつラム5が後死点手前に位置するタイミングで閉じる電磁弁23と、調圧用油圧シリンダー16から第1油圧配管20への作動油の逆流を阻止するチェック弁24とが並列に設けられている。なお、図に示す実施例では調圧用油圧シリンダー16には、所望の背圧を設定するための手段として調圧用エアーシリンダー17が連設されている。 In the middle of the second hydraulic pipe 21, the ram 5 opens at the timing when the ram 5 starts to retreat from the front dead point, the hydraulic oil in the pressure adjusting hydraulic cylinder 16 is returned to the first hydraulic pipe 20, and the ram 5 is before the rear dead point. An electromagnetic valve 23 that closes at a position timing and a check valve 24 that prevents backflow of hydraulic oil from the pressure adjusting hydraulic cylinder 16 to the first hydraulic pipe 20 are provided in parallel. In the embodiment shown in the figure, the pressure adjusting hydraulic cylinder 16 is continuously provided with a pressure adjusting air cylinder 17 as a means for setting a desired back pressure.

第3油圧配管22の途中には、ラム5が前死点手前に位置するタイミングで開いて作動油を開放用油圧シリンダー18内に流入(解放)させ油圧回路内の背圧を低減しかつラム5が前死点通渦後のタイミングで閉じる背圧解放用メカバルブ25と、第1油圧配管20から開放用油圧シリンダー18への作動油の逆流を阻止するチェック弁26とが並列に設けられている。なお、背圧を低減しとは、背圧をなくしてしまうことも含む概念である。 In the middle of the third hydraulic pipe 22, the ram 5 opens at the timing when it is located before the front dead point, and the hydraulic oil flows (releases) into the opening hydraulic cylinder 18 to reduce the back pressure in the hydraulic circuit and the ram. A back pressure release mechanical valve 25 that 5 closes at the timing after the front dead point passing vortex and a check valve 26 that prevents the backflow of hydraulic oil from the first hydraulic pipe 20 to the release hydraulic cylinder 18 are provided in parallel. There is. It should be noted that reducing the back pressure is a concept including eliminating the back pressure.

背圧解放用メカバルブ25は、駆動カム27を有し機械の駆動系に連動して回転する駆動軸28と、駆動カム27に常時当接し駆動カム27の回転により鍛造動作に同期して進退動するバルブ作動杆25aを備え、カム駆動によるメカ式のバルブ制御により開閉が行われる。
具体的には、ラム5が前死点手前に位置するタイミングで、バルブ作動杆25aが駆動カム27の小径部から大径部に乗り上げる動作により、バルブ作動杆25aは押し下げられて背圧解放用メカバルブ25を開き、ラム5が前死点通過後のタイミングでバルブ作動杆25aが駆動カム27の大径部から小径部に落ち込むことによりバルブ作動杆25aを押し上げて背圧解放用メカバルブ25を閉じるようにバルブ制御される。
The back pressure release mechanical valve 25 advances and retreats in synchronization with the forging operation by the drive shaft 28 having the drive cam 27 and rotating in conjunction with the drive system of the machine, and the drive cam 27 constantly in contact with the drive cam 27. The valve operating rod 25a is provided, and opening and closing is performed by a mechanical valve control driven by a cam.
Specifically, at the timing when the ram 5 is located before the front dead center, the valve operating rod 25a rides up from the small diameter portion to the large diameter portion of the drive cam 27, and the valve operating rod 25a is pushed down to release the back pressure. The mechanical valve 25 is opened, and the valve operating rod 25a falls from the large diameter portion to the small diameter portion of the drive cam 27 at the timing after the ram 5 passes the front dead center, thereby pushing up the valve operating rod 25a and closing the back pressure release mechanical valve 25. The valve is controlled so as to.

開放用油圧シリンダー18はこれのピストン18aがラム5の後退途中のタイミングでラム5に設けられた押圧部材5aに当接してピストン18aが短縮方向に押し込まれて開放用油圧シリンダー18内の作動油がチェック弁26を介して第1油圧配管20に戻されるように構成されている。 In the opening hydraulic cylinder 18, the piston 18a abuts on the pressing member 5a provided on the ram 5 at the timing when the ram 5 is retreating, and the piston 18a is pushed in the shortening direction to push the hydraulic oil in the opening hydraulic cylinder 18. Is configured to be returned to the first hydraulic pipe 20 via the check valve 26.

また、初期圧供給用油圧ポンプ11からは、例えば2MPaの初期圧が供給される。また、図に示す実施例では、第1油圧配管20の初期圧供給用油圧ポンプ11近くに、ラム5の後退途中から後死点に至るまでのタイミングで開き、初期圧の供給時期を規制する初期圧供給用メカバルブ29を設けている。初期圧供給用メカバルブ29は、上記した背圧解放用メカバルブ25の構造と同様に駆動カム30を有し機械の駆動系に連動して回転する駆動軸31と、駆動カム30に常時当接し駆動カム30の回転により鍛造動作に同期して進退動するバルブ作動杆29aを備え、カム駆動によるメカ式のバルブ制御により開閉が行われる。 Further, an initial pressure of, for example, 2 MPa is supplied from the initial pressure supply hydraulic pump 11. Further, in the embodiment shown in the figure, the ram 5 is opened near the initial pressure supply hydraulic pump 11 of the first hydraulic pipe 20 at the timing from the middle of the retreat of the ram 5 to the rear dead center to regulate the initial pressure supply timing. A mechanical valve 29 for supplying initial pressure is provided. The initial pressure supply mechanical valve 29 is driven by constantly contacting the drive shaft 31 which has a drive cam 30 and rotates in conjunction with the drive system of the machine, as in the structure of the back pressure release mechanical valve 25 described above, and the drive cam 30. It is equipped with a valve operating rod 29a that moves forward and backward in synchronization with the forging operation by the rotation of the cam 30, and is opened and closed by mechanical valve control by the cam drive.

以上の構成により、ラム5の前進動作時における鍛造開始から前死点手前までにおいては調圧用油圧シリンダー16で設定した例えば18MPaの高作動圧の背圧を背圧工具13付のピストン14に付与して背圧鍛造を行い、残りの前死点手前から前死点までにおいては背圧解放用メカバルブ25を開いて開放用油圧シリンダー18により背圧を解放し、これにより背圧工具13付のピストン14のダイ12の成形孔12a内からの後退を許して分流鍛造が行えるようになされている。 With the above configuration, the back pressure of a high operating pressure of, for example, 18 MPa set by the pressure adjusting hydraulic cylinder 16 is applied to the piston 14 with the back pressure tool 13 from the start of forging to the front of the front dead center during the forward operation of the ram 5. Then, back pressure forging is performed, and from the remaining front dead center to the front dead center, the back pressure release mechanical valve 25 is opened and the back pressure is released by the release hydraulic cylinder 18, whereby the back pressure tool 13 is attached. The diversion forging can be performed by allowing the piston 14 to retreat from the molding hole 12a of the die 12.

次に、第4工程の鍛造ステーションS4において、図6の(ニ)に示すプランクB4を成形するに際してのメカ油圧式背圧兼分流装置10の作用について説明する。 Next, the operation of the mechanical hydraulic back pressure and diversion device 10 when molding the plank B4 shown in FIG. 6 (d) at the forging station S4 in the fourth step will be described.

まず、図3に示すように、ラム5が後死点から前進動作して、ブランクB3の成形開始直後からラム5の前死点手前までは、調圧用油圧シリンダー16で設定される例えば18MPaの高作動圧の背圧が背圧工具13付のピストン14に付与された状態のもとで背圧鍛造が行われる。
具体的には、成形開始時には、低作動圧のもとで図5の(イ)に示すように成形され、図6の(イ)に示す形状に形成される。
そして、成形開始直後で背圧ON時には、上記高作動圧のもとで図5の(ロ)に示すように成形され、図6の(ロ)に示すように平歯の下方部分がやや形成される。
次いで、ラム5の前死点手前で背圧OFF時には、図7に示すように、駆動カム27が背圧解放用メカバルブ25を開いて作動油を開放用油圧シリンダー18内に流入させ、油圧回路内の背圧をなくしてピストン14のシリンダー室15aでの後退を許すことになる(図5の(ハ)参照)。そして、図6の(ハ)に示すように平歯の半ばから下方部分が大まかに形成される。
First, as shown in FIG. 3, the ram 5 moves forward from the back dead center, and from immediately after the start of forming the blank B3 to before the front dead center of the ram 5, the pressure adjusting hydraulic cylinder 16 is set, for example, 18 MPa. Back pressure forging is performed under a state in which a high back pressure is applied to the piston 14 with the back pressure tool 13.
Specifically, at the start of molding, the molding is performed as shown in (a) of FIG. 5 under a low working pressure, and is formed into the shape shown in (a) of FIG.
Then, when the back pressure is turned on immediately after the start of molding, the molding is performed as shown in FIG. 5 (b) under the above high operating pressure, and the lower portion of the flat teeth is slightly formed as shown in FIG. 6 (b). Will be done.
Next, when the back pressure is turned off before the front dead center of the ram 5, the drive cam 27 opens the back pressure release mechanical valve 25 to allow the hydraulic oil to flow into the release hydraulic cylinder 18, and the hydraulic circuit. The back pressure inside is eliminated and the piston 14 is allowed to retreat in the cylinder chamber 15a (see (c) in FIG. 5). Then, as shown in FIG. 6 (c), the middle to lower portion of the flat tooth is roughly formed.

その後、ラム5が前死点手前から前死点に至るまでの間においても、図7に示すように、駆動カム27が背圧解放用メカバルブ25を開いた状態を保ち、作動油を開放用油圧シリンダー18内に流入させ、油圧回路内の背圧をなくしてピストン14を後退させる。これに伴いピストン14と共に背圧工具13がダイ12の成形孔12a内からの後退を許すことになる。これにより、図5の(ニ)に示すようにラム5が前死点手前から前死点に至るまでの間においては分流鍛造が行われる。この分流鍛造では、材料の流れる方向を半径方向外方部分と中心の捨て軸部分とに積極的にコントロールして流し、圧力を軽減すると共に角部の欠肉をなくすことができる。その結果、図6の(ニ)に示すような求める精度の高いシャープな平歯a…aと捨て軸部分とを有するブランクB4が成形される。 After that, as shown in FIG. 7, the drive cam 27 keeps the back pressure release mechanical valve 25 open and the hydraulic oil is released even when the ram 5 reaches the front dead center from the front dead center. The piston 14 is retracted by flowing into the hydraulic cylinder 18 to eliminate the back pressure in the hydraulic circuit. Along with this, the back pressure tool 13 together with the piston 14 allows the die 12 to retreat from the forming hole 12a. As a result, as shown in FIG. 5D, diversion forging is performed from before the front dead center to the front dead center of the ram 5. In this diversion forging, the flow direction of the material is positively controlled and flowed to the outer portion in the radial direction and the central discard shaft portion, so that the pressure can be reduced and the wall loss at the corner can be eliminated. As a result, a blank B4 having sharp flat teeth a ... a with high accuracy and a discard shaft portion as shown in (d) of FIG. 6 is formed.

然る後、図8に示すようにラム5が前死点から後退を始めるタイミングで第2油圧配管21途中の電磁弁23が開かれ、調圧用油圧シリンダー16内の作動油が開放されて第1油圧配管20に戻されると共に、駆動カム27による押し込みがなくなり背圧解放用メカバルブ25が閉じられる。 After that, as shown in FIG. 8, the solenoid valve 23 in the middle of the second hydraulic pipe 21 is opened at the timing when the ram 5 starts to retreat from the front dead center, and the hydraulic oil in the pressure adjusting hydraulic cylinder 16 is released. 1 When it is returned to the hydraulic pipe 20, the push-in by the drive cam 27 is eliminated and the back pressure release mechanical valve 25 is closed.

さらに、図9に示すようにラム5の後退途中のタイミングでラム5に設けられた押圧部材5aに開放用油圧シリンダー18のピストンロッド18aが当接してピストンロッド18aが短縮方向に押し込まれて開放用油圧シリンダー18内の作動油が第1油圧配管20に戻される。また、これと同じタイミングで電磁弁23が閉じられると共に、駆動カム30により初期圧供給用メカバルブ29が開かれて、初期圧供給用ポンプ11から例えば2MPaの初期圧が供給され,次の背圧兼分流鍛造に備えることになる。 Further, as shown in FIG. 9, the piston rod 18a of the opening hydraulic cylinder 18 comes into contact with the pressing member 5a provided on the ram 5 at the timing during the retreat of the ram 5, and the piston rod 18a is pushed in the shortening direction to open. The hydraulic oil in the hydraulic cylinder 18 is returned to the first hydraulic pipe 20. Further, at the same timing as this, the solenoid valve 23 is closed, the initial pressure supply mechanical valve 29 is opened by the drive cam 30, and an initial pressure of, for example, 2 MPa is supplied from the initial pressure supply pump 11, and the next back pressure is supplied. Prepare for combined flow forging.

その後は、上述したラム5の後死点から始まる一連の鍛造動作が繰り返し行なわれることになる。 After that, a series of forging operations starting from the post-dead center of the ram 5 described above will be repeated.

なお、上記した実施例では、本発明のメカ油圧式背圧兼分流装置10を、平ギヤを鍛造する横型多段式鍛造機に用いた場合について説明したけれども、何ら平ギヤに限定されるものではなく、その他の複雑形状部品にも広く適用できることは勿論である。 In the above-described embodiment, the case where the mechanical hydraulic back pressure and diversion device 10 of the present invention is used in a horizontal multi-stage forging machine for forging spur gears has been described, but it is not limited to spur gears. Of course, it can be widely applied to other complex-shaped parts.

また、上記した本発明のメカ油圧式背圧兼分流装置10において、背圧開放用メカバルブ25を選択的にON/OFF状態に切換えるメカバルブ切換手段(図示せず)を別設したり、大型の調圧用油圧シリンダー16を特設するようにしてもよい。このようにメカバルブ切換手段や大型の調圧用油圧シリンダー16を設けるようにすれば、例えば求める成形品が比較的簡単な形状の場合、調圧用油圧シリンダー16の設定圧を、求める成形品の形状具合に合わせて適宜低く設定しておき、かつ、背圧開放用メカバルブ25を作用させない状態で背圧作用のみを利用して背圧鍛造することが可能となる。これにより、より一層幅広い成形品の鍛造が可能で、かつ成形品に合わせた最適な鍛造が行える。なお、メカバルブ切換手段としては、例えばバルブ作動杆25aの駆動カム27における大径部(カム山部分)を小径部とは別体に形成して、小径部に対しカム山部分をチップ交換などのようにボルトで固定するようにし、採用する鍛造状態に合わせて脱着可能な構造とすればよい。 Further, in the mechanical hydraulic back pressure and diversion device 10 of the present invention described above, a mechanical valve switching means (not shown) for selectively switching the back pressure release mechanical valve 25 to the ON / OFF state may be separately provided, or a large size may be provided. The pressure adjusting hydraulic cylinder 16 may be specially installed. By providing the mechanical valve switching means and the large pressure adjusting hydraulic cylinder 16 in this way, for example, when the desired molded product has a relatively simple shape, the set pressure of the pressure adjusting hydraulic cylinder 16 can be set to the desired shape of the molded product. It is possible to perform back pressure forging by using only the back pressure action in a state where the back pressure release mechanical valve 25 is not actuated while the back pressure is set appropriately low according to the above. As a result, a wider range of molded products can be forged, and optimum forging can be performed according to the molded product. As the mechanical valve switching means, for example, the large diameter portion (cam ridge portion) of the drive cam 27 of the valve operating rod 25a is formed separately from the small diameter portion, and the cam ridge portion is replaced with a chip with respect to the small diameter portion. It may be fixed with bolts so that it can be attached and detached according to the forging state to be adopted.

1 横型多段式鍛造機
3 ダイブロック
4a…4g ダイ
5 ラム
5a 押圧部材
6a…6g パンチ
10 メカ油圧式背圧兼分流装置
11 初期圧供給用油圧ポンプ
12(4d) ダイ
15 ダイブロックシリンダー
16 調圧用油圧シリンダー
18 開放用油圧シリンダー
18a ピストン
20 第1油圧配管
21 第2油圧配管
25 背圧解放用メカバルブ
26 チェック弁
27 駆動カム
28 駆動軸
S1〜S7 鍛造ステーション
1 Horizontal multi-stage forging machine 3 Die block 4a ... 4g Die 5 Lamb 5a Pressing member 6a ... 6g Punch 10 Mechanical hydraulic back pressure and diversion device 11 Initial pressure supply hydraulic pump 12 (4d) Die 15 Die block cylinder 16 For pressure adjustment Hydraulic cylinder 18 Release hydraulic cylinder 18a Piston 20 1st hydraulic pipe 21 2nd hydraulic pipe 25 Back pressure release mechanical valve 26 Check valve 27 Drive cam 28 Drive shaft S1 to S7 Forging station

Claims (3)

機台に固設のダイブロックに設けられたダイと、ダイに対向するようにラムの前面に取り付けられたパンチとの間でブランクを所定形状の製品に鍛造する鍛造機におけるメカ油圧式背圧兼分流装置であって、初期圧供給用油圧ポンプと、ダイと一緒にユニット化された状態でダイブロックに内蔵されかつブランクに成形荷重に対抗する背圧を付与する背圧工具付ピストンを有するダイブロックシリンダーと、背圧を所望の圧力に設定する調圧用油圧シリンダーと、背圧を開放する開放用シリンダーとを備え、初期圧供給用油圧ポンプがダイブロックシリンダーに第1油圧配管を介して連通連結されると共に、第1油圧配管の途中に、調圧用油圧シリンダーと開放用シリンダーとが第2油圧配管と第3油圧配管とを介してそれぞれ連通連結され、これら第1〜第3油圧配管により背圧兼分流用の油圧回路が形成されている一方、第3油圧配管の途中に、ラムが前死点手前に位置するタイミングで開いて作動油を開放用シリンダー内に解放させ油圧回路内の圧力を低減しかつラムが前死点通過後のタイミングカバルブと、第1油圧配管から開放用シリンダーへの作動油の逆流を阻止するチェック弁と並列に設けられていると共に、ラムに、該ラムの後退途中から後死点に至るタイミングで開放用シリンダーを短縮してそのシリンダー内の作動油を第1油圧配管に戻す押圧部材が設けられており、さらに、背圧工具付ピストンは、初期圧供給用油圧ポンプによるダイブロックシリンダーにおけるシリンダー室への作動油の初期圧供給によりダイ内に進入すると共にラムの前進時における成形開始時から前死点手前までにおいは作動油を圧縮することによる高作動圧化と調圧用油圧シリンダーによる調圧とによりブランクに成形荷重に対抗する背圧を付与しまたラムが前死点手前から前死点までにおいては開放用シリンダーへの作動油の開放による低作動圧化によりダイ内から後退するように構成されていることを特徴とする鍛造機におけるメカ油圧式背圧兼分流装置。Mechanical hydraulic back pressure in a forging machine that forges a blank into a product of a predetermined shape between a die provided on a die block fixed to the machine base and a punch attached to the front surface of the ram so as to face the die. It is a dual flow device and has a hydraulic pump for initial pressure supply and a piston with a back pressure tool that is built into the die block in a unitized state together with the die and applies back pressure to the blank to counter the molding load. A die block cylinder, a pressure adjusting hydraulic cylinder for setting the back pressure to a desired pressure, and an opening cylinder for releasing the back pressure are provided, and an initial pressure supply hydraulic pump is connected to the die block cylinder via a first hydraulic pipe. In addition to being communicated and connected, the pressure adjusting hydraulic cylinder and the opening cylinder are communicated and connected via the second hydraulic pipe and the third hydraulic pipe, respectively, in the middle of the first hydraulic pipe, and these first to third hydraulic pipes are connected. While a hydraulic circuit for back pressure and diversion is formed by this, the ram opens at the timing when it is located before the front dead point in the middle of the third hydraulic pipe to release the hydraulic oil into the opening cylinder and inside the hydraulic circuit. reducing the pressure of and the ram and the timing mosquito valve before top dead center after passing, together with a check valve for preventing back flow of hydraulic fluid to the open cylinder of the first hydraulic pipe are provided in parallel, the ram A pressing member is provided to shorten the opening cylinder and return the hydraulic oil in the cylinder to the first flood control pipe at the timing from the middle of the retreat of the ram to the rear dead point, and further, the piston with a back pressure tool is provided. The initial pressure of the hydraulic oil to the cylinder chamber of the die block cylinder by the initial pressure supply hydraulic pump enters the die, and the hydraulic oil is compressed from the start of molding to just before the front dead point when the ram advances. By increasing the working pressure and adjusting the pressure by the pressure adjusting hydraulic cylinder, the blank is given a back pressure against the molding load, and the hydraulic oil to the opening cylinder is applied to the ram from the front dead point to the front dead point. A mechanical hydraulic back pressure and diversion device in a forging machine characterized in that it is configured to retreat from inside the die by lowering the operating pressure by opening the . 背圧解放用メカバルブが、駆動カムを有し機械の駆動系に連動して回転する駆動軸と、駆動カムに常時当接し駆動カムの回転により鍛造動作に同期して進退動するバルブ作動杆を備え、カム駆動によるメカ式のバルブ制御により開閉が行われるように構成されていることを特徴とする請求項1記載の鍛造機におけるメカ油圧式背圧兼分流装置。 The back pressure release mechanical valve has a drive cam that rotates in conjunction with the drive system of the machine, and a valve operating rod that constantly contacts the drive cam and moves forward and backward in synchronization with the forging operation due to the rotation of the drive cam. The mechanical hydraulic back pressure and diversion device in the forging machine according to claim 1, further comprising a cam-driven mechanical valve control for opening and closing. 第2油圧配管の途中に、ラムが前死点から後退を始めるタイミングで開いて調圧用油圧シリンダー内の作動油を第1油圧配管に戻しかつラムが後死点手前に位置するタイミングで閉じる電磁弁と、調圧用油圧シリンダーから第1油圧配管への作動油の逆流を阻止するチェック弁とが並列に設けられていることを特徴とする請求項1記載の鍛造機におけるメカ油圧式背圧兼分流装置。 Electromagnetic waves that open in the middle of the second hydraulic pipe at the timing when the ram starts to retreat from the front dead point, return the hydraulic oil in the pressure adjusting hydraulic cylinder to the first hydraulic pipe, and close at the timing when the ram is located before the rear dead point. The mechanical hydraulic back pressure type in the forging machine according to claim 1, wherein a valve and a check valve for preventing the backflow of hydraulic oil from the pressure adjusting hydraulic cylinder to the first hydraulic pipe are provided in parallel. Divergence device.
JP2017255486A 2017-12-28 2017-12-28 Mechanical hydraulic back pressure and diversion device in forging machines Active JP6809668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017255486A JP6809668B2 (en) 2017-12-28 2017-12-28 Mechanical hydraulic back pressure and diversion device in forging machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017255486A JP6809668B2 (en) 2017-12-28 2017-12-28 Mechanical hydraulic back pressure and diversion device in forging machines

Publications (2)

Publication Number Publication Date
JP2019118931A JP2019118931A (en) 2019-07-22
JP6809668B2 true JP6809668B2 (en) 2021-01-06

Family

ID=67306662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017255486A Active JP6809668B2 (en) 2017-12-28 2017-12-28 Mechanical hydraulic back pressure and diversion device in forging machines

Country Status (1)

Country Link
JP (1) JP6809668B2 (en)

Also Published As

Publication number Publication date
JP2019118931A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
CN107598064B (en) Forging and forming technology with handle flanged ball valve valve body
KR20060101764A (en) Steering rack manufacture
CN104493061A (en) Cold-forging technology for safety belt transmission shaft and die structure of molded transmission patterned tooth
CN103990750A (en) Abnormal-shaped tooth star-shaped part forging method and die special for abnormal-shaped tooth star-shaped part forging method
CN106001358A (en) Semi-closed type forging die used for forging of bevel gear and forging method thereof
CN113198960A (en) Large-scale fracturing valve body totally-enclosed type multidirectional die forging equipment and die forging process
CN105665612A (en) Screw heading machine
CN207154643U (en) A kind of forging and molding module with handle flanged ball valve valve body forging
JP6809668B2 (en) Mechanical hydraulic back pressure and diversion device in forging machines
CN206632201U (en) A kind of counter sink press forming die
CN102581056A (en) Die and method for machining sleeve part with steps in inner hole
CN107671217A (en) A kind of flanged ball valve valve body forging forming method and its base mould of use
US3267500A (en) Apparatus for forming hollow articles
CN209195842U (en) A kind of hydraulic control circuit quickly forged
CN107363205B (en) Forging forming die set of valve body forging piece of flange ball valve with handle
CN105562577A (en) Gear punching and trimming compound mold and method thereof
US3651683A (en) Cold moulding press
CN104226871B (en) Plastic deformation squeezes forging molding method
CN204262260U (en) The mould structure of safety belt transmission shaft driven flower tooth
JP6350790B2 (en) Direct double acting extrusion press
JPH05115996A (en) Cylinder system working device
JP3657468B2 (en) Method and apparatus for forming perforated products
JP4054153B2 (en) Method and apparatus for manufacturing forged parts having holes
CN108145054A (en) A kind of external screw thread double bond slot forging piece molding die and moulding process
CN207154642U (en) Base mould with handle flanged ball valve valve body forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201126

R150 Certificate of patent or registration of utility model

Ref document number: 6809668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250