JP6808440B2 - Electromagnetic pump - Google Patents

Electromagnetic pump Download PDF

Info

Publication number
JP6808440B2
JP6808440B2 JP2016204324A JP2016204324A JP6808440B2 JP 6808440 B2 JP6808440 B2 JP 6808440B2 JP 2016204324 A JP2016204324 A JP 2016204324A JP 2016204324 A JP2016204324 A JP 2016204324A JP 6808440 B2 JP6808440 B2 JP 6808440B2
Authority
JP
Japan
Prior art keywords
pump chamber
pressure
pressure pump
low
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204324A
Other languages
Japanese (ja)
Other versions
JP2018066288A (en
Inventor
宣尚 渡邊
宣尚 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2016204324A priority Critical patent/JP6808440B2/en
Publication of JP2018066288A publication Critical patent/JP2018066288A/en
Application granted granted Critical
Publication of JP6808440B2 publication Critical patent/JP6808440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Reciprocating Pumps (AREA)

Description

本発明は、ソレノイド部の操作により液体を低圧大流量と高圧小流量とに吐出することができる電磁ポンプに関する。 The present invention relates to an electromagnetic pump capable of discharging a liquid into a low pressure large flow rate and a high pressure small flow rate by operating a solenoid unit.

この種の電磁ポンプは、ソレノイド部(電磁弁)にポンプ部が係合され、ポンプ本体に形成された段付孔と、段付孔に摺動自在に嵌挿された段付ピストンとを有し、段付孔と段付ピストンの大径軸部と小径軸部の段差部とにより形成される高圧ポンプ室と、段付ピストンの小径軸部と段付ピストンの小径軸部軸端方向に穿設されたポンプ本体の穴部とにより形成される低圧ポンプ室とを備える。そして、ソレノイド部(電磁弁)の通電による作動で、高圧ポンプ室の液体と低圧ポンプ室の液体が合流した低圧大流量を吐出し、吐出側の圧力が上昇すると、低圧ポンプ室の吐出路に設けられた圧力制御弁(安全弁)から低圧ポンプ室の液体は吸入路へ戻され、高圧小流量として高圧ポンプ室の液体のみを吐出する。 This type of electromagnetic pump has a stepped hole formed in the pump body by engaging the pump part with a solenoid part (electromagnetic valve), and a stepped piston slidably inserted into the stepped hole. In the direction of the high-pressure pump chamber formed by the stepped hole, the large-diameter shaft portion of the stepped piston, and the stepped portion of the small-diameter shaft portion, and the small-diameter shaft portion of the stepped piston and the small-diameter shaft portion of the stepped piston. It is provided with a low-pressure pump chamber formed by a hole in the pump body bored. Then, when the solenoid section (electromagnetic valve) is energized to discharge a large low-pressure flow rate at which the liquid in the high-pressure pump chamber and the liquid in the low-pressure pump chamber merge, and the pressure on the discharge side rises, the discharge path in the low-pressure pump chamber is discharged. The liquid in the low-pressure pump chamber is returned to the suction path from the provided pressure control valve (safety valve), and only the liquid in the high-pressure pump chamber is discharged as a high-pressure small flow rate.

特開2007−126974号公報(段落0011、0017、図1)JP-A-2007-126974 (paragraphs 0011, 0017, FIG. 1)

ところが、かかる従来の電磁ポンプでは、段付孔と段付ピストンの小径軸部の摺動部の隙間を介して、液体が高圧ポンプ室から低圧ポンプ室へ漏れてしまう。そして、低圧ポンプ室から吐出する液体の流量を増加したいときには、段付ピストンの小径軸部を大径にする必要があるが、小径軸部を大径にすると液体の漏れ量が増加するため、高圧ポンプ室から低圧ポンプ室への液体の漏れ量はさらに増加し、高圧ポンプ室から吐出する液体の流量を十分に確保できないという問題点があった。 However, in such a conventional electromagnetic pump, the liquid leaks from the high-pressure pump chamber to the low-pressure pump chamber through the gap between the stepped hole and the sliding portion of the small-diameter shaft portion of the stepped piston. When it is desired to increase the flow rate of the liquid discharged from the low-pressure pump chamber, it is necessary to increase the diameter of the small-diameter shaft portion of the stepped piston. However, if the small-diameter shaft portion has a large diameter, the amount of liquid leakage increases. The amount of liquid leaking from the high-pressure pump chamber to the low-pressure pump chamber further increases, and there is a problem that a sufficient flow rate of the liquid discharged from the high-pressure pump chamber cannot be secured.

本発明の課題は、高圧ポンプ室から低圧ポンプ室への液体の漏れ量が増加することを抑制し、高圧ポンプ室から吐出する液体の流量を十分に確保できる電磁ポンプを提供するものである。 An object of the present invention is to provide an electromagnetic pump capable of suppressing an increase in the amount of liquid leaking from the high-pressure pump chamber to the low-pressure pump chamber and ensuring a sufficient flow rate of the liquid discharged from the high-pressure pump chamber.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
通電により発生する吸引力で可動鉄心を摺動するソレノイド部と、ソレノイド部で作動するポンプ部とを備え、ポンプ部は大径軸部と小径軸部とを連設しソレノイド部の通電により摺動するピストン部材を有し、ピストン部材は大径軸部と小径軸部をそれぞれポンプ部に連設した大径孔と小径孔に摺動自在に嵌挿し、大径軸部と大径孔により低圧ポンプ室を区画形成すると共に、小径軸部と小径孔により高圧ポンプ室を区画形成し、低圧ポンプ室には低圧ポンプ室の圧力を設定値に制御する圧力制御弁と、低圧側から低圧ポンプ室への液体の流れを許容し低圧ポンプ室から低圧側への液体の流れを阻止する第1チェック弁と、低圧ポンプ室から負荷側への液体の流れを許容し負荷側から低圧ポンプ室への液体の流れを阻止する第2チェック弁とを接続し、高圧ポンプ室には低圧側から高圧ポンプ室への液体の流れを許容し高圧ポンプ室から低圧側への液体の流れを阻止する第3チェック弁と、高圧ポンプ室から負荷側への液体の流れを許容し負荷側から高圧ポンプ室への液体の流れを阻止する第4チェック弁を接続し、圧力制御弁は、弁体をポンプ本体の弁孔へ摺動自在に嵌挿し、弁体には2個のランド部を有し、第2チェック弁より負荷側に吐出する液体の圧力をパイロット圧力として一方のランド部に作用して設け、このパイロット圧力の作用で他方のランド部が開いて低圧ポンプ室の液体を低圧側へ排出する外部パイロットであることを特徴とする電磁ポンプがそれである。
In order to achieve such a problem, the present invention has taken the following measures. That is,
It is equipped with a solenoid part that slides the movable iron core by the suction force generated by energization and a pump part that operates by the solenoid part. The pump part has a large-diameter shaft part and a small-diameter shaft part connected in series and slides by energization of the solenoid part. It has a moving piston member, and the piston member is slidably fitted into the large-diameter hole and the small-diameter hole in which the large-diameter shaft portion and the small-diameter shaft portion are connected to the pump portion, respectively. A low-pressure pump chamber is partitioned, and a high-pressure pump chamber is partitioned by a small-diameter shaft and a small-diameter hole. The low-pressure pump chamber has a pressure control valve that controls the pressure of the low-pressure pump chamber to a set value, and a low-pressure pump from the low-pressure side. The first check valve that allows the flow of liquid to the chamber and blocks the flow of liquid from the low-pressure pump chamber to the low-pressure side, and the low-pressure pump chamber that allows the flow of liquid from the load side to the low-pressure pump chamber By connecting to the second check valve that blocks the flow of liquid, the high-pressure pump chamber allows the flow of liquid from the low-pressure side to the high-pressure pump chamber, and blocks the flow of liquid from the high-pressure pump chamber to the low-pressure side. 3 Check valve and 4th check valve that allows the flow of liquid from the high pressure pump chamber to the load side and blocks the flow of liquid from the load side to the high pressure pump chamber are connected, and the pressure control valve pumps the valve body. It is slidably inserted into the valve hole of the main body, and the valve body has two lands, and the pressure of the liquid discharged from the second check valve to the load side acts as a pilot pressure on one of the lands. provided, electromagnetic pump, wherein an external pilot der Rukoto for discharging the liquid of the low-pressure pump chamber other land portion is opened by the action of the pilot pressure to the low pressure side is it.

以上詳述したように、請求項1に記載の発明は、ポンプ部は大径軸部と小径軸部とを連設しソレノイド部の通電により摺動するピストン部材を有し、ピストン部材は大径軸部と小径軸部をそれぞれポンプ部に連設した大径孔と小径孔に摺動自在に嵌挿し、大径軸部と大径孔により低圧ポンプ室を区画形成すると共に、小径軸部と小径孔により高圧ポンプ室を区画形成する。このため、低圧ポンプ室から吐出する液体の流量を増加したいときには、ピストン部材の大径軸部のみを大径にすればよく、小径軸部は影響されないから、小径軸部と小径孔の摺動部の隙間を介して高圧ポンプ室から低圧ポンプ室へ漏れる液体の漏れ量が増加することを抑制でき、高圧ポンプ室から吐出する液体の流量を十分に確保できる。 As described in detail above, in the invention according to claim 1, the pump portion has a piston member in which a large-diameter shaft portion and a small-diameter shaft portion are connected in series and slides by energization of the solenoid portion, and the piston member is large. The diameter shaft part and the small diameter shaft part are slidably inserted into the large diameter hole and the small diameter hole which are connected to the pump part, respectively, and the low pressure pump chamber is partitioned by the large diameter shaft part and the large diameter hole, and the small diameter shaft part is formed. The high-pressure pump chamber is partitioned by the small diameter hole. Therefore, when it is desired to increase the flow rate of the liquid discharged from the low-pressure pump chamber, only the large-diameter shaft portion of the piston member needs to have a large diameter, and the small-diameter shaft portion is not affected. Therefore, the small-diameter shaft portion and the small-diameter hole slide. It is possible to suppress an increase in the amount of liquid leaking from the high-pressure pump chamber to the low-pressure pump chamber through the gap between the portions, and a sufficient flow rate of the liquid discharged from the high-pressure pump chamber can be secured.

また、請求項1に記載の発明は、圧力制御弁は、弁体をポンプ本体の弁孔へ摺動自在に嵌挿し、弁体には2個のランド部を有し、第2チェック弁より負荷側に吐出する液体の圧力をパイロット圧力として一方のランド部に作用して設け、このパイロット圧力の作用で他方のランド部が開いて低圧ポンプ室からの液体を低圧側へ排出する外部パイロットの圧力制御弁としている。このため、パイロット圧力が設定値に達して圧力制御弁が開作動すると、低圧ポンプ室から低圧側へ液体を排出して低圧ポンプ室の圧力は略ゼロになる。そして、第2チェック弁より負荷側に吐出する液体の圧力が設定値より低下しないかぎり、低圧ポンプ室の圧力は略ゼロを維持するから、低圧ポンプ室を区画形成するピストン部材の大径軸部が作動する際の圧力に基づく抵抗を軽減することができ、作動性を向上することができる。 The invention according to claim 1, the pressure control valve, the valve body and slidably inserted into the pump body of the valve hole, the valve body has two land portions, the second check valve provided by acting the pressure of the liquid to be discharged more to the load side to one of the land portion as a pilot pressure, external pilot for discharging the liquid from the low pressure pump chamber into the low pressure side the other land portion is opened by the action of the pilot pressure It is used as a pressure control valve. Therefore, when the pilot pressure reaches the set value and the pressure control valve is opened, the liquid is discharged from the low pressure pump chamber to the low pressure side, and the pressure in the low pressure pump chamber becomes substantially zero. Then, unless the pressure of the liquid discharged from the second check valve to the load side drops below the set value, the pressure in the low-pressure pump chamber is maintained at substantially zero, so that the large-diameter shaft portion of the piston member that partitions the low-pressure pump chamber is formed. The resistance based on the pressure at the time of operation can be reduced, and the operability can be improved.

参考例を示した電磁ポンプの油圧回路図である。It is the hydraulic circuit diagram of the electromagnetic pump which showed the reference example . 参考例の図3の線C−Cに沿った断面図である。It is sectional drawing which follows the line CC of FIG. 3 of a reference example . 図2の線A−B−Aに沿った断面図である。It is sectional drawing which follows the line ABA of FIG. 図1の変形例を示した油圧回路図である。It is a hydraulic circuit diagram which showed the modification of FIG. 図1の他の変形例を示した油圧回路図である。It is a hydraulic circuit diagram which showed the other modification of FIG. 本発明の一実施形態を示した電磁ポンプの油圧回路図である。It is a hydraulic circuit diagram of the electromagnetic pump which showed one Embodiment of this invention . 実施形態の図8の線Z−Zに沿った断面図である。It is sectional drawing which follows the line ZZ of FIG. 8 of one Embodiment. 図7の線X−Y−Xに沿った断面図である。It is sectional drawing which follows the line XYX of FIG. 図6の変形例を示した油圧回路図である。It is a hydraulic circuit diagram which showed the modification of FIG. 図6の他の変形例を示した油圧回路図である。It is a hydraulic circuit diagram which showed the other modification of FIG.

以下、参考例を図面に基づき説明する。
図1ないし図3において、1はソレノイド部で、ヨーク2に穿設された有底の収装孔2Aに略円筒形状の可動鉄心3を軸方向へ摺動自在に嵌挿し、コイル4への通電により発生する吸引力で略円盤形状の固定鉄心5に吸引する。固定鉄心5は可動鉄心3を挿通する貫通孔5Aを有する。ヨーク2は軸方向一端側に開口部2Bを有する。
Hereinafter, a reference example will be described with reference to the drawings.
In FIGS. 1 to 3, reference numeral 1 denotes a solenoid portion, in which a substantially cylindrical movable iron core 3 is slidably fitted into a bottomed storage hole 2A formed in a yoke 2 and is fitted into a coil 4. The suction force generated by energization is used to suck the fixed iron core 5 having a substantially disk shape. The fixed iron core 5 has a through hole 5A through which the movable iron core 3 is inserted. The yoke 2 has an opening 2B on one end side in the axial direction.

6はポンプ部で、ポンプ本体7の凸部7Aを固定鉄心5の貫通孔5Aに嵌合し、ヨーク2の開口部2Bにポンプ本体7をかしめにより連結している。ポンプ本体7には大径孔8Aと小径孔8Bを連設している。9は第1軸受部材で、大径孔8Aの開口端に圧入している。10は第2軸受部材で、小径孔8Bの大径孔8Aとの連設部に圧入している。11はピストン部材で、大径軸部12と小径軸部13とを連設して構成している。大径軸部12は下端に凹部12Aを有し、上端を可動鉄心3に固定し可動鉄心3と一体的に作動する。小径軸部13は大径軸部12の軸心に挿通され大径軸部12に固定している。ピストン部材11の大径軸部12と小径軸部13は、それぞれ第1軸受部材9と第2軸受部材10へ摺動自在に嵌挿する。14は低圧ポンプ室で、大径軸部12と大径孔8Aにより区画形成している。15は高圧ポンプ室で、小径軸部13と小径孔8Bにより区画形成している。そして、大径軸部12の受圧面積は小径軸部13の受圧面積より大きく設けている。16は第1弾性部材で、可動鉄心3の中空に収容されている。17は第2弾性部材で、大径軸部12の凹部12Aに収容されている。ピストン部材11は、第1弾性部材16の軸方向下方への弾性力と第2弾性部材17の軸方向上方への弾性力とで付勢され、第1弾性部材16の弾性力と第2弾性部材17の弾性力との平衡位置で停止する。 Reference numeral 6 denotes a pump portion, in which the convex portion 7A of the pump main body 7 is fitted into the through hole 5A of the fixed iron core 5, and the pump main body 7 is connected to the opening 2B of the yoke 2 by caulking. A large-diameter hole 8A and a small-diameter hole 8B are connected to the pump main body 7. Reference numeral 9 denotes a first bearing member, which is press-fitted into the open end of the large-diameter hole 8A. Reference numeral 10 denotes a second bearing member, which is press-fitted into a portion of the small-diameter hole 8B connected to the large-diameter hole 8A. Reference numeral 11 denotes a piston member, which is configured by connecting the large-diameter shaft portion 12 and the small-diameter shaft portion 13 in succession. The large-diameter shaft portion 12 has a recess 12A at the lower end, and the upper end is fixed to the movable iron core 3 and operates integrally with the movable iron core 3. The small diameter shaft portion 13 is inserted through the axis of the large diameter shaft portion 12 and fixed to the large diameter shaft portion 12. The large-diameter shaft portion 12 and the small-diameter shaft portion 13 of the piston member 11 are slidably fitted and inserted into the first bearing member 9 and the second bearing member 10, respectively. Reference numeral 14 denotes a low pressure pump chamber, which is partitioned by a large diameter shaft portion 12 and a large diameter hole 8A. Reference numeral 15 denotes a high-pressure pump chamber, which is partitioned by a small-diameter shaft portion 13 and a small-diameter hole 8B. The pressure receiving area of the large diameter shaft portion 12 is larger than the pressure receiving area of the small diameter shaft portion 13. Reference numeral 16 denotes a first elastic member, which is housed in the hollow of the movable iron core 3. Reference numeral 17 denotes a second elastic member, which is housed in the recess 12A of the large-diameter shaft portion 12. The piston member 11 is urged by the elastic force downward in the axial direction of the first elastic member 16 and the elastic force upward in the axial direction of the second elastic member 17, and the elastic force of the first elastic member 16 and the second elasticity. It stops at a position in equilibrium with the elastic force of the member 17.

18は吸入口で、低圧側としてのタンクTから低圧ポンプ室14と高圧ポンプ室15に液体を吸入する。19は吐出口で、低圧ポンプ室14と高圧ポンプ室15から図示しない負荷側としてのアクチュエータに液体を吐出する。20は第1吸入路で、吸入口18と低圧ポンプ室14を接続している。21は第1吐出路で、低圧ポンプ室14と吐出口19を接続している。22は第2吸入路で、吸入口18と高圧ポンプ室15を接続している。23は第2吐出路で、高圧ポンプ室15と吐出口19を接続している。24は第1排出路で、低圧ポンプ室14と吸入口18を接続している。 Reference numeral 18 denotes a suction port, which sucks the liquid from the tank T as the low pressure side into the low pressure pump chamber 14 and the high pressure pump chamber 15. Reference numeral 19 denotes a discharge port, which discharges liquid from the low-pressure pump chamber 14 and the high-pressure pump chamber 15 to an actuator as a load side (not shown). Reference numeral 20 denotes a first suction path, which connects the suction port 18 and the low pressure pump chamber 14. Reference numeral 21 denotes a first discharge path, which connects the low pressure pump chamber 14 and the discharge port 19. Reference numeral 22 denotes a second suction path, which connects the suction port 18 and the high-pressure pump chamber 15. Reference numeral 23 denotes a second discharge path, which connects the high pressure pump chamber 15 and the discharge port 19. Reference numeral 24 denotes a first discharge path, which connects the low pressure pump chamber 14 and the suction port 18.

25は第1吸入路20に備えた第1チェック弁で、弁体25Aをばね25Bの弾性力で弁座25Cに着座している。第1チェック弁25は弁体25Aが弁座25Cから離間してタンクTから低圧ポンプ室14への液体の流れを許容し、弁体25Aが弁座25Cに着座して低圧ポンプ室14からタンクTへの液体の流れを阻止する向きに配設している。26は第1吐出路21へ備えた第2チェック弁で、弁体26Aをばね26Bの弾性力で弁座26Cに着座している。第2チェック弁26は弁体26Aが弁座26Cから離間して低圧ポンプ室14からアクチュエータへの液体の流れを許容し、弁体26Aが弁座26Cに着座してアクチュエータから低圧ポンプ室14への液体の流れを阻止する向きに配設している。27は第2吸入路22に備えた第3チェック弁で、弁体27Aをばね27Bの弾性力で弁座27Cに着座している。第3チェック弁27は弁体27Aが弁座27Cから離間してタンクTから高圧ポンプ室15への液体の流れを許容し、弁体27Aが弁座27Cに着座して高圧ポンプ室15からタンクTへの液体の流れを阻止する向きに配設している。28は第2吐出路23に備えた第4チェック弁で、弁体28Aがばね28Bの弾性力で弁座28Cに着座している。第4チェック弁28は弁体28Aが弁座28Cから離間して高圧ポンプ室15からアクチュエータへの液体の流れを許容し、弁体28Aが弁座28Cに着座してアクチュエータから高圧ポンプ室15への液体の流れを阻止する向きに配設している。 Reference numeral 25 denotes a first check valve provided in the first suction passage 20, in which the valve body 25A is seated on the valve seat 25C by the elastic force of the spring 25B. In the first check valve 25, the valve body 25A is separated from the valve seat 25C to allow the liquid to flow from the tank T to the low pressure pump chamber 14, and the valve body 25A is seated on the valve seat 25C and the tank is sent from the low pressure pump chamber 14. It is arranged so as to prevent the flow of liquid to T. Reference numeral 26 denotes a second check valve provided in the first discharge path 21, in which the valve body 26A is seated on the valve seat 26C by the elastic force of the spring 26B. In the second check valve 26, the valve body 26A is separated from the valve seat 26C to allow the liquid to flow from the low pressure pump chamber 14 to the actuator, and the valve body 26A is seated on the valve seat 26C from the actuator to the low pressure pump chamber 14. It is arranged so as to block the flow of the liquid. Reference numeral 27 denotes a third check valve provided in the second suction path 22, in which the valve body 27A is seated on the valve seat 27C by the elastic force of the spring 27B. In the third check valve 27, the valve body 27A is separated from the valve seat 27C to allow the liquid to flow from the tank T to the high pressure pump chamber 15, and the valve body 27A is seated on the valve seat 27C and the tank is from the high pressure pump chamber 15. It is arranged in a direction that blocks the flow of liquid to T. Reference numeral 28 denotes a fourth check valve provided in the second discharge path 23, in which the valve body 28A is seated on the valve seat 28C by the elastic force of the spring 28B. In the fourth check valve 28, the valve body 28A is separated from the valve seat 28C to allow the liquid to flow from the high pressure pump chamber 15 to the actuator, and the valve body 28A is seated on the valve seat 28C from the actuator to the high pressure pump chamber 15. It is arranged so as to block the flow of the liquid.

29は第1排出路24に備えた圧力制御弁としてのリリーフ弁で、弁体29Aをばね29Bの弾性力で弁座29Cに着座して第1排出路24を閉じている。リリーフ弁29は、低圧ポンプ室14の圧力がばね29Bの弾性力に基づく設定値以上に上昇すると弁体29Aをばね29Bの弾性力に抗して弁座29Cより離間して低圧ポンプ室14の液体をタンクTへ排出する。 Reference numeral 29 denotes a relief valve as a pressure control valve provided in the first discharge passage 24. The valve body 29A is seated on the valve seat 29C by the elastic force of the spring 29B to close the first discharge passage 24. When the pressure in the low-pressure pump chamber 14 rises above the set value based on the elastic force of the spring 29B, the relief valve 29 separates the valve body 29A from the valve seat 29C against the elastic force of the spring 29B and separates the low-pressure pump chamber 14 from the low-pressure pump chamber 14. The liquid is discharged to the tank T.

次に、かかる構成の作動を説明する。
図1ないし図3は、コイル4の非通電状態を示し、可動鉄心3は第1弾性部材16の弾性力と第2弾性部材17の弾性力との平衡位置で停止している。第1チェック弁25〜第4チェック弁28は閉じている。
Next, the operation of such a configuration will be described.
1 to 3 show a non-energized state of the coil 4, and the movable iron core 3 is stopped at an equilibrium position between the elastic force of the first elastic member 16 and the elastic force of the second elastic member 17. The first check valve 25 to the fourth check valve 28 are closed.

この状態で、コイル4へ通電すると、可動鉄心3は第2弾性部材17の弾性力に抗して軸方向下方へ摺動して固定鉄心5に吸引される。これにより、ピストン部材11の大径軸部12が低圧ポンプ室14内の液体を加圧し、第2チェック弁26が開き、低圧ポンプ室14から液体を吐出する。また、高圧ポンプ室15はピストン部材11の小径軸部13が高圧ポンプ室15内の液体を加圧し、第4チェック弁28が開き、高圧ポンプ室15から液体を吐出する。低圧ポンプ室14から吐出された液体と高圧ポンプ室15から吐出された液体は吐出口19で合流しアクチュエータに吐出する。 When the coil 4 is energized in this state, the movable iron core 3 slides downward in the axial direction against the elastic force of the second elastic member 17 and is attracted to the fixed iron core 5. As a result, the large-diameter shaft portion 12 of the piston member 11 pressurizes the liquid in the low-pressure pump chamber 14, the second check valve 26 opens, and the liquid is discharged from the low-pressure pump chamber 14. Further, in the high-pressure pump chamber 15, the small-diameter shaft portion 13 of the piston member 11 pressurizes the liquid in the high-pressure pump chamber 15, the fourth check valve 28 opens, and the liquid is discharged from the high-pressure pump chamber 15. The liquid discharged from the low-pressure pump chamber 14 and the liquid discharged from the high-pressure pump chamber 15 merge at the discharge port 19 and are discharged to the actuator.

この状態で、コイル4を非通電にすると、可動鉄心3は第2弾性部材17の弾性力で軸方向上方へ摺動して固定鉄心5から離脱する。これにより、低圧ポンプ室14はピストン部材11の大径軸部12が上方へ摺動し負圧になる。そして、第1チェック弁25は開き、第2チェック弁26は閉じて、タンクTから低圧ポンプ室14に液体を吸入する。また、高圧ポンプ室15はピストン部材11の小径軸部13が上方へ摺動し負圧になる。そして、第3チェック弁27は開き、第4チェック弁28は閉じて、タンクTから高圧ポンプ室15に液体を吸入する。そして、コイル4への通電・非通電を高速で繰り返して低圧大流量の液体をアクチュエータに吐出する。 When the coil 4 is de-energized in this state, the movable iron core 3 slides upward in the axial direction due to the elastic force of the second elastic member 17 and is separated from the fixed core 5. As a result, in the low pressure pump chamber 14, the large diameter shaft portion 12 of the piston member 11 slides upward and becomes a negative pressure. Then, the first check valve 25 is opened, the second check valve 26 is closed, and the liquid is sucked from the tank T into the low pressure pump chamber 14. Further, in the high pressure pump chamber 15, the small diameter shaft portion 13 of the piston member 11 slides upward and becomes a negative pressure. Then, the third check valve 27 opens, the fourth check valve 28 closes, and the liquid is sucked from the tank T into the high-pressure pump chamber 15. Then, the coil 4 is repeatedly energized and de-energized at high speed to discharge a low-pressure, large-flow liquid to the actuator.

コイル4への通電・非通電の繰り返しで、低圧ポンプ室14の圧力がリリーフ弁29のばね29Bの弾性力に基づく設定値以上に上昇すると、弁体29Aが開作動して低圧ポンプ室14の液体をタンクTに排出し、高圧ポンプ室15の液体のみを高圧小流量の液体として吐出口19からアクチュエータに吐出する。 When the pressure in the low-pressure pump chamber 14 rises above the set value based on the elastic force of the spring 29B of the relief valve 29 due to repeated energization and de-energization of the coil 4, the valve body 29A opens and operates in the low-pressure pump chamber 14. The liquid is discharged to the tank T, and only the liquid in the high pressure pump chamber 15 is discharged to the actuator from the discharge port 19 as a high pressure small flow rate liquid.

かかる作動において、ポンプ部6は大径軸部12と小径軸部13とを連設しソレノイド部1の通電により摺動するピストン部材11を有し、ピストン部材11は大径軸部12と小径軸部13をそれぞれポンプ部6に連設した大径孔8Aの第1軸受部材9と小径孔8Bの第2軸受部材10へ摺動自在に嵌挿し、大径軸部12と大径孔8Aにより低圧ポンプ室14を区画形成すると共に、小径軸部13と小径孔8Bにより高圧ポンプ室15を区画形成した。このため、低圧ポンプ室14から吐出する液体の流量を増加したいときには、ピストン部材11の大径軸部12のみを大径にすればよく、小径軸部13は影響されないから、小径軸部13と第2軸受部材10の摺動部の隙間を介して高圧ポンプ室15から低圧ポンプ室14へ漏れる液体の漏れ量が増加することを抑制でき、高圧ポンプ室15から吐出する液体の流量を十分に確保できる。 In such an operation, the pump portion 6 has a piston member 11 in which a large-diameter shaft portion 12 and a small-diameter shaft portion 13 are connected in series and slides by energization of the solenoid portion 1, and the piston member 11 has a small diameter with the large-diameter shaft portion 12. The shaft portion 13 is slidably fitted into the first bearing member 9 of the large diameter hole 8A and the second bearing member 10 of the small diameter hole 8B, which are connected to the pump portion 6, respectively, and the large diameter shaft portion 12 and the large diameter hole 8A are inserted. The low-pressure pump chamber 14 was partitioned, and the high-pressure pump chamber 15 was partitioned by the small-diameter shaft portion 13 and the small-diameter hole 8B. Therefore, when it is desired to increase the flow rate of the liquid discharged from the low-pressure pump chamber 14, only the large-diameter shaft portion 12 of the piston member 11 needs to have a large diameter, and the small-diameter shaft portion 13 is not affected. It is possible to suppress an increase in the amount of liquid leaking from the high-pressure pump chamber 15 to the low-pressure pump chamber 14 through the gap of the sliding portion of the second bearing member 10, and the flow rate of the liquid discharged from the high-pressure pump chamber 15 is sufficient. Can be secured.

図4は参考例の変形例を示し、異なる個所について説明する。図1ないし図3の第1吸入路20に替えて第3吸入路30を設けた。第3吸入路30は高圧ポンプ室15を介してタンクTから液体を吸入し低圧ポンプ室14に接続している。第3吸入路30にはタンクTから高圧ポンプ室15を介して低圧ポンプ室14への液体の流れを許容し、低圧ポンプ室14から高圧ポンプ室15を介してタンクTへの液体の流れを阻止する第1チェック弁31を配設している。 FIG. 4 shows a modified example of the reference example , and different parts will be described. A third suction passage 30 was provided in place of the first suction passage 20 of FIGS. 1 to 3. The third suction passage 30 sucks the liquid from the tank T via the high pressure pump chamber 15 and connects to the low pressure pump chamber 14. The third suction passage 30 allows the flow of liquid from the tank T through the high-pressure pump chamber 15 to the low-pressure pump chamber 14, and allows the flow of liquid from the low-pressure pump chamber 14 to the tank T via the high-pressure pump chamber 15. A first check valve 31 for blocking is provided.

図5は参考例の他の変形例を示し、異なる個所について説明する。図1ないし図3の第2吸入路22に替えて第4吸入路32を設けた。第4吸入路32は低圧ポンプ室14を介してタンクTから液体を吸入し高圧ポンプ室15に接続している。第4吸入路32にはタンクTから低圧ポンプ室14を介して高圧ポンプ室15への液体の流れを許容し、高圧ポンプ室15から低圧ポンプ室14を介してタンクTへの液体の流れを阻止する第3チェック弁33を配設している。 FIG. 5 shows another modified example of the reference example , and different parts will be described. A fourth suction passage 32 was provided in place of the second suction passage 22 of FIGS. 1 to 3. The fourth suction passage 32 sucks the liquid from the tank T via the low pressure pump chamber 14 and connects to the high pressure pump chamber 15. The fourth suction passage 32 allows the flow of liquid from the tank T through the low-pressure pump chamber 14 to the high-pressure pump chamber 15, and allows the flow of liquid from the high-pressure pump chamber 15 to the tank T via the low-pressure pump chamber 14. A third check valve 33 for blocking is provided.

図6ないし図8は本発明の実施形態を示し、参考例と同一個所には同符号を付して説明を省略し、異なる個所についてのみ説明する。
34はポンプ本体6に穿設した弁孔で、吸入口18と吐出口19との間を接続し、吸入口18と吐出口19とを接続する中間部分に低圧ポンプ室14を接続している。35は第2排出路で、弁孔34の低圧ポンプ室14と吸入口18との間を接続する部分に相当する。36は第2排出路35に配設した圧力制御弁としての外部パイロットの圧力制御弁で、パイロット流路37を第1吐出路21の第2チェック弁26配設個所よりアクチュエータ側へ接続し、アクチュエータへ吐出する液体の圧力をパイロット圧力として作用している。36Aは圧力制御弁36のスプール弁体で、ランド部36B、36Cを有し、弁孔34へ摺動自在に嵌挿している。スプール弁体36Aはばね36Dの弾性力で図8の軸方向左方へ付勢して低圧ポンプ室14と吸入口18との間をランド部36Cで閉じている。そして、ランド部36Bに作用するパイロット圧力がばね36Dの弾性力に基づく設定値以上に上昇すると、ばね36Dの弾性力に抗してスプール弁体36Aを図8の軸方向右方へ移動し、低圧ポンプ室14と吸入口18との間をランド部36Cが開き、液体をタンクTへ排出する。
6 to 8 show an embodiment of the present invention, the same parts as those in the reference example are designated by the same reference numerals, description thereof will be omitted, and only different parts will be described.
Reference numeral 34 denotes a valve hole formed in the pump main body 6, which connects the suction port 18 and the discharge port 19 and connects the low pressure pump chamber 14 to the intermediate portion connecting the suction port 18 and the discharge port 19. .. Reference numeral 35 denotes a second discharge passage, which corresponds to a portion connecting the low pressure pump chamber 14 of the valve hole 34 and the suction port 18. Reference numeral 36 denotes a pressure control valve of an external pilot as a pressure control valve arranged in the second discharge passage 35, and the pilot flow path 37 is connected to the actuator side from the second check valve 26 arrangement portion of the first discharge passage 21. The pressure of the liquid discharged to the actuator acts as the pilot pressure. Reference numeral 36A is a spool valve body of the pressure control valve 36, which has land portions 36B and 36C and is slidably inserted into the valve hole 34. The spool valve body 36A is urged to the left in the axial direction by the elastic force of the spring 36D, and the low pressure pump chamber 14 and the suction port 18 are closed by the land portion 36C. Then, when the pilot pressure acting on the land portion 36B rises above the set value based on the elastic force of the spring 36D, the spool valve body 36A moves to the right in the axial direction of FIG. 8 against the elastic force of the spring 36D. The land portion 36C opens between the low pressure pump chamber 14 and the suction port 18, and the liquid is discharged to the tank T.

作動は、コイル4への通電・非通電の繰り返しで、パイロット圧力が圧力制御弁36のばね36Dの弾性力に基づく設定値以上に上昇すると、スプール弁体36Aが開作動して低圧ポンプ室14の液体をタンクTに排出し、高圧ポンプ室15の液体のみが高圧小流量の液体として吐出口19を介してアクチュエータに吐出する。 The operation is repeated energization and de-energization of the coil 4, and when the pilot pressure rises above the set value based on the elastic force of the spring 36D of the pressure control valve 36, the spool valve body 36A opens and the low-pressure pump chamber 14 operates. Is discharged to the tank T, and only the liquid in the high-pressure pump chamber 15 is discharged to the actuator as a high-pressure small-flow liquid through the discharge port 19.

かかる作動において、小径軸部13と第2軸受部材10の摺動部の隙間を介して高圧ポンプ室15から低圧ポンプ室14へ漏れる液体の漏れ量が増加することを抑制でき、高圧ポンプ室15から吐出する液体の流量を十分に確保できる。また、圧力制御弁36は、第2チェック弁26よりアクチュエータ側に吐出する液体の圧力をパイロット圧力として作用して設け、このパイロット圧力の作用で開作動して低圧ポンプ室14からの液体をタンクTへ排出する。このため、パイロット圧力が圧力制御弁36のばね36Dの弾性力に基づく設定値以上に上昇してスプール弁体36Aが開作動すると、低圧ポンプ室14からタンクTへ液体を排出して低圧ポンプ室14の圧力は略ゼロになる。そして、第2チェック弁26よりアクチュエータ側に吐出する液体の圧力が設定値より低下しないかぎり、低圧ポンプ室14の圧力は略ゼロを維持するから、低圧ポンプ室14を区画形成するピストン部材11の大径軸部12が作動する際の圧力に基づく抵抗を軽減することができ、作動性を向上することができる。 In such operation, it is possible to suppress the leakage amount of liquid leaking into the low-pressure pump chamber 14 from the high-pressure pump chamber 15 through the clearance of the sliding portion of the small-diameter shaft portion 13 and the second bearing member 10 is increased, the high-pressure pump chamber A sufficient flow rate of the liquid discharged from 15 can be secured. Further, the pressure control valve 36 is provided by acting as a pilot pressure on the pressure of the liquid discharged from the second check valve 26 to the actuator side, and is opened by the action of the pilot pressure to tank the liquid from the low pressure pump chamber 14. Discharge to T. Therefore, when the pilot pressure rises above the set value based on the elastic force of the spring 36D of the pressure control valve 36 and the spool valve body 36A opens, the liquid is discharged from the low pressure pump chamber 14 to the tank T and the low pressure pump chamber. The pressure of 14 becomes almost zero. Then, as long as the pressure of the liquid discharged from the second check valve 26 to the actuator side does not drop below the set value, the pressure in the low pressure pump chamber 14 is maintained at substantially zero, so that the piston member 11 for partitioning the low pressure pump chamber 14 The resistance based on the pressure when the large-diameter shaft portion 12 operates can be reduced, and the operability can be improved.

図9は実施形態の変形例を示し、異なる個所について説明する。38は第1吐出路で、第2チェック弁26を配設している。そして、第1吐出路38は第2吐出路23の第4チェック弁28配設個所より高圧ポンプ室15側で第2吐出路23に接続し、第2チェック弁26と第4チェック弁28を直列にアクチュエータ側へ接続している。 FIG. 9 shows a modified example of one embodiment and describes different parts. Reference numeral 38 denotes a first discharge path, and a second check valve 26 is arranged. Then, the first discharge passage 38 is connected to the second discharge passage 23 on the high-pressure pump chamber 15 side from the location where the fourth check valve 28 is arranged in the second discharge passage 23, and the second check valve 26 and the fourth check valve 28 are connected. It is connected to the actuator side in series.

図10は実施形態の他の変形例を示し、異なる個所について説明する。39は圧力制御弁36のパイロット流路で、高圧ポンプ室15へ接続し、高圧ポンプ室15からアクチュエータへ吐出する液体の圧力をパイロット圧力として作用している。
FIG. 10 shows another modification of one embodiment and describes different parts. Reference numeral 39 denotes a pilot flow path of the pressure control valve 36, which is connected to the high pressure pump chamber 15 and acts as a pilot pressure using the pressure of the liquid discharged from the high pressure pump chamber 15 to the actuator.

なお、前述の各実施形態では、低圧ポンプ室14から吐出された液体と高圧ポンプ室15から吐出された液体は吐出口19で合流しアクチュエータに吐出したが、これに限定されるものではなく、低圧ポンプ室14から吐出された液体と高圧ポンプ室15から吐出された液体は吐出口19で合流しないでそれぞれ別個のアクチュエータに吐出してもよい。また、大径孔8Aと小径孔8Bにそれぞれ第1軸受部材9と第2軸受部材10を圧入したが、大径孔8Aと小径孔8Bにそれぞれ第1軸受部材9と第2軸受部材10を設けなくてもよい。また、ピストン部材11は、第1弾性部材16の軸方向下方への弾性力と第2弾性部材17の軸方向上方への弾性力とで付勢され、第1弾性部材16の弾性力と第2弾性部材17の弾性力との平衡位置で停止したが、第1弾性部材16は備えず第2弾性部材17の軸方向上方への弾性力のみでピストン部材11の位置決めをしてもよい。また、圧力制御弁36はスプール弁としたが、ポペット弁にしてもよい。また、第1吐出路38は第2吐出路23の第4チェック弁28配設個所より高圧ポンプ室15側で第2吐出路23に接続したが、これに限定されるものではなく、第1吐出路38は第2吐出路23の第4チェック弁28配設個所よりアクチュエータ側で第2吐出路23に接続してもよいことは勿論である。 In each of the above-described embodiments, the liquid discharged from the low-pressure pump chamber 14 and the liquid discharged from the high-pressure pump chamber 15 merge at the discharge port 19 and are discharged to the actuator, but the present invention is not limited to this. The liquid discharged from the low-pressure pump chamber 14 and the liquid discharged from the high-pressure pump chamber 15 may be discharged to separate actuators without merging at the discharge port 19. Further, the first bearing member 9 and the second bearing member 10 were press-fitted into the large-diameter hole 8A and the small-diameter hole 8B, respectively, but the first bearing member 9 and the second bearing member 10 were inserted into the large-diameter hole 8A and the small-diameter hole 8B, respectively. It does not have to be provided. Further, the piston member 11 is urged by the elastic force downward in the axial direction of the first elastic member 16 and the elastic force upward in the axial direction of the second elastic member 17, and the elastic force of the first elastic member 16 and the first elastic force. 2 Although it stopped at a position in equilibrium with the elastic force of the elastic member 17, the piston member 11 may be positioned only by the elastic force upward in the axial direction of the second elastic member 17 without the first elastic member 16. Although the pressure control valve 36 is a spool valve, it may be a poppet valve. Further, the first discharge passage 38 is connected to the second discharge passage 23 on the high pressure pump chamber 15 side from the location where the fourth check valve 28 is arranged in the second discharge passage 23, but the present invention is not limited to this, and the first discharge passage 38 is not limited to this. Of course, the discharge path 38 may be connected to the second discharge path 23 on the actuator side from the location where the fourth check valve 28 is arranged on the second discharge path 23.

1:ソレノイド部
3:可動鉄心
6:ポンプ部
8A:大径孔
8B:小径孔
11:ピストン部材
12:大径軸部
13:小径軸部
14:低圧ポンプ室
15:高圧ポンプ室
20:第1吸入路
22:第2吸入路
21、38:第1吐出路
23:第2吐出路
25、31:第1チェック弁
26:第2チェック弁
27、33:第3チェック弁
28:第4チェック弁
29:リリーフ弁
30:第3吸入路
32:第4吸入路
36:圧力制御弁
T:タンク
1: Solenoid part 3: Movable iron core 6: Pump part 8A: Large diameter hole 8B: Small diameter hole 11: Piston member 12: Large diameter shaft part 13: Small diameter shaft part 14: Low pressure pump chamber 15: High pressure pump chamber 20: First Suction path 22: 2nd suction path 21, 38: 1st discharge path 23: 2nd discharge path 25, 31: 1st check valve 26: 2nd check valve 27, 33: 3rd check valve 28: 4th check valve 29: Relief valve 30: Third suction path 32: Fourth suction path 36: Pressure control valve T: Tank

Claims (1)

低圧大流量の液体を負荷側へ吐出する低圧ポンプ室と高圧小流量の液体を負荷側へ吐出する高圧ポンプ室とを備える電磁ポンプにおいて、通電により発生する吸引力で可動鉄心を摺動するソレノイド部と、ソレノイド部で作動するポンプ部とを備え、ポンプ部は大径軸部と小径軸部とを連設しソレノイド部の通電により摺動するピストン部材を有し、ピストン部材は大径軸部と小径軸部をそれぞれポンプ部に連設した大径孔と小径孔に摺動自在に嵌挿し、大径軸部と大径孔により低圧ポンプ室を区画形成すると共に、小径軸部と小径孔により高圧ポンプ室を区画形成し、低圧ポンプ室には低圧ポンプ室の圧力を設定値に制御する圧力制御弁と、低圧側から低圧ポンプ室への液体の流れを許容し低圧ポンプ室から低圧側への液体の流れを阻止する第1チェック弁と、低圧ポンプ室から負荷側への液体の流れを許容し負荷側から低圧ポンプ室への液体の流れを阻止する第2チェック弁とを接続し、高圧ポンプ室には低圧側から高圧ポンプ室への液体の流れを許容し高圧ポンプ室から低圧側への液体の流れを阻止する第3チェック弁と、高圧ポンプ室から負荷側への液体の流れを許容し負荷側から高圧ポンプ室への液体の流れを阻止する第4チェック弁を接続し、圧力制御弁は、弁体をポンプ本体の弁孔へ摺動自在に嵌挿し、弁体には2個のランド部を有し、第2チェック弁より負荷側に吐出する液体の圧力をパイロット圧力として一方のランド部に作用して設け、このパイロット圧力の作用で他方のランド部が開いて低圧ポンプ室の液体を低圧側へ排出する外部パイロットであることを特徴とする電磁ポンプ。 In an electromagnetic pump equipped with a low-pressure pump chamber that discharges a low-pressure large-flow liquid to the load side and a high-pressure pump chamber that discharges a high-pressure small-flow liquid to the load side, a solenoid that slides a movable iron core by an attractive force generated by energization. It is provided with a portion and a pump portion operated by a solenoid portion, and the pump portion has a piston member in which a large-diameter shaft portion and a small-diameter shaft portion are connected in series and slides by energization of the solenoid portion, and the piston member is a large-diameter shaft. The small-diameter shaft and the small-diameter shaft are slidably fitted into the large-diameter and small-diameter holes that are connected to the pump, respectively. A high-pressure pump chamber is partitioned by holes, and the low-pressure pump chamber has a pressure control valve that controls the pressure in the low-pressure pump chamber to a set value, and allows the flow of liquid from the low-pressure side to the low-pressure pump chamber to allow low pressure from the low-pressure pump chamber. Connect the first check valve that blocks the flow of liquid to the side and the second check valve that allows the flow of liquid from the low-pressure pump chamber to the load side and blocks the flow of liquid from the load side to the low-pressure pump chamber. However, the high-pressure pump chamber has a third check valve that allows the flow of liquid from the low-pressure side to the high-pressure pump chamber and blocks the flow of liquid from the high-pressure pump chamber to the low-pressure side, and the liquid from the high-pressure pump chamber to the load side. A fourth check valve is connected to allow the flow of liquid to prevent the flow of liquid from the load side to the high-pressure pump chamber, and the pressure control valve is a valve body in which the valve body is slidably inserted into the valve hole of the pump body. Has two land portions, and the pressure of the liquid discharged from the second check valve to the load side acts as a pilot pressure on one land portion, and the other land portion is opened by the action of this pilot pressure. electromagnetic pump, wherein the external pilot der Rukoto for discharging the liquid of the low-pressure pump chamber to the low pressure side Te.
JP2016204324A 2016-10-18 2016-10-18 Electromagnetic pump Active JP6808440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204324A JP6808440B2 (en) 2016-10-18 2016-10-18 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204324A JP6808440B2 (en) 2016-10-18 2016-10-18 Electromagnetic pump

Publications (2)

Publication Number Publication Date
JP2018066288A JP2018066288A (en) 2018-04-26
JP6808440B2 true JP6808440B2 (en) 2021-01-06

Family

ID=62087001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204324A Active JP6808440B2 (en) 2016-10-18 2016-10-18 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JP6808440B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump
JPH0442530Y2 (en) * 1985-02-25 1992-10-07
JP2519377Y2 (en) * 1990-08-20 1996-12-04 日東造機株式会社 Plunger in hydraulic plunger pump
NL1002197C2 (en) * 1996-01-29 1997-07-30 Holmatro B V Hydraulic pump mounted on a support.
JPWO2004005711A1 (en) * 2002-07-04 2005-11-04 ナブテスコ株式会社 Liquid pump
US7329105B2 (en) * 2003-12-03 2008-02-12 Haldex Brake Corporation Multi-directional pump
JP2007126974A (en) * 2005-11-01 2007-05-24 Nachi Fujikoshi Corp Electromagnetic pump
WO2008151628A1 (en) * 2007-06-12 2008-12-18 Iop Marine A/S Two-step-pump
JP5136533B2 (en) * 2009-06-18 2013-02-06 アイシン・エィ・ダブリュ株式会社 Electromagnetic pump

Also Published As

Publication number Publication date
JP2018066288A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US10830364B2 (en) Oil controlled valve
CN106795846B (en) High-pressure fuel feed pump
US10146235B2 (en) Valve device
US20060266419A1 (en) Feed pressure valve
US9733651B2 (en) Proportional pressure-regulating valve
JP5617830B2 (en) Hydraulic control device
JPWO2015020227A1 (en) Damping force adjustable shock absorber
JP6514347B2 (en) Pressure limiting valve
EP3351802B1 (en) Mechanical barrier fluid pressure regulation for subsea systems
US9062570B2 (en) Infinitely variable pressure-control valve
US20180080568A1 (en) Valve
WO2014147739A1 (en) Flow rate control valve
CN107532555B (en) High-pressure fuel pump
JP2015224649A (en) Two-stage pilot type solenoid valve
JP6015398B2 (en) Fuel injection valve
JP6808440B2 (en) Electromagnetic pump
JP2010261569A (en) Variable hydraulic system
JP5678639B2 (en) Solenoid linear valve
KR20120064037A (en) Slide valve, especially for using in an automatic transmission of a motor vehicle
JP2015209932A (en) Pilot type flow control valve
JP2018053931A (en) Shockless relief valve
JP6119875B2 (en) Flow control valve
JP5428507B2 (en) Variable hydraulic system
JP2018053842A (en) High pressure fuel supply pump
JP2018501450A (en) Valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350