JP6807695B2 - Method for producing 2-methoxyethyl vinyl ether - Google Patents

Method for producing 2-methoxyethyl vinyl ether Download PDF

Info

Publication number
JP6807695B2
JP6807695B2 JP2016198295A JP2016198295A JP6807695B2 JP 6807695 B2 JP6807695 B2 JP 6807695B2 JP 2016198295 A JP2016198295 A JP 2016198295A JP 2016198295 A JP2016198295 A JP 2016198295A JP 6807695 B2 JP6807695 B2 JP 6807695B2
Authority
JP
Japan
Prior art keywords
reaction
methyl cellosolve
fraction
conversion rate
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016198295A
Other languages
Japanese (ja)
Other versions
JP2018058798A (en
Inventor
眞一 柿沼
眞一 柿沼
渉 滝沢
渉 滝沢
野村 直樹
直樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP2016198295A priority Critical patent/JP6807695B2/en
Publication of JP2018058798A publication Critical patent/JP2018058798A/en
Application granted granted Critical
Publication of JP6807695B2 publication Critical patent/JP6807695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、2−メトキシエチルビニルエーテルの製造方法に関する。 The present invention relates to a method for producing 2-methoxyethyl vinyl ether.

ビニルエーテルは、従来から、アルカリ金属触媒の存在下、アルコールとアセチレンとを120〜180℃の高温下に反応させる方法(レッペ法によるビニル化反応)で工業的に製造されている。その他の製造方法としては、アルキルビニルエーテルとアルコールをエーテル交換反応させる方法(特許文献1)や、ビニルエステルとアルコールをエステル交換反応させる方法が知られている(特許文献2)。 Conventionally, vinyl ether is industrially produced by a method of reacting alcohol and acetylene at a high temperature of 120 to 180 ° C. (vinylization reaction by the Leppe method) in the presence of an alkali metal catalyst. As other production methods, a method of transesterifying an alkyl vinyl ether with an alcohol (Patent Document 1) and a method of transesterifying a vinyl ester with an alcohol are known (Patent Document 2).

しかしながら、レッペ法によるビニル化反応では、連続式の生産方式で製造を行う場合、精製前の反応液に原料アルコールが多量に含まれる。特許文献3には、連続反応蒸留により、目的のビニルエーテルと原料アルコールとを含む混合物を得た後、抽出蒸留し、さらに別の精製工程を設けた方法が記載されているが、工業的な製造法としては製造コストの面で不利である。従って、煩雑な精製工程を経ることなく高純度のビニルエーテルを製造するために、原料アルコールを精製前に低減させることが必要である。 However, in the vinylization reaction by the Leppe method, when the production is carried out by a continuous production method, a large amount of raw material alcohol is contained in the reaction solution before purification. Patent Document 3 describes a method in which a mixture containing a target vinyl ether and a raw material alcohol is obtained by continuous reaction distillation, then extracted and distilled, and further a purification step is provided. As a law, it is disadvantageous in terms of manufacturing cost. Therefore, in order to produce high-purity vinyl ether without going through a complicated purification step, it is necessary to reduce the amount of raw material alcohol before purification.

一方、レッペ法によるビニル化反応において、回分式又は半回分式の生産方式でアルコールの転化を完結させることで原料アルコールを低減することはできるが、アルコールの転化を完結させる方法では、反応の終盤で副反応が増え、タール状物質が多量に生成してしまう。また、特許文献1や特許文献2に記載の方法において原料アルコールを消失させるためには、ビニル基の供給源であるビニル基含有化合物を大過剰に用いなければならない点で効率的でない。 On the other hand, in the vinylization reaction by the Leppe method, the raw material alcohol can be reduced by completing the conversion of alcohol by the batch type or semi-batch type production method, but the method of completing the conversion of alcohol is the final stage of the reaction. As a result, side reactions increase and a large amount of tar-like substance is produced. Further, in order to eliminate the raw material alcohol in the methods described in Patent Document 1 and Patent Document 2, it is inefficient in that a vinyl group-containing compound, which is a source of vinyl groups, must be used in a large excess.

特開平09−87224号公報Japanese Unexamined Patent Publication No. 09-87224 特開2003−73321号公報Japanese Unexamined Patent Publication No. 2003-73321 特開2006−8519号公報Japanese Unexamined Patent Publication No. 2006-8519

本発明は、上述の背景技術に鑑み、原料アルコールの2−メトキシエタノール(別名メチルセロソルブ)をビニル化し、下記(式1)で示される2−メトキシエチルビニルエーテルを高純度、かつ、効率的に製造する方法を提供することを課題とする。
CHO−CH−CH−O−CH=CH・・・(式1)
In view of the above background technology, the present invention vinylizes 2-methoxyethanol (also known as methylcellosolve) as a raw material alcohol to produce 2-methoxyethyl vinyl ether represented by the following (formula 1) with high purity and efficiency. The challenge is to provide a way to do this.
CH 3 O-CH 2 -CH 2 -O-CH = CH 2 ··· ( Equation 1)

本発明者らは、上記課題を解決するため鋭意検討した結果、下記の製造方法を見いだした。
[1]塩基を含む反応液においてアセチレンとメチルセロソルブとを反応させる2−メトキシエチルビニルエーテルの製造方法において、反応温度を90〜130℃とし、該アセチレン及び該メチルセロソルブを連続的又は間欠的に該反応液に供給し、反応留分の抜出しを行いながら反応させることを特徴とする、2−メトキシエチルビニルエーテルの製造方法。
[2]前記反応液のメチルセロソルブの転化率が19〜99%の範囲内にある間、前記反応留分の抜出しを行う、[1]に記載の製造方法。
[3]前記反応液のメチルセロソルブの転化率が19〜90%の範囲内にある間、前記反応留分の抜出しを行う、[1]に記載の製造方法。
[4]前記反応液のメチルセロソルブの転化率が58〜90%の範囲内にある間、前記反応留分の抜出しを行う、[1]に記載の製造方法。
[5]前記反応液のメチルセロソルブの転化率が19〜50%の範囲内にある間、前記反応留分の抜出しを行う、[1]に記載の製造方法。
[6]順に、少なくとも反応容器、冷却装置および反応留分貯槽を連通させた装置において、アセチレンガスを含む気体を該反応容器から該反応留分貯槽へ流通させ、該反応留分貯槽の出口における気体の流速が該反応容器の単位体積(1L)当り1.5L/Hr以上となる条件で前記反応を行う、[1]〜[5]に記載の製造方法。
[7]前記反応留分貯槽の出口から排出されたアセチレンガスを含む気体を前記反応容器の入口へ導入することにより再循環させる、[6]に記載の製造方法。
As a result of diligent studies to solve the above problems, the present inventors have found the following manufacturing method.
[1] In the method for producing 2-methoxyethyl vinyl ether in which acetylene and methyl cellosolve are reacted in a reaction solution containing a base, the reaction temperature is set to 90 to 130 ° C., and the acetylene and the methyl cellosolve are continuously or intermittently used. A method for producing 2-methoxyethyl vinyl ether, which comprises supplying to a reaction solution and reacting while extracting the reaction distillate.
[2] The production method according to [1], wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 19 to 99%.
[3] The production method according to [1], wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 19 to 90%.
[4] The production method according to [1], wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 58 to 90%.
[5] The production method according to [1], wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 19 to 50%.
[6] In order, at least in a device in which the reaction vessel, the cooling device, and the reaction fraction storage tank are communicated with each other, a gas containing acetylene gas is circulated from the reaction vessel to the reaction fraction storage tank, and at the outlet of the reaction fraction storage tank. The production method according to [1] to [5], wherein the reaction is carried out under the condition that the flow velocity of the gas is 1.5 L / Hr or more per unit volume (1 L) of the reaction vessel.
[7] The production method according to [6], wherein a gas containing acetylene gas discharged from the outlet of the reaction fraction storage tank is recirculated by introducing it into the inlet of the reaction vessel.

本発明によると、安全、かつ、効率的に、高純度の2−メトキシエチルビニルエーテルを製造することができる。特に、本発明によると、原料のメチルセロソルブの含有量が少ない反応留分が得られるため、高段数の蒸留設備を用いて精製を行う必要がなく、簡素な設備で蒸留を実施できる。また、蒸留時の還流比を大きくとる必要がないため短時間で効率的に、高純度の2−メトキシエチルビニルエーテルを製造することができる。さらに、広い範囲のメチルセロソルブ転化率で高純度の2−メトキシエチルビニルエーテルが得られるため、反応制御における組成の維持、管理が容易で、安定して高い品質を維持することができる。 According to the present invention, high-purity 2-methoxyethyl vinyl ether can be produced safely and efficiently. In particular, according to the present invention, since a reaction fraction having a low content of the raw material methyl cellosolve can be obtained, it is not necessary to perform purification using a distillation facility having a high number of stages, and distillation can be carried out with a simple facility. Further, since it is not necessary to increase the reflux ratio during distillation, high-purity 2-methoxyethyl vinyl ether can be efficiently produced in a short time. Furthermore, since high-purity 2-methoxyethyl vinyl ether can be obtained with a wide range of methyl cellosolve conversion rates, it is easy to maintain and control the composition in reaction control, and stable and high quality can be maintained.

実施例で用いた反応系の概略図である。It is the schematic of the reaction system used in an Example. メチルセロソルブ転化率の反応液に対する反応留分の関係を示すグラフである。It is a graph which shows the relationship of the reaction fraction with respect to the reaction solution of the methyl cellosolve conversion rate.

本明細書では、2−メトキシエチルビニルエーテルをMOEVEと称することがある。本発明におけるメチルセロソルブの転化率(%)は、反応液または反応留分のガスクロマトグラフィー分析のピーク面積をもとに、以下に定義される式から計算される。反応のごく初期において、反応留分が水性層、有機層に分離することがあるが、本明細書における反応留分のメチルセロソルブの転化率とは、有機層における転化率をさす。
転化率=MOEVE面積/(MOEVE面積+メチルセロソルブ面積)×100
In the present specification, 2-methoxyethyl vinyl ether may be referred to as MOEVE. The conversion rate (%) of methyl cellosolve in the present invention is calculated from the formula defined below based on the peak area of gas chromatography analysis of the reaction solution or the reaction fraction. In the very early stage of the reaction, the reaction fraction may be separated into an aqueous layer and an organic layer, but the conversion rate of methyl cellosolve of the reaction fraction in the present specification refers to the conversion rate in the organic layer.
Conversion rate = MOEVE area / (MOEVE area + methyl cellosolve area) x 100

以下、本発明の詳細について説明する。本発明は、下記(式1)で示される2−メトキシエチルビニルエーテルの製造方法である。
CHO−CH−CH−O−CH=CH・・・(式1)
具体的には、塩基を含む反応液においてアセチレンとメチルセロソルブとを反応させる2−メトキシエチルビニルエーテルの製造方法において、反応温度を90〜130℃とし、該アセチレン及び該メチルセロソルブを連続的又は間欠的に該反応液に供給し、反応留分の抜出しを行いながら反応させることを特徴とする、2−メトキシエチルビニルエーテルの製造方法である。
The details of the present invention will be described below. The present invention is a method for producing 2-methoxyethyl vinyl ether represented by the following (formula 1).
CH 3 O-CH 2 -CH 2 -O-CH = CH 2 ··· ( Equation 1)
Specifically, in the method for producing 2-methoxyethyl vinyl ether in which acetylene and methyl cellosolve are reacted in a reaction solution containing a base, the reaction temperature is set to 90 to 130 ° C., and the acetylene and the methyl cellosolve are continuously or intermittently used. This is a method for producing 2-methoxyethyl vinyl ether, which comprises supplying the reaction solution to the reaction solution and reacting the reaction distillate while extracting the reaction residue.

本発明における塩基は、反応触媒として用いられるものであって特に制限はないが、アルカリ金属化合物であることができる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、これら水酸化物とメチルセロソルブを反応して得られるアルコラートなどが挙げられる。特に好ましい塩基としては、水酸化カリウム、水酸化カリウムとメチルセロソルブを反応して得られるアルコラートが挙げられる。塩基の使用量について特に制限はないが、一般に原料のメチルセロソルブに対して1〜50モル%、好ましくは5〜30モル%、更に好ましくは5〜20モル%である。 The base in the present invention is used as a reaction catalyst and is not particularly limited, but may be an alkali metal compound. Specific examples thereof include sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and alcoholate obtained by reacting these hydroxides with methyl cellosolve. Particularly preferable bases include potassium hydroxide and alcoholate obtained by reacting potassium hydroxide with methyl cellosolve. The amount of the base used is not particularly limited, but is generally 1 to 50 mol%, preferably 5 to 30 mol%, and more preferably 5 to 20 mol% with respect to the raw material methyl cellosolve.

本発明におけるアセチレンの供給圧力は、特に制限はないが、安全上の観点から0.2MPa(ゲージ圧)以下が好ましく、更に好ましくは大気圧以上、0.18MPa(ゲージ圧)以下である。 The supply pressure of acetylene in the present invention is not particularly limited, but is preferably 0.2 MPa (gauge pressure) or less, more preferably atmospheric pressure or more, and 0.18 MPa (gauge pressure) or less from the viewpoint of safety.

本発明における反応温度は、130℃以下、好ましくは120℃以下を維持することが重要である。反応温度が135℃を超えると、反応留分における2−メトキシエチルビニルエーテルの純度が低下し、また反応液中のタール状物質の生成も増え、連続生産に支障をきたすおそれがあり好ましくない。効率的な反応を起こすための反応温度の下限は、90℃、好ましくは100℃である。 It is important that the reaction temperature in the present invention is maintained at 130 ° C. or lower, preferably 120 ° C. or lower. If the reaction temperature exceeds 135 ° C., the purity of 2-methoxyethyl vinyl ether in the reaction fraction decreases, and the production of tar-like substances in the reaction solution increases, which is not preferable because it may hinder continuous production. The lower limit of the reaction temperature for causing an efficient reaction is 90 ° C., preferably 100 ° C.

本発明は、無溶媒で行ってもよく、反応溶媒を用いても良い。反応溶媒としては、非プロトン性極性溶媒を用いることが出来る。例えば、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のグライム化合物、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロピリミジ−2−オン、またはこれらの混合物が挙げられる。 The present invention may be carried out without a solvent, or a reaction solvent may be used. As the reaction solvent, an aprotic polar solvent can be used. For example, grime compounds such as diethylene glycol dimethyl ether and triethylene glycol dimethyl ether, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyltetrahydropyrimidi-2-one, or these. Examples include mixtures.

本発明の製造方法において、反応留分の抜出しを行う際の反応液のメチルセロソルブの転化率は19%以上であることが好ましい。反応液のメチルセロソルブ転化率の上限は、99%以下であることが好ましく、更に好ましくは90%以下である。反応液のメチルセロソルブの転化率が19%未満であると、反応留分のメチルセロソルブ転化率が低くなり好ましくない。反応液のメチルセロソルブの転化率が19%以上であると、反応留分のメチルセロソルブ転化率が高くなり好ましい。反応液のメチルセロソルブの転化率が58%以上であると、反応留分のメチルセロソルブ転化率が更に高くなるためより好ましい。一方、反応液のメチルセロソルブの転化率が90%を超えると、触媒の析出や、タール分等の副生により、反応液の分散性が低下し、反応液の撹拌、混合や、アセチレンガスの圧入に困難を生じる可能性があるため、メチルセロソルブの転化率を90%以下に維持して反応を行うことが好ましい。なお、従来技術との関係において、反応留分の抜出しを行う際の反応液のメチルセロソルブの転化率が19〜50%である範囲においても反応留分のメチルセロソルブ転化率が十分に高くなる点で、本発明は特に有利な効果を奏する。すなわち、抜出し時の反応液のメチルセロソルブ転化率の許容範囲が広がるため、反応液の反応組成の制御、管理が容易となり、ひいては目的生成物である2−メトキシエチルビニルエーテルの品質安定化を向上することができる。 In the production method of the present invention, the conversion rate of methyl cellosolve in the reaction solution when extracting the reaction fraction is preferably 19% or more. The upper limit of the methyl cellosolve conversion rate of the reaction solution is preferably 99% or less, more preferably 90% or less. If the conversion rate of methyl cellosolve in the reaction solution is less than 19%, the conversion rate of methyl cellosolve in the reaction fraction becomes low, which is not preferable. When the conversion rate of methyl cellosolve in the reaction solution is 19% or more, the conversion rate of methyl cellosolve in the reaction fraction is high, which is preferable. When the conversion rate of methyl cellosolve in the reaction solution is 58% or more, the conversion rate of methyl cellosolve in the reaction fraction is further increased, which is more preferable. On the other hand, when the conversion rate of methyl cellosolve in the reaction solution exceeds 90%, the dispersibility of the reaction solution is lowered due to the precipitation of the catalyst and the by-product of tar content, and the reaction solution is stirred and mixed, and acetylene gas is used. Since press-fitting may be difficult, it is preferable to carry out the reaction while maintaining the conversion rate of methyl cellosolve at 90% or less. In relation to the prior art, the methyl cellosolve conversion rate of the reaction fraction is sufficiently high even in the range where the methyl cellosolve conversion rate of the reaction solution is 19 to 50% when the reaction fraction is extracted. Therefore, the present invention has a particularly advantageous effect. That is, since the permissible range of the methyl cellosolve conversion rate of the reaction solution at the time of extraction is widened, the reaction composition of the reaction solution can be easily controlled and controlled, and the quality stabilization of the target product, 2-methoxyethyl vinyl ether, is improved. be able to.

本発明において、反応液のメチルセロソルブの転化率の維持、管理方法は、特に制限されるものではないが、例えば、次の方法により行うことができる。反応液のメチルセロソルブ転化率が19%未満のときは、メチルセロソルブの供給を行わず反応留分を反応液に戻しながら反応を継続させ、メチルセロソルブ転化率が19%以上に達したら当該反応速度以下でメチルセロソルブの供給と反応留分の抜出しを開始する。更に、反応液のメチルセロソルブ転化率が目標値に到達した後は、反応速度<mol/Hr>=メチルセロソルブ供給量<mol/Hr>=反応留分抜出量<mol/Hr>となる速度で、メチルセロソルブの供給と反応留分の抜出しを行う。この場合の反応速度は、アセチレン吸収量の計測値から求めることができる。 In the present invention, the method for maintaining and controlling the conversion rate of methyl cellosolve in the reaction solution is not particularly limited, but can be carried out by, for example, the following method. When the methyl cellosolve conversion rate of the reaction solution is less than 19%, the reaction is continued while returning the reaction fraction to the reaction solution without supplying methyl cellosolve, and when the methyl cellosolve conversion rate reaches 19% or more, the reaction rate is concerned. The supply of methyl cellosolve and the extraction of the reaction fraction are started below. Further, after the methyl cellosolve conversion rate of the reaction solution reaches the target value, the reaction rate <mol / Hr> = methyl cellosolve supply amount <mol / Hr> = reaction fraction extraction amount <mol / Hr>. Then, the methyl cellosolve is supplied and the reaction fraction is extracted. The reaction rate in this case can be obtained from the measured value of the amount of acetylene absorbed.

尚、反応留分を反応液中に戻す場合、アルカリ金属水酸化物が触媒であると、反応の初期に反応留分が水性層と有機層とに分離することがあるが、水性層は反応液に戻さず有機層のみを反応液に戻すことが好ましい。 When returning the reaction fraction to the reaction solution, if the alkali metal hydroxide is a catalyst, the reaction fraction may separate into an aqueous layer and an organic layer at the initial stage of the reaction, but the aqueous layer reacts. It is preferable to return only the organic layer to the reaction solution without returning it to the solution.

また、反応速度が低下した場合は、反応容器内にメチルセロソルブとともに触媒を供給しても良い。触媒の供給は、間欠的又は連続的に反応液を抜出しながら行っても良い。 Further, when the reaction rate is reduced, the catalyst may be supplied together with the methyl cellosolve into the reaction vessel. The catalyst may be supplied while intermittently or continuously withdrawing the reaction solution.

メチルセロソルブの転化率は、反応液、反応留分をそれぞれ、ガスクロマトグラフィーで分析することにより求めることができる。 The conversion rate of methyl cellosolve can be determined by analyzing the reaction solution and the reaction fraction by gas chromatography, respectively.

本発明における反応は、反応留分貯槽出口において、アセチレンを含む気流が存在する状態で行うことが好ましい。アセチレンを含んだ気体は、系外に排出することもできるが、反応容器入口に戻し、循環再利用することが経済的な観点から好ましい。反応留分貯槽出口における気体の流速は、反応容器単位体積(1L)当り、1.5L/Hr以上であることが好ましい。反応留分貯槽出口における気体の流速が1.5L/Hr以上であれば、反応温度が130℃以下においても、効率的に反応留分を留出させることができる。反応留分貯槽出口における気体の流速が反応容器単位体積(1L)当り、1.5L/Hr以下であると、反応留分の留出速度が遅く、且つ安定しないことがある。反応留分貯槽出口における気体の流速は、流量計により計測した測定値をもとに、反応容器入口のアセチレン流速を調整することで、制御することができる。 The reaction in the present invention is preferably carried out at the outlet of the reaction fraction storage tank in the presence of an air flow containing acetylene. The gas containing acetylene can be discharged to the outside of the system, but it is preferable from the economical point of view that the gas is returned to the inlet of the reaction vessel and recycled. The flow rate of the gas at the outlet of the reaction fraction storage tank is preferably 1.5 L / Hr or more per unit volume (1 L) of the reaction vessel. When the flow rate of the gas at the outlet of the reaction fraction storage tank is 1.5 L / Hr or more, the reaction fraction can be efficiently distilled even when the reaction temperature is 130 ° C. or less. If the flow rate of the gas at the outlet of the reaction fraction storage tank is 1.5 L / Hr or less per unit volume (1 L) of the reaction vessel, the distillation rate of the reaction fraction may be slow and unstable. The flow rate of the gas at the outlet of the reaction fraction storage tank can be controlled by adjusting the acetylene flow rate at the inlet of the reaction vessel based on the measured value measured by the flow meter.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例で用いた反応系の概略図を図1に示す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. A schematic diagram of the reaction system used in the examples is shown in FIG.

実施例1
攪拌器、圧力ゲージ、温度計、ガス導入管、ガス導出管、冷却器、反応留分貯槽を備えた容量10LのSUS製耐圧反応容器に、メチルセロソルブ4860g(63.86mol)、塩基として純度95.0質量%の水酸化カリウム930g(15.7mol)を仕込み、攪拌下に約60分間窒素ガスを流し、反応系内を窒素にて置換した。次いで、昇温しながら反応系内の雰囲気を窒素ガスからアセチレンガスに置換し、反応液温が90℃に達した時点を起点として、大気圧下、約213時間反応させた。反応中、アセチレンの供給速度は、反応留分貯槽出口での気体流速が0.25L/min(反応容器1L当り1.5L/Hr)以上となるように調整し、反応液温を90〜130℃に制御した。反応は、反応容器内の反応液から反応留分を留出させながら行った。この間、間欠的又は連続的にメチルセロソルブを反応容器内に供給し、反応容器内の液質量をほぼ一定に保った。
Example 1
In a pressure-resistant reaction vessel made of SUS with a capacity of 10 L equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe, gas outlet pipe, cooler, and reaction distillate storage tank, methyl cellosolve 4860 g (63.86 mol), purity 95 as a base. 930 g (15.7 mol) of potassium hydroxide of 0.0% by mass was charged, nitrogen gas was allowed to flow under stirring for about 60 minutes, and the inside of the reaction system was replaced with nitrogen. Then, the atmosphere in the reaction system was replaced with acetylene gas while raising the temperature, and the reaction was carried out under atmospheric pressure for about 213 hours starting from the time when the reaction solution temperature reached 90 ° C. During the reaction, the supply rate of acetylene is adjusted so that the gas flow rate at the outlet of the reaction fraction storage tank is 0.25 L / min (1.5 L / Hr per 1 L of the reaction vessel) or more, and the reaction liquid temperature is 90 to 130. Controlled to ° C. The reaction was carried out while distilling a reaction fraction from the reaction solution in the reaction vessel. During this period, methyl cellosolve was intermittently or continuously supplied into the reaction vessel to keep the liquid mass in the reaction vessel substantially constant.

反応液と反応留分をガスクロマトグラフィーにより分析した結果、反応液のメチルセロソルブの転化率が19〜99%の範囲内の時、反応留分のメチルセロソルブの転化率は97%以上であった。また、反応液のメチルセロソルブの転化率が58〜99%の範囲の時、反応留分のメチルセロソルブの転化率は99%以上であった。 As a result of analyzing the reaction solution and the reaction fraction by gas chromatography, when the conversion rate of the methyl cellosolve of the reaction solution was in the range of 19 to 99%, the conversion rate of the methyl cellosolve of the reaction fraction was 97% or more. .. When the conversion rate of methyl cellosolve in the reaction solution was in the range of 58 to 99%, the conversion rate of methyl cellosolve in the reaction fraction was 99% or more.

参考例1
実施例1で得られた2−メトキシエチルビニルエーテルを純度97.4%で含む反応留分に少量の水酸化カリウムを加え、常圧下で単蒸留したところ、純度99.5%の2−メトキシエチルビニルエーテルが蒸留収率83%で得られた。
Reference example 1
When a small amount of potassium hydroxide was added to the reaction fraction containing 2-methoxyethyl vinyl ether obtained in Example 1 at a purity of 97.4% and simple distillation was performed under normal pressure, 2-methoxyethyl having a purity of 99.5% was added. Vinyl ether was obtained with a distillation yield of 83%.

比較例1
反応温度を135〜140℃に、反応容器内圧を0.16〜0.18MPaに、反応時間を約22時間に変更した以外は、実施例1と同様に反応させた。反応液と反応留分をガスクロマトグラフィーにより分析した結果、反応液のメチルセロソルブの転化率が73%の時点で、反応留分のメチルセロソルブの転化率は98%であった。すなわち、反応液のメチルセロソルブの転化率が73%付近に達するまで、反応留分のメチルセロソルブの転化率は97%以上にならなかった。また、反応液のメチルセロソルブの転化率が85%付近に達するまで、反応留分のメチルセロソルブの転化率は99%以上にならなかった。さらに、反応温度が135〜140℃と高かったため、副生成物としてタール状物質が多く生成した。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed to 135 to 140 ° C., the internal pressure of the reaction vessel was changed to 0.16 to 0.18 MPa, and the reaction time was changed to about 22 hours. As a result of analyzing the reaction solution and the reaction fraction by gas chromatography, when the conversion rate of the methyl cellosolve of the reaction solution was 73%, the conversion rate of the methyl cellosolve of the reaction fraction was 98%. That is, the conversion rate of methyl cellosolve in the reaction fraction did not exceed 97% until the conversion rate of methyl cellosolve in the reaction solution reached around 73%. Further, the conversion rate of methyl cellosolve in the reaction fraction did not exceed 99% until the conversion rate of methyl cellosolve in the reaction solution reached around 85%. Furthermore, since the reaction temperature was as high as 135-140 ° C., a large amount of tar-like substance was produced as a by-product.

反応留分と反応液のガスクロマトグラフィー分析は、以下の条件で行った。
(反応留分の分析)
<オートサンプラー>
装置: SHIMADZU AOC−20i
注入量: 0.2μl
プランジャ吸入速度: 高速
吸入後待ち時間: 0.2sec
プランジャ注入速度: 高速
注入後待ち時間: 0.0sec
<GC>
装置: SHIMADZU GC−2010 plus
キャリアーガス: He
カラム: DB−17(30m×0.25mmID、液相の膜厚0.25μm)
気化室温度: 250℃
圧力: 85.8kPa
カラム流量: 0.81mL/min
線速度: 23.7cm/sec
スプリット比: 90
温度プログラム:
Gas chromatography analysis of the reaction fraction and the reaction solution was carried out under the following conditions.
(Analysis of reaction fraction)
<Autosampler>
Equipment: SHIMADZU AOC-20i
Injection volume: 0.2 μl
Plunger inhalation speed: Waiting time after high-speed inhalation: 0.2 sec
Plunger injection rate: Waiting time after high-speed injection: 0.0 sec
<GC>
Equipment: SHIMADZU GC-2010 plus
Carrier gas: He
Column: DB-17 (30 m x 0.25 mm ID, liquid phase film thickness 0.25 μm)
Vaporization chamber temperature: 250 ° C
Pressure: 85.8 kPa
Column flow rate: 0.81 mL / min
Linear velocity: 23.7 cm / sec
Split ratio: 90
Temperature program:

Figure 0006807695
Figure 0006807695

検出器: FID
検出器温度: 270℃
測定時間: 17min
(反応液の分析)
<オートサンプラー>
装置: SHIMADZU AOC−20i
注入量: 0.2μl
プランジャ吸入速度: 低速
吸入後待ち時間: 20.0sec
プランジャ注入速度: 高速
注入後待ち時間: 1.0sec
<GC>
装置: SHIMADZU GC−2010 plus
キャリアーガス: He
カラム: DB−17(30m×0.25mmID、液相の膜厚0.25μm)
気化室温度: 260℃
圧力: 96.3kPa
カラム流量: 1.17mL/min
線速度: 28.8cm/sec
スプリット比: 90
温度プログラム:
Detector: FID
Detector temperature: 270 ° C
Measurement time: 17min
(Analysis of reaction solution)
<Autosampler>
Equipment: SHIMADZU AOC-20i
Injection volume: 0.2 μl
Plunger inhalation speed: Waiting time after low speed inhalation: 20.0 sec
Plunger injection rate: Waiting time after high-speed injection: 1.0 sec
<GC>
Equipment: SHIMADZU GC-2010 plus
Carrier gas: He
Column: DB-17 (30 m x 0.25 mm ID, liquid phase film thickness 0.25 μm)
Vaporization chamber temperature: 260 ° C
Pressure: 96.3 kPa
Column flow rate: 1.17 mL / min
Linear velocity: 28.8 cm / sec
Split ratio: 90
Temperature program:

Figure 0006807695
Figure 0006807695

検出器: FID
検出器温度: 280℃
測定時間: 20min
Detector: FID
Detector temperature: 280 ° C
Measurement time: 20 min

実施例1と比較例1で得られた反応液のメチルセロソルブ転化率および反応留分のメチルセロソルブ転化率の分析データを表3にまとめ、両者の関係を図2にグラフ化した。図2に示した通り、反応温度を90〜130℃の範囲とすることで、反応液のメチルセロソルブの転化率が低い時点から、メチルセロソルブ転化率の高い反応留分が得られた。一方、反応温度が135〜140℃の場合では、反応液のメチルセロソルブ転化率が50%を超えるまで、メチルセロソルブ転化率の高い反応留分は得られなかった。製造条件を本発明の特定の範囲とすることで、反応液のメチルセロソルブの転化率が低い時点から、反応留分の純度を飛躍的に向上させることができた。 The analysis data of the methyl cellosolve conversion rate of the reaction solutions obtained in Example 1 and Comparative Example 1 and the methyl cellosolve conversion rate of the reaction fraction are summarized in Table 3, and the relationship between the two is graphed in FIG. As shown in FIG. 2, by setting the reaction temperature in the range of 90 to 130 ° C., a reaction fraction having a high methyl cellosolve conversion rate was obtained from the time when the conversion rate of methyl cellosolve in the reaction solution was low. On the other hand, when the reaction temperature was 135 to 140 ° C., a reaction fraction having a high methyl cellosolve conversion rate could not be obtained until the methyl cellosolve conversion rate of the reaction solution exceeded 50%. By setting the production conditions within the specific range of the present invention, the purity of the reaction fraction could be dramatically improved from the time when the conversion rate of methyl cellosolve in the reaction solution was low.

Figure 0006807695
Figure 0006807695

本発明によると、メチルセロソルブの含有量が少ない反応留分が得られるため、高段数の蒸留設備を用いて精製を行う必要がなく、簡素な設備で蒸留を実施できる。また、蒸留時の還流比を大きくとる必要がないため短時間で効率的に、高純度の2−メトキシエチルビニルエーテルを製造することができる。さらに、広い範囲のメチルセロソルブ転化率で高純度の2−メトキシエチルビニルエーテルが得られるため、反応制御における組成の維持、管理が容易で、安定して高い品質を維持することができる。 According to the present invention, since a reaction fraction having a low content of methyl cellosolve can be obtained, it is not necessary to carry out purification using a distillation facility having a high number of stages, and distillation can be carried out with a simple facility. Further, since it is not necessary to increase the reflux ratio during distillation, high-purity 2-methoxyethyl vinyl ether can be efficiently produced in a short time. Furthermore, since high-purity 2-methoxyethyl vinyl ether can be obtained with a wide range of methyl cellosolve conversion rates, it is easy to maintain and control the composition in reaction control, and stable and high quality can be maintained.

Claims (5)

塩基を含む反応液においてアセチレンとメチルセロソルブとを反応させる2−メトキシエチルビニルエーテルの製造方法において、反応温度を90〜130℃とし、該アセチレン及び該メチルセロソルブを連続的又は間欠的に該反応液に供給し、前記反応液のメチルセロソルブの転化率が19〜90%の範囲内にある間、高段数の蒸留設備を用いずに、反応留分の抜出しを行いながら反応させることを特徴とする、2−メトキシエチルビニルエーテルの製造方法。 In the method for producing 2-methoxyethyl vinyl ether in which acetylene and methyl cellosolve are reacted in a reaction solution containing a base, the reaction temperature is set to 90 to 130 ° C., and the acetylene and the methyl cellosolve are continuously or intermittently added to the reaction solution. It is characterized in that, while the conversion rate of methyl cellosolve in the reaction solution is in the range of 19 to 90%, the reaction is carried out while extracting the reaction distillate without using a high-stage distillation facility . Method for producing 2-methoxyethyl vinyl ether. 前記反応液のメチルセロソルブの転化率が58〜90%の範囲内にある間、前記反応留分の抜出しを行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 58 to 90%. 前記反応液のメチルセロソルブの転化率が19〜50%の範囲内にある間、前記反応留分の抜出しを行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction fraction is extracted while the conversion rate of methyl cellosolve in the reaction solution is in the range of 19 to 50%. 順に、少なくとも反応容器、冷却装置および反応留分貯槽を連通させた装置において、アセチレンガスを含む気体を該反応容器から該反応留分貯槽へ流通させ、該反応留分貯槽の出口における気体の流速が該反応容器の単位体積(1L)当り1.5L/Hr以上となる条件で前記反応を行う、請求項1〜のいずれか1項に記載の製造方法。 In order, at least in a device in which the reaction vessel, the cooling device, and the reaction fraction storage tank are communicated with each other, a gas containing acetylene gas is circulated from the reaction vessel to the reaction fraction storage tank, and the flow rate of the gas at the outlet of the reaction fraction storage tank The production method according to any one of claims 1 to 3 , wherein the reaction is carried out under the condition that is 1.5 L / Hr or more per unit volume (1 L) of the reaction vessel. 前記反応留分貯槽の出口から排出されたアセチレンガスを含む気体を前記反応容器の入口へ導入することにより再循環させる、請求項に記載の製造方法。 The production method according to claim 4 , wherein a gas containing acetylene gas discharged from the outlet of the reaction fraction storage tank is recirculated by introducing it into the inlet of the reaction vessel.
JP2016198295A 2016-10-06 2016-10-06 Method for producing 2-methoxyethyl vinyl ether Active JP6807695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198295A JP6807695B2 (en) 2016-10-06 2016-10-06 Method for producing 2-methoxyethyl vinyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198295A JP6807695B2 (en) 2016-10-06 2016-10-06 Method for producing 2-methoxyethyl vinyl ether

Publications (2)

Publication Number Publication Date
JP2018058798A JP2018058798A (en) 2018-04-12
JP6807695B2 true JP6807695B2 (en) 2021-01-06

Family

ID=61908153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198295A Active JP6807695B2 (en) 2016-10-06 2016-10-06 Method for producing 2-methoxyethyl vinyl ether

Country Status (1)

Country Link
JP (1) JP6807695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022168950A1 (en) * 2021-02-04 2022-08-11

Also Published As

Publication number Publication date
JP2018058798A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5587307B2 (en) Method for producing alkenone
KR101349106B1 (en) Method for preparing glycol ester using reactive distillation
JP5939980B2 (en) Process for producing halogenated precursors of alkenones in the presence of a solvent
US11198657B2 (en) Method for producing conjugated diene
JP6747560B2 (en) Method for producing carboxylic acid ester
JP2020536080A (en) Method for producing dimethylaminoalkyl (meth) acrylate
JP6807695B2 (en) Method for producing 2-methoxyethyl vinyl ether
TWI770453B (en) Composition for producing N-vinyl carboxyamide
TWI605034B (en) Method of manufacturing n-vinyl carboxylic amide
JP2004300131A (en) Method for producing alcohol by hydrogenation of ester
JP5807556B2 (en) Method for producing difluoroacetic acid ester
JP2002356451A (en) Method for manufacturing acetylene diol compound
JP5523076B2 (en) Method for producing vinylimidazole compound
US9227903B2 (en) Reduction of ester formation in isobutyraldehyde oxidation
JP2004285068A (en) METHOD FOR CONTINUOUSLY PRODUCING ACETAL OF alpha,beta-DICARBONYL COMPOUND
WO2009133950A1 (en) Method for producing vinyl ether compound
JP2012236819A (en) Method for producing tetrahydrofuran
JP2021042130A (en) Method for producing n-vinyl carboxylic acid amide
JP2007320944A (en) Method for producing 2-hydroxy-4-methyltetrahydropyran
JP2015224218A (en) Production method of perfluoroalkylperfluoroalkane sulfonate
KR102399263B1 (en) Process for the preparation of propylene glycol monomethyl ether acetate
US10570081B2 (en) Process for making formic acid utilizing lower-boiling formate esters
JPH04198144A (en) Production of alkyl vinyl ether
JP6766459B2 (en) Method for producing carboxylic acid ester
JP2006008519A (en) Method for producing triethylene glycol divinyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6807695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250