JP6809126B2 - 眠気判定装置および眠気判定方法 - Google Patents

眠気判定装置および眠気判定方法 Download PDF

Info

Publication number
JP6809126B2
JP6809126B2 JP2016207217A JP2016207217A JP6809126B2 JP 6809126 B2 JP6809126 B2 JP 6809126B2 JP 2016207217 A JP2016207217 A JP 2016207217A JP 2016207217 A JP2016207217 A JP 2016207217A JP 6809126 B2 JP6809126 B2 JP 6809126B2
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
drowsiness
value
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016207217A
Other languages
English (en)
Other versions
JP2018064900A (ja
Inventor
佐野 聡
聡 佐野
泰彦 中野
泰彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016207217A priority Critical patent/JP6809126B2/ja
Publication of JP2018064900A publication Critical patent/JP2018064900A/ja
Application granted granted Critical
Publication of JP6809126B2 publication Critical patent/JP6809126B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、眠気判定装置および眠気判定方法に関する。
近年、従来より、運転中のドライバから脈波信号を検出し、心拍ゆらぎ解析を行うことで算出した眠気度に基づいて、ドライバが眠気を催している状態か否かを判定する眠気判定装置が知られている。眠気判定装置では、例えば、検出した脈波信号について心拍ゆらぎ解析を行うことでRSA(Respiratory Sinus Arrhythmia:呼吸性変動)成分を抽出し、抽出したRSA成分を用いてドライバの眠気度を算出する。
車両のステアリングホイール(ハンドル)に脈波を測定する測定部を設け、測定部が取得した脈波データをデジタル信号に変換することで、脈拍値と血圧値と脈圧値とを算出することで、眠気を判定する技術、心拍揺らぎの低周波成分と高周波成分の比を用いて、強い眠気を判定する技術等が知られている。
特開2004−050888号公報 特開2009−039167号公報 特開2013−252764号公報 特開平07−096767号公報
しかしながら、上述した技術では、心電と脈拍とを同時に計測する必要がある。また、ハンドルに備えた測定部による測定結果は、ドライバのハンドルの握り方で値が乱れる場合があり、ドライバの覚醒状態を精度良く測定することが困難である。
したがって、1つの側面では、本発明は、眠気を判定する判定精度を向上させることを目的とする。
一態様によれば、被験者の脈波信号を受信すると、受信した該脈波信号を解析して、脈波の振幅から血圧の変調を表わす脈波血圧変調波形を算出する振幅解析部と、前記脈波を解析して、該脈波の脈拍間隔から血圧の変調を表わす脈拍血圧変調波形を算出する間隔解析部と、前記脈波血圧変調波形の周期に対する前記脈拍血圧変調波形の周期の遅延時間を、いずれかの周期を基準周期として該基準周期で除算することで、位相差を算出し、該位相差の値範囲ごとの頻度分布を作成する頻度分布作成部と、前記位相差が収束した時間帯の前記頻度分布の2つの値範囲の頻度値を用いて、該2つの頻度値の合計に対する、該2つの頻度値の差分の割合を算出して眠気値を取得する眠気値取得部とを有する眠気判定装置が提供される。
また、上記課題を解決するための手段として、眠気判定方法および眠気判定プログラムとすることもできる。
また、車両を運転する被験者の眠気の度合を示す眠気度と、該眠気に対して覚醒状態を維持しようとする覚醒努力度とに基づく、該眠気度と該覚醒努力度とのバランスを表わす心身調和度と、該被験者の精神的な能動活動の程度を示す精神的活性度と、該被験者の身体的な能動活動の程度を示す身体的活性度とから、総合的に該被験者が眠気状態にあるいか否かを判定する眠気判定部と、前記眠気判定部からの前記被験者が前記眠気状態にあると判定したことを示す通知に応じて、スピーカ装置と表示装置の1つ以上に該車両の運転に係る支援情報を出力させる警報部とを有する運転支援装置が提供される。
眠気を判定する判定精度を向上させることができる。
第1の実施形態における眠気判定システムを示す図である。 眠気判定装置の一例であるナビゲーション装置のハードウェア構成を示す図である。 心身調和状態を判定する方法を説明するための図である。 頻度分布と判定指標との関係を説明するための図である。 眠気判定装置の一例であるナビゲーション装置の機能構成を示す図である。 解析に係る詳細な機能構成例を示す図である。 振幅解析部による解析処理を説明するための図である。 間隔解析部による解析処理を説明するための図である。 心身調和解析処理を説明するためのフローチャート図である。 活動解析処理を説明するためのフローチャート図である。 総合覚醒判定処理を説明するためのフローチャート図である。 運転支援情報の例を示す図である。 判定指標と分類状態との関係を示す図である。 閾値条件の変更例を示す図である。 位相差θの遷移の例を示す図である。 位相差θの遷移の例を示す図である。 ρMAXを説明するための図である。 第2の実施形態における眠気判定システムを示す図である。 サーバ装置のハードウェア構成を示す図である。 第3の実施形態における眠気判定システムを示す図である。 携帯端末のハードウェア構成を示す図である。 判定閾値パラメータに応じた検知率の比較例を示す図である。
以下、本発明の実施の形態を図面に基づいて説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省く。
[第1の実施形態]
はじめに、第1の実施形態における眠気判定装置を含む眠気判定システムについて説明する。図1は、第1の実施形態における眠気判定システムを示す図である。
図1に示すように、眠気判定システム100は車両150に搭載されており、脈拍センサ110と、ナビゲーション装置120と、スピーカ装置130と、表示装置140とを有する。
脈拍センサ110は、車両150を運転するドライバ160の耳たぶにおいて、心拍(脈波)を検出し、心拍データ(脈波信号)を出力するセンサである。脈拍センサ110より出力された脈波信号は、ナビゲーション装置120に入力される。つまり、車両150を運転するドライバ160は、運転中、脈拍センサ110によって脈波の検出が行われる被検者となる。脈拍センサ110は、耳たぶにクリップ可能でイヤクリップ型であればよい。
ナビゲーション装置120は、眠気判定装置の一例である。ナビゲーション装置120には、眠気判定プログラムと警報プログラムとがインストールされており、これらのプログラムが実行されることで、ナビゲーション装置120は、眠気判定部121及び警報部122として機能する。
スピーカ装置130は、ナビゲーション装置120に接続され、例えば、ナビゲーション装置120の警報部122から出力された警報情報を音声出力する。また、表示装置140は、ナビゲーション装置120に接続され、例えば、ナビゲーション装置120の警報部122から出力された警報情報を表示出力する。スピーカ装置130より警報情報を音声出力することにより、あるいは、表示装置140より警報情報を表示出力することにより、ドライバ160の覚醒度を上げ、ドライバ160の状態を、眠気を催している状態から覚醒状態へと改善することができる。
なお、表示装置140は、ドライバ160からナビゲーション装置120に対する操作を受け付ける操作部としても機能し、表示装置140がドライバ160より受け付けた操作指示は、ナビゲーション装置120に入力される。
次に、ナビゲーション装置120のハードウェア構成について説明する。図2は、眠気判定装置の一例であるナビゲーション装置のハードウェア構成を示す図である。なお、図2では、ナビゲーション装置120が有するハードウェアのうち、特に、眠気判定部121及び警報部122として機能する際に関連するハードウェアについて示している。
図2に示すように、ナビゲーション装置120は、CPU(Central Processing Unit)201、ROM(Read Only Memory)202、RAM(Random Access Memory)203を有する。また、ナビゲーション装置120は、補助記憶装置204、接続装置205、ドライブ装置206を有する。なお、これらのハードウェアは、バス207を介して相互に接続されている。
CPU201は、補助記憶装置204に格納された各種プログラム(例えば、眠気判定プログラム、警報プログラム等)を実行するコンピュータである。
ROM202は不揮発性メモリである。ROM202は、補助記憶装置204に格納された各種プログラムをCPU201が実行するために必要な各種プログラム、データ等を格納する主記憶部として機能する。具体的には、ROM202は、BIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する。
RAM203は揮発性メモリであり、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等を含む。RAM203は、補助記憶装置204に格納された各種プログラムがCPU201によって実行される際に展開される、作業領域を提供する主記憶部として機能する。
補助記憶装置204は、ナビゲーション装置120にインストールされた各種プログラムや、各種プログラムが実行されることで生成されるデータ等を記録するコンピュータ読み取り可能な記憶装置である。以下、ROM202、RAM203、及び補助記憶装置204を総称して、記憶部230と言う。
接続装置205は、脈拍センサ110、スピーカ装置130及び表示装置140等の各種外部機器とナビゲーション装置120とを接続する装置である。これにより、脈拍センサ110、スピーカ装置130及び表示装置140とナビゲーション装置120との間で、各種情報を送受信することができる。
ドライブ装置206は記録媒体210をセットするための装置である。ここでいう記録媒体210には、CD−ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体210には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等も含まれる。記録媒体210は、コンピュータが読み取り可能な、構造(structure)を有する1つ以上の非一時的(non-transitory)な、有形(tangible)な媒体であればよい。
なお、補助記憶装置204に格納される各種プログラムは、例えば、配布された記録媒体210がドライブ装置206にセットされ、該記録媒体210に記録された各種プログラムがドライブ装置206により読み出されることでインストールされてもよい。あるいは、補助記憶装置204に格納される各種プログラムは、図示しない通信装置を介してネットワークからダウンロードされることでインストールされてもよい。
まず、第1の実施形態では、眠い状態の程度と、ドライバ160が眠気に対して覚醒状態を維持しようとする覚醒努力状態の程度とから心身の調和状態を定める。ドライバ160の心身調和状態を判定する方法についてその概要を図3および図4で説明する。
図3は、心身調和状態を判定する方法を説明するための図である。図3(A)では、縦軸に信号強度(振幅)を示し、横軸に時間を示すグラフで、脈拍センサ110がドライバ160の耳たぶで検知した脈波3wを示している。また、脈波3wにおいて高いピーク値で表わされる波形と、低いピーク値で表される波形とを示している。高いピーク値で表わされる波形を振幅波形3aで示す。
図3(B)では、縦軸に信号強度(微分振幅)を示し、横軸に時間を示すグラフで、図3(A)の脈波3wから微分脈波を算出して得た脈波の微分振幅波形の例を示している。図3(B)の脈波の微分振幅波形3bを用いて、微分最大間隔から脈波間隔を算出する。図3(C)は、縦軸に脈拍間隔を示し、横軸に時間を示すグラフで、脈波間隔の変化波形の例を示している。脈波間隔の変化波形は、凡そ0.05Hz〜0.45Hz帯で示される。
一方、図3(A)の脈波3wの振幅(脈波振幅)から血圧性変調成分がフィルタで抽出される。図3(D)は、縦軸に脈波血圧変調強度を示し、横軸に時間を示すグラフで、脈波血圧性変調波形の例を示している。脈波血圧性変調波形3dは、脈波振幅からフィルタで抽出された血圧性変調成分を表し、凡そ0.05Hz〜0.15Hz帯で示される。この脈波血圧性変調波形3dは、「MW(Mayer Wave)成分」に相当する。
また、図3(C)の脈拍間隔の変化波形3cを用いて、脈拍間隔から呼吸性の変動を除去した血圧性変調成分が抽出される。図3(E)では、縦軸に血圧性変調強度を示し、横軸に時間を示すグラフで、脈拍血圧性変調波形の例を示している。脈拍血圧性変調波形3eは、脈拍間隔からフィルタで抽出された血圧性変調を表し、凡そ0.05Hz〜0.15Hz帯で示される。この脈拍血圧性変調波形3eは、「MWSA(Mayer Wave sinus arrhythmia)成分」に相当する。
図3(E)において、図3(D)の脈波血圧性変調波形3dに対する遅延時間δTを示している。遅延時間δTは、脈波血圧性変調波形3dのピークから遅延して、脈拍血圧性変調波形3eのピークが到来するまでの遅延時間を示す。
脈波血圧性変調波形3dのピーク及び脈拍血圧性変調波形3eのピークをそれぞれ基準点として遅延時間δTが算出される。脈拍血圧性変調波形3eのピーク間を基準周期Tとし、δT/Tにより規格化することで位相差θを算出できる。位相差θは、0〜1の値をとる。
図3(F)は、時間経過における位相差θの例を示している。位相差θが1に近い程、心拍数が上がる状態の差、即ち、血圧が上がる状態の差を示す。位相差θは、血圧制御の強さを示し、分散の大小が相関最大値に相当すると考えられる。図3(F)では、位相差θの時間的変化を示す位相差時系列データ3f(図5)をグラフで表している。
また、図3(F)の位相差θに時間的変化を参照して、判定指標5(図4)に基づく分類状態の発生率を示す頻度分布4が作成される。頻度分布4と判定指標5との関係について説明する。
図4は、頻度分布4と判定指標5との関係を説明するための図である。図4(A)では、位相差θを用いて、判定指標5に基づく分類状態の頻度(発生率)の一例を示している。位相差θが、
0.0以上から0.3未満の場合を「下限ノイズ」とし、
0.3以上から0.4未満の場合を「下限乱調」とし、
0.4以上から0.6未満の場合を「単調」とし、
0.6以上から0.8未満の場合を「定常」とし、
0.8以上から0.9未満の場合を「上限乱調」とし、
0.9以上から1.0以下の場合を「上限ノイズ」とした、
例を示している。この判定指標5では、下限ノイズ、下限乱調、単調、定常、上限乱調、及び上限ノイズの5つの分類状態が定められる。
例えば、1分、2分等の一定時間毎に、出現した分類状態の頻度(発生率)を示す頻度分布4を作成する。作成した頻度分布4に基づいて、眠気値6を算出する。まず、頻度分布4から、分類状態「単調」が出現した頻度と、分類状態「定常」が出現した頻度とを取得する。そして、図4(B)に示すように、眠気値6は、分類状態「単調」の頻度と分類状態「定常」の頻度の合計に対する、分類状態「単調」の頻度から分類状態「定常」の頻度を減算した値の比率で表される。
単純には、眠気値6が0以上の場合に、ドライバ160に眠気ありと判断し、眠気値6が0未満の場合に、ドライバ160に眠気なしと判断する。このようにして得られる眠気値6は、脈波及び脈拍のそれぞれの血圧性変調成分に基づいて得られる値である。つまり、イヤクリップ等の脈拍センサ110を用いた場合であっても、ドライバ160の血圧情報を、簡便に得ることができる。
また、頻度分布4から、分類状態「上限乱調」の頻度と、分類状態「下限乱調」の頻度とを取得する。そして、図4(C)に示すように、覚醒努力度7は、分類状態「上限乱調」の頻度と分類状態「下限乱調」の頻度の合計に対する、分類状態「上限乱調」の頻度から分類状態「下限乱調」の頻度を減算した値の比率で表される。
更に、頻度分布4から得られた眠気値6と覚醒努力度7とから心身調和度8を求める。心身調和度8の求め方については後述される。
第1の実施形態では、心身調和度8を求めることに加え更に、呼吸に係る活動成分を考慮することにより、眠気判定の精度を改善する。また、心身調和状態を判定する方法を含め、第1の実施形態として説明される眠気判定の手法は、後述される第2の実施形態及び第3の実施形態においても同様である。
次に、第1の実施形態において、心身調和状態を判定する方法を実現するナビゲーション装置120の機能構成について説明する。図5は、眠気判定装置の一例であるナビゲーション装置の機能構成を示す図である。
図5において、ナビゲーション装置120は、眠気判定部121と、警報部122とを有する。眠気判定部121と、警報部122とは、CPU201が対応するプログラムを実行することで行われる処理により実現される。
また、記憶部230は、脈波信号値3sg、作業データ242、243、244、及び245、総合覚醒判定結果26a等が記憶される。
眠気判定部121は、ドライバ160の覚醒状態を精度よく解析し、眠気の状態を精度よく判定する。眠気判定部121は、更に、脈波信号取得部41と、振幅解析部42と、間隔解析部43と、心身調和解析部44と、活動解析部45と、総合覚醒判定部46とを有する。
脈波信号取得部41は、脈拍センサ110より出力された脈波信号を受信して、脈波信号値3sgを取得して時系列に記憶部230に記憶する。車両150がIG(Ignition)−ONの状態で、ドライバ160が脈拍センサ110を耳たぶに装着することで、脈拍センサ110から脈波信号が出力される。これにより、脈波信号取得部41は、脈波信号値3sgを取得して、記憶部230に記憶する。
振幅解析部42は、記憶部230に記憶されている脈波信号値3sgに基づいて、各時刻におけるドライバ160の脈波振幅を抽出することで、脈波振幅の時間変化を算出し、算出した脈波振幅の時間変化について解析を行う。
振幅解析部42は、脈波振幅を抽出する際、振幅異常値を除去し、除去した回数を示す異常値頻度9を記憶部230の作業データ242に記憶する。振幅解析部42は、振幅異常値が除去された脈波信号値3sgをサンプリング(リサンプリング)して、脈波3wを得る。
振幅解析部42は、リサンプリングにより得られた脈波3wから、各時刻におけるドライバ160の脈波振幅を抽出し、抽出した脈波振幅から血圧性成分をフィルタで抽出する。具体的には、脈波血圧性振幅42bを得る。脈波血圧性振幅42bは、記憶部230の作業データ242に格納される。
更に、振幅解析部42は、血圧性成分として、脈波3wの脈波振幅(図3(A))から血圧性変調成分をフィルタで抽出し、脈波血圧性変調波形3d(図3(D))を取得する。脈波血圧性変調波形3dは記憶部230の作業データ242に記憶される。脈波血圧性変調波形3dから、後述する脈波血圧性変調信号3dp(図6)を得ることができる。
また、振幅解析部42は、脈波3wの振幅から呼吸性成分をフィルタで抽出する。具体的には、脈波呼吸性振幅42aを得る。脈波呼吸性振幅42aは、記憶部230の作業データ242に格納される。
間隔解析部43は、記憶部230の作業データ242に記憶されている脈波3wを微分することで得られた微分振幅波形3bを用いて、各時刻におけるドライバ160の脈波間隔を抽出することで、脈波間隔の時間変化を算出し、脈拍血圧性変調波形3eを取得する。
間隔解析部43は、微分振幅波形3bを用いて脈波間隔を抽出する際、間隔異常値を除去した微分振幅波形3bを用いて更にサンプリング(リサンプリング)して、微分最大間隔を示す脈拍間隔の変化波形3c(図3(C))を得る。脈波間隔の変化波形3cは、記憶部230の作業データ243に記憶される。
間隔解析部43は、脈波間隔の変化波形3cを用いて、脈拍間隔から血圧性変調(MWSA)成分をフィルタで抽出する。具体的には、脈拍血圧性変調波形3eを得る。
更に、間隔解析部43は、脈波間隔の変化波形3cを用いて、脈拍間隔から呼吸性成分をフィルタで抽出する。具体的には、呼吸性不整脈(RSA)周波数43aを得る。RSA周波数43aは、記憶部230の作業データ243に格納される。
心身調和解析部44は、作業データ242にある脈波血圧性変調波形3dから得られる脈波血圧性変動信号3dp(図6)と、作業データ243にある脈拍血圧性変調波形3eから得られる脈拍血圧性変動信号437dとから基準周期Tに対する位相差θを求めて、眠気値6を算出する。
心身調和解析部44は、時刻ごとの位相差θを示す位相差時系列データ3fを得て、一定間隔(例えば、1分、2分等)ごとに頻度分布4を作成し、頻度分布4に基づいて、眠気値6を算出する。位相差時系列データ3f、頻度分布4、及び眠気値6のそれぞれが、記憶部230の作業データ244に記憶される。
更に、心身調和解析部44は、頻度分布4を参照して、下限乱調の頻度と上限乱調の頻度とから覚醒努力度7を求める。そして、心身調和解析部44は、求めた眠気値6と覚醒努力度7とから心身調和度8を求める。
活動解析部45は、ドライバ160の精神的活性状態と身体的活性状態とを判定する。精神的活性状態は、副交感神経の活性程度を表わし、身体的活性状態は、交換神経の活性程度を表わす。活動解析部45は、更に、身体的能動活動判定部451と、活動水準評価部452と、身体的能動活動判定部453(図6)とを有する。
精神的活性度54aは、精神的能動活動判定部451(図6)によって、作業データ242内の脈波呼吸性振幅42aと脈波血圧性振幅42bとを用いて算出される。精神的活性度54aに基づいて、ドライバ160の精神的活性状態を表わす精神的活性状態データ45gが決定され、記憶部230の作業データ245に記憶される。
また、身体的活性度45cは、身体的能動活動判定部453(図6)によって、活動水準評価部452(図6)が作業データ243のRSA周波数43aと心拍数43bとを用いて算出した活性化係数45bと、作業データ242内の異常値頻度9とに基づいて算出される。精神的活性度54aと、活性化係数45b及び身体的活性度45cとは、記憶部230の作業データ245に記憶される。身体的活性度45cに基づいて、ドライバ160の身体的活性状態を表わす身体的活性状態データ45hが決定され、記憶部230の作業データ245に記憶される。
総合覚醒判定部46は、眠気値6と、精神的活性度54aと、身体的活性度45cとを用いて、総合的に、ドライバ160の覚醒度を判定する。即ち、ドライバ160に眠気があるか否かを精度よく判定する。総合覚醒判定結果46aが記憶部230に出力され記憶される。総合覚醒判定部46は、総合覚醒判定結果46aが眠気ありを示す場合、警報部122に通知する。
また、総合覚醒判定部46は、位相差時系列データ3fに基づいて、1分、2分等の一定間隔ごとに、位相差θのメディアン値(中央値)及び/又は平均値を算出して、位相差θの変化を表わす、即ち、眠気状態を表わすグラフを表示装置140に表示してもよい。
警報部122は、総合覚醒判定部46からの通知に応じて、スピーカ装置130に、予め規定した警報情報を音声出力する。あるいは、警報部122は、表示装置140に、予め規定した警報情報を表示出力する。
このように、第1の実施形態におけるナビゲーション装置120は、イヤクリップ型の脈拍センサ110から得られた脈波信号値3egから眠気値6に加えて、心身に係る情報を得て、総合的にドライバ160の覚醒度を精度よく判定することができる。
次に、振幅解析部42から活動解析部45の詳細な機能構成例について説明する。図6は、解析に係る詳細な機能構成例を示す図である。図6において、まず、振幅解析部42は、時系列データ作成部421と、振幅異常値除去部423と、リサンプリング部425と、脈波信号解析部427とを有し、CPU201が対応するプログラムを実行することで行われる処理により実現される。
時系列データ作成部421は、記憶部230に記憶された時系列の脈波信号値3sgから、時系列に脈波振幅を示した時系列データを作成する。振幅異常値除去部423は、上限閾値を超える脈波振幅及び下限閾値を超える脈波振幅を振幅異常値と判定し、時系列データから除去する。振幅異常値を除去する際、振幅異常値除去部423は、異常値が出現する頻度を算出し、異常値頻度9を出力する。
リサンプリング部425は、異常値を除去した時系列データから振幅値をサンプリングする。リサンプリングにより脈波3w(図3(A))を得る。
脈波信号解析部427は、脈波3wの振幅を解析して、呼吸性成分(BPF1)427aと血圧性成分427b(BPF2)とを抽出し、呼吸性成分427aからは脈波呼吸性振幅42aを算出し、血圧性成分427bからは脈波血圧性振幅42bを算出する。
呼吸性成分427aを表わす波形から一定期間における時系列の最大値及び最小値のピーク値データ427cが抽出される。脈波呼吸性振幅42aは、抽出されたピーク値データ427cを用いて算出される。
同様に、血圧性成分427bを表わす波形から一定期間における時系列の最大値及び最小値のピーク値データ427eが抽出される。脈波血圧性振幅42bは、抽出されたピーク値データ427eを用いて算出される。
また、血圧性成分427bから脈波血圧性変動信号3dpを取得する。脈波血圧性変動信号3dpは、図3(A)及び図3(D)で説明した、血圧性成分427bから得られる脈波血圧性変調波形3dから得られる。
間隔解析部43は、脈波微分処理部430と、時系列データ作成部431と、間隔異常値除去部433と、リサンプリング部435とを有し、CPU201が対応するプログラムを実行することで行われる処理により実現される。
脈波微分処理部430は、振幅解析部42のリサンプリング部425により得られた脈波3wから微分脈波を算出し、微分振幅波形3bを得る。
時系列データ作成部341は、記憶部230に記憶された微分振幅波形3bから、時系列に脈拍間隔を示した時系列データを作成する。間隔異常値除去部433は、上限閾値を超える脈拍間隔及び下限閾値を超える脈拍間隔を間隔異常値と判定し、時系列データから除去する。
リサンプリング部435は、異常値を除去した時系列データから間隔値をサンプリングする。リサンプリングにより得た脈波は、脈拍間隔の変化波形3c(図3(C))に相当する。
脈拍信号解析部437は、脈拍間隔の変化波形3cを解析して、血圧成分(BPF2)437aと呼吸成分(LPF)437bとを抽出する。血圧成分437aからは振幅437c及び脈拍血圧性変動信号437dを取得する。脈拍血圧性変動信号437dは時刻とともに取得される。取得した脈拍血圧性変動信号437dの間隔から脈拍間隔の変化波形3cを得られる。
また、呼吸成分437bからにおいても、振幅437e及び波形ピーク値437fが算出される。波形ピーク値437fは時刻とともに取得される。算出した波形ピーク値437fに基づいてRSA周波数43aを得る。
血圧成分437a、振幅437c、脈拍血圧性変動信号437d等は、血圧性心拍変動帯データ437−1に含まれる。また、呼吸成分437b、振幅437e、波形ピーク値437f、RSA周波数43a等は、呼吸性心拍変動帯データ437−2に含まれる。
心身調和解析部44は、血圧周期遅延算出部440と、頻度分布作成部441と、眠気値取得部443と、覚醒努力度取得部445と、心身調和度取得部447とを有する。
血圧周期遅延算出部440は、脈波血圧性変動信号3dpと脈拍血圧性変動信号437dとを用いて位相差θを求める。頻度分布作成部441は、血圧周期遅延算出部440が求めた位相差θから位相差時系列データ3f(図3(f))を得て、一定期間(例えば、1分、2分等)ごとの判定指標頻度を示す頻度分布4(図4(A))を作成する。
頻度分布4は、7〜15秒等の一定周期ごとに更新される。更新毎に、判定指標5に基づいて各分類状態の発生率を求める。更新時から遡って一定範囲の対象時間において算出した位相差θの値の総数に対する各分類状態の位相差θの値の個数の割合を求めればよい。
また、判定指標5の各範囲で出現する位相差θの頻度分布4の特徴は、通常、0.5を中心に0.4から0.8程度に集約し、分類状態「乱調」ではその周辺に分布することから、図4(A)に示すような頻度分布4を得ることができる。
眠気値取得部443は、頻度分布4を用いて、分類状態「単調」の頻度と分類状態「定常」の頻度とを取得し、図4(B)の式に基づいて、眠気値6を算出する。眠気値6の算出方法は、図4(B)に示す通りである。
覚醒努力度取得部445は、頻度分布4を参照して、分類状態「下限乱調」の頻度と分類状態「上限乱調」の頻度とから覚醒努力度7を求める。
覚醒努力度 = (上限乱調の頻度 − 下限乱調の頻度)
÷(上限乱調の頻度 + 下限乱調の頻度)
で算出される。
ここで、図4(A)の判定指標5の分類を別の覚醒状態の表現に対応付けた例を以下に示す。
下限ノイズ:異常値
下限乱調 :朦朧
単調 :低調または低覚
定常 :覚醒
上限乱調 :高揚
上限ノイズ:異常値
すなわち、覚醒努力度7は、分類状態「高揚」の頻度と分類状態「朦朧」の頻度とで表されると言ってもよい。同様に、図4(B)に示す眠気値6は、分類状態「低覚」の頻度と分類状態「覚醒」の頻度とで表されると言ってもよい。
図4(B)の眠気値6の計算式および上述した覚醒努力度7の計算式は、
眠気値 = (Σ覚醒 − Σ低覚)/(Σ覚醒 + Σ低覚)
覚醒努力度 = (Σ高揚 − Σ朦朧)/(Σ高揚 + Σ朦朧)
と表してもよい。
心身調和度取得部447は、眠気値6と覚醒努力度7とを用いて、以下の条件に基づいて、心身調和度8を
・眠気値 ≧ 0、かつ、覚醒努力度 <0 の場合、
「覚醒状態」であると判断し、心身調和度 < 0 に設定する
・眠気値 < 0、かつ、覚醒努力度 =0 の場合、
「眠気あり」であると判断し、心身調和度 = 0 に設定する
・眠気値 < 0、かつ、覚醒努力度 >0 の場合、
「強い眠気あり」であると判断し、心身調和度 > 0 に設定する
ことにより得る。心身調和度8は、ドライバ160の心身が良く調和されている程、より大きい負の値をとり、心身が不安定でバランスが悪い程、より大きい正の値を示す。
活動解析部45の身体的能動活動判定部451は、脈波呼吸性振幅42aと脈波血圧性振幅42bとを用いて、精神的活性度45aを算出する。精神的活性度45aは、
精神的活性度 = 脈波呼吸性振幅 ÷ 脈波血圧性振幅
によって求められる。
身体的能動活動判定部451は、更に、逐次精神的活動度、精神的活性度の時間変化、及び平均精神的活性度の偏差を求める。更に、基準偏差を用いて、精神的活性度45aは、精神的活性状態の判定条件に従って、精神的活性状態を、「リラックス傾向」、「緊張傾向」、「覚醒努力中」、及び「格闘中(強烈な覚醒努力)」の4つのいずれかに分類する。
一例として、
逐次精神的活性度 ≧ 基準偏差 且つ 精神的活性度の時間変化 ≧ 0
を満たす場合、「リラックス傾向」である、
逐次精神的活性度 < 基準偏差 且つ 精神的活性度の時間変化 < 0
を満たす場合、「緊張傾向」である、
平均精神的活性度の偏差 > 基準偏差
を満たす場合、「覚醒努力中」である、
平均精神的活性度の偏差 > 基準偏差×2
を満たす場合、「格闘中(強烈な覚醒努力)」である
と判定し、その判定結果を示す精神的能動活動状態データ45gが作業データ245に記憶される。
次に、身体的能動活動の判定方法について説明する。活動解析部45の活動水準評価部452は、RSA周波数43aと心拍数43bとを用いて、活性化係数45bを算出する。活性化係数45bは、活動に必要な代謝係数から換算する。活動に必要な代謝係数を心拍数と呼吸数の比(心拍数/呼吸数)で定義する。代謝係数は、
3.0から3.5程度で「安静状態」
3.5から4.5程度で「快調運転状態」
4.5以上で「過負荷状態」
であると判定することができる。呼吸数は、RSA周波数43aから得られる。
そこで、安静に対する代謝係数として
活性化係数 = 代謝係数/3
と再定義する。
従って、身体的活性度を
身体的活性度 = 過剰応答係数 × 活性化係数
= (異常値の発生率/標準偏差)
× (心拍数/3倍の呼吸数)
により求め、身体的活性状態に関する統計条件により判定する。
判定の一例として、
身体的活性度の時間変化 < 分散値
を満たす場合、平静または順応中を示す「リラックス傾向(活動低調)」である
身体的活性度の時間変化 ≧ 分散値
を満たす場合、活性または覚醒努力中を示す「緊張傾向(活動順調)」である
身体的活性度の時間変化 ≧ 分散値×2
を満たす場合、イライラまたは格闘中を示す「過緊張応答(活動高調)」である
と判定し、その判定結果を示す身体的活性状態データ45hが作業データ245に記憶される。
心身調和解析部44によって眠気値6及び覚醒努力度7、及び、活動解析部45によって精神的能動活動状態データ及び身体的能動活動状態データとが得られると、総合覚醒判定部46によってドライバ160の覚醒状態が総合的に判定される。
総合覚醒判定部46は、記憶部230の作業データ244に含まれる眠気値6及び覚醒努力度7を取得し、また、記憶部230の作業データ245から精神的活性状態データ45g及び身体的活性状態データ45hを取得する。
総合覚醒判定部46は、これら、眠気値6及び覚醒努力度7と、精神的活性状態データ45g及び身体的活性状態データ45hとから総合的にドライバ160の眠気の程度を、以下示す推定状態1〜6のいずれかであると判定する。
<推定状態1>眠気あり(覚醒努力型)
精神的活性状態データ45gが「覚醒努力中」を示し、
身体的活性状態データ45hが「活動順調」を示し、かつ、
心身調和度≧0である条件を満たす場合に判定される。
<推定状態2>疲労あり(緊張傾向)
精神的活性状態データ45gが「緊張傾向」を示し、
身体的活性状態データ45hが「活動低調」を示し、かつ、
心身調和度<0である条件を満たす場合に判定される。
<推定状態3>眠気なし(集中)
精神的活性状態データ45gが「リラックス傾向」を示し、
身体的活性状態データ45hが「活動高調」を示し、かつ、
心身調和度≧0である条件を満たす場合に判定される。
<推定状態4>眠気あり(漫然または朦朧)
精神的活性状態データ45gが「格闘中(強烈な覚醒努力)」を示し、
身体的活性状態データ45hが「活動低調」を示し、かつ、
心身調和度≧0である条件を満たす場合に判定される。
<推定状態5>高ストレス状態(興奮)
精神的活性状態データ45gが「緊張傾向」を示し、
身体的活性状態データ45hが「活動高調」を示し、かつ、
心身調和度<0である条件を満たす場合に判定される。
<推定状態6>定常(通常運転状態)
精神的活性状態データ45gが「リラックス傾向」を示し、
身体的活性状態データ45hが「活動順調」を示し、かつ、
心身調和度<0である条件を満たす場合に判定される。
総合覚醒判定部46は、判定した推定状態を示す総合覚醒判定結果46aを記憶部230に記憶する。また、総合覚醒判定結果46aが、推定状態1又は4である場合、総合覚醒判定部46は、警報部122に通知する。
警報部122は、総合覚醒判定部46からの通知に応じて、ドライバ160を眠気から覚ますために、経路案内、渋滞、工事等の道路交通情報等の運転に気持ちを向けさせる情報提供を行う。
図7は、振幅解析部による解析処理を説明するための図である。図7において、振幅解析部42では、縦軸に脈波信号値を、横軸に時間を示した脈波信号値3sgに対して、時系列データ作成部421が、周期毎に上ピーク値及び下ピーク値を抽出する。
時系列データ作成部421は、上下のピーク値ごとに振幅(脈拍振幅)を算出する。脈波信号値3sgの場合、ピークそれぞれに基づいて、時刻t〜t11等に対応する脈拍振幅として、脈拍振幅A〜A11等を算出することで、時系列データ421dを作成する。
次に、振幅異常値除去部423は、時系列データ421dから異常値を除去して、異常値頻度9を記憶部230の作業データ243に出力する。その後、リサンプリング部425が、異常値除去後の時系列データ421dからサンプリングする。このリサンプリング後の波形が脈波血圧性変調波形3dである。縦軸に脈波血圧変調強度を、横軸に時間を示している。時系列に脈波血圧性変調波形3dの脈波振幅の値を示すデータ例が記憶部230に記憶される。
脈波血圧性変調波形3dをフィルタ後、周期区間の最大ピーク値と最小ピーク値とから振幅を取得することで、最大ピーク間隔又は最小ピーク間隔から周期Tを算出できる。呼吸性成分427a及び血圧性成分427bに対してそれぞれで、時系列に最大ピーク値と最小ピーク値とを抽出することで、時系列に周期Tごとの最大値及び最小値のを示したピーク値データ427cを得ることができる。同様に、血圧性成分427bに関しても、時系列に周期Tごとの最大値及び最小値を示したピーク値データ427eを得ることができる。
脈波信号解析部427は、得られたピーク値データ427cから脈波呼吸性振幅42aを算出し、また、ピーク値データ427eから脈波血圧性振幅42bを算出する。更に、脈波信号解析部427は、ピーク値データ427eを用いて、脈波血圧性変調波形3dを得ることで、脈波血圧性変動信号3dpを算出する。
図8は、間隔解析部による解析処理を説明するための図である。図8において、間隔解析部43では、脈波微分処理部430が、縦軸に振幅を、横軸に時間を示した脈波3wから微分脈波を算出することで、脈波の微分振幅波形3bを得る。
時系列データ作成部431は、脈波の微分振幅波形3bから上ピーク値を抽出する。時系列データ作成部431は、抽出した上ピーク値の間隔を算出し、上ピーク値の時刻t〜t11等に対応する脈拍振幅として、脈拍振幅A〜A11等を算出することで、時系列データ431dを作成する。そして、間隔異常値除去部433は、時系列データ431dから異常値を除去する。
その後、リサンプリング部435が、異常値除去後の時系列データ431dからサンプリングする。このリサンプリングにより、脈拍血圧性変調波形3eを得る。脈拍血圧性変調波形3eは、縦軸に血圧性変調強度を、横軸に時間を示している。時系列に脈拍血圧性変調波形3eの脈拍振幅の値を示すデータ例が記憶部230に記憶される。
脈拍血圧性変調波形3eをフィルタ後、周期区間の最大ピーク値と最小ピーク値とから振幅を取得することで、最大ピーク間隔又は最小ピーク間隔から周期Tを算出できる。このような処理により、呼吸成分437bを抽出することで、時系列に振幅437e及び波形ピーク値437fを得ることができる。よって、RSA周波数43aを得る。同様に、血圧成分437aに関しても、時系列に振幅437c及び脈拍血圧性変動信号437dを得ることができる。
次に、心身調和解析部44による心身調和解析処理について説明する。図9は、心身調和解析処理を説明するためのフローチャート図である。
図9において、心身調和解析部44では、血圧周期遅延算出部440が、脈波血圧性変動信号3dpと、脈拍血圧性変調信号437dとを用いて、各ピークごとの時間差δTを求める(ステップS631)。血圧周期遅延算出部440は、脈波血圧性変調波形3d又は脈拍血圧性変調波形3eの周期Tに対する時間差δTの割合を算出することで位相差θを求める(ステップS632)。求めた位相差θを位相差時系列データ3fに、時刻とともに記録する。
そして、血圧周期遅延算出部440は、求めた位相差θが収束しているか否かを判定する(ステップS633)。例えば、位相差θの時刻から過去一定の範囲に遡って、位相差θの最大値と最小値との差が0.6以下である場合に、その過去一定の範囲を眠気値6、覚醒努力度7、及び心身調和度8を算出する対象範囲として定める。
求めた位相差θが収束していない場合(ステップS633のNO)、血圧周期遅延算出部440は、ステップS631へと戻り、上記同様の処理を繰り返す。一方、求めた位相差θが過去一定の範囲で収束している場合(ステップS633のYES)、血圧周期遅延算出部440は、位相差θの時刻から過去一定の範囲を対象範囲に設定する(ステップS634)。
頻度分布作成部441は、対象範囲において、判定指標5に基づいて、分類状態の発生率から頻度分布4を作成する(ステップS635)。
そして、眠気値取得部443は、頻度分布4を参照して眠気値6を算出する(ステップS636)。眠気値取得部443は、頻度分布4から分類状態「単調」の頻度と、分類状態「定常」の頻度とを取得して眠気値6を算出し、記憶部230の作業データ244に記憶する。
また、覚醒努力度取得部445は、頻度分布4を参照して覚醒努力度7を算出する(ステップS637)。覚醒努力度取得部445は、頻度分布4から分類状態「上限乱調」の頻度と、分類状態「下限乱調」の頻度とを取得して覚醒努力度7を算出し、記憶部230の作業データ244に記憶する。
眠気値6と覚醒努力度7とが算出されると、心身調和度取得部447が、眠気値6と覚醒努力度7とから心身調和度8を取得する(ステップS638)。得られた心身調和度8は、記憶部230の作業データ244に記憶される。その後、心身調和解析部44は、この心身調和解析処理を終了する。このフローチャートにおいて、ステップS636はステップS637の後に行われてもよい。眠気値6の算出と覚醒努力度7の算出の順は任意である。
次に、活動解析部45による活動解析処理について説明する。図10は、活動解析処理を説明するためのフローチャート図である。
図10において、活動解析部45では、精神的能動活動判定部451が、記憶部230の作業データ242から脈波呼吸性振幅42aと脈波血圧性振幅42bとを読み込んで、精神的活性度45aを算出する(ステップS721)。
精神的能動活動判定部451は、算出した精神的活性度45aを用いて、精神的活性状態の判定条件に基づいて、「リラックス傾向」、「緊張傾向」、「覚醒努力中」、または「格闘中(強烈な覚醒努力)」のいずれであるかを判定する(ステップS722)。
精神的能動活動判定部451は、精神活性状態の判定結果を示す精神的活性状態データ45gを出力する(ステップS723)。精神的活性状態データ45gは、記憶部230の作業データ245内に記憶される。
次に、活動水準評価部452は、記憶部230の作業データ242から異常値頻度9と、作業データ243のRSA周波数43aと心拍数43bとを読み込む(ステップS724)。
活動水準評価部452は、RSA周波数43aに対する心拍数43bの比を求めることで、活性化係数45bを求める(ステップS725)。活動に必要な代謝係数を考慮する場合には、RSA周波数43aを3倍した値を用いるようにする。
また、活動水準評価部452は、異常値頻度9を標準偏差で割ることで、過剰応答係数を求める(ステップS726)。そして、活動水準評価部452は、過剰応答係数に活性化係数45bを乗算することで、身体的活性度45cを算出する(ステップS727)。
活動水準評価部452は、得られた身体的活性度45cを用いて、身体的活性状態に関する統計条件に基づいて、「リラックス傾向(活動低調)」、「緊張傾向(活動順調)」、または「過緊張応答(活動高調)」のいずれであるかを判定する(ステップS278)。
活動水準評価部452は、身体活性状態の判定結果を示す身体的活性状態データ45hを出力する(ステップS729)。身体的活性状態データ45hは、記憶部230の作業データ245に記憶される。
次に、総合覚醒判定部46による総合覚醒判定処理について説明する。図11は、総合覚醒判定処理を説明するためのフローチャート図である。図11において、総合覚醒判定部46は、記憶部230の作業データ244内の位相差時系列データ3fを読み込む(ステップS831)。
総合覚醒判定部46は、位相差時系列データ3fを用いて、短期間及び中期間のそれぞれで逐次位相差時系列データSH1及びSH2を作成する(ステップS832)。また、総合覚醒判定部46は、位相差時系列データ3fを用いて、短期間及び中期間のそれぞれで移動平均位相差時系列データSH3及びSH4を作成する(ステップS833)。例えば、短期間は1分間隔で、中期間は2分間隔等である。ドライバ160等のユーザにより適宜設定可能としてもよい。また、移動平均の他に、メディアン方式で位相差時間列データを取得するようにしてもよい。
総合覚醒判定部46は、ユーザの設定に基づいて、作成した位相差時系列データSH1〜SH4のいずれかをグラフ化して表示装置140に表示する(ステップS834)。ユーザは、予め表示するグラフを指定しておいてもよい。または、位相差時系列データSH1〜SH4のいずれかを規定値とし、表示装置140への表示とともに、操作ボタンを表示させ、ユーザの操作に応じて、グラフを切り替えてもよい。上述したステップS831〜S834は、省略してもよい。また、総合覚醒判定部46とは別の処理部として実装されてもよい。
一方、総合覚醒判定部46は、記憶部230の作業データ244から心身調和度8と、作業データ245から精神的活性状態データ45g及び身体的活性状態データ45hとを読み込む(ステップS851)。
総合覚醒判定部46は、心身調和度8と、精神的活性状態データ45gと、身体的活性状態データ45hとに基づいて、
「眠気あり(覚醒努力型)」、
「疲労あり(緊張傾向)」、
「眠気なし(集中)」、
「眠気あり(漫然または朦朧)」、
「高ストレス状態(興奮)」、または
「定常(通常運転状態)」
のいずれかを判定する(ステップS852)。推定状態1〜6のいずれかが定まる。
総合覚醒判定部46は、判定した値を示す総合覚醒判定結果46aを記憶部230に記憶する(ステップS853)。そして、総合覚醒判定部46は、総合覚醒判定結果46aが、「眠気あり(覚醒努力型)」又は「眠気あり(漫然または朦朧)」を示すか否かを判定する(ステップS854)。総合覚醒判定結果46aが、「眠気あり(覚醒努力型)」又は「眠気あり(漫然または朦朧)」のいずれも示さない場合(ステップS854のNO)、総合覚醒判定部46は、この総合覚醒判定処理を終了する。
一方、総合覚醒判定結果46aが、「眠気あり(覚醒努力型)」又は「眠気あり(漫然または朦朧)」を示す場合(ステップS854のYES)、総合覚醒判定部46は、警報部122へ「眠気あり」を通知して、この総合覚醒判定処理を終了する。
警報部122は、「眠気あり」の通知を受けると、ドライバ160が運転に集中するように促す情報(以下、「運転支援情報」という)を、スピーカ装置130及び表示装置140の少なくとも1つ以上で出力させる。
図12は、運転支援情報の例を示す図である。図12において、スピーカ装置130から「100メートル先で左折です。前方に人影があります。注意して下さい。」等の運転支援情報49が出力される。
本実施例では、眠気を警告する情報を出力するのではなく、ドライバ160の運転を支援する情報を提供する。図12の例の他、
「20メートル先の交差点は事故多発地帯です。」
「10メートル先に人影があります。」
「前車両に接近しています。」
等、道路交通情報、事故情報、又は、車両150に搭載された様々な検知センサにより検知された情報等をドライバ160に、スピーカ装置130及び表示装置140の少なくとも1つ以上から提供する。上述より、眠気判定装置としてのナビゲーション装置120は、運転支援装置でもあるといえる。後述される第2の実施形態および第3の実施形態においても同様である。
検知センサには、車両周辺の画像を取り込んで画像処理を施すことで、人、車両等の対象物を検出するソフトウェアも含まれる。
次に、判定指標5の他の例について、分類状態との関係を図13で例示する。図13は、判定指標と分類状態との関係を示す図である。図13において、第1判定指標は、位相差θを逐次処理によって算出した場合に相当する。上述したような判定指標5が第1判定指標に相当する。
他の例として、1分、2分等の間隔において、複数の位相差θを算出してその最大値と最小値との中間値を採用するメディアン方式の場合の第2判定指標が考えられる。図13では、第2判定指標を採用した場合、位相差θが
0.0以上から0.4満の場合を「異常値」とし、
0.4以上から0.6未満の場合を「低覚(やや眠い)」とし、
0.6以上から0.8未満の場合を「覚醒(快調)」とし、
0.8以上から1.0以下の場合を「異常値」とした、
例を示している。
更なる他の例として、1分、2分等の間隔において、複数の位相差θを算出してその最大値と最小値との平均値を採用する平均方式の場合の第3判定指標が考えられる。図13では、第3判定指標を採用した場合、位相差θが
0.0以上から0.2満の場合を「異常値(ノイズ)」とし、
0.3以上から0.4未満の場合を「眠い(覚醒努力中)」とし、
0.4以上から0.6未満の場合を「低覚醒(やや眠い)」とし、
0.6以上から0.8未満の場合を「高覚醒」とし、
0.8以上から0.9未満の場合を「眠い(覚醒努力中)」とし、
0.9以上から1.0以下の場合を「異常値(ノイズ)」とした、
例を示している。
図13に示した種々の例のいずれかに限定するものではない。各分類状態を判定するための位相差θの閾値条件は、適宜設定されてもよい。例えば、ドライバ160個人に適合した閾値条件は変更してもよい。特に、分類状態「定常(適正)」と分類状態「単調(低調)」との境界値を調整することで、誤検知率を改善できる場合がある。
図14は、閾値条件の変更例を示す図である。図14では、分類状態「定常(適正)」と分類状態「単調(低調)」との境界値の0.6を0.575に下げる調整をした例を示している。第1判定指標において、分類状態「定常(適正)」を判定する閾値条件の下限値を、又は、分類状態「単調(低調)」のを判定する閾値条件の上限値を、0.6から0.575に下げる調整をしたと言える。一方、分類状態の閾値条件の上限値又は下限値を上げる調整をしてもよい。
図15は、位相差θの遷移の例を示す図である。図15(A)では、既存技術8aと、ドライバ160自身が眠いと判定した自己申告8bとを、時系列に示している。自己申告8bでは、眠いと判定した間は値は1を示し、眠気のない間は値は0を示す。
図15(A)における既存技術8aは、車両のステアリングホイール(ハンドル)に脈波を測定する測定部を設け、測定部が取得した脈波データをデジタル信号に変換して得た値を示している。
図15(B)では、本実施例において、2分間隔としメディアン方式を採用した場合の位相差θの値変化8cを示している。図15(C)は、ドライバ160の血圧位相変調の変化を示している。
図15(C)からでは、ドライバ160の眠気を判定するのは困難であるが、図15(B)では、位相差θの値変化8cの初期の段階では、分類状態「覚醒」の上限値「0.8」を頻繁に超えて分類状態「異常値」を示すが、自己申告8bが1を示す2つの時間領域R1及びR2では、その傾向が収束している。
したがって、図15(B)の本実施例における位相差θの値変化8cを用いることにより、2つの時間領域R1及びR2において、眠気の判定を精度良く行える。一方、図15(A)の既存技術8aでは、自己申告8bとの適合性が乏しく、精度良くドライバ160の眠気を判定するのは困難である。
図16は、位相差θの遷移の例を示す図である。図16(A)では、既存技術8aと、ドライバ160自身が眠いと判定した自己申告8bとを、時系列に示している。既存技術8a及び自己申告8bは、図15(A)と同様である。また、図16(C)は、図15(C)と同じグラフである。
図16(B)では、本実施例において、1分間隔とし平均方式を採用した場合の位相差θの値変化8dを示している。図16(B)の位相差θの値変化8dは、上下の変動が大きく収束していないが、自己申告8bが1を示す2つの時間領域R1及びR2では、その傾向が収束している。
したがって、図16(B)の本実施例における位相差θの値変化8dを用いた場合でも、2つの時間領域R1及びR2において、眠気の判定を精度良く行える。一方、図16(A)の既存技術8aは、図15(A)と同様に、自己申告8bとの適合性が乏しく、精度良くドライバ160の眠気を判定するのは困難である。
ここで、本実施例における位相差θと、ストレス状態を判定するρMAX(最大相互相関係数)との関係について説明する。ρMAXは、人の心拍数及び血圧の各々におけるマイヤー(Mayer)波成分の相互相関係数の最大値である。
図17は、ρMAXを説明するための図である。図17において、ρMAXを得るためには、血圧センサをドライバ160に装着して、心拍変動71と血圧変動72とを入力信号70として取得する。
心拍変動71で示される血圧変調の3級成分と、血圧変動72で示される心拍変動の血圧性不整脈成分を時間軸においてずらしながら積和演算を行い、相互相関値(ρ)の最大値を探索する。
運転中には一過性のストレスや、眠気に抵抗するストレス状態が継続すると考えられ、したがって、ρMAX値の現象と精神的ストレス不可とが最も関連することを利用し、運転中の精神ストレスの有無を比較し、運転平時と比較することで、ストレス状態かどうかを推定する。
平常時に、入力信号70に対して、心拍変動71と血圧変動72とを積和演算した場合、値ρのρMAXを得るのに対して、ストレス時には、心拍変動71と血圧変動72とを積和演算した場合、値ρのρMAXを得る。平常時のρMAX(値ρ)に比べて、ストレス負荷が掛かっている間は、相互相関値ρが平坦になるため、ストレス時のρMAX(値ρ)は低くなることが知られている。
このようなρMAXの減少と精神的ストレス負荷とが関連することを利用して、運転中の精神的ストレスの有無を、運転平時のρMAXと比較することで、ストレス状態かどうかを推定可能である。しかしながら、このρMAXを得るためには、血圧センサが必要となり、運転中に計測することが困難であった。
一方、本実施例では、脈波振幅の血圧性変調周期(即ち、図3(D)の脈波血圧性変調波形3d)と、脈拍間隔の血圧性変調周期(即ち、図3(E)の脈拍血圧性変調波形3e)との位相遅延量(位相差θ)を用いる。
位相差θを用いて、相互相関係数の最大値ρMAXを算出することなく、自立神経の活動状況が調和的であるか否かを分類判定するため、精神的ストレス負荷の状態を推定可能とする。
車両のステアリングホイール(ハンドル)に脈波を測定する測定部を実装する技術における、心電計と脈波の同時計測による伝搬遅延時間から血圧変動を換算する処理精度をより改善することができる。
[第2の実施形態]
上記第1の実施形態では、ナビゲーション装置120に眠気判定部121及び警報部122を実装する場合について説明したが、眠気判定部121をサーバ装置1310(図18)に実装することも可能である。
図18は、第2の実施形態における眠気判定システムを示す図である。以下、図18に示す眠気判定システム1300について、第1の実施形態との相違点を中心に説明する。
図18に示すように、眠気判定システム1300は、サーバ装置1310と通信装置1320とを有する点において、第1の実施形態における眠気判定システム100(図1)と相違する。
通信装置1320は、例えば、DCM(Data Communication Module)であり、車両150に搭載され、車両150を管理するサーバ装置1310と通信する。
サーバ装置1310には、眠気判定プログラムがインストールされており、CPU11(図19)が当該プログラムを実行することで行われる処理により、サーバ装置1310は、眠気判定部121を実現する。
眠気判定システム1300によれば、ドライバ160より検出された脈波信号は、ナビゲーション装置120、通信装置1320を介してサーバ装置1310に送信される。また、送信された脈波信号に基づいて、サーバ装置1310より、「眠気あり(覚醒努力型)」の総合覚醒判定結果46aが送信された場合、または、「眠気あり(漫然/朦朧)」の総合覚醒判定結果46aが送信が送信された場合、ナビゲーション装置120は、通信装置1320を介してこれらの総合覚醒判定結果46aを受信する。これにより、ナビゲーション装置120では、スピーカ装置130または表示装置140を介して警報出力を行うことができる。
図19は、サーバ装置のハードウェア構成を示す図である。図19において、サーバ装置1310は、コンピュータによって制御される情報処理装置であって、CPU(Central Processing Unit)11と、主記憶装置12と、補助記憶装置13と、入力装置14と、表示装置15と、通信I/F(インターフェース)17と、ドライブ装置18とを有し、バスB1に接続される。
CPU11は、主記憶装置12に格納された各種プログラム(例えば、眠気判定プログラム、警報プログラム等を含む)に従ってサーバ装置1310を制御するプロセッサに相当する。主記憶装置12には、RAM(Random Access Memory)、ROM(Read Only Memory)等が用いられ、CPU11にて実行されるプログラム、CPU11での処理に必要なデータ、CPU11での処理にて得られたデータ等を記憶又は一時保存する。
補助記憶装置13には、HDD(Hard Disk Drive)等が用いられ、各種処理を実行するためのプログラム等のデータを格納する。補助記憶装置13に格納されているプログラムの一部が主記憶装置12にロードされ、CPU11に実行されることによって、各種処理が実現される。主記憶装置12及び/又は補助記憶装置13が記憶部530に相当し、記憶部530は、第1の実施形態と同様に、眠気判定部121によって参照されるデータ、作成されるデータ等の種々のデータを記憶する。
入力装置14は、マウス、キーボード等を有し、ユーザがサーバ装置1310による処理に必要な各種情報を入力するために用いられる。表示装置15は、CPU11の制御のもとに必要な各種情報を表示する。入力装置14と表示装置15とは、一体化したタッチパネル等によるユーザインタフェースであってもよい。通信I/F17は、有線又は無線などのネットワークを通じて通信を行う。通信I/F17による通信は無線又は有線に限定されるものではない。
サーバ装置1310によって行われる処理を実現するプログラムは、例えば、CD−ROM(Compact Disc Read-Only Memory)等の記憶媒体19によってサーバ装置1310に提供される。
ドライブ装置18は、ドライブ装置18にセットされた記憶媒体19(例えば、CD−ROM等)とサーバ装置1310とのインターフェースを行う。
また、記憶媒体19に、後述される本実施の形態に係る種々の処理を実現するプログラムを格納し、この記憶媒体19に格納されたプログラムは、ドライブ装置18を介してサーバ装置1310にインストールされる。インストールされたプログラムは、サーバ装置1310により実行可能となる。
尚、プログラムを格納する記憶媒体19はCD−ROMに限定されず、コンピュータが読み取り可能な、構造(structure)を有する1つ以上の非一時的(non-transitory)な、有形(tangible)な媒体であればよい。コンピュータ読取可能な記憶媒体として、CD−ROMの他に、DVD(Digital Versatile Disk)ディスク、USBメモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリであっても良い。
[第3の実施形態]
上記第1の実施形態では、ナビゲーション装置120に眠気判定部121及び警報部122を実装する場合について説明したが、ドライバ160が所持する携帯端末1410又は1430(図20)に実装することも可能である。
図20は、第3の実施形態における眠気判定システムを示す図である。以下、図20に示す眠気判定システム1400または1420について、第1の実施形態との相違点を中心に説明する。
図20(A)に示すように、眠気判定システム1400は、携帯端末1410を有する点において、第1の実施形態における眠気判定システム100(図1)と相違する。
携帯端末1410は、ドライバ160が所持する端末であり、脈拍センサ110と接続することで、脈波信号を取得する。また、携帯端末1410には、眠気判定プログラムがインストールされている。これにより、携帯端末1410は、眠気判定部121を実現する。
また、携帯端末1410は、例えば、近距離通信により、ナビゲーション装置120との間で情報の送受信を行う。携帯端末1410は、眠気判定部121において「眠気あり(覚醒努力型)」と判定された場合、または「眠気あり(漫然/朦朧)」と判定された場合に、総合覚醒判定結果46aをナビゲーション装置120に送信する。これにより、ナビゲーション装置120は、スピーカ装置130または表示装置140を介して警報出力を行うことができる。
なお、警報情報の出力先は、ナビゲーション装置120に接続されたスピーカ装置130または表示装置140に限定されない。例えば、携帯端末1410が有する音声出力部及び表示部を利用してもよい。
図20(B)は、携帯端末1430を眠気判定部121、警報部122として機能させ、携帯端末1430が有する音声出力部及び表示部を利用して警報情報を出力する眠気判定システム1420の一例である。眠気判定システム1420によれば、ドライバ160が運転可能な任意の車両150において、眠気判定処理を実行することができる。
図21は、携帯端末のハードウェア構成を示す図である。図21において、携帯端末1410は、コンピュータによって制御されるタブレット型、携帯電話等の情報処理端末であって、CPU(Central Processing Unit)501と、主記憶装置502と、ユーザI/F(インターフェース)503と、通信I/F507と、ドライブ装置508とを有し、バスB2に接続される。
CPU501は、主記憶装置502に格納されたプログラムに従って携帯端末1410を制御するプロセッサに相当する。主記憶装置502には、RAM(Random Access Memory)、ROM(Read Only Memory)等が用いられ、CPU501にて実行されるプログラム、CPU501での処理に必要なデータ、CPU501での処理にて得られたデータ等を記憶又は一時保存する。主記憶装置502に格納されているプログラムが、CPU501に実行されることによって、各種処理が実現される。
ユーザI/F503は、CPU501の制御のもとに必要な各種情報を表示し、また、ユーザによる操作入力を可能とするタッチパネル等である。通信I/F507による通信は無線又は有線に限定されるものではない。
携帯端末1410によって行われる処理を実現するプログラムは、ネットワーク2を介して外部装置からダウンロードされる。或いは、予め端末3の主記憶装置502又は記憶媒体509に記憶されていても良い。主記憶装置502及び/又は記憶媒体509が記憶部530に相当し、記憶部530は、第1の実施形態と同様に、眠気判定部121によって参照されるデータ、作成されるデータ等の種々のデータを記憶する。
ドライブ装置508は、ドライブ装置508にセットされた記憶媒体509(例えば、SD(Secure Digital)メモリカード等)と端末3とのインターフェースを行う。尚、記憶媒体509は、コンピュータが読み取り可能な、構造(structure)を有する1つ以上の非一時的(non-transitory)な、有形(tangible)な媒体であればよい。
図20(B)の携帯端末1430のハードウェア構成は、携帯端末1430と同様であるため、その説明を省略する。携帯端末1410および携帯端末1430は、デスクトップ型、ノートブック型、ラップトップ型等の情報処理端末であっても良く、そのハードウェア構成は、図19のハードウェア構成と同様であるので、その説明を省略する。
第2の実施形態および第3の実施形態においても、第1の実施形態と同様に、位相差θを用いた判定指標5により眠気判定した場合の検知率を改善することができる。また、実装の簡便性及び処理負荷の軽減を実現できることから、より実装性を高める効果がある。
第1〜第3の実施形態において、位相差θを用いた判定指標5により眠気判定した場合の検知率は、測定部を実装する技術と比べ、凡そ2倍以上の精度に改善できたことを確認している。また、実装の簡便性及び処理負荷の軽減を実現できることから、より実装性を高める効果がある。
図14にて閾値条件の変更例を示したが、分類状態「定常(適正)」と分類状態「単調(低調)」との境界値を判定閾値パラメータとして与えることで、眠気状態の検知率を表わすことができる。判定閾値パラメータを調整することで、ドライバ160個人に適した閾値条件を設定できる。
図22は、判定閾値パラメータに応じた検知率の比較例を示す図である。図22では、位相差θを利用しない既存技術との比較も同時に行う。図22において、判定閾値パラメータを0.5から0.65まで変化させた場合の、位相差θを利用した本願検知率と、本願指標誤検知率と、位相差θを用いない既存誤検知率とを例示している。
位相差θを用いない既存誤検知率では、判定閾値パラメータのいずれの値に対しても50.0%である。一方、本願検知率では、判定閾値パラメータを0.5から0.65への変化に応じて値が上昇する。また、本願指標誤検知率との差分(分離性)を解析すると、このドライバ160では、判定閾値パラメータが凡そ0.575の場合に最大となる。即ち、分類状態「定常(適正)」と分類状態「単調(低調)」との境界値を「0.575」に設定することで、より精度良く眠気状態を検知できる。
本発明は、具体的に開示された実施例に限定されるものではなく、特許請求の範囲から逸脱することなく、主々の変形や変更が可能である。
以上の第1〜第3の実施形態に関し、更に以下の付記を開示する。
(付記1)
被験者の脈波信号を受信すると、受信した該脈波信号を解析して、脈波の振幅から血圧の変調を表わす脈波血圧変調波形を算出する振幅解析部と、
前記脈波を解析して、該脈波の脈拍間隔から血圧の変調を表わす脈拍血圧変調波形とを算出する脈波解析部と、
前記脈波血圧変調波形の周期に対する前記脈拍血圧変調波形の周期の遅延時間を、いずれかの周期を基準周期として該基準周期で除算することで、位相差を算出し、該位相差の値範囲ごとの頻度分布を作成する頻度分布作成部と、
特定の遅延時間帯の前記頻度分布の2つの値範囲において、2つの頻度値の合計に対する差分の割合を算出して眠気値を取得する眠気値取得部と
を有する眠気判定装置。
(付記2)
前記脈波信号は、脈拍センサから受信することを特徴とする付記1記載の眠気判定装置。
(付記3)
前記脈拍血圧変調波形は、脈拍間隔から呼吸性の変動を除去した波形を表わすことを特徴とする付記1又は2記載の眠気判定装置。
(付記4)
前記特定の遅延時間帯は、前記位相差が収束した時間帯であることを特徴とする付記1乃至3のいずれか一項記載の眠気判定装置。
(付記5)
前記特定の遅延時間帯の前記頻度分布の前記眠気値を取得する前記2つの値範囲とは異なる他の2つの値範囲の頻度値を用いて、該2つの頻度値の合計に対する差分の割合を算出して、前記被験者の覚醒努力度を取得する覚醒努力度取得部を有することを特徴とする付記1乃至4のいずれか一項記載の眠気判定装置。
(付記6)
前記眠気値取得部によって取得した前記眠気値と、前記覚醒努力度取得部によって取得した前記覚醒努力度とを用いて、前記被験者の心身調和度を取得する心身調和度取得部を有することを特徴とする付記5記載の眠気判定装置。
(付記7)
前記脈波解析部は、前記脈波信号の振幅を時系列で示した時系列データを作成し、時系列データに基づいて前記脈波の振幅の異常値を除去し、該異常値を除去した該脈波の振幅から、前記脈波血圧変調波形に加え、呼吸の振幅を表わす脈波呼吸性振幅と、前記血圧の振幅を表わす脈波血圧振幅とを算出し、
算出された前記脈波呼吸性振幅を、前記脈波血圧振幅で除算することにより精神的活性度を算出する精神的能動活動判定部と、
前記脈波解析部が前記異常値を除去した頻度を示す異常値頻度と、前記脈拍間隔に基づく心拍数とから、身体的な活動水準を表わす活性係数を算出する活動水準評価部と、
前記活動水準評価部によって得られた前記活性係数と、前記異常値頻度を標準偏差で除して得らる過剰応答係数とにより身体的活性度を算出する身体的能動活動判定部と
を有することを特徴とする付記6記載の眠気判定装置。
(付記8)
前記心身調和度取得部によって得られた前記心身調和度と、前記精神的能動活動判定部によって得られた前記精神的活性度と、前記身体的能動活動判定部によって得られた前記身体的活性度とに基づいて、総合的な覚醒度を判定し、判定結果が眠気状態を示す場合、前記被験者に運転支援に係る情報提供を行う警報部へ通知する総合覚醒判定部を有することを特徴とする付記7記載の眠気判定装置。
(付記9)
被験者の脈波信号を受信すると、受信した該脈波信号を解析して、脈波の振幅から血圧の変調を表わす脈波血圧変調波形を算出し、
前記脈波を解析して、該脈波の脈拍間隔から血圧の変調を表わす脈拍血圧変調波形とを算出し、
前記脈波血圧変調波形の周期に対する前記脈拍血圧変調波形の周期の遅延時間を、いずれかの周期を基準周期として該基準周期で除算することで、位相差を算出し、該位相差の値範囲ごとの頻度分布を作成し、
特定の遅延時間帯の前記頻度分布の2つの値範囲において、2つの頻度値の合計に対する差分の割合を算出して眠気値を取得する
処理をコンピュータが行う眠気判定方法。
(付記10)
車両を運転する被験者の眠気の度合を示す眠気度と、該眠気に対して覚醒状態を維持しようとする覚醒努力度とに基づく、該眠気度と該覚醒努力度とのバランスを表わす心身調和度と、該被験者の精神的な能動活動の程度を示す精神的活性度と、該被験者の身体的な能動活動の程度を示す身体的活性度とから、総合的に該被験者が眠気状態にあるいか否かを判定する眠気判定部と、
前記眠気判定部からの前記被験者が前記眠気状態にあると判定したことを示す通知に応じて、スピーカ装置と表示装置の1つ以上に該車両の運転に係る支援情報を出力させる警報部と
を有する運転支援装置。
41 :脈波信号取得部
42 :間隔解析部
43 :振幅解析部
44 :心身調和解析部
45 :活動解析部
46 :総合覚醒判定部
100 :眠気判定システム
110 :脈拍センサ
120 :ナビゲーション装置
121 :眠気判定部
122 :警報部
130 :スピーカ装置
140 :表示装置
150 :車両
160 :ドライバ
1300 :眠気判定システム
1310 :サーバ装置
1320 :通信装置
1400 :眠気判定システム
1410 :携帯端末
1420 :眠気判定システム
1430 :携帯端末

Claims (5)

  1. 被験者の脈波信号を受信すると、受信した該脈波信号を解析して、脈波の振幅から血圧の変調を表わす脈波血圧変調波形を算出する振幅解析部と、
    前記脈波を解析して、該脈波の脈拍間隔から血圧の変調を表わす脈拍血圧変調波形を算出する間隔解析部と、
    前記脈波血圧変調波形の周期に対する前記脈拍血圧変調波形の周期の遅延時間を、いずれかの周期を基準周期として該基準周期で除算することで、位相差を算出し、該位相差の値範囲ごとの頻度分布を作成する頻度分布作成部と、
    前記位相差が収束した時間帯の前記頻度分布の2つの値範囲の頻度値を用いて、該2つの頻度値の合計に対する、該2つの頻度値の差分の割合を算出して眠気値を取得する眠気値取得部と
    を有する眠気判定装置。
  2. 前記脈波信号は、脈拍センサから受信することを特徴とする請求項1記載の眠気判定装置。
  3. 前記脈拍血圧変調波形は、脈拍間隔から呼吸性の変動を除去した波形を表わすことを特徴とする請求項1又は2記載の眠気判定装置。
  4. 前記位相差が収束した時間帯の前記頻度分布の前記眠気値を取得する前記2つの値範囲とは異なる他の2つの値範囲の頻度値を用いて、該2つの頻度値の合計に対する、該2つの頻度値の差分の割合を算出して、前記被験者の覚醒努力度を取得する覚醒努力度取得部を有することを特徴とする請求項1乃至3のいずれか一項記載の眠気判定装置。
  5. 被験者の脈波信号を受信すると、受信した該脈波信号を解析して、脈波の振幅から血圧の変調を表わす脈波血圧変調波形を算出し、
    前記脈波を解析して、該脈波の脈拍間隔から血圧の変調を表わす脈拍血圧変調波形を算出し、
    前記脈波血圧変調波形の周期に対する前記脈拍血圧変調波形の周期の遅延時間を、いずれかの周期を基準周期として該基準周期で除算することで、位相差を算出し、該位相差の値範囲ごとの頻度分布を作成し、
    前記位相差が収束した時間帯の前記頻度分布の2つの値範囲の頻度値を用いて、該2つの頻度値の合計に対する、該2つの頻度値の差分の割合を算出して眠気値を取得する
    処理をコンピュータが行う眠気判定方法。
JP2016207217A 2016-10-21 2016-10-21 眠気判定装置および眠気判定方法 Expired - Fee Related JP6809126B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016207217A JP6809126B2 (ja) 2016-10-21 2016-10-21 眠気判定装置および眠気判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207217A JP6809126B2 (ja) 2016-10-21 2016-10-21 眠気判定装置および眠気判定方法

Publications (2)

Publication Number Publication Date
JP2018064900A JP2018064900A (ja) 2018-04-26
JP6809126B2 true JP6809126B2 (ja) 2021-01-06

Family

ID=62086498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207217A Expired - Fee Related JP6809126B2 (ja) 2016-10-21 2016-10-21 眠気判定装置および眠気判定方法

Country Status (1)

Country Link
JP (1) JP6809126B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138449A (ko) * 2018-06-05 2019-12-13 국방과학연구소 조종사의 각성 상태를 정량화하는 장치 및 방법
JP7180216B2 (ja) * 2018-09-05 2022-11-30 日本電信電話株式会社 生体情報解析装置、生体情報解析方法、および生体情報解析システム
WO2020195167A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 漫然状態判定装置
JP7024769B2 (ja) * 2019-09-24 2022-02-24 カシオ計算機株式会社 生体情報取得装置、生体情報取得方法及びプログラム
KR102122976B1 (ko) * 2019-11-06 2020-06-16 국방과학연구소 조종사 정신적 과부하 상태 검출 장치 및 그 방법
CN110946561A (zh) * 2019-12-31 2020-04-03 北京明略软件系统有限公司 一种测量心率的方法及可穿戴心率测量设备
JP2024039189A (ja) * 2022-09-09 2024-03-22 オムロンヘルスケア株式会社 血圧計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161671B2 (ja) * 2008-06-25 2013-03-13 国立大学法人東北大学 生体状況評価装置および生体評価信号算出方法
JP5390851B2 (ja) * 2008-12-22 2014-01-15 トヨタ自動車株式会社 車両用自律神経機能診断装置、車両用自律神経機能診断方法
JP5982910B2 (ja) * 2012-03-19 2016-08-31 富士通株式会社 解析装置、解析プログラムおよび解析方法
JP6601279B2 (ja) * 2016-03-08 2019-11-06 富士通株式会社 眠気判定プログラム、眠気判定装置及び眠気判定方法

Also Published As

Publication number Publication date
JP2018064900A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6809126B2 (ja) 眠気判定装置および眠気判定方法
US11678811B2 (en) Contextual heart rate monitoring
US10433781B2 (en) Measuring psychological stress from cardiovascular and activity signals
US7970459B2 (en) Sleepiness level detection method and apparatus
JP6881289B2 (ja) 疾患発症リスク予測装置、方法およびプログラム
JP6601279B2 (ja) 眠気判定プログラム、眠気判定装置及び眠気判定方法
US10213146B2 (en) Measuring psychological stress from cardiovascular and activity signals
JP2018202130A (ja) 状態推定装置、情報処理装置、状態推定システム
JP2013205965A (ja) 生体情報処理装置及び生体情報処理方法
JP4701694B2 (ja) 覚醒度判定装置及び覚醒度判定方法
JP5953878B2 (ja) 状態変化検出方法、プログラム及び装置
JP6750229B2 (ja) 眠気検知プログラム、眠気検知方法および眠気検知装置
JPWO2019049667A1 (ja) 心拍検出装置、心拍検出方法及びプログラム
JP7256380B2 (ja) 情報処理装置、危険状況検出システム、および危険状況検出方法
JP5962751B2 (ja) 覚醒度判定装置、覚醒度判定プログラムおよび覚醒度判定方法
JP6596847B2 (ja) 覚醒度判定プログラムおよび覚醒度判定装置
KR102329995B1 (ko) 사용자의 미세먼지 영향도 산출 및 예측 방법
JP5817525B2 (ja) 眠気検知適用性判定装置、眠気検知適用性判定方法、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6809126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees