JP6808282B2 - Interposer manufacturing method - Google Patents

Interposer manufacturing method Download PDF

Info

Publication number
JP6808282B2
JP6808282B2 JP2016242236A JP2016242236A JP6808282B2 JP 6808282 B2 JP6808282 B2 JP 6808282B2 JP 2016242236 A JP2016242236 A JP 2016242236A JP 2016242236 A JP2016242236 A JP 2016242236A JP 6808282 B2 JP6808282 B2 JP 6808282B2
Authority
JP
Japan
Prior art keywords
glass substrate
interposer
laminated body
cutting groove
forming step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016242236A
Other languages
Japanese (ja)
Other versions
JP2018098379A (en
Inventor
鈴木 克彦
克彦 鈴木
陽平 山下
陽平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2016242236A priority Critical patent/JP6808282B2/en
Priority to TW106138540A priority patent/TWI743244B/en
Priority to KR1020170166942A priority patent/KR20180068862A/en
Priority to CN201711282902.9A priority patent/CN108231570A/en
Publication of JP2018098379A publication Critical patent/JP2018098379A/en
Application granted granted Critical
Publication of JP6808282B2 publication Critical patent/JP6808282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Description

本発明は、ガラス基板を用いたインターポーザの製造方法に関する。 The present invention relates to a method for manufacturing an interposer using a glass substrate.

半導体装置の更なる小型化、高集積化を実現するために、半導体チップを厚さ方向に重ねて貫通電極(TSV:Through Silicon Via)で接続する3次元実装技術が実用化されている。しかしながら、この3次元実装技術では、複数の半導体チップを厚さ方向に重ねるので、放熱性が低下し易く、サイズの異なる半導体チップを使用することもできない。更に、半導体チップを貫通する貫通電極の形成に伴い、製造コストが高くなり易いという問題もあった。 In order to realize further miniaturization and high integration of semiconductor devices, a three-dimensional mounting technology in which semiconductor chips are stacked in the thickness direction and connected by through silicon vias (TSVs) has been put into practical use. However, in this three-dimensional mounting technology, since a plurality of semiconductor chips are stacked in the thickness direction, heat dissipation is liable to decrease, and semiconductor chips of different sizes cannot be used. Further, there is a problem that the manufacturing cost tends to increase with the formation of the through electrode penetrating the semiconductor chip.

近年では、シリコンウェーハを用いて形成されるインターポーザ(中継用基板)を介して複数の半導体チップを実装する実装技術も提案されている(例えば、特許文献1参照)。この実装技術は、2.5次元実装技術等とも呼ばれ、例えば、メモリ機能を持つ半導体チップと、演算機能を持つ半導体チップとが重ならないようにインターポーザに接続される。2.5次元実装技術では、少なくとも一部の半導体チップが厚さ方向に重ならないので、上述した3次元実装技術の諸問題を解消し易くなる。 In recent years, a mounting technique for mounting a plurality of semiconductor chips via an interposer (relay substrate) formed by using a silicon wafer has also been proposed (see, for example, Patent Document 1). This mounting technology is also called a 2.5-dimensional mounting technology or the like. For example, a semiconductor chip having a memory function and a semiconductor chip having a computing function are connected to an interposer so as not to overlap each other. In the 2.5-dimensional mounting technology, since at least a part of the semiconductor chips do not overlap in the thickness direction, it becomes easy to solve the above-mentioned problems of the three-dimensional mounting technology.

一方で、シリコンウェーハを用いたインターポーザには、高周波領域での損失が大きく、価格も高いという問題があった。そこで、高周波領域での損失低減に有利で低価格なガラス基板をインターポーザに用いる技術が提案されている(例えば、特許文献2参照)。このインターポーザは、例えば、ガラス基板の少なくとも一方の主面に絶縁層と配線層とを含む積層体を形成した上で、予め設定されている分割予定ラインに沿ってガラス基板を分割することで得られる。 On the other hand, the interposer using the silicon wafer has a problem that the loss in the high frequency region is large and the price is high. Therefore, a technique of using a low-priced glass substrate as an interposer, which is advantageous for reducing loss in a high frequency region, has been proposed (see, for example, Patent Document 2). This interposer can be obtained, for example, by forming a laminate including an insulating layer and a wiring layer on at least one main surface of the glass substrate, and then dividing the glass substrate along a preset division schedule line. Be done.

特表2003−503855号公報Special Table 2003-503855 特開2015−198212号公報JP-A-2015-198212

ガラス基板の分割は、通常、回転させた切削ブレードを分割予定ラインに沿って切り込ませる方法で行われる。ところが、この方法で製造されるインターポーザには、耐熱性の点で問題があった。具体的には、例えば、このインターポーザに対して温度サイクル試験(TCT:Temperature Cycling Test)を行うと、ガラス基板にクラックが発生したり、積層体がガラス基板から剥離したりして、不良率が高くなってしまう。 The division of the glass substrate is usually performed by cutting a rotated cutting blade along a planned division line. However, the interposer manufactured by this method has a problem in terms of heat resistance. Specifically, for example, when a temperature cycle test (TCT: Temperature Cycling Test) is performed on this interposer, cracks occur in the glass substrate or the laminate is peeled off from the glass substrate, resulting in a defective rate. It will be expensive.

本発明はかかる問題点に鑑みてなされたものであり、その目的とするところは、ガラス基板を用いたインターポーザの耐熱性を高めることができるインターポーザの製造方法を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for manufacturing an interposer capable of increasing the heat resistance of an interposer using a glass substrate.

本発明の一態様によれば、格子状に設定された複数の分割予定ラインによって複数の領域に区画されるガラス基板と、該ガラス基板の第1面又は該第1面とは反対側の第2面に積層され絶縁層と配線層とを含む積層体と、を備える材料基板から複数のインターポーザを製造するインターポーザの製造方法であって、該分割予定ラインに沿って該積層体の露出した面に切削ブレードを切り込ませ、該ガラス基板に達しない深さの切削溝を該積層体に形成する切削溝形成工程と、該ガラス基板に対して透過性を有する波長のレーザービームの集光点を該切削溝に沿って該ガラス基板の内部に位置付け改質層を形成する改質層形成工程と、該ガラス基板に外力を付与して該改質層に沿って該ガラス基板を分割し、複数のインターポーザを製造する分割工程と、を含むインターポーザの製造方法が提供される。 According to one aspect of the present invention, a glass substrate divided into a plurality of regions by a plurality of scheduled division lines set in a grid pattern, and a first surface of the glass substrate or a first surface opposite to the first surface. A method for manufacturing an interposer in which a plurality of interposers are manufactured from a material substrate including a laminate including an insulating layer and a wiring layer laminated on two surfaces, and the exposed surfaces of the laminate along the planned division line. A cutting groove forming step of cutting a cutting blade into the laminated body to form a cutting groove having a depth that does not reach the glass substrate, and a focusing point of a laser beam having a wavelength that is transparent to the glass substrate. Is positioned inside the glass substrate along the cutting groove to form a modified layer, and an external force is applied to the glass substrate to divide the glass substrate along the modified layer. A division step for manufacturing a plurality of interposers and a method for manufacturing an interposer including the interposer are provided.

また、本発明の別の一態様によれば、格子状に設定された複数の分割予定ラインによって複数の領域に区画されるガラス基板と、該ガラス基板の第1面又は該第1面とは反対側の第2面に積層され絶縁層と配線層とを含む積層体と、を備える材料基板から複数のインターポーザを製造するインターポーザの製造方法であって、該分割予定ラインに沿って該積層体の露出した面に切削ブレードを切り込ませ、該ガラス基板に達しない深さの切削溝を該積層体に形成する切削溝形成工程と、該ガラス基板に対して透過性を有する波長のレーザービームの集光点を該切削溝に沿って該ガラス基板の内部に位置付けて、該ガラス基板の厚さ方向に延びる細孔と該細孔を囲む非晶質領域とを有するシールドトンネルを形成するシールドトンネル形成工程と、該ガラス基板に外力を付与して該シールドトンネルに沿って該ガラス基板を分割し、複数のインターポーザを製造する分割工程と、を含むインターポーザの製造方法が提供される。 Further, according to another aspect of the present invention, the glass substrate divided into a plurality of regions by a plurality of scheduled division lines set in a grid pattern, and the first surface or the first surface of the glass substrate A method for manufacturing an interposer, which manufactures a plurality of interposers from a material substrate including a laminate including an insulating layer and a wiring layer laminated on a second surface on the opposite side, and the laminate is formed along a planned division line. A cutting groove forming step of cutting a cutting blade into the exposed surface of the glass substrate to form a cutting groove having a depth not reaching the glass substrate in the laminated body, and a laser beam having a wavelength that is transparent to the glass substrate. A shield that positions the condensing point of the glass substrate along the cutting groove inside the glass substrate to form a shield tunnel having pores extending in the thickness direction of the glass substrate and an amorphous region surrounding the pores. A method for manufacturing an interposer including a tunnel forming step and a split step of applying an external force to the glass substrate to divide the glass substrate along the shield tunnel to manufacture a plurality of interposers is provided.

本発明に係るインターポーザの製造方法によれば、分割予定ラインに沿ってガラス基板に達しない深さの溝(切削溝又はレーザー加工溝)を積層体に形成した上で、ガラス基板に対して透過性を有する波長のレーザービームの集光点をこの溝に沿ってガラス基板の内部に位置付け分割の起点となる構造(改質層又はシールドトンネル)を形成するので、ガラス基板を分割して製造されるインターポーザの端部には、薄い積層体が残る。 According to the method for manufacturing an interposer according to the present invention, a groove (cutting groove or laser-processed groove) having a depth that does not reach the glass substrate is formed in the laminated body along the planned division line, and then transmitted to the glass substrate. Since the focusing point of the laser beam having a characteristic wavelength is positioned inside the glass substrate along this groove to form a structure (modified layer or shield tunnel) that becomes the starting point of division, the glass substrate is divided and manufactured. A thin laminate remains at the end of the interposer.

端部の積層体が厚い従来のインターポーザが加熱されると、ガラス基板と積層体との熱膨張係数の違いに起因する大きな力が端部に作用して、積層体はガラス基板から剥がれ易い。これに対し、本発明で製造されるインターポーザでは、端部の積層体が薄くなっているので、従来の方法で製造されるインターポーザに比べて積層体を剥がすような大きな力が端部に作用し難い。 When a conventional interposer with a thick end laminate is heated, a large force due to a difference in thermal expansion coefficient between the glass substrate and the laminate acts on the end, and the laminate is easily peeled off from the glass substrate. On the other hand, in the interposer manufactured by the present invention, the laminated body at the end is thin, so that a large force for peeling off the laminated body acts on the end as compared with the interposer manufactured by the conventional method. hard.

つまり、本発明で製造されるインターポーザが加熱されても、積層体はガラス基板から剥がれ難い。このように、本発明に係るインターポーザの製造方法によれば、ガラス基板を用いたインターポーザの耐熱性を高めることができる。 That is, even if the interposer manufactured by the present invention is heated, the laminate is not easily peeled off from the glass substrate. As described above, according to the method for manufacturing an interposer according to the present invention, the heat resistance of an interposer using a glass substrate can be improved.

図1(A)は、本実施形態で使用される材料基板の構成例を模式的に示す斜視図であり、図1(B)は、材料基板の一部(領域A)を拡大した断面図である。FIG. 1A is a perspective view schematically showing a configuration example of a material substrate used in the present embodiment, and FIG. 1B is an enlarged cross-sectional view of a part (region A) of the material substrate. Is. 図2(A)及び図2(B)は、切削溝形成工程について説明するための一部断面側面図である。2 (A) and 2 (B) are partial cross-sectional side views for explaining a cutting groove forming process. 図3(A)は、切削溝形成工程の後に行われる改質層形成工程について説明するための一部断面側面図であり、図3(B)は、分割工程を経て製造されるインターポーザの構成例を模式的に示す斜視図である。FIG. 3A is a partial cross-sectional side view for explaining a modified layer forming step performed after the cutting groove forming step, and FIG. 3B is a configuration of an interposer manufactured through the dividing step. It is a perspective view which shows the example schematically. 図4(A)及び図4(B)は、第1変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。4 (A) and 4 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a first modification. 図5(A)及び図5(B)は、第2変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。5 (A) and 5 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a second modification. 図6(A)及び図6(B)は、第3変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。6 (A) and 6 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a third modification.

添付図面を参照して、本発明の一態様に係る実施形態について説明する。本実施形態に係るインターポーザの製造方法は、ガラス基板と積層体とを備える材料基板から複数のインターポーザを製造するための方法であって、切削溝形成工程(図2(A)及び図2(B)参照)、改質層形成工程(図3(A)参照)、及び分割工程(図3(B)参照)を含む。 An embodiment according to one aspect of the present invention will be described with reference to the accompanying drawings. The method for manufacturing an interposer according to the present embodiment is a method for manufacturing a plurality of interposers from a material substrate including a glass substrate and a laminate, and is a cutting groove forming step (FIGS. 2A and 2B). ), A modified layer forming step (see FIG. 3 (A)), and a dividing step (see FIG. 3 (B)).

切削溝形成工程では、ガラス基板に設定された分割予定ラインに沿って積層体の露出した面に切削ブレードを切り込ませ、ガラス基板に達しない深さの切削溝を積層体に形成する。改質層形成工程では、ガラス基板に対して透過性を有する波長のレーザービームの集光点を切削溝に沿ってガラス基板の内部に位置付け、分割の起点となる改質層を形成する。 In the cutting groove forming step, the cutting blade is cut into the exposed surface of the laminated body along the planned division line set on the glass substrate, and the cutting groove having a depth not reaching the glass substrate is formed in the laminated body. In the modified layer forming step, the focusing point of the laser beam having a wavelength that is transparent to the glass substrate is positioned inside the glass substrate along the cutting groove to form the modified layer that is the starting point of division.

分割工程では、ガラス基板に外力を付与することで、改質層に沿ってガラス基板を分割し、複数のインターポーザを製造する。以下、本実施形態に係るインターポーザの製造方法について詳述する。 In the dividing step, an external force is applied to the glass substrate to divide the glass substrate along the modified layer to manufacture a plurality of interposers. Hereinafter, the method for manufacturing the interposer according to the present embodiment will be described in detail.

図1(A)は、本実施形態で使用される材料基板1の構成例を模式的に示す斜視図であり、図1(B)は、材料基板1の一部(領域A)を拡大した断面図である。本実施形態に係る材料基板1は、例えば、ソーダライムガラス、無アルカリガラス、石英ガラス等のガラスでなる円盤状のガラス基板11を用いて構成され、格子状に設定された複数の分割予定ライン(ストリート)13によって複数の領域に区画されている。 FIG. 1A is a perspective view schematically showing a configuration example of the material substrate 1 used in the present embodiment, and FIG. 1B is an enlarged view of a part (region A) of the material substrate 1. It is a sectional view. The material substrate 1 according to the present embodiment is configured by using, for example, a disk-shaped glass substrate 11 made of glass such as soda lime glass, non-alkali glass, and quartz glass, and a plurality of planned division lines set in a grid pattern. It is divided into a plurality of areas by (street) 13.

ガラス基板11の第1面(表面)11a及び第1面11aとは反対側の第2面(裏面)11bには、それぞれ複数の層(膜)が積層されてなる積層体15が設けられている。この積層体15は、例えば、金属等の導体でなる配線層17と、樹脂等の絶縁体でなる絶縁層19とを含み、隣接する配線層17の間が絶縁層19によって絶縁されている。 A laminated body 15 in which a plurality of layers (films) are laminated is provided on the first surface (front surface) 11a of the glass substrate 11 and the second surface (back surface) 11b on the side opposite to the first surface 11a. There is. The laminated body 15 includes, for example, a wiring layer 17 made of a conductor such as metal and an insulating layer 19 made of an insulator such as resin, and the adjacent wiring layers 17 are insulated by an insulating layer 19.

また、ガラス基板11には、第1面11aから第2面11bに向かって貫通する貫通孔11cが形成されている。貫通孔11cには、金属等の導体でなる電極21が埋め込まれている。第1面11a側の配線層17と第2面11b側の配線層17とは、この電極21を介して接続される。 Further, the glass substrate 11 is formed with a through hole 11c penetrating from the first surface 11a toward the second surface 11b. An electrode 21 made of a conductor such as metal is embedded in the through hole 11c. The wiring layer 17 on the first surface 11a side and the wiring layer 17 on the second surface 11b side are connected via the electrodes 21.

なお、本実施形態では、ガラス基板11の第1面11a及び第2面11bの両方に積層体15を有する材料基板1を例示しているが、積層体15は、第1面11a及び第2面11bの一方にのみ設けられても良い。その場合には、貫通孔11cや電極21等も省略できる。また、積層体15(配線層17、絶縁層19)、貫通孔11c、電極21等の構成、形成方法等にも特段の制限はない。 In the present embodiment, the material substrate 1 having the laminate 15 on both the first surface 11a and the second surface 11b of the glass substrate 11 is illustrated, but the laminate 15 is the first surface 11a and the second surface. It may be provided on only one of the surfaces 11b. In that case, the through hole 11c, the electrode 21, and the like can be omitted. Further, there are no particular restrictions on the configuration, forming method, etc. of the laminated body 15 (wiring layer 17, insulating layer 19), through hole 11c, electrode 21, and the like.

このように構成される材料基板1を分割予定ライン13に沿って分割することで、複数のインターポーザ3(図3(B)参照)を製造できる。本実施形態に係るインターポーザの製造方法では、まず、分割予定ライン13に沿って積層体15の露出した面に切削ブレードを切り込ませ、ガラス基板11に達しない深さの切削溝を積層体に形成する切削溝形成工程を行う。 By dividing the material substrate 1 configured in this way along the planned division line 13, a plurality of interposers 3 (see FIG. 3B) can be manufactured. In the method for manufacturing an interposer according to the present embodiment, first, a cutting blade is cut into an exposed surface of the laminated body 15 along a planned division line 13, and a cutting groove having a depth not reaching the glass substrate 11 is formed in the laminated body. Perform the cutting groove forming step to be formed.

図2(A)及び図2(B)は、切削溝形成工程について説明するための一部断面側面図である。この切削溝形成工程では、例えば、ダイヤモンド等の砥粒を樹脂や金属等の結合材で固定して所定の幅(水平方向の長さ、厚さ)に形成された環状の切削ブレード2が使用される。 2 (A) and 2 (B) are partial cross-sectional side views for explaining a cutting groove forming process. In this cutting groove forming step, for example, an annular cutting blade 2 formed by fixing abrasive grains such as diamond with a binder such as resin or metal to a predetermined width (horizontal length and thickness) is used. Will be done.

切削ブレード2を構成する砥粒や樹脂の材質は、積層体15の材質等に合わせて適切に設定される。切削ブレード2に含まれる砥粒の粒径に特段の制限はないが、例えば、20μm〜40μm程度、好ましくは、25μm〜35μm程度(代表的には、30μm程度)とする。切削ブレード2の幅にも特段の制限はないが、例えば、150μm〜500μm、好ましくは、200μm〜300μm程度とする。 The materials of the abrasive grains and the resin constituting the cutting blade 2 are appropriately set according to the material of the laminated body 15. The particle size of the abrasive grains contained in the cutting blade 2 is not particularly limited, but is, for example, about 20 μm to 40 μm, preferably about 25 μm to 35 μm (typically about 30 μm). The width of the cutting blade 2 is also not particularly limited, but is, for example, about 150 μm to 500 μm, preferably about 200 μm to 300 μm.

この切削ブレード2は、水平方向に対して概ね平行な回転軸となるスピンドル(不図示)の一端側に装着される。スピンドルの他端側には、モータ等の回転駆動源(不図示)が連結されており、スピンドルに装着された切削ブレード2は、この回転駆動源から伝わる力によって回転する。 The cutting blade 2 is mounted on one end side of a spindle (not shown) which is a rotation axis substantially parallel to the horizontal direction. A rotary drive source (not shown) such as a motor is connected to the other end side of the spindle, and the cutting blade 2 mounted on the spindle rotates by the force transmitted from the rotary drive source.

切削溝形成工程では、まず、ガラス基板11の第1面11a側が上方を向くように材料基板1を保持する。材料基板1の保持は、例えば、チャックテーブル(不図示)等を用いて行うことができる。次に、材料基板1と切削ブレード2との相対的な位置を調整し、切削ブレード2を、任意の分割予定ライン13の延長線上に合わせる。 In the cutting groove forming step, first, the material substrate 1 is held so that the first surface 11a side of the glass substrate 11 faces upward. The material substrate 1 can be held by using, for example, a chuck table (not shown) or the like. Next, the relative positions of the material substrate 1 and the cutting blade 2 are adjusted, and the cutting blade 2 is aligned with an extension line of an arbitrary scheduled division line 13.

また、第1面11a側の積層体15の露出した面15aよりも低く、ガラス基板11の第1面11aよりも高い位置に、切削ブレード2の下端を合わせる。その後、切削ブレード2を回転させて、対象の分割予定ライン13に対して平行な方向に沿って材料基板1と切削ブレード2とを相対的に移動させる。 Further, the lower end of the cutting blade 2 is aligned with a position lower than the exposed surface 15a of the laminated body 15 on the first surface 11a side and higher than the first surface 11a of the glass substrate 11. After that, the cutting blade 2 is rotated to relatively move the material substrate 1 and the cutting blade 2 along a direction parallel to the target division scheduled line 13.

これにより、図2(A)に示すように、対象の分割予定ライン13に沿って第1面11a側の積層体15の露出した面15aに切削ブレード2を切り込ませ、ガラス基板11に達しない深さの切削溝15bを第1面11a側の積層体15に形成できる。 As a result, as shown in FIG. 2A, the cutting blade 2 is cut into the exposed surface 15a of the laminated body 15 on the first surface 11a side along the target division scheduled line 13, and reaches the glass substrate 11. A cutting groove 15b having a depth that does not exist can be formed in the laminated body 15 on the first surface 11a side.

なお、切削ブレード2の下端の位置は、切削溝15bの底からガラス基板11の第1面11aまでの距離が、例えば、1μm〜30μm程度、好ましくは、2μm〜20μm程度となるように調整される。すなわち、分割予定ライン13に沿って、例えば、1μm〜30μm程度、好ましくは、2μm〜20μm程度の厚さの積層体15を残す。これにより、熱に起因してインターポーザ3の端部に発生する力を適切に緩和して、積層体15の剥離を防止できるようになる。 The position of the lower end of the cutting blade 2 is adjusted so that the distance from the bottom of the cutting groove 15b to the first surface 11a of the glass substrate 11 is, for example, about 1 μm to 30 μm, preferably about 2 μm to 20 μm. To. That is, a laminated body 15 having a thickness of, for example, about 1 μm to 30 μm, preferably about 2 μm to 20 μm is left along the planned division line 13. As a result, the force generated at the end of the interposer 3 due to heat can be appropriately alleviated, and the laminate 15 can be prevented from peeling off.

対象の分割予定ライン13に沿って第1面11a側の積層体15に切削溝15bを形成した後には、上述の動作を繰り返し、全ての分割予定ライン13に沿って第1面11a側の積層体15に切削溝15bを形成する。その後、材料基板1の上下を反転させて、図2(B)に示すように、同様の手順で第2面11b側の積層体15に切削溝15bを形成する。全ての分割予定ライン13に沿って第2面11b側の積層体15に切削溝15bが形成されると、切削溝形成工程は終了する。 After forming the cutting groove 15b in the laminated body 15 on the first surface 11a side along the target division scheduled line 13, the above operation is repeated, and the lamination on the first surface 11a side is repeated along all the planned division lines 13. A cutting groove 15b is formed in the body 15. After that, the material substrate 1 is turned upside down to form a cutting groove 15b in the laminated body 15 on the second surface 11b side in the same procedure as shown in FIG. 2 (B). When the cutting groove 15b is formed in the laminated body 15 on the second surface 11b side along all the planned division lines 13, the cutting groove forming step is completed.

なお、本実施形態では、第1面11a側の積層体15に切削溝15bを形成した後、第2面11b側の積層体15に切削溝15bを形成しているが、第2面11b側の積層体15に切削溝15bを形成した後、第1面11a側の積層体15に切削溝15bを形成しても良い。 In the present embodiment, after the cutting groove 15b is formed in the laminated body 15 on the first surface 11a side, the cutting groove 15b is formed in the laminated body 15 on the second surface 11b side, but the cutting groove 15b is formed on the second surface 11b side. After forming the cutting groove 15b in the laminated body 15, the cutting groove 15b may be formed in the laminated body 15 on the first surface 11a side.

切削溝形成工程の後には、ガラス基板11に対して透過性を有する波長のレーザービームの集光点を切削溝15bに沿ってガラス基板11の内部に位置付け、分割の起点となる改質層をガラス基板11の内部に形成する改質層形成工程を行う。図3(A)は、改質層形成工程について説明するための一部断面側面図である。 After the cutting groove forming step, a focusing point of a laser beam having a wavelength that is transparent to the glass substrate 11 is positioned inside the glass substrate 11 along the cutting groove 15b, and a modified layer serving as a starting point of division is formed. The modified layer forming step of forming inside the glass substrate 11 is performed. FIG. 3A is a partial cross-sectional side view for explaining the modified layer forming step.

この改質層形成工程では、例えば、改質層の形成に適したレーザービームL1を照射するためのレーザー照射ユニット4が使用される。レーザー照射ユニット4は、集光用のレンズ(不図示)を備えており、レーザー発振器(不図示)でパルス発振されたレーザービームL1を所定の位置に照射、集光する。レーザー発振器は、ガラス基板11に対して透過性を有する波長(吸収され難い波長)のレーザービームLをパルス発振できるように構成されている。 In this modified layer forming step, for example, a laser irradiation unit 4 for irradiating a laser beam L1 suitable for forming the modified layer is used. The laser irradiation unit 4 includes a lens for condensing light (not shown), and irradiates and condenses the laser beam L1 pulse-oscillated by a laser oscillator (not shown) at a predetermined position. The laser oscillator is configured to be able to pulse-oscillate a laser beam L having a wavelength (wavelength that is difficult to be absorbed) that is transparent to the glass substrate 11.

改質層形成工程では、まず、ガラス基板11の第1面11a側が上方を向くように材料基板1を保持する。材料基板1の保持は、例えば、チャックテーブル(不図示)等を用いて行うことができる。次に、材料基板1とレーザー照射ユニット4との相対的な位置を調整し、レーザー照射ユニット4を、任意の切削溝15b(分割予定ライン13)の延長線上に合わせる。また、レーザービームL1が集光される集光点の位置(高さ)を、ガラス基板11の内部に合わせる。 In the modified layer forming step, first, the material substrate 1 is held so that the first surface 11a side of the glass substrate 11 faces upward. The material substrate 1 can be held by using, for example, a chuck table (not shown) or the like. Next, the relative positions of the material substrate 1 and the laser irradiation unit 4 are adjusted, and the laser irradiation unit 4 is aligned with an extension line of an arbitrary cutting groove 15b (scheduled division line 13). Further, the position (height) of the focusing point where the laser beam L1 is focused is aligned with the inside of the glass substrate 11.

そして、レーザー照射ユニット4からレーザービームL1を照射させながら、対象の切削溝15b(分割予定ライン13)に対して平行な方向に沿って材料基板1とレーザー照射ユニット4とを相対的に移動させる。これにより、図3(A)に示すように、対象の切削溝15b(分割予定ライン13)に沿ってレーザービームL1を照射し、カラス基板11の内部を多光子吸収で改質して分割の起点となる改質層23を形成できる。 Then, while irradiating the laser beam L1 from the laser irradiation unit 4, the material substrate 1 and the laser irradiation unit 4 are relatively moved along a direction parallel to the target cutting groove 15b (scheduled division line 13). .. As a result, as shown in FIG. 3A, the laser beam L1 is irradiated along the target cutting groove 15b (scheduled division line 13), and the inside of the crow substrate 11 is modified by multiphoton absorption for division. The modified layer 23 as a starting point can be formed.

レーザービームL1の集光点の位置(高さ)、レーザービームL1のスポット径、レーザービームL1の出力等の条件は、ガラス基板11の内部を多光子吸収で適切に改質して改質層23を形成できる範囲内で調整される。上述のような動作を繰り返し、全ての切削溝15b(分割予定ライン13)に沿って分割に必要な改質層23が形成されると、改質層形成工程は終了する。 Conditions such as the position (height) of the condensing point of the laser beam L1, the spot diameter of the laser beam L1, and the output of the laser beam L1 are such that the inside of the glass substrate 11 is appropriately modified by multiphoton absorption to form a modified layer. It is adjusted within the range in which 23 can be formed. When the above-mentioned operation is repeated and the modified layer 23 required for division is formed along all the cutting grooves 15b (scheduled division line 13), the modified layer forming step is completed.

なお、本実施形態では、図3(A)に示すように、各切削溝15b(分割予定ライン13)に対して、ガラス基板11の厚さ方向に重なる3つの改質層23を形成しているが、各切削溝15b(分割予定ライン13)に対して形成される改質層23の数に制限はない。例えば、各切削溝15b(分割予定ライン13)に対して、1つの改質層23を形成しても良いし、ガラス基板11の厚さ方向に重なる2つ又は4つ以上の改質層23を形成しても良い。 In this embodiment, as shown in FIG. 3A, three modified layers 23 overlapping in the thickness direction of the glass substrate 11 are formed in each cutting groove 15b (scheduled division line 13). However, there is no limit to the number of modified layers 23 formed for each cutting groove 15b (scheduled division line 13). For example, one modified layer 23 may be formed for each cutting groove 15b (scheduled division line 13), or two or four or more modified layers 23 overlapping in the thickness direction of the glass substrate 11. May be formed.

また、本実施形態では、第1面11a側からガラス基板11にレーザービームL1を照射しているが、第2面11b側が上方を向くように材料基板1を保持して、第2面11b側からガラス基板11にレーザービームL1を照射しても良い。 Further, in the present embodiment, the glass substrate 11 is irradiated with the laser beam L1 from the first surface 11a side, but the material substrate 1 is held so that the second surface 11b side faces upward, and the second surface 11b side is held. The glass substrate 11 may be irradiated with the laser beam L1.

改質層形成工程の後には、ガラス基板11を改質層23に沿って分割し、複数のインターポーザ3を製造する分割工程を行う。この分割工程は、例えば、材料基板1に貼付されたエキスパンドテープを拡張する方法で行われる。材料基板1にエキスパンドテープを貼付して拡張することで、エキスパンドテープが拡張する方向の力(外力)をガラス基板11に付与できる。その結果、ガラス基板11は、分割の起点となる改質層23に沿って分割される。 After the modified layer forming step, the glass substrate 11 is divided along the modified layer 23, and a dividing step of manufacturing a plurality of interposers 3 is performed. This division step is performed, for example, by expanding the expanding tape attached to the material substrate 1. By attaching the expanding tape to the material substrate 1 and expanding the material substrate 1, a force (external force) in the direction in which the expanding tape expands can be applied to the glass substrate 11. As a result, the glass substrate 11 is divided along the modified layer 23 which is the starting point of the division.

ガラス基板11を改質層23に沿って分割し、複数のインターポーザ3が完成すると、分割工程は終了する。なお、本実施形態では、材料基板1に貼付されたエキスパンドテープを拡張する方法でガラス基板11を分割しているが、他の方法でガラス基板11を分割しても良い。例えば、ローラーや棒状の押圧部材で力(外力)を加えてガラス基板11を分割することもできる。 When the glass substrate 11 is divided along the modified layer 23 and the plurality of interposers 3 are completed, the division step is completed. In the present embodiment, the glass substrate 11 is divided by a method of expanding the expanding tape attached to the material substrate 1, but the glass substrate 11 may be divided by another method. For example, the glass substrate 11 can be divided by applying a force (external force) with a roller or a rod-shaped pressing member.

図3(B)は、分割工程を経て製造されるインターポーザ3の構成例を模式的に示す斜視図である。図3(B)に示すように、本実施形態で製造されるインターポーザ3の端部では、他の領域に比べて積層体15が薄くなっている。これにより、ガラス基板11と積層体15との熱膨張係数の違いにより端部に生じる力(例えば、内部応力)を小さく抑えて、積層体15の剥離を防止できる。 FIG. 3B is a perspective view schematically showing a configuration example of an interposer 3 manufactured through a division step. As shown in FIG. 3B, at the end of the interposer 3 manufactured in this embodiment, the laminated body 15 is thinner than the other regions. As a result, the force (for example, internal stress) generated at the end due to the difference in the coefficient of thermal expansion between the glass substrate 11 and the laminated body 15 can be suppressed to a small value, and the laminated body 15 can be prevented from peeling.

以上のように、本実施形態に係るインターポーザの製造方法によれば、分割予定ライン(ストリート)13に沿ってガラス基板11に達しない深さの切削溝15bを積層体15に形成した上で、ガラス基板11に対して透過性を有する波長のレーザービームL1の集光点をこの切削溝15bに沿ってガラス基板11の内部に位置付け分割の起点となる改質層23を形成するので、ガラス基板11を分割して製造されるインターポーザ3の端部には、薄い積層体15が残る。 As described above, according to the method for manufacturing an interposer according to the present embodiment, a cutting groove 15b having a depth that does not reach the glass substrate 11 is formed in the laminated body 15 along the planned division line (street) 13. Since the condensing point of the laser beam L1 having a wavelength that is transparent to the glass substrate 11 is positioned inside the glass substrate 11 along the cutting groove 15b to form the modified layer 23 that is the starting point of division, the glass substrate 11 is formed. A thin laminated body 15 remains at the end of the interposer 3 manufactured by dividing the 11.

端部の積層体が厚い従来のインターポーザが加熱されると、ガラス基板と積層体との熱膨張係数の違いに起因する大きな力が端部に作用して、積層体はガラス基板から剥がれ易い。これに対し、本実施形態で製造されるインターポーザ3では、端部の積層体15が薄くなっているので、従来の方法で製造されるインターポーザに比べて積層体15を剥がすような大きな力が端部に作用し難い。 When a conventional interposer with a thick end laminate is heated, a large force due to a difference in thermal expansion coefficient between the glass substrate and the laminate acts on the end, and the laminate is easily peeled off from the glass substrate. On the other hand, in the interposer 3 manufactured in the present embodiment, since the laminated body 15 at the end is thin, a large force for peeling the laminated body 15 is applied to the end as compared with the interposer manufactured by the conventional method. It is hard to act on the part.

つまり、本実施形態で製造されるインターポーザ3が加熱されても、積層体15はガラス基板11から剥がれ難い。このように、本実施形態に係るインターポーザ3の製造方法によれば、ガラス基板11を用いたインターポーザ3の耐熱性を高めることができる。 That is, even if the interposer 3 manufactured in the present embodiment is heated, the laminated body 15 is unlikely to be peeled off from the glass substrate 11. As described above, according to the method for manufacturing the interposer 3 according to the present embodiment, the heat resistance of the interposer 3 using the glass substrate 11 can be improved.

この耐熱性を確認するため、低温処理(−55℃15分)と高温処理(125℃で15分)とをそれぞれ500回繰り返す温度サイクル試験(TCT:Temperature Cycling Test)を行ったところ、本実施形態に係るインターポーザ6では、30個のサンプルの全てで積層体15の剥がれが見られなかった。一方、端部の積層体が厚い従来のインターポーザでは、30個のサンプルの全てで積層体の剥がれが見られた。 In order to confirm this heat resistance, a temperature cycle test (TCT: Temperature Cycling Test) was conducted in which low temperature treatment (-55 ° C for 15 minutes) and high temperature treatment (125 ° C for 15 minutes) were repeated 500 times each. In the interposer 6 according to the morphology, no peeling of the laminated body 15 was observed in all 30 samples. On the other hand, in the conventional interposer with a thick laminated body at the end, peeling of the laminated body was observed in all 30 samples.

なお、本発明は、上記実施形態の記載に制限されず種々変更して実施可能である。例えば、改質層23を形成する改質層形成工程の代わりに、ガラス基板11の厚さ方向に延びる細孔と、この細孔を囲む非晶質領域とを有するシールドトンネルを形成するシールドトンネル形成工程を行っても良い。 The present invention is not limited to the description of the above embodiment, and can be implemented with various modifications. For example, instead of the modified layer forming step of forming the modified layer 23, a shield tunnel forming a shield tunnel having pores extending in the thickness direction of the glass substrate 11 and an amorphous region surrounding the pores is formed. A forming step may be performed.

図4(A)及び図4(B)は、第1変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。第1変形例に係るインターポーザの製造方法は、切削溝形成工程(図4(A)参照)、シールドトンネル形成工程(図4(B)参照)、及び分割工程を含む。 4 (A) and 4 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a first modification. The method for manufacturing an interposer according to the first modification includes a cutting groove forming step (see FIG. 4A), a shield tunnel forming step (see FIG. 4B), and a dividing step.

切削溝形成工程は、上記実施形態の切削溝形成工程と同様の装置、手順で行われる。具体的には、図4(A)に示すように、対象の分割予定ライン13に沿って積層体15の露出した面15aに切削ブレード2を切り込ませ、ガラス基板11に達しない深さの切削溝15bを積層体15に形成する。全ての分割予定ライン13に沿って第1面11a側の積層体15と第2面11b側の積層体15とに切削溝15bが形成されると、切削溝形成工程は終了する。 The cutting groove forming step is performed by the same apparatus and procedure as the cutting groove forming step of the above embodiment. Specifically, as shown in FIG. 4A, the cutting blade 2 is cut into the exposed surface 15a of the laminated body 15 along the target division scheduled line 13, and the depth does not reach the glass substrate 11. The cutting groove 15b is formed in the laminated body 15. When the cutting groove 15b is formed in the laminated body 15 on the first surface 11a side and the laminated body 15 on the second surface 11b side along all the planned division lines 13, the cutting groove forming step is completed.

切削溝形成工程の後には、ガラス基板11にシールドトンネルを形成するシールドトンネル形成工程を行う。シールドトンネル形成工程に使用される装置や、シールドトンネル形成工程の基本的な手順等は、上記実施形態の改質層形成工程と同様である。ただし、このシールドトンネル形成工程では、レーザー照射ユニット4の集光用のレンズとして、開口数(NA)をガラス基板11の屈折率で割った値が0.05〜0.8となるものを用いる。 After the cutting groove forming step, a shield tunnel forming step of forming a shield tunnel on the glass substrate 11 is performed. The apparatus used in the shield tunnel forming step, the basic procedure of the shield tunnel forming step, and the like are the same as those in the modified layer forming step of the above-described embodiment. However, in this shield tunnel forming step, as the lens for condensing the laser irradiation unit 4, a lens having a numerical aperture (NA) divided by the refractive index of the glass substrate 11 is 0.05 to 0.8 is used. ..

これにより、対象の切削溝15b(分割予定ライン13)に沿ってレーザービームL2を照射し、ガラス基板11の厚さ方向に延びる細孔25aと、細孔25aを囲む非晶質領域25bとで構成されるシールドトンネル25を形成できるようになる。レーザービームL2の集光点の位置(高さ)、レーザービームL2のスポット径、レーザービームL2の出力等の条件は、ガラス基板11の内部を多光子吸収で適切に改質してシールドトンネル25を形成できる範囲内で調整される。 As a result, the laser beam L2 is irradiated along the target cutting groove 15b (scheduled division line 13), and the pores 25a extending in the thickness direction of the glass substrate 11 and the amorphous region 25b surrounding the pores 25a are formed. The shield tunnel 25 to be configured can be formed. Conditions such as the position (height) of the focusing point of the laser beam L2, the spot diameter of the laser beam L2, and the output of the laser beam L2 are such that the inside of the glass substrate 11 is appropriately modified by multiphoton absorption and the shield tunnel 25 is used. Is adjusted within the range that can be formed.

全ての切削溝15b(分割予定ライン13)に沿って分割に必要なシールドトンネル25が形成されると、シールドトンネル形成工程は終了する。なお、ここでは、第1面11a側からガラス基板11にレーザービームL2を照射しているが、第2面11b側が上方を向くように材料基板1を保持して、第2面11b側からガラス基板11にレーザービームL2を照射しても良い。シールドトンネル形成工程の後には、分割工程を行う。分割工程は、上記実施形態の分割工程と同様の装置、手順で行われる。 When the shield tunnel 25 required for division is formed along all the cutting grooves 15b (scheduled division line 13), the shield tunnel forming step is completed. Here, the glass substrate 11 is irradiated with the laser beam L2 from the first surface 11a side, but the material substrate 1 is held so that the second surface 11b side faces upward, and the glass is glass from the second surface 11b side. The substrate 11 may be irradiated with the laser beam L2. After the shield tunnel forming step, a dividing step is performed. The dividing step is performed by the same apparatus and procedure as the dividing step of the above embodiment.

また、例えば、切削溝15bを形成する切削溝形成工程の代わりに、レーザービームでレーザー加工溝を形成するレーザー加工溝形成工程を行っても良い。図5(A)及び図5(B)は、第2変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。第2変形例に係るインターポーザの製造方法は、レーザー加工溝形成工程(図5(A)参照)、改質層形成工程(図5(B)参照)、及び分割工程を含む。 Further, for example, instead of the cutting groove forming step of forming the cutting groove 15b, a laser processing groove forming step of forming a laser processing groove with a laser beam may be performed. 5 (A) and 5 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a second modification. The method for manufacturing an interposer according to the second modification includes a laser machining groove forming step (see FIG. 5A), a modified layer forming step (see FIG. 5B), and a dividing step.

レーザー加工溝形成工程では、例えば、レーザービームL3を照射するためのレーザー照射ユニット6が使用される。レーザー照射ユニット6は、集光用のレンズ(不図示)を備えており、レーザー発振器(不図示)でパルス発振されたレーザービームL3を所定の位置に照射、集光する。レーザー発振器は、積層体15(特に、絶縁層19)に対して吸収性を有する波長(吸収され易い波長)のレーザービームL3をパルス発振できるように構成されている。 In the laser processing groove forming step, for example, a laser irradiation unit 6 for irradiating the laser beam L3 is used. The laser irradiation unit 6 includes a lens for condensing light (not shown), and irradiates and condenses a laser beam L3 pulse-oscillated by a laser oscillator (not shown) at a predetermined position. The laser oscillator is configured to be able to pulse-oscillate a laser beam L3 having a wavelength (wavelength that is easily absorbed) having absorbency with respect to the laminated body 15 (particularly, the insulating layer 19).

レーザー加工溝形成工程では、まず、ガラス基板11の第1面11a側が上方を向くように材料基板1を保持する。材料基板1の保持は、例えば、チャックテーブル(不図示)等を用いて行うことができる。次に、材料基板1とレーザー照射ユニット6との相対的な位置を調整し、レーザー照射ユニット6を、任意の分割予定ライン13の延長線上に合わせる。 In the laser processing groove forming step, first, the material substrate 1 is held so that the first surface 11a side of the glass substrate 11 faces upward. The material substrate 1 can be held by using, for example, a chuck table (not shown) or the like. Next, the relative positions of the material substrate 1 and the laser irradiation unit 6 are adjusted, and the laser irradiation unit 6 is aligned with an extension of an arbitrary division scheduled line 13.

そして、レーザー照射ユニット6からレーザービームLを照射させながら、対象の分割予定ライン13に対して平行な方向に沿って材料基板1とレーザー照射ユニット6とを相対的に移動させる。これにより、図5(A)に示すように、対象の分割予定ライン13に沿って第1面11a側の積層体15の露出した面15aにレーザービームL3を照射し、この第1面11a側の積層体15をアブレーション加工してレーザー加工溝15cを形成できる。 Then, while irradiating the laser beam L from the laser irradiation unit 6, the material substrate 1 and the laser irradiation unit 6 are relatively moved along a direction parallel to the target division scheduled line 13. As a result, as shown in FIG. 5A, the exposed surface 15a of the laminated body 15 on the first surface 11a side is irradiated with the laser beam L3 along the target division scheduled line 13, and the laser beam L3 is irradiated to the first surface 11a side. The laser-machined groove 15c can be formed by ablation-processing the laminate 15 of the above.

なお、レーザービームL3を集光させる集光点の位置、レーザービームL3のスポット径、レーザービームL3の出力等の条件は、ガラス基板11に達しない深さのレーザー加工溝15cを第1面11a側の積層体15に形成できる範囲内で調整される。具体的には、分割予定ライン13に沿って、例えば、1μm〜30μm程度、好ましくは、2μm〜20μm程度の厚さの積層体15が残る条件でレーザービームL3を照射する。これにより、熱に起因する積層体15の剥離を防止できるようになる。 The conditions such as the position of the focusing point for condensing the laser beam L3, the spot diameter of the laser beam L3, the output of the laser beam L3, and the like are such that the laser processing groove 15c having a depth that does not reach the glass substrate 11 is formed on the first surface 11a. It is adjusted within the range that can be formed on the side laminated body 15. Specifically, the laser beam L3 is irradiated along the planned division line 13 under the condition that the laminated body 15 having a thickness of, for example, about 1 μm to 30 μm, preferably about 2 μm to 20 μm remains. This makes it possible to prevent peeling of the laminated body 15 due to heat.

対象の分割予定ライン13に沿って第1面11a側の積層体15にレーザー加工溝15cを形成した後には、上述の動作を繰り返し、全ての分割予定ライン13に沿って第1面11a側の積層体15にレーザー加工溝15cを形成する。その後、材料基板1の上下を反転させて、同様の手順で第2面11b側の積層体15にレーザー加工溝15cを形成する。全ての分割予定ライン13に沿って第2面11b側の積層体15にレーザー加工溝15cが形成されると、レーザー加工溝形成工程は終了する。 After forming the laser-machined groove 15c in the laminate 15 on the first surface 11a side along the target division scheduled line 13, the above operation is repeated, and the first surface 11a side is formed along all the division schedule lines 13. A laser processing groove 15c is formed in the laminated body 15. After that, the material substrate 1 is turned upside down to form a laser-machined groove 15c in the laminate 15 on the second surface 11b side in the same procedure. When the laser processing groove 15c is formed in the laminated body 15 on the second surface 11b side along all the planned division lines 13, the laser processing groove forming step is completed.

なお、ここでは、第1面11a側の積層体15にレーザー加工溝15cを形成した後、第2面11b側の積層体15にレーザー加工溝15cを形成しているが、第2面11b側の積層体15にレーザー加工溝15cを形成した後、第1面11a側の積層体15にレーザー加工溝15cを形成しても良い。 Here, after the laser-machined groove 15c is formed on the laminated body 15 on the first surface 11a side, the laser-machined groove 15c is formed on the laminated body 15 on the second surface 11b side, but the second surface 11b side. After forming the laser-machined groove 15c in the laminated body 15, the laser-machined groove 15c may be formed in the laminated body 15 on the first surface 11a side.

レーザー加工溝形成工程の後には、分割の起点となる改質層23をガラス基板11の内部に形成する改質層形成工程を行う。改質層形成工程は、上記実施形態の改質層形成工程と同様の装置、手順で行われる。また、改質層形成工程の後には、分割工程を行う。分割工程は、上記実施形態の分割工程と同様の装置、手順で行われる。 After the laser processing groove forming step, a modified layer forming step of forming the modified layer 23 which is the starting point of division inside the glass substrate 11 is performed. The modified layer forming step is performed by the same apparatus and procedure as the modified layer forming step of the above embodiment. Further, after the modified layer forming step, a dividing step is performed. The dividing step is performed by the same apparatus and procedure as the dividing step of the above embodiment.

図6(A)及び図6(B)は、第3変形例に係るインターポーザの製造方法について説明するための一部断面側面図である。第3変形例に係るインターポーザの製造方法は、レーザー加工溝形成工程(図6(A)参照)、シールドトンネル形成工程(図6(B)参照)、及び分割工程を含む。 6 (A) and 6 (B) are partial cross-sectional side views for explaining a method of manufacturing an interposer according to a third modification. The method for manufacturing an interposer according to the third modification includes a laser machining groove forming step (see FIG. 6A), a shield tunnel forming step (see FIG. 6B), and a dividing step.

レーザー加工溝形成工程は、上記第2変形例のレーザー加工溝形成工程と同様の装置、手順で行われる。レーザー加工溝形成工程の後には、分割の起点となるシールドトンネル25をガラス基板11に形成するシールドトンネル形成工程を行う。シールドトンネル形成工程は、上記第1変形例のシールドトンネル形成工程と同様の装置、手順で行われる。また、シールドトンネル形成工程の後には、分割工程を行う。分割工程は、上記実施形態の分割工程と同様の装置、手順で行われる。 The laser machined groove forming step is performed by the same apparatus and procedure as the laser machined groove forming step of the second modification. After the laser processing groove forming step, a shield tunnel forming step of forming the shield tunnel 25 which is the starting point of the division on the glass substrate 11 is performed. The shield tunnel forming step is performed by the same apparatus and procedure as the shield tunnel forming step of the first modification. Further, after the shield tunnel forming step, a dividing step is performed. The dividing step is performed by the same apparatus and procedure as the dividing step of the above embodiment.

その他、上記実施形態に係る構造、方法等は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施できる。 In addition, the structure, method, etc. according to the above-described embodiment can be appropriately modified and implemented as long as the scope of the object of the present invention is not deviated.

1 材料基板
3 インターポーザ
11 ガラス基板
11a 第1面(表面)
11b 第2面(裏面)
11c 貫通孔
13 分割予定ライン(ストリート)
15 積層体
15a 露出した面
15b 切削溝
15c レーザー加工溝
17 配線層
19 絶縁層
21 電極
23 改質層
25 シールドトンネル
25a 細孔
25b 非晶質領域
2 切削ブレード
4 レーザー照射ユニット
6 レーザー照射ユニット
L1,L2,L3 レーザービーム
1 Material substrate 3 Interposer 11 Glass substrate 11a First surface (surface)
11b 2nd side (back side)
11c Through hole 13 Scheduled division line (street)
15 Laminated body 15a Exposed surface 15b Cutting groove 15c Laser machining groove 17 Wiring layer 19 Insulation layer 21 Electrode 23 Modified layer 25 Shield tunnel 25a Pore 25b Amorphous region 2 Cutting blade 4 Laser irradiation unit 6 Laser irradiation unit L1, L2, L3 laser beam

Claims (2)

格子状に設定された複数の分割予定ラインによって複数の領域に区画されるガラス基板と、該ガラス基板の第1面又は該第1面とは反対側の第2面に積層され絶縁層と配線層とを含む積層体と、を備える材料基板から複数のインターポーザを製造するインターポーザの製造方法であって、
該分割予定ラインに沿って該積層体の露出した面に切削ブレードを切り込ませ、該ガラス基板に達しない深さの切削溝を該積層体に形成する切削溝形成工程と、
該ガラス基板に対して透過性を有する波長のレーザービームの集光点を該切削溝に沿って該ガラス基板の内部に位置付け改質層を形成する改質層形成工程と、
該ガラス基板に外力を付与して該改質層に沿って該ガラス基板を分割し、複数のインターポーザを製造する分割工程と、を含むことを特徴とするインターポーザの製造方法。
A glass substrate divided into a plurality of regions by a plurality of scheduled division lines set in a grid pattern, and an insulating layer and wiring laminated on the first surface of the glass substrate or the second surface opposite to the first surface. A method for manufacturing an interposer, which manufactures a plurality of interposers from a material substrate including a laminate including a layer.
A cutting groove forming step of cutting a cutting blade into an exposed surface of the laminated body along the planned division line and forming a cutting groove having a depth not reaching the glass substrate in the laminated body.
A modified layer forming step of forming a modified layer by positioning a focusing point of a laser beam having a wavelength that is transparent to the glass substrate along the cutting groove inside the glass substrate.
A method for manufacturing an interposer, which comprises a dividing step of applying an external force to the glass substrate to divide the glass substrate along the modified layer to manufacture a plurality of interposers.
格子状に設定された複数の分割予定ラインによって複数の領域に区画されるガラス基板と、該ガラス基板の第1面又は該第1面とは反対側の第2面に積層され絶縁層と配線層とを含む積層体と、を備える材料基板から複数のインターポーザを製造するインターポーザの製造方法であって、
該分割予定ラインに沿って該積層体の露出した面に切削ブレードを切り込ませ、該ガラス基板に達しない深さの切削溝を該積層体に形成する切削溝形成工程と、
該ガラス基板に対して透過性を有する波長のレーザービームの集光点を該切削溝に沿って該ガラス基板の内部に位置付けて、該ガラス基板の厚さ方向に延びる細孔と該細孔を囲む非晶質領域とを有するシールドトンネルを形成するシールドトンネル形成工程と、
該ガラス基板に外力を付与して該シールドトンネルに沿って該ガラス基板を分割し、複数のインターポーザを製造する分割工程と、を含むことを特徴とするインターポーザの製造方法。
A glass substrate divided into a plurality of regions by a plurality of scheduled division lines set in a grid pattern, and an insulating layer and wiring laminated on the first surface of the glass substrate or the second surface opposite to the first surface. A method for manufacturing an interposer, which manufactures a plurality of interposers from a material substrate including a laminate including a layer.
A cutting groove forming step of cutting a cutting blade into an exposed surface of the laminated body along the planned division line and forming a cutting groove having a depth not reaching the glass substrate in the laminated body.
A focusing point of a laser beam having a wavelength that is transparent to the glass substrate is positioned inside the glass substrate along the cutting groove, and pores extending in the thickness direction of the glass substrate and the pores are formed. A shield tunnel forming step of forming a shield tunnel having an amorphous region surrounding the glass,
A method for manufacturing an interposer, which comprises a dividing step of applying an external force to the glass substrate to divide the glass substrate along the shield tunnel to manufacture a plurality of interposers.
JP2016242236A 2016-12-14 2016-12-14 Interposer manufacturing method Active JP6808282B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016242236A JP6808282B2 (en) 2016-12-14 2016-12-14 Interposer manufacturing method
TW106138540A TWI743244B (en) 2016-12-14 2017-11-08 Manufacturing method of intermediate carrier board
KR1020170166942A KR20180068862A (en) 2016-12-14 2017-12-06 Method of manufacturing a interposer
CN201711282902.9A CN108231570A (en) 2016-12-14 2017-12-07 The manufacturing method of intermediary layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242236A JP6808282B2 (en) 2016-12-14 2016-12-14 Interposer manufacturing method

Publications (2)

Publication Number Publication Date
JP2018098379A JP2018098379A (en) 2018-06-21
JP6808282B2 true JP6808282B2 (en) 2021-01-06

Family

ID=62633129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242236A Active JP6808282B2 (en) 2016-12-14 2016-12-14 Interposer manufacturing method

Country Status (4)

Country Link
JP (1) JP6808282B2 (en)
KR (1) KR20180068862A (en)
CN (1) CN108231570A (en)
TW (1) TWI743244B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164411B2 (en) * 2018-11-15 2022-11-01 株式会社ディスコ Laminate processing method
JP7164412B2 (en) * 2018-11-16 2022-11-01 株式会社ディスコ Laminate processing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617681B1 (en) 1999-06-28 2003-09-09 Intel Corporation Interposer and method of making same
JP2005012203A (en) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk Laser machining method
JP5352624B2 (en) * 2005-11-10 2013-11-27 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP5608521B2 (en) * 2010-11-26 2014-10-15 新光電気工業株式会社 Semiconductor wafer dividing method, semiconductor chip and semiconductor device
JP6151557B2 (en) * 2013-05-13 2017-06-21 株式会社ディスコ Laser processing method
JP6246534B2 (en) * 2013-09-11 2017-12-13 株式会社ディスコ Wafer processing method
JP2015198212A (en) 2014-04-03 2015-11-09 凸版印刷株式会社 glass interposer
JP2015207580A (en) * 2014-04-17 2015-11-19 凸版印刷株式会社 Wiring board and manufacturing method of the same

Also Published As

Publication number Publication date
CN108231570A (en) 2018-06-29
KR20180068862A (en) 2018-06-22
TWI743244B (en) 2021-10-21
JP2018098379A (en) 2018-06-21
TW201826455A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
TWI756437B (en) Manufacturing method of glass interposer
JP6779574B2 (en) Interposer manufacturing method
JP3795040B2 (en) Manufacturing method of semiconductor device
KR102349663B1 (en) Wafer processing method
JP2015207604A (en) Wafer processing method
TWI824139B (en) Processing methods of laminated wafers
JP2013197108A (en) Laser processing method for wafer
JP6808282B2 (en) Interposer manufacturing method
JP2011210915A (en) Cutting device for single crystal substrate, and method for cutting the single crystal substrate
JP6012185B2 (en) Manufacturing method of semiconductor device
US20180308711A1 (en) Workpiece processing method
KR102642496B1 (en) Method for manufacturing stacked devices
JP5969214B2 (en) Manufacturing method of semiconductor device
JP5453123B2 (en) Cutting method
JP6925902B2 (en) Manufacturing method of laminated element
TW201923860A (en) Laminated element manufacturing method
JP7223828B2 (en) Method for manufacturing multilayer element
JP2013157449A (en) Method for manufacturing semiconductor device
JP6440558B2 (en) Workpiece processing method
JP2022024591A (en) Wafer processing method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6808282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250