JP6807564B2 - 時間変化素子、物性時間変化予測装置及び電気遮断装置 - Google Patents

時間変化素子、物性時間変化予測装置及び電気遮断装置 Download PDF

Info

Publication number
JP6807564B2
JP6807564B2 JP2019509587A JP2019509587A JP6807564B2 JP 6807564 B2 JP6807564 B2 JP 6807564B2 JP 2019509587 A JP2019509587 A JP 2019509587A JP 2019509587 A JP2019509587 A JP 2019509587A JP 6807564 B2 JP6807564 B2 JP 6807564B2
Authority
JP
Japan
Prior art keywords
time
physical property
time change
prediction device
change prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509587A
Other languages
English (en)
Other versions
JPWO2018180759A1 (ja
Inventor
嘉孝 中村
嘉孝 中村
勤 古田
勤 古田
浩好 余田
浩好 余田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2018180759A1 publication Critical patent/JPWO2018180759A1/ja
Application granted granted Critical
Publication of JP6807564B2 publication Critical patent/JP6807564B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/043Titanium sub-oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • H10N70/235Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect between different crystalline phases, e.g. cubic and hexagonal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行し、物性が時間経過に伴って変化する時間変化素子、これを含む物性時間変化予測装置及び電気遮断装置に関する。
従来、相転移をする材料の電気的・磁気的変化を利用した素子や装置が開発され、これらはメモリやスイッチなどに用いられてきた。
例えば、特許文献1には、Pr0.7Ca0.3MnOで表され、電流、電場等により反強磁性絶縁体と強磁性金属との間で相転移するぺロブスカイト型マンガン酸化物材料を用いたスイッチング素子が開示されている。また、特許文献2には、温度上昇時には温度Tで反強磁性から強磁性に相転移し、温度下降時には温度Tで強磁性から反強磁性に相転移する、磁気相転移材料を用いた光磁気記録媒体が開示されている。
特許3030333号公報 特開平9−231629号公報
しかしながら、特許文献1及び2に記載された相転移する材料は、相転移させるために電気、磁気、熱等の動力やエネルギーの供給が必要である。このため、これらの相転移する材料を用いた素子は、動力がない場合に使用できないという課題があった。
本発明は、上記課題に鑑みてなされたものである。本発明は、動力やエネルギーの供給がなくても時間経過に伴って相転移する材料を含む時間変化素子を提供することを目的とする。また、本発明は上記時間変化素子を用い時間経過に伴う物性の経時的変化を予測する物性時間変化予測装置、及びこの物性時間変化予測装置を用いた電気遮断装置を提供することを目的とする。
上記課題を解決するために、本発明の第一の態様に係る時間変化素子は、外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行する時間変化相転移材料を含み、組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性が時間経過に伴って変化することを特徴とする。
また、本発明の第二の態様に係る物性時間変化予測装置は、前記時間変化素子を含む物性時間変化予測装置本体を備え、組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性の経時的変化を予測することを特徴とする。
本発明の第三の態様に係る電気遮断装置は、前記物性時間変化予測装置からなり、前記電気抵抗の経時的変化を予測することを特徴とする。
本発明の第四の態様に係る電気遮断装置は、前記物性時間変化予測装置からなり、前記体積の経時的変化を予測することを特徴とする。
第1の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。 第2の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。 図3(a)は第3の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図3(b)は図3(a)のC−C線に沿った模式的な断面図である。 図4(a)は第4の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図4(b)は図4(a)のD−D線に沿った模式的な断面図である。 図5(a)は第5の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図5(b)は図5(a)のE−E線に沿った模式的な断面図である。 図6(a)は第6の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図6(b)は図6(a)のF−F線に沿った模式的な断面図である。 図7(a)は第7の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図7(b)は図7(a)のG−G線に沿った模式的な断面図である。 図8(a)は第8の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図8(b)は図8(a)のH−H線に沿った模式的な断面図である。 第9の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。 第10の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。 第11の実施形態に係る物性時間変化予測装置を示す模式的な断面図である。 第12の実施形態に係る物性時間変化予測装置を示す模式的な断面図である。 第13の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。 X線回折分析結果を示す図である。 時間変化相転移材料の製造直後からの経過日数と、時間変化相転移材料におけるλ−Tiの相比率(λ相含有率)及びβ−Tiの相比率(β相含有率)と、の関係を示すグラフである。
以下、本実施形態に係る物性時間変化予測装置について、図面を参照して説明する。
[物性時間変化予測装置]
(第1の実施形態)
図1は、第1の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図1に示す物性時間変化予測装置1A(1)は、物性時間変化予測装置本体10A(10)、を備える。なお、物性時間変化予測装置1Aは、図1に示す物性時間変化予測装置本体10Aを少なくとも備えるものであればよく、図示しない周辺部材を備えていてもよい。また、後述の第2〜第13の実施形態に係る物性時間変化予測装置1B〜1Mも、第1の実施形態に係る物性時間変化予測装置1Aと同様に、物性時間変化予測装置本体10B〜10Mを備える。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10は、時間変化素子40を含む部材である。図1に示す物性時間変化予測装置本体10A(10)は、時間変化素子40A(40)からなり、時間変化素子40A以外の材質を実質的に含まない。なお、例えば、後述の第3の実施形態に係る物性時間変化予測装置1Cでは、物性時間変化予測装置本体10が、時間変化素子40以外の材質である母材30を含む。
[時間変化素子]
時間変化素子40とは、時間変化相転移材料を含み、特定の物性が時間経過に伴って変化する素子を意味する。ここで、特定の物性とは、組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性を意味する。特定の物性の経時的な変化としては、例えば、組成変化、体積変化、色変化、電気抵抗変化、磁性変化等が挙げられる。なお、色変化では、これに代えて透過率変化や反射率変化を用いることができる。
(時間変化相転移材料)
図1に示す時間変化素子40は、時間変化相転移材料からなる素子である。換言すれば、時間変化相転移材料は、時間変化素子40の材質である。ここで、時間変化相転移材料とは、外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行する物質を意味する。ここで、「外部からの刺激の有無に関わらず、」とは、外部からの、電気、磁気、熱等の動力やエネルギーの供給の有無に関わらないこと、を意味する。
また、固体間の相転移とは、同一組成の固体間で相が転移することを意味する。この固体間の相転移には、液体や気体と、固体との間の相転移や、組成が異なる固体物質間の変化は含まれない。固体間の相転移の一例としては、時間変化相転移材料としてβ相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒の1種以上の結晶粒を有する五酸化三チタンが用いられる場合におけるλ相五酸化三チタンとβ相五酸化三チタンとの間の相転移が挙げられる。なお、時間変化相転移材料としての五酸化三チタンは、後述のように、製造直後において、少なくともλ相五酸化三チタン(λ−Ti)の結晶粒を有するものであればよい。また、「相転移が進行する」とは、例えば、上記五酸化三チタン中のλ相五酸化三チタンの結晶粒がβ相五酸化三チタン(β−Ti)の結晶粒に相転移することを意味する。
時間変化相転移材料としては、例えば、酸化物、純金属又は合金が用いられる。酸化物としては、例えば、少なくともλ相五酸化三チタンの結晶粒を有する五酸化三チタン(Ti)が用いられる。この時間変化相転移材料として機能する五酸化三チタンを、以下、「時間変化相転移五酸化三チタン」という。時間変化相転移五酸化三チタンは、外部からの刺激の有無に関わらず、製造後の時間経過に伴って進行する固体間の相転移が、時間変化相転移材料の中で、顕著に生じるため好ましい。
さらに、酸化物としては、時間変化相転移五酸化三チタンの組成の一部を他の元素で置換したものを用いることができる。例えば、時間変化相転移五酸化三チタンのTiをSi、Mg、Al、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Nb、Zr又はHfで置換したり、時間変化相転移五酸化三チタンのOをH、N又はFで置換したりしたものであってもよい。また、時間変化相転移五酸化三チタンにおける、Tiの上記元素での置換と、Oの上記元素での置換とは、併用してもよい。TiのTiやOを他の元素で置き換えた酸化物の添え字の数値は適宜変更することができる。なお、時間変化相転移五酸化三チタンがTiのTiやOを他の元素で置き換えた酸化物である場合、この酸化物の相転移温度や相転移圧力は、Tiの相転移温度や相転移圧力よりも低くなっていてもよいし高くなっていてもよい。
時間変化相転移五酸化三チタンについて詳細に説明する。時間変化相転移五酸化三チタンは、製造直後において少なくともλ相五酸化三チタンの結晶粒を有する。また、時間変化相転移五酸化三チタンは、λ相五酸化三チタンの結晶粒に加え、β相五酸化三チタンの結晶粒を有するものであってもよい。なお、時間変化相転移五酸化三チタンは、β相五酸化三チタンが安定な相、λ相五酸化三チタンが準安定な相である。このため、時間変化相転移五酸化三チタンは、外部からの刺激の有無に関わらず、製造後の時間経過に伴ってλ相五酸化三チタンの結晶粒の少なくとも一部がβ相五酸化三チタンの結晶粒に相転移する性質を有する。
このため、時間変化相転移五酸化三チタンは、仮に製造直後においてλ相五酸化三チタンの結晶粒のみからなるものである場合でも、製造直後より後においては、通常、λ相五酸化三チタンの結晶粒及びβ相五酸化三チタンの結晶粒を有する。実施形態で用いられる時間変化相転移五酸化三チタンにおける、製造直後の、λ相五酸化三チタンと、β相五酸化三チタンとの相比率は、特に限定されない。
なお、λ相五酸化三チタンからβ相五酸化三チタンへの相転移により時間変化相転移五酸化三チタンのλ相五酸化三チタンの結晶粒の少なくとも一部がβ相五酸化三チタンの結晶粒に変化する性質は、通常、190℃未満において発現する。時間変化相転移五酸化三チタンが190℃を超えると、五酸化三チタンの結晶粒の少なくとも一部がα相五酸化三チタンの結晶粒に相転移するため、λ相五酸化三チタンからβ相五酸化三チタンへの相転移が困難になる。このため、時間変化相転移五酸化三チタンを時間変化相転移材料として用いるときは、通常、時間変化相転移五酸化三チタンが190℃未満になる状態で用いる。
また、時間変化相転移五酸化三チタンのλ相五酸化三チタンの結晶粒の少なくとも一部がβ相五酸化三チタンの結晶粒に変化する性質は、時間変化相転移五酸化三チタンに圧力が印加されると変化することがある。このため、時間変化相転移五酸化三チタンを時間変化相転移材料として用いるときは、通常、時間変化相転移五酸化三チタンに印加される圧力が1MPa未満の状態で用いる。
従って、時間変化相転移五酸化三チタンを時間変化相転移材料として用いるときは、通常、時間変化相転移五酸化三チタンが190℃未満かつ時間変化相転移五酸化三チタンに印加される圧力が1MPa未満の状態で用いる。なお、時間変化相転移五酸化三チタンは、λ相五酸化三チタン及びβ相五酸化三チタンの相比率や結晶粒の粒径により、時間変化相転移材料以外に、温度変化や圧力変化に応じて相転移する材料として用いることができる場合がある。時間変化相転移五酸化三チタンを、時間変化相転移材料以外の温度変化や圧力変化を検知する材料として用いるときは、上記の190℃未満、印加圧力が1MPa未満等の使用条件の制限はない。
以下、時間変化相転移材料が時間変化相転移五酸化三チタンである場合における、時間変化相転移五酸化三チタンの相と、製造後の経過時間との関係について説明する。以下では、時間変化相転移五酸化三チタンの温度が190℃未満、かつ時間変化相転移五酸化三チタンに印加される圧力が1MPa未満の状態における、時間変化相転移五酸化三チタンの相と、製造後の経過時間と、の関係について説明する。
時間変化相転移五酸化三チタンは、上記のように、製造直後において少なくともλ相五酸化三チタンの結晶粒を有する。
時間変化相転移五酸化三チタンは、製造後の時間経過に伴ってλ相五酸化三チタンの結晶粒の少なくとも一部が相転移してβ相五酸化三チタンの結晶粒に変化する性質を有する。
また、時間変化相転移五酸化三チタンは、製造後の時間経過に伴って、λ相五酸化三チタンからβ相五酸化三チタンへの相転移量が増加する性質を有する。時間変化相転移五酸化三チタンのλ相五酸化三チタンからβ相五酸化三チタンへの相転移は、進行する。
このように、時間変化相転移五酸化三チタンは、製造後の時間経過に伴って、λ相五酸化三チタンの相比率が減少し、β相五酸化三チタンの相比率が増加する性質を有する。例えば、時間変化相転移五酸化三チタンは、製造直後にλ相五酸化三チタンの結晶粒Xモル%とβ相五酸化三チタンの結晶粒100−Xモル%とを含む場合において、製造後の時間経過に伴ってXの値が減少する性質を有する。なお、時間変化相転移五酸化三チタンは、λ相五酸化三チタンやβ相五酸化三チタン以外の成分を含むことがある。このような成分としては、例えば、TiOが挙げられる
例えば、製造直後から10日経過後においてλ−Tiの相比率が約80モル%、残部β−Tiの時間変化相転移五酸化三チタンが、外部刺激なしに製造直後から130日経過後においてλ−Tiの相比率が約55モル%に低下することがある。
時間変化相転移五酸化三チタンの、製造後の時間経過に伴ってλ相五酸化三チタンの相比率が減少しβ相五酸化三チタンの相比率が増加する特性は、時間変化相転移五酸化三チタン毎に異なる。この特性を、以下、「相比率変化特性」という。相比率変化特性は、時間変化相転移五酸化三チタンの、製造直後のλ相とβ相との相比率や結晶粒の大きさ等により決定されると考えられる。このため、各時間変化相転移五酸化三チタンにつき相比率変化特性を予め測定しておき、時間変化相転移五酸化三チタンにおける五酸化三チタンのλ相又はβ相の相比率を測定すると、時間変化相転移五酸化三チタンの製造後の経過時間の測定が可能になる。
一方、時間変化相転移五酸化三チタンの相比率変化特性を予め測定しておくと、製造後の時間経過に伴うλ相五酸化三チタン及びβ相五酸化三チタンの相比率の変化の予測が可能である。このため、予め取得した相比率変化特性に基づいて時間変化相転移五酸化三チタンの製造後の時間経過に伴う物性の経時的変化を予測することができる。経時的変化を予測する物性としては、組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性が挙げられる。これらの物性の経時的な変化としては、例えば、組成変化、体積変化、色変化、電気抵抗変化、磁性変化等が挙げられる。なお、色変化では、これに代えて透過率変化や反射率変化を用いることができる。このように、時間変化相転移五酸化三チタンからなる時間変化素子40を含む物性時間変化予測装置本体10を備える物性時間変化予測装置1によれば、物性の経時的変化を予測することができる。
さらに、物性時間変化予測装置1において、時間変化素子40の経時的変化を予測する物性として電気抵抗を用い、時間変化相転移五酸化三チタンからなる時間変化素子40の電気抵抗が経時的に上昇することを利用すると、電気遮断装置が得られる。この電気遮断装置は、時間変化相転移五酸化三チタンからなる時間変化素子40の電気抵抗が経時的に上昇することにより、時間変化素子40を介した導通が時間の経過につれて困難になることを利用したものである。
この電気遮断装置の構成は、物性時間変化予測装置1からなり、時間変化素子40の電気抵抗の経時的変化を予測するものである。すなわち、電気遮断装置は物性時間変化予測装置1と同一構成であり、電気遮断装置とは、物性時間変化予測装置1において電気を遮断するという機能を有することを名称上明らかにしたものである。従って、電気遮断装置の構造は、図1に、物性時間変化予測装置1として表されているものと同じである。
また、物性時間変化予測装置1において、時間変化素子40の経時的変化を予測する物性として体積を用い、時間変化相転移五酸化三チタンからなる時間変化素子40の体積が経時的に変化することを利用しても、電気遮断装置が得られる。この電気遮断装置は、時間変化相転移五酸化三チタンからなる時間変化素子40の体積が経時的に収縮することにより、時間変化素子40と、時間変化素子40に電気的に接触する部材との間の電気的接続を不良にすることを利用したものである。
この電気遮断装置の構成は、物性時間変化予測装置1からなり、時間変化素子40の体積の経時的変化を予測するものである。すなわち、電気遮断装置は物性時間変化予測装置1と同一構成であり、電気遮断装置とは、物性時間変化予測装置1において電気を遮断するという機能を有することを名称上明らかにしたものである。従って、電気遮断装置の構造は、図1に、物性時間変化予測装置1として表されているものと同じである。
なお、時間変化相転移五酸化三チタンは、製造後の時間経過に伴って一旦結晶粒の結晶構造がλ相五酸化三チタンからβ相五酸化三チタンに相転移すると、190℃以上の加熱等を行わない限り、その後も相転移後の結晶状態が維持される性質を有する。このため、予め測定しておいた相比率変化特性に、経過時間の測定対象である時間変化相転移五酸化三チタンのλ相比率又はβ相比率を当てはめると、時間変化相転移五酸化三チタンの製造後の経過時間を算出することができる。
相比率変化特性について詳細に説明する。時間変化相転移五酸化三チタンにおけるλ相五酸化三チタン及びβ相五酸化三チタンの相比率の合計が100モル%である場合、λ相及びβ相の五酸化三チタンの相比率は、通常、次のように表される。すなわち、縦軸をλ相五酸化三チタンの相比率(モル%)、横軸を時間変化相転移五酸化三チタンの製造後の経過時間とした座標において、時間変化相転移五酸化三チタンのλ相五酸化三チタンの相比率は単調減少する曲線(λ相比率曲線Cλ)として描かれる。一方、同じ座標において、時間変化相転移五酸化三チタンのβ相五酸化三チタンの相比率は、単調増加する曲線(β相比率曲線Cβ)として描かれる。
このため、予め測定しておいたλ相比率曲線Cλやβ相比率曲線Cβに、経過時間の測定対象である時間変化相転移五酸化三チタンのλ相比率又はβ相比率を当てはめると、時間変化相転移五酸化三チタンの製造後の経過時間を算出することができる。なお、相比率変化特性に含まれるλ相比率曲線Cλ及びβ相比率曲線Cβは、上記のように、時間変化相転移五酸化三チタンの、製造直後のλ相とβ相との相比率や結晶粒の大きさ等により決定されると考えられる。
また、時間変化相転移五酸化三チタンの、製造直後のλ相とβ相との相比率や結晶粒の大きさ等によっては、λ相比率曲線Cλとβ相比率曲線Cβとは、交差することがある。例えば、λ相比率曲線Cλにおける製造後の経過時間が0のときの相比率(Rλ0)が、β相比率曲線Cβにおける製造後の経過時間が0のときの相比率(Rβ0)よりも大きい場合、λ相比率曲線Cλとβ相比率曲線Cβとが交差することがある。このような特性の時間変化相転移五酸化三チタンでは、λ相比率曲線Cλとβ相比率曲線Cβとの交点(PINT)の経過時間を境にして、λ相比率とβ相比率とが逆転する。具体的には、交点PINTの経過時間よりも小さい経過時間の領域ではλ相比率がβ相比率より大きくなり、交点PINTの経過時間を超える経過時間の領域ではλ相比率がβ相比率より小さくなる。このため、このような特性の時間変化相転移五酸化三チタンを用いると、λ相比率とβ相比率との逆転により、製造後の経過時間をより正確に検知しやすくなる。
本実施形態の時間変化相転移五酸化三チタンは、λ相五酸化三チタン及びβ相五酸化三チタンの相比率や、これらの結晶粒の大きさを調整することにより、上記交点PINTを任意の経過時間に調整することが可能である。例えば、時間変化相転移五酸化三チタンを、製造後の経過時間が所定の経過時間を超えたときに、前記λ相五酸化三チタンの相比率がβ相五酸化三チタンの相比率よりも少なくなるように調製することが可能である。この時間変化相転移五酸化三チタンを用いると、β相五酸化三チタンの相比率とλ相五酸化三チタンの相比率とを測定することにより、交点PINTの時間から製造後の経過時間を容易かつ正確に検知することができる。
時間変化相転移五酸化三チタンに含まれるβ相五酸化三チタン及びλ相五酸化三チタンは、物性が異なる。例えば、β相五酸化三チタンとλ相五酸化三チタンとは、電気伝導度が異なる。具体的には、β相五酸化三チタンは多くの半導体と同様の範囲内の電気伝導度を有し、λ相五酸化三チタンは多くの金属と同様の範囲内の電気伝導度を有する。このため、時間変化相転移五酸化三チタンの電気伝導度を、公知の電気伝導度測定装置で測定することにより、時間変化相転移五酸化三チタンの製造後の経過時間を算出することができる。時間変化相転移五酸化三チタンの電気伝導度の変化は、例えば、時間変化相転移五酸化三チタンを介した2個以上の電極間の電気抵抗を測定することにより知ることができる。
また、β相五酸化三チタンとλ相五酸化三チタンとは、色が異なる。具体的には、β相五酸化三チタンは赤色又は赤褐色であり、λ相五酸化三チタンは青色である。このため、時間変化相転移五酸化三チタンの色について目視観察や色の吸収スペクトルの評価を行って時間変化相転移五酸化三チタンのλ相比率又はβ相比率を算出すると、時間変化相転移五酸化三チタンの製造後の経過時間を算出することができる。
さらに、β相五酸化三チタンとλ相五酸化三チタンとは、磁性が異なる。具体的には、β相五酸化三チタンは非磁性体であり、λ相五酸化三チタンは常磁性体である。このため、時間変化相転移五酸化三チタンの磁性の相違を、公知の磁化評価装置で測定することにより、時間変化相転移五酸化三チタンの製造後の経過時間を算出することができる。
また、時間変化相転移五酸化三チタンとしては、例えば、350℃未満でβ相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒を有するものが、製造後の時間経過に伴う相転移が良好に発現するため好ましい。さらに、時間変化相転移五酸化三チタンとしては、例えば、350℃以上に加熱したときにβ相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒の少なくとも一部が二酸化チタン(TiO)の結晶粒に変化する性質を有するものが好ましい。この350℃以上に加熱したときに一部が二酸化チタンの結晶粒に変化する性質を有する時間変化相転移五酸化三チタンは、製造後の時間経過に伴う相転移が良好に発現するため好ましい。
時間変化相転移五酸化三チタンの上記時間変化相転移材料としての性質は、時間変化相転移五酸化三チタンの結晶粒の平均粒径(メジアン径)が特定範囲内であることにより発現する。すなわち、時間変化相転移五酸化三チタンの結晶粒の平均粒径(メジアン径)は、通常1〜1000nm、好ましくは10〜700nm、より好ましくは100〜500nmである。ここで、時間変化相転移五酸化三チタンの結晶粒の平均粒径とは、時間変化相転移五酸化三チタンを構成するλ相五酸化三チタンの結晶粒及びβ相五酸化三チタンの結晶粒の平均粒径を意味する。時間変化相転移五酸化三チタンの結晶粒の平均粒径が上記範囲外であると、製造後の時間経過に伴う固体間の相転移が進行しなくなるおそれがある。例えば、バルク状の五酸化三チタンは、通常、β相のみで構成されるため、外部からの刺激のない状態では、製造後の時間経過に伴う固体間の相転移が進行することはない。
時間変化相転移五酸化三チタンとしての機能を有する最小単位は、平均粒径が上記範囲内にある五酸化三チタンの結晶粒である。このため、時間変化相転移五酸化三チタンとしての機能を有する最小単位として、平均粒径が上記範囲内にある結晶粒の単結晶体からなるナノ粒子をそのまま用いることも可能である。しかし、平均粒径が上記範囲内にあるナノ粒子は取り扱いが困難であるため、時間変化相転移五酸化三チタンとしては、通常、平均粒径が上記範囲内にある五酸化三チタンの結晶粒の多結晶体が用いられる。この結晶粒の多結晶体は、その形状について特に限定されないが、例えば、粒状のものが用いられる。
この粒状の結晶粒の多結晶体の大きさは、例えば、平均粒径(メジアン径)が、通常50nm〜500μm、好ましくは1μm〜50μm、より好ましくは3μm〜8μmである。粒状の結晶粒の多結晶体の平均粒径(メジアン径)が、上記範囲内にあると、取扱いが容易である。
粒状の結晶粒の多結晶体は、このまま用いることもできるが、多数個の粒状の結晶粒の多結晶体を押し固めた圧粉体等、の結晶粒の多結晶体の成形体としたり、母材30中に含ませたりして用いることができる。成形体は、型を用いずに成形したものでもよいが、型を用いて作製した成型体としてもよい。本第1の実施形態に係る物性時間変化予測装置1Aの物性時間変化予測装置本体10Aの時間変化素子40Aは、時間変化相転移材料からなる成形体である。具体的には、時間変化素子40Aは、時間変化相転移材料としての時間変化相転移五酸化三チタンの結晶粒の多結晶体を押し固めた圧粉体になっている。
上記のように、時間変化素子40及びその材質である時間変化相転移五酸化三チタンは、製造後の時間経過に伴って結晶粒の結晶構造がλ相五酸化三チタンからβ相五酸化三チタンに相転移して物性が変化する。しかし、時間変化相転移五酸化三チタンは、時間変化以外の温度変化や圧力変化に応じても、結晶粒の結晶構造がλ相五酸化三チタンとβ相五酸化三チタンとの間で相転移したり結晶粒の組成が五酸化三チタン以外に変化したりして物性が変化する。そして、時間変化相転移五酸化三チタンは、温度変化や圧力変化に応じて一旦結晶粒の結晶構造が相転移したり結晶粒の組成が変化したりすると、通常、相転移後又は組成変化後の結晶状態が維持される性質を有する。
以下に、時間変化相転移五酸化三チタンが、温度変化に応じて物性が変化することについて説明する。なお、上記のように時間変化相転移五酸化三チタンは、圧力変化及び温度変化の影響により、物性が変化する。このため、以下では、常圧下にある時間変化相転移五酸化三チタンが、温度変化に応じて物性が変化することについて説明する。
時間変化相転移五酸化三チタンは、常圧下、かつ350℃未満で、通常、β相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒を有する。時間変化相転移五酸化三チタンは、製造直後において、λ相五酸化三チタンの結晶粒のみからなるものとすることも可能であるが、製造直後より後の状態においては、通常、β相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒を有する。
なお、時間変化相転移五酸化三チタンは、190℃以上に加熱すると、通常、β相五酸化三チタンの結晶粒の少なくとも一部がλ相五酸化三チタンの結晶粒に相転移する性質を有する。このため、製造後の時間経過に伴って一旦λ相五酸化三チタンの相比率が低下した時間変化相転移五酸化三チタンでも、190℃以上に加熱することにより、λ相五酸化三チタンの相比率を再び上昇させることが可能である。このように、時間変化相転移五酸化三チタンは、190℃以上に加熱することにより、時間変化相転移材料として再利用可能である。
また、時間変化相転移五酸化三チタンは、常圧下で、350℃以上に加熱したときにβ相五酸化三チタンの結晶粒及びλ相五酸化三チタンの結晶粒の少なくとも一部が二酸化チタンの結晶粒に変化する性質を有する。具体的には、λ相五酸化三チタンの結晶粒は、350℃以上に加熱されると、5モル%以上が二酸化チタンの結晶粒に組成が変化する。このため、時間変化相転移五酸化三チタンは、常圧下、かつ350℃以上では、β相五酸化三チタンの結晶粒、λ相五酸化三チタンの結晶粒、及び二酸化チタンの結晶粒を有する。なお、二酸化チタンとは、ルチル、アナターゼ、及びブルカイトを含む概念である。
ところで、二酸化チタンは、時間変化相転移五酸化三チタンを構成するβ相五酸化三チタン及びλ相五酸化三チタンと、物性が異なる。例えば、二酸化チタン、β相五酸化三チタン及びλ相五酸化三チタンは、それぞれ、電気伝導度が異なる。具体的には、二酸化チタンは多くの絶縁体と同様の範囲内の電気伝導度を有する。一方、β相五酸化三チタンは多くの半導体と同様の範囲内の電気伝導度を有し、λ相五酸化三チタンは多くの金属と同様の範囲内の電気伝導度を有する。このため、350℃以上に加熱された後の時間変化相転移五酸化三チタンにおける電気伝導度の相違を、公知の電気伝導度測定装置で測定することにより、時間変化相転移五酸化三チタン中の二酸化チタンの存在を確認することができる。
また、二酸化チタン、β相五酸化三チタン及びλ相五酸化三チタンは、それぞれ、色が異なる。具体的には、二酸化チタンは白色、β相五酸化三チタンは赤色又は赤褐色、及びλ相五酸化三チタンは青色という色の相違がある。このため、350℃以上に加熱された後の時間変化相転移五酸化三チタンの色を、目視観察したり、色の吸収スペクトルを評価したりすることにより、時間変化相転移五酸化三チタン中の二酸化チタンの存在を確認することができる。
さらに、二酸化チタン、β相五酸化三チタン及びλ相五酸化三チタンは、それぞれ、磁性が異なる。このため、350℃以上に加熱された後の時間変化相転移五酸化三チタンにおける磁性の相違を、公知の磁化評価装置で測定することにより、時間変化相転移五酸化三チタン中の二酸化チタンの存在を確認することができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
物性時間変化予測装置1Aは、時間変化素子40の材質である時間変化相転移五酸化三チタンの特性を利用して、動力やエネルギーの供給がなくても時間変化素子40の製造後の時間経過に伴う物性の経時的変化を予測する機能を有する。
なお、物性時間変化予測装置1Aは、物性時間変化予測装置本体10Aが190℃未満かつ物性時間変化予測装置本体10Aに印加される圧力が1MPa未満の状態で使用する。物性時間変化予測装置本体10Aが190℃以上や1MPa以上の条件で用いられると、時間変化素子40の材質である時間変化相転移五酸化三チタンが、熱や圧力に誘起された相転移を引き起こす。このため、物性時間変化予測装置本体10Aが190℃以上や1MPa以上の条件で用いられると、時間変化素子40の材質である時間変化相転移五酸化三チタンにおける製造後の時間経過に伴う物性変化が妨げられるおそれがあるからである。
物性時間変化予測装置1Aの物性時間変化予測装置本体10Aを構成する時間変化素子40は、外部からの刺激の有無に関わらず、製造後の時間経過に伴って、固体間の相転移が進行する。具体的には、時間変化素子40は、λ相五酸化三チタンの結晶粒の少なくとも一部がβ相五酸化三チタンの結晶粒に変化する。
また、時間変化素子40は、製造後の時間経過に伴って、λ相五酸化三チタンの結晶粒がβ相五酸化三チタンの結晶粒に相転移する割合が増加する。すなわち、時間変化素子40は、製造後の時間経過に伴って、λ相五酸化三チタンの相比率が減少し、β相五酸化三チタンの相比率が増加する性質を有する。この時間変化素子40の、製造後の時間経過に伴ってλ相五酸化三チタンの相比率が減少しβ相五酸化三チタンの相比率が増加する特性(相比率変化特性)は、時間変化素子40を構成する時間変化相転移五酸化三チタン毎に異なる。
このため、物性時間変化予測装置本体10Aを構成する時間変化素子40につき相比率変化特性を予め測定しておくと、物性時間変化予測装置本体10Aの製造後の経過時間を測定することが可能になる。すなわち、時間変化素子40につき相比率変化特性を予め測定しておくと、製造直後から時間が経過した時間変化素子40における五酸化三チタンのλ相又はβ相の相比率を測定することで、時間変化素子40の製造後の経過時間を測定することが可能になる。このように、物性時間変化予測装置1Aによれば、物性時間変化予測装置本体10Aの製造後の経過時間を測定することが可能になる。
一方、時間変化素子40の相比率変化特性を予め測定しておくと、製造後の時間経過に伴うλ相五酸化三チタン及びβ相五酸化三チタンの相比率の変化の予測が可能である。このため、予め取得した相比率変化特性に基づいて時間変化素子40の製造後の時間経過に伴う物性の経時的変化を予測することができる。経時的変化を予測する物性としては、組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性が挙げられる。これらの物性の経時的な変化としては、例えば、組成変化、体積変化、色変化、電気抵抗変化、磁性変化等が挙げられる。なお、色変化では、これに代えて透過率変化や反射率変化を用いることができる。このように、時間変化素子40を含む物性時間変化予測装置本体10を備える物性時間変化予測装置1によれば、物性の経時的変化を予測することができる。
さらに、物性時間変化予測装置1において時間変化素子40の経時的変化を予測する物性として電気抵抗を用い、時間変化素子40の電気抵抗が経時的に上昇することを利用した電気遮断装置によれば、製造後の時間経過に伴って電気を遮断することができる。例えば、時間変化素子40を構成する時間変化相転移材料の相比率変化特性を調整することにより、ある期間までは電気を流し、ある期間が過ぎると電気を流れにくくする電気遮断装置が得られる。この電気遮断装置によれば、使用期間の過ぎた電池や電気機器を強制的に使用できなくすることが可能である。
また、物性時間変化予測装置1において、時間変化素子40の経時的変化を予測する物性として体積を用い、時間変化素子40の体積が経時的に変化することを利用した電気遮断装置によれば、製造後の時間経過に伴って電気を遮断することができる。例えば、時間変化素子40を構成する時間変化相転移材料の相比率変化特性を調整することにより、ある期間までは物理的に接触して電気を流し、ある期間が過ぎると接触が切れ、電気的に導通しなくなる電気遮断装置が得られる。この電気遮断装置によれば、使用期間の過ぎた電池や電気機器を強制的に使用できなくすることが可能である。
なお、時間変化素子40の外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行する機能は、時間変化相転移五酸化三チタン自体が有する特性に基づくものである。このため、物性時間変化予測装置1Aにエネルギーを供給する電源等の施設は不要である。また、時間変化相転移五酸化三チタンからなる時間変化素子40は、190℃以上350℃未満に加熱することにより、λ相五酸化三チタンの相比率を再び上昇させることが可能である。このため、物性時間変化予測装置1Aは、物性時間変化予測装置本体10Aに190℃以上350℃未満の加熱処理をすることにより、時間変化を検知する物質として再利用可能である。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40は動力やエネルギーの供給がなくても製造後の時間経過に伴って相転移する。また、物性時間変化予測装置1Aは、この時間変化素子40からなる物性時間変化予測装置本体10Aを備える。このため、物性時間変化予測装置1Aによれば、動力やエネルギーの供給がなくても時間変化素子の製造後の時間経過に伴う物性の経時的変化を予測することができる。さらに、物性時間変化予測装置1を電気遮断装置として用いると、製造後の時間経過に伴って電気を遮断することができる。
なお、物性時間変化予測装置本体10Aを構成する時間変化素子40の材質である時間変化相転移五酸化三チタンの製造後の時間経過に伴って物性が変化する特性は、周囲の雰囲気の影響を受けない。このため、物性時間変化予測装置1Aは、空気中、酸素中、窒素中等の雰囲気中で使用することができる。
以上、時間変化相転移材料が、時間変化相転移五酸化三チタンである場合の物性時間変化予測装置1Aの作用及び効果を説明した。この作用及び効果は、時間変化相転移材料が時間変化相転移五酸化三チタン以外の場合でも同様であると考えられる。
(第2の実施形態)
図2は、第2の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図2に示す物性時間変化予測装置1B(1)は、物性時間変化予測装置本体10B(10)を備える。物性時間変化予測装置本体10Bは、時間変化素子40B(40)からなり、この時間変化素子40Bは、時間変化相転移五酸化三チタンからなる薄膜になっている。また、薄膜状の時間変化素子40Bは、基板50上に形成される。換言すれば、物性時間変化予測装置1Bは、基板50と、この基板50上に形成された薄膜状の時間変化素子40Bと、を備える。
図2に示す第2の実施形態に係る物性時間変化予測装置1Bは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aに比較して、物性時間変化予測装置本体10Bの形状と、基板50の有無の点で異なるが、他の点は同じである。このため、図2に示す第2の実施形態に係る物性時間変化予測装置1Bと、図1に示す第1の実施形態に係る物性時間変化予測装置1Aとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Bは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Bは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの物性時間変化予測装置本体10Aと同様に、時間変化素子40B(40)からなり、時間変化素子40B以外の材質を実質的に含まない。時間変化素子40Bは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの時間変化素子40Aと同じ材質である時間変化相転移五酸化三チタンからなる。ただし、時間変化素子40Bは、基板50上に形成される。
時間変化素子40Bは、図1に示す時間変化素子40Aと異なり、時間変化相転移五酸化三チタンの薄膜になっている。薄膜状の時間変化素子40Bによれば、薄膜化によって視認性が向上して目視を容易にすることができ、また吸収スペクトルの評価を容易にすることができる。この薄膜状の時間変化素子40Bは、例えば、スピンコート、ディップコート、スパッタリング、CVD、レーザーアプレーション、エアロゾルデポジション法等を用いることにより、基板50上に形成される。
基板50の材質は特に限定されない。基板50の材質としては、例えば、ガラス;Si、SiC、GaN等の半導体;サファイア等の無機酸化物;Al, Cu, Ti、Ni、Sn、Au、Ag、SUS等の金属;ポリイミド樹脂等の樹脂を用いることができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Bの作用は、図1に示す第1の実施形態に係る時間変化素子40Aの作用と同じであるため、説明を省略する。
また、物性時間変化予測装置1Bの作用は、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの作用と同じであるため、説明を省略する。
さらに、物性時間変化予測装置1Bからなる電気遮断装置の作用は、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1Bは、基板50を備える。このため、物性時間変化予測装置1Bは、機械的強度が高い。また、物性時間変化予測装置1Bは、基板50の熱伝導特性、電気伝導特性等を調整することにより、物性時間変化予測装置1Bの熱伝導特性、電気伝導特性等を調整することができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Bによれば、図1に示す第1の実施形態に係る時間変化素子40Aと同様の効果を奏する。
また、物性時間変化予測装置1Bによれば、図1に示す第1の実施形態に係る物性時間変化予測装置と同様の効果を奏する。
さらに、物性時間変化予測装置1Bからなる電気遮断装置によれば、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1B及びこれからなる電気遮断装置によれば、時間変化素子40Bが薄膜であるため、物性時間変化予測装置1A及びこれからなる電気遮断装置に比較して、視認性が向上する。
さらに、物性時間変化予測装置1Bは、基板50を備える。このため、物性時間変化予測装置1B及びこれからなる電気遮断装置によれば、機械的強度が高い。また、物性時間変化予測装置1B及びこれからなる電気遮断装置によれば、基板50の熱伝導特性、電気伝導特性等を調整することにより、物性時間変化予測装置1B及びこれからなる電気遮断装置の熱伝導特性、電気伝導特性等を調整することができる。
(第3の実施形態)
図3(a)は第3の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図3(b)は図3(a)のC−C線に沿った模式的な断面図である。図3に示す物性時間変化予測装置1C(1)は、物性時間変化予測装置本体10C(10)を備える。この物性時間変化予測装置本体10Cは、母材30C(30)と、この母材30C中に含まれる時間変化素子40C(40)と、を有する。
図3に示す第3の実施形態に係る物性時間変化予測装置1Cは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aに比較して、物性時間変化予測装置本体10Cの構成の点で異なるが、他の点は同じである。このため、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと、図1に示す第1の実施形態に係る物性時間変化予測装置1Aとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Cは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Cは、母材30Cと、この母材30C中に含まれる時間変化素子40Cと、を有する。図3に示す母材30Cは板状であるが、母材30Cの形状は特に限定されない。
物性時間変化予測装置本体10Cでは、時間変化素子40Cは、時間変化相転移五酸化三チタンからなる粒子40Cになっている。この時間変化相転移五酸化三チタンからなる粒子40Cは、時間変化相転移五酸化三チタンの結晶粒の多結晶体の粒状物である。この時間変化相転移五酸化三チタンからなる粒子40Cの大きさは、例えば、平均粒径(メジアン径)が、通常100nm〜500μm、好ましくは1μm〜50μm、より好ましくは3μm〜8μmである。粒状の結晶粒の多結晶体の平均粒径(メジアン径)が、上記範囲内にあると、取扱いが容易である。
物性時間変化予測装置本体10Cでは、この時間変化相転移五酸化三チタンからなる粒子40Cを固定するため、母材30Cを用いる。具体的には、母材30Cは、樹脂からなる。母材30Cに用いられる樹脂としては、例えば、ポリイミド等の耐熱性樹脂が用いられる。母材30Cが耐熱性樹脂からなると、耐熱性が高いため、物性時間変化予測装置1Cを高温下で用いることができる。また、母材30Cを構成する樹脂は、完全に硬化した硬化物であってもよいし、ゲル状物であってもよい。
図3(b)に示すように、物性時間変化予測装置本体10Cでは、時間変化相転移五酸化三チタンからなる粒子40Cは、分散した状態で、母材30C中に含まれる。物性時間変化予測装置本体10Cは、例えば、流動性を有する母材30C中に時間変化相転移五酸化三チタンからなる粒子40Cを添加、混合して成形することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Cの作用は、図1に示す第1の実施形態に係る時間変化素子40Aの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Cの作用は、時間変化素子40の作用が粒子状の時間変化素子40Cにおいて発現する点、及び母材30Cに基づく作用を発現する点以外は、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの作用と同じである。このため、物性時間変化予測装置1Cの作用については、説明を省略する。
また、物性時間変化予測装置1Cからなる電気遮断装置の作用も上記2点以外は、図1に示す第1の実施形態に係る電気遮断装置の作用と同じである。このため、物性時間変化予測装置1Cからなる電気遮断装置の作用については、説明を省略する。
時間変化素子40の作用が、粒子状の時間変化素子40Cにおいて発現する点について簡単に説明する。粒子状の時間変化素子40Cは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの時間変化素子40Aと同様に、外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行する。ただし、時間変化素子40Cは、実質的に、母材30C中に含まれているため、時間変化素子40Cの物性の変化は、母材30Cを介して、間接的に測定されることになる。この時間変化素子40Cの物性の変化が母材30Cを介して間接的に測定される作用以外は、物性時間変化予測装置1Cの作用は、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの作用と同じである。
なお、製造後の時間経過に伴って変化する物性が色である場合は、時間変化素子40Cの色の変化が母材30Cを介して観察又は測定される。また、製造後の時間経過に伴って変化する物性が電気伝導度である場合は、時間変化素子40Cの電気伝導度の変化が母材30Cを介して測定される。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Cによれば、図1に示す第1の実施形態に係る時間変化素子40Aと同様の効果を奏する。
物性時間変化予測装置1Cによれば、図1に示す第1の実施形態に係る時間変化素子40、物性時間変化予測装置1Aと同様の効果を奏する。
物性時間変化予測装置1Cからなる電気遮断装置によれば、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1Cは、樹脂からなる母材30Cを備える。このため、物性時間変化予測装置1C及びこれからなる電気遮断装置によれば、機械的強度が高い。また、物性時間変化予測装置1C及びこれからなる電気遮断装置によれば、母材30Cの熱伝導特性、電気伝導特性等を調整することにより、物性時間変化予測装置1C及びこれからなる電気遮断装置の熱伝導特性、電気伝導特性等を調整することができる。母材30Cの熱伝導特性、電気伝導特性等の調整は、母材30Cの樹脂の材質や時間変化素子40Cに対する母材30C量の調整等により行うことができる。
さらに、物性時間変化予測装置1C及びこれからなる電気遮断装置の母材30Cは、少なくとも製造時に流動性を有する樹脂からなる。このため、物性時間変化予測装置1C及びこれからなる電気遮断装置によれば、任意の形状に形成することが容易である。
(第4の実施形態)
図4(a)は第4の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図4(b)は図4(a)のD−D線に沿った模式的な断面図である。図4に示す物性時間変化予測装置1D(1)は、物性時間変化予測装置本体10D(10)を備える。この物性時間変化予測装置本体10Dは、母材30D(30)と、この母材30D中に含まれる時間変化素子40D(40)と、を有する。
図4に示す第4の実施形態に係る物性時間変化予測装置1Dは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cに比較して、物性時間変化予測装置本体10Dの構成の点で異なるが、他の点は同じである。このため、図4に示す第4の実施形態に係る物性時間変化予測装置1Dと、図3に示す第3の実施形態に係る物性時間変化予測装置1Cとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Dは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Dは、母材30Dと、この母材30D中に含まれる時間変化素子40Dと、を有する。図4に示す母材30Dは板状であるが、母材30Dの形状は特に限定されない。
母材30Dとしては、図3に示す第3の実施形態に係る物性時間変化予測装置1Cで用いられる母材30Cと同様の樹脂が用いられる。
物性時間変化予測装置本体10Dでは、時間変化素子40Dは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cで用いられる時間変化素子40Cと同様に、時間変化相転移五酸化三チタンからなる粒子40Dになっている。この時間変化相転移五酸化三チタンからなる粒子40Dとしては、第3の実施形態に係る物性時間変化予測装置1Cで用いられる時間変化相転移五酸化三チタンからなる粒子40Cと同様のものを用いることができる。
図4(b)に示すように、物性時間変化予測装置本体10Dでは、時間変化相転移五酸化三チタンからなる粒子40Dの複数個が連結して時間変化相転移五酸化三チタンからなる粒子の連結体45を形成している。すなわち、物性時間変化予測装置本体10Dでは、時間変化相転移五酸化三チタンからなる粒子40Dは、複数個が連結した状態で母材30D中に含まれる。時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Dの連結個数は、特に限定されず、2個以上であればよい。図4(b)では、時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Dの連結個数が9個の場合を例示した。
図4(b)に示すように、時間変化相転移五酸化三チタンからなる粒子の連結体45の長手方向は、物性時間変化予測装置本体10Dの表裏面に垂直な方向になっている。時間変化相転移五酸化三チタンからなる粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Dの表裏面に垂直な方向の熱伝導性や導電性が向上する。このため、粒子の連結体45がこのように配置されると、固体間の相転移の状況の把握の精度が向上したり、再利用のための加熱処理が容易になったりするため好ましい。時間変化相転移五酸化三チタンからなる粒子の連結体45では、母材30Dを構成する樹脂よりも熱伝導性及び導電性が高い時間変化相転移五酸化三チタンからなる粒子40Dが2個以上が連結しているため、粒子40D間の熱伝導性及び導電性が高いためである。
なお、図示しないが、粒子の連結体45の長手方向が、図4(b)中の左右方向、すなわち、物性時間変化予測装置本体10Dの表裏面に垂直な方向に直交する方向になるように、時間変化相転移五酸化三チタンからなる粒子の連結体45を配置することもできる。粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Dの表面方向に沿った熱伝導性や導電性が向上し、物性時間変化予測装置本体10Dの表面部位による計測のばらつきを抑制することができるため好ましい。
物性時間変化予測装置本体10Dは、例えば、流動性を有する母材30D中に時間変化相転移五酸化三チタンからなる粒子の連結体45を投入して成形することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Dの作用は、図3に示す第3の実施形態に係る時間変化素子40Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Dの作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Dからなる電気遮断装置の作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1D及びこれからなる電気遮断装置は物性時間変化予測装置本体10Dが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1D及びこれからなる電気遮断装置は、物性時間変化予測装置1C及びこれからなる電気遮断装置に比較して表裏面に垂直な方向の物性変化を迅速に表面側で観測することができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Dによれば、図3に示す第3の実施形態に係る時間変化素子40Cと同様の効果を奏する。
物性時間変化予測装置1Dによれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様の効果を奏する。
物性時間変化予測装置1Dからなる電気遮断装置によれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1D及びこれからなる電気遮断装置は、物性時間変化予測装置本体10Dが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1D及びこれからなる電気遮断装置によれば、物性時間変化予測装置1Cに比較して表裏面に垂直な方向の物性変化をより迅速に表面側で観測することができる。
(第5の実施形態)
図5(a)は第5の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図5(b)は図5(a)のE−E線に沿った模式的な断面図である。図5に示す物性時間変化予測装置1E(1)は、物性時間変化予測装置本体10E(10)を備える。この物性時間変化予測装置本体10Eは、母材30E(30)と、この母材30E中に含まれる時間変化素子40E(40)と、を有する。
図5に示す第5の実施形態に係る物性時間変化予測装置1Eは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cに比較して、物性時間変化予測装置本体10Eの構成の点で異なるが、他の点は同じである。このため、図5に示す第5の実施形態に係る物性時間変化予測装置1Eと、図3に示す第3の実施形態に係る物性時間変化予測装置1Cとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Eは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Eは、母材30Eと、この母材30E中に含まれる時間変化素子40Eと、を有する。図5に示す母材30Eは板状であるが、母材30Eの形状は特に限定されない。
母材30Eは、フィルム、すなわち薄膜からなる。ここで、フィルムとは実質的に空隙のない密な構造を有する薄膜を意味する。母材30Eの厚みは、例えば、1mm以下、好ましくは1μm〜1mmである。また、母材30Eが樹脂等の軟質材からなる場合、母材30Eの厚みは、より好ましくは1μm以上0.2mm未満である。また、母材30Eが金属等の硬質材からなる場合、母材30Eの厚みは、より好ましくは1μm以上0.5mm未満である。母材30Eの材質としては特に限定されないが、例えば、Al、Cu、Ti、Ni、Sn、Au、Ag、SUS等の金属、ポリイミド等の耐熱性樹脂が用いられる。母材30Eがこれらの材質からなると、耐熱性が高いため、物性時間変化予測装置1Eを高温下で用いることができる。
図5(b)に示すように、物性時間変化予測装置本体10Eでは、時間変化相転移五酸化三チタンからなる粒子40Eは、分散した状態で、母材30E中に含まれる。物性時間変化予測装置本体10Eは、例えば、流動性を有する母材30E中に時間変化相転移五酸化三チタンからなる粒子40Eを添加、混合して成形することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Eの作用は、図3に示す第3の実施形態に係る時間変化素子40Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Eの作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Eからなる電気遮断装置の作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1E及びこれからなる電気遮断装置は母材30Eの厚さが小さいフィルムであるため、可撓性に優れる。このため、物性時間変化予測装置1E及びこれからなる電気遮断装置を曲面上に貼付又は設置することが容易である。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Eによれば、図3に示す第3の実施形態に係る時間変化素子40Cと同様の効果を奏する。
物性時間変化予測装置1Eによれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様の効果を奏する。
物性時間変化予測装置1Eからなる電気遮断装置によれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1E及びこれからなる電気遮断装置は、母材30Eの厚さが小さいフィルムであるため、可撓性に優れる。このため、物性時間変化予測装置1E及びこれからなる電気遮断装置によれば、物性時間変化予測装置1C及びこれからなる電気遮断装置に比較して曲面上に貼付又は設置することがより容易である。
(第6の実施形態)
図6(a)は第6の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図6(b)は図6(a)のF−F線に沿った模式的な断面図である。図6に示す物性時間変化予測装置1F(1)は、物性時間変化予測装置本体10F(10)を備える。この物性時間変化予測装置本体10Fは、母材30F(30)と、この母材30F中に含まれる時間変化素子40F(40)と、を有する。
図6に示す第6の実施形態に係る物性時間変化予測装置1Fは、図5に示す第5の実施形態に係る物性時間変化予測装置1Eに比較して、物性時間変化予測装置本体10Fの構成の点で異なるが、他の点は同じである。このため、図6に示す第6の実施形態に係る物性時間変化予測装置1Fと、図5に示す第5の実施形態に係る物性時間変化予測装置1Eとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Fは、図5に示す第5の実施形態に係る物性時間変化予測装置1Eと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Fは、母材30Fと、この母材30F中に含まれる時間変化素子40Fと、を有する。図6に示す母材30Fは板状であるが、母材30Fの形状は特に限定されない。
母材30Fとしては、図5に示す第5の実施形態に係る物性時間変化予測装置1Eで用いられる母材30Eと同様のフィルムが用いられる。
物性時間変化予測装置本体10Fでは、時間変化素子40Fは、図5に示す第5の実施形態に係る物性時間変化予測装置1Eで用いられる時間変化素子40Eと同様に、時間変化相転移五酸化三チタンからなる粒子40Eになっている。この時間変化相転移五酸化三チタンからなる粒子40Eとしては、第5の実施形態に係る物性時間変化予測装置1Eで用いられる時間変化相転移五酸化三チタンからなる粒子40Eと同様のものを用いることができる。
図6(b)に示すように、物性時間変化予測装置本体10Fでは、時間変化相転移五酸化三チタンからなる粒子40Fの複数個が連結して時間変化相転移五酸化三チタンからなる粒子の連結体45を形成している。すなわち、物性時間変化予測装置本体10Fでは、時間変化相転移五酸化三チタンからなる粒子40Fは、複数個が連結した状態で母材30F中に含まれる。時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Fの連結個数は、特に限定されず、2個以上であればよい。図6(b)では、時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Fの連結個数が3個の場合を例示した。
図6(b)に示すように、時間変化相転移五酸化三チタンからなる粒子の連結体45の長手方向は、物性時間変化予測装置本体10Fの表裏面に垂直な方向になっている。粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Fの表裏面に垂直な方向の熱伝導性や導電性が向上し、固体間の相転移の状況の把握の精度が向上したり、再利用のための加熱処理が容易になったりするため好ましい。時間変化相転移五酸化三チタンからなる粒子の連結体45では、母材30Fを構成する樹脂よりも熱伝導性及び導電性が高い時間変化相転移五酸化三チタンからなる粒子40Fが2個以上が連結しているため、粒子40F間の熱伝導性及び導電性が高いためである。
なお、図示しないが、時間変化相転移五酸化三チタンからなる粒子の連結体45の長手方向が、図6(b)中の左右方向、すなわち、物性時間変化予測装置本体10Fの表裏面に垂直な方向に直交する方向になるように、粒子の連結体45を配置することもできる。粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Fの表面方向に沿った熱伝導性や導電性が向上し、物性時間変化予測装置本体10Fの表面部位による計測のばらつきを抑制することができるため好ましい。
物性時間変化予測装置本体10Fは、例えば、流動性を有する母材30F中に時間変化相転移五酸化三チタンからなる粒子の連結体45を投入して成形することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Fの作用は、図5に示す第5の実施形態に係る時間変化素子40Eの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Fの作用は、図5に示す第5の実施形態に係る物性時間変化予測装置1Eの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Fからなる電気遮断装置の作用は、図5に示す第5の実施形態に係る物性時間変化予測装置1Eからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1F及びこれからなる電気遮断装置は物性時間変化予測装置本体10Fが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1F及びこれからなる電気遮断装置は、物性時間変化予測装置1E及びこれからなる電気遮断装置に比較して表裏面に垂直な方向の物性変化を迅速に表面側で観測することができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Fによれば、図5に示す第5の実施形態に係る時間変化素子40Eと同様の効果を奏する。
物性時間変化予測装置1Fによれば、図5に示す第5の実施形態に係る物性時間変化予測装置1Eと同様の効果を奏する。
物性時間変化予測装置1Fからなる電気遮断装置によれば、図5に示す第5の実施形態に係る物性時間変化予測装置1Eからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1F及びこれからなる電気遮断装置は、物性時間変化予測装置本体10Fが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1F及びこれからなる電気遮断装置によれば、物性時間変化予測装置1E及びこれからなる電気遮断装置に比較して表裏面に垂直な方向の物性変化をより迅速に表面側で観測することができる。
(第7の実施形態)
図7(a)は第7の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図7(b)は図7(a)のG−G線に沿った模式的な断面図である。図7に示す物性時間変化予測装置1G(1)は、物性時間変化予測装置本体10G(10)を備える。この物性時間変化予測装置本体10Gは、母材30G(30)と、この母材30G中に含まれる時間変化素子40G(40)と、を有する。
図7に示す第7の実施形態に係る物性時間変化予測装置1Gは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cに比較して、物性時間変化予測装置本体10の構成の点で異なるが、他の点は同じである。このため、図7に示す第7の実施形態に係る物性時間変化予測装置1Gと、図3に示す第3の実施形態に係る物性時間変化予測装置1Cとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Gは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Gは、母材30Gと、この母材30G中に含まれる時間変化素子40Gと、を有する。
母材30Gは、織布又は不織布からなるシートである。本明細書において、シートとは、織布又は不織布を意味する。母材30Gの材質としては特に限定されないが、例えば、ガラスファイバやカーボンファイバが用いられる。このため、母材30Gとしては、例えば、ガラスファイバやカーボンファイバの織布、ガラスファイバやカーボンファイバの不織布等が用いられる。母材30Gがこれらの材質からなると、耐熱性が高いため、物性時間変化予測装置1Gを高温下で用いることができる。
図7(b)に示すように、物性時間変化予測装置本体10Gでは、時間変化相転移五酸化三チタンからなる粒子40Gは、分散した状態で、母材30G中に含まれる。時間変化相転移五酸化三チタンからなる粒子40Gは、例えば、母材30Gを構成する繊維間に絡まったり、母材30Gを構成する繊維に固着したりすることにより、分散した状態で、母材30G中に含まれる。
物性時間変化予測装置本体10Gは、例えば、時間変化相転移五酸化三チタンからなる粒子40Gを含む溶液又はスラリー中に母材30Gを浸漬した後、引き上げ、母材30Gを構成する繊維間の空隙中に粒子40Gを分散して固定させることにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Gの作用は、図3に示す第3の実施形態に係る時間変化素子40Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Gの作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Gからなる電気遮断装置の作用は、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1G及びこれからなる電気遮断装置は母材30Gが織布又は不織布からなるシートであるため、可撓性に優れる。このため、物性時間変化予測装置1G及びこれからなる電気遮断装置は、曲面上に貼付又は設置することが容易である。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Gによれば、図3に示す第3の実施形態に係る時間変化素子40Cと同様の効果を奏する。
物性時間変化予測装置1Gによれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様の効果を奏する。
物性時間変化予測装置1Gからなる電気遮断装置によれば、図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1G及びこれからなる電気遮断装置は、母材30Gが織布又は不織布からなるシートであるため、可撓性に優れる。このため、物性時間変化予測装置1G及びこれからなる電気遮断装置によれば、物性時間変化予測装置1C及びこれからなる電気遮断装置に比較して曲面上に貼付又は設置することがより容易である。
(第8の実施形態)
図8(a)は第8の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図8(b)は図8(a)のH−H線に沿った模式的な断面図である。図8に示す物性時間変化予測装置1H(1)は、物性時間変化予測装置本体10H(10)を備える。この物性時間変化予測装置本体10Hは、母材30H(30)と、この母材30H中に含まれる時間変化素子40H(40)と、を有する。
図8に示す第8の実施形態に係る物性時間変化予測装置1Hは、図7に示す第7の実施形態に係る物性時間変化予測装置1Gに比較して、物性時間変化予測装置本体10Hの構成の点で異なるが、他の点は同じである。このため、図8に示す第8の実施形態に係る物性時間変化予測装置1Hと、図7に示す第7の実施形態に係る物性時間変化予測装置1Gとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Hは、図7に示す第7の実施形態に係る物性時間変化予測装置1Gと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Hは、母材30Hと、この母材30H中に含まれる時間変化素子40Hと、を有する。
母材30Hとしては、図7に示す第7の実施形態に係る物性時間変化予測装置1Gで用いられる母材30Gと同様の織布又は不織布からなるシートが用いられる。
物性時間変化予測装置本体10Hでは、時間変化素子40Hは、図7に示す第7の実施形態に係る物性時間変化予測装置1Gで用いられる時間変化素子40Gと同様に、時間変化相転移五酸化三チタンからなる粒子40Hになっている。この時間変化相転移五酸化三チタンからなる粒子40Hとしては、第7の実施形態に係る物性時間変化予測装置1Gで用いられる時間変化相転移五酸化三チタンからなる粒子40Gと同様のものを用いることができる。
図8(b)に示すように、物性時間変化予測装置本体10Hでは、時間変化相転移五酸化三チタンからなる粒子40Hの複数個が連結して時間変化相転移五酸化三チタンからなる粒子の連結体45を形成している。すなわち、物性時間変化予測装置本体10Hでは、時間変化相転移五酸化三チタンからなる粒子40Hは、複数個が連結した状態で母材30H中に含まれる。時間変化相転移五酸化三チタンからなる粒子40Hが連結して形成された粒子の連結体45は、例えば、母材30Hを構成する繊維間に絡まったり、母材30Hを構成する繊維に固着したりすることにより、分散した状態で、母材30H中に含まれる。
時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Hの連結個数は、特に限定されず、2個以上であればよい。図8(b)では、時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Hの連結個数が3個の場合を例示した。
図8(b)に示すように、時間変化相転移五酸化三チタンからなる粒子の連結体45の長手方向は、物性時間変化予測装置本体10Hの表裏面に垂直な方向になっている。粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Hの表裏面に垂直な方向の熱伝導性や導電性が向上し、固体間の相転移の状況の把握の精度が向上したり、再利用のための加熱処理が容易になったりするため好ましい。時間変化相転移五酸化三チタンからなる粒子の連結体45では、母材30Hを構成する樹脂よりも熱伝導性及び導電性が高い時間変化相転移五酸化三チタンからなる粒子40Hが2個以上が連結しているため、粒子40H間の熱伝導性及び導電性が高いためである。
なお、図示しないが、時間変化相転移五酸化三チタンからなる粒子の連結体45の長手方向が、図8(b)中の左右方向、すなわち、物性時間変化予測装置本体10Hの表裏面に垂直な方向に直交する方向になるように、粒子の連結体45を配置することもできる。粒子の連結体45がこのように配置されると、物性時間変化予測装置本体10Hの表面方向に沿った熱伝導性や導電性が向上し、物性時間変化予測装置本体10Hの表面部位による計測のばらつきを抑制することができるため好ましい。
物性時間変化予測装置本体10Hは、例えば、時間変化相転移五酸化三チタンからなる粒子の連結体45を含む溶液又はスラリー中に母材30Hを浸漬した後、引き上げ、母材30Hを構成する繊維間の空隙中に粒子の連結体45を固定させることにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Hの作用は、図7に示す第7の実施形態に係る時間変化素子40Gの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Hの作用は、図7に示す第7の実施形態に係る物性時間変化予測装置1Gの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Hからなる電気遮断装置の作用は、図7に示す第7の実施形態に係る物性時間変化予測装置1Gからなる電気遮断装置の作用と同じであるため、説明を省略する。
なお、物性時間変化予測装置1H及びこれからなる電気遮断装置は物性時間変化予測装置本体10Hが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1H及びこれからなる電気遮断装置は、物性時間変化予測装置1G及びこれからなる電気遮断装置に比較して表裏面に垂直な方向の物性変化を迅速に表面側で観測することができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Hによれば、図7に示す第7の実施形態に係る時間変化素子40Gと同様の効果を奏する。
物性時間変化予測装置1Hによれば、図7に示す第7の実施形態に係る物性時間変化予測装置1Gと同様の効果を奏する。
物性時間変化予測装置1Hからなる電気遮断装置によれば、図7に示す第7の実施形態に係る物性時間変化予測装置1Gからなる電気遮断装置と同様の効果を奏する。
また、物性時間変化予測装置1H及びこれからなる電気遮断装置は、物性時間変化予測装置本体10Hが時間変化相転移五酸化三チタンからなる粒子の連結体45を含む。このため、物性時間変化予測装置1H及びこれからなる電気遮断装置によれば、物性時間変化予測装置1G及びこれからなる電気遮断装置に比較して表裏面に垂直な方向の物性変化をより迅速に表面側で観測することができる。
(第9の実施形態)
図9は、第9の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図9に示す物性時間変化予測装置1I(1)は、物性時間変化予測装置本体10I(10)を備える。この物性時間変化予測装置本体10Iは、母材30I(30)と、この母材30I中に含まれる時間変化素子40I(40)と、を有する。なお、物性時間変化予測装置本体10Iは、スラリー状又はゲル状であり、流動性を有するため、容器60に収容される。このため、物性時間変化予測装置1Iは、物性時間変化予測装置本体10Iと、この物性時間変化予測装置本体10Iを収容する容器60と、を有する。
図9に示す第9の実施形態に係る物性時間変化予測装置1Iは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cに比較して、物性時間変化予測装置本体10Iの構成の点で異なるが、他の点は同じである。このため、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと、図3に示す第3の実施形態に係る物性時間変化予測装置1Cとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Iは、図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Iは、母材30Iと、この母材30I中に含まれる時間変化素子40Iと、を有する。
母材30Iは、液体又はゲルである。母材30Iの材質としては特に限定されないが、例えば、公知の、有機溶媒、無機溶媒等が用いられる。無機溶媒としては、例えば、水が用いられる。母材30Iが有機溶媒や無機溶媒からなると、母材30Iと時間変化素子40Iとを有するスラリーを物性計測対象物に吹き付けた場合に、母材30Iが容易に揮発し、時間変化素子40Iのみを物性計測対象物に固着させやすいため好ましい。また、母材30Iがゲルからなると、母材30Iと時間変化素子40Iとを有するゲルを物性計測対象物に吹き付けた場合に、ゲル中の時間変化素子40Iが物性計測対象物に付着又は固着しやすい。
図9に示すように、物性時間変化予測装置本体10Iでは、時間変化相転移五酸化三チタンからなる粒子40Iは、分散した状態で、母材30I中に含まれる。物性時間変化予測装置本体10Iは、例えば、母材30I中に、時間変化相転移五酸化三チタンからなる粒子40Iを添加して混合することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Iの作用は、図3に示す第3の実施形態に係る時間変化素子40Cの作用と同じであるため、説明を省略する。
物性時間変化予測装置1I及びこれからなる電気遮断装置の作用は、物性計測対象物の物性計測時に物性時間変化予測装置本体10Iが母材30Iを含むか否かにより、作用に差異がある。ここで、物性計測対象物の物性計測時に物性時間変化予測装置本体10Iが母材30Iを含む場合とは、例えば、物性時間変化予測装置本体10Iを配管等の物性計測対象物中に流して使用する等の場合である。また、物性計測対象物の物性計測時に物性時間変化予測装置本体10Iが母材30Iを含まない場合とは、例えば、物性時間変化予測装置本体10Iを物性計測対象物に吹き付け母材30Iを揮発させて時間変化素子40Iのみを固着させて使用する等の場合である。
物性計測対象物の物性計測時に物性時間変化予測装置本体10Iが母材30Iを含む場合の物性時間変化予測装置1Iの作用は、実質的に、図3に示す第3の実施形態に係る物性時間変化予測装置1Cの作用と同じである。実質的に同じである理由は、時間変化素子40Iと物性計測対象物との間に母材30が介在することによる。このため、この場合の作用の説明を省略する。なお、物性時間変化予測装置本体10Iを配管等の物性計測対象物中に流して使用する場合は、配管外部からの計測が困難な場所の物性を計測することができる点で好適である。
また、物性計測対象物の物性計測時に物性時間変化予測装置本体10Iが母材30Iを含まない場合の物性時間変化予測装置1Iの作用は、実質的に、図1に示す第1の実施形態に係る物性時間変化予測装置1Aの作用と同じである。実質的に同じである理由は、時間変化素子40Iと物性計測対象物との間に母材30が介在しないことによる。このため、この場合の作用の説明を省略する。なお、物性時間変化予測装置本体10Iを物性計測対象物に吹き付け、母材30Iを揮発させて、時間変化素子40Iのみを固着させて使用する場合は、物性時間変化予測装置本体10Iを吹き付けた部分のみの物性を計測することができる点で好適である。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Iによれば、図3に示す第3の実施形態に係る時間変化素子40と同様の効果を奏する。
物性時間変化予測装置1Iによれば、図1に示す第1の実施形態に係る物性時間変化予測装置1A又は図3に示す第3の実施形態に係る物性時間変化予測装置1Cと同様の効果を奏する。
物性時間変化予測装置1Iからなる電気遮断装置によれば、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置又は図3に示す第3の実施形態に係る物性時間変化予測装置1Cからなる電気遮断装置と同様の効果を奏する。
(第10の実施形態)
図10は、第10の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図10に示す物性時間変化予測装置1J(1)は、物性時間変化予測装置本体10J(10)を備える。この物性時間変化予測装置本体10Jは、母材30J(30)と、この母材30J中に含まれる時間変化素子40J(40)と、を有する。
図10に示す第10の実施形態に係る物性時間変化予測装置1Jは、図9に示す第9の実施形態に係る物性時間変化予測装置1Iに比較して、物性時間変化予測装置本体10Jの構成の点で異なるが、他の点は同じである。このため、図10に示す第10の実施形態に係る物性時間変化予測装置1Jと、図9に示す第9の実施形態に係る物性時間変化予測装置1Iとで同じ部材に同じ符号を付し、構成及び作用の説明を省略又は簡略化する。また、物性時間変化予測装置1Jは、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと同様に電気遮断装置として用いることができる。
<物性時間変化予測装置本体>
物性時間変化予測装置本体10Jは、母材30Jと、この母材30J中に含まれる時間変化素子40Jと、を有する。
母材30Jとしては、図9に示す第9の実施形態に係る物性時間変化予測装置1Iで用いられる母材30Iと同様のものが用いられる。
物性時間変化予測装置本体10Jでは、時間変化素子40Jは、図9に示す第9の実施形態に係る物性時間変化予測装置1Iで用いられる時間変化素子40Iと同様に、時間変化相転移五酸化三チタンからなる粒子40Jになっている。この時間変化相転移五酸化三チタンからなる粒子40Jとしては、図9に示す第9の実施形態に係る物性時間変化予測装置1Iで用いられる時間変化相転移五酸化三チタンからなる粒子40Iと同様のものを用いることができる。
図10に示すように、物性時間変化予測装置本体10Jでは、時間変化相転移五酸化三チタンからなる粒子40Jの複数個が連結して時間変化相転移五酸化三チタンからなる粒子の連結体45を形成している。すなわち、物性時間変化予測装置本体10Jでは、時間変化相転移五酸化三チタンからなる粒子40Jは、複数個が連結した状態で母材30J中に含まれる。時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Jの連結個数は、特に限定されず、2個以上であればよい。図10では、時間変化相転移五酸化三チタンからなる粒子の連結体45における粒子40Jの連結個数が2個の場合を例示した。
物性時間変化予測装置本体10Jは、例えば、母材30J中に、時間変化相転移五酸化三チタンからなる粒子40Jの複数個が連結して時間変化相転移五酸化三チタンからなる粒子の連結体45を添加して混合することにより得られる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Jの作用は、図9に示す第9の実施形態に係る時間変化素子40Iの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Jの作用は、図9に示す第9の実施形態に係る物性時間変化予測装置1Iの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Jからなる電気遮断装置の作用は、図9に示す第9の実施形態に係る物性時間変化予測装置1Iからなる電気遮断装置の作用と同じであるため、説明を省略する。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Jによれば、図9に示す第9の実施形態に係る時間変化素子40Iと同様の効果を奏する。
物性時間変化予測装置1Jによれば、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと同様の効果を奏する。
物性時間変化予測装置1Jからなる電気遮断装置によれば、図9に示す第9の実施形態に係る物性時間変化予測装置1Iからなる電気遮断装置と同様の効果を奏する。
(第11の実施形態)
図11は、第11の実施形態に係る物性時間変化予測装置を示す模式的な断面図である。図11に示す物性時間変化予測装置1K(1)は、物性時間変化予測装置本体10K(10)と、物性時間変化予測装置本体10Kに接触する電極70a、70b(70)とを備える。
なお、図11に示す物性時間変化予測装置本体10K(10)の形状は、特に限定されない。物性時間変化予測装置本体10K(10)の形状は、例えば、図1に示す物性時間変化予測装置本体10Aのような円柱状や、図3(a)に示す物性時間変化予測装置本体10Cのような板状とすることができる。
図11に示すように、電極70a及び70bは、物性時間変化予測装置本体10Kを挟み込むように設けられる。電極70a及び70bの形状は、特に限定されない。なお、物性時間変化予測装置本体10Kに接触する電極70は、図示しないが、物性時間変化予測装置本体10Kの一方の表面につき2個以上設けることができる。
物性時間変化予測装置1Kを構成する物性時間変化予測装置本体10Kとしては特に限定されないが、例えば、上記第1〜第8の実施形態の物性時間変化予測装置1A〜1Hを構成する物性時間変化予測装置本体10A〜10Hが用いられる。
物性時間変化予測装置1Kを構成する電極70の材質としては特に限定されないが、例えば、Al、Ag及びAu等の金属;ITO等の導電性酸化物;導電性高分子;グラファイト等の炭素系材料等が用いられる。
また、物性時間変化予測装置1Kは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aと同様に電気遮断装置として用いることができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
物性時間変化予測装置本体10Kに含まれる時間変化素子の作用は、図1に示す第1の実施形態に係る時間変化素子40Aの作用と同じであるため、説明を省略する。
上記のように、β相五酸化三チタン、及びλ相五酸化三チタンは、それぞれ電気伝導度が異なる。例えば、β相五酸化三チタンは多くの半導体と同様の範囲内の電気伝導度を有し、λ相五酸化三チタンは多くの金属と同様の範囲内の電気伝導度を有する。そして、これらの電気伝導度の違いは、時間変化相転移五酸化三チタンを長期間使用した場合も維持される。
このため、物性時間変化予測装置1Kは、電極70a、70b(70)を用いて、物性時間変化予測装置本体10Kを構成する時間変化素子40の電気伝導度を測定することにより、物性時間変化予測装置として機能させることができる。
物性時間変化予測装置1Kからなる電気遮断装置の作用は、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置の作用に、電極70を用いて電気伝導度を測定する作用を加えたものと同じであるため、説明を省略する。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
物性時間変化予測装置本体10Kに含まれる時間変化素子によれば、図1に示す第1の実施形態に係る時間変化素子40Aと同様の効果を奏する。
物性時間変化予測装置1Kによれば、電極70を用いて、物性時間変化予測装置本体10Kを構成する時間変化素子40の電気伝導度を測定することにより、図1に示す物性時間変化予測装置1A又は図3に示す物性時間変化予測装置1Cと同様の効果を奏する。
物性時間変化予測装置1Kからなる電気遮断装置によれば、図1に示す第1の実施形態に係る物性時間変化予測装置1Aからなる電気遮断装置と同様の効果を奏する。
(第12の実施形態)
図12は、第12の実施形態に係る物性時間変化予測装置を示す模式的な断面図である。図12に示す物性時間変化予測装置1L(1)は、物性時間変化予測装置本体10L(10)と、物性時間変化予測装置本体10Lに接触する電極70c、70d(70)とを備える。
なお、図12に示す物性時間変化予測装置本体10L(10)の形状は、特に限定されない。物性時間変化予測装置本体10L(10)の形状は、例えば、図1に示す物性時間変化予測装置本体10Aのような円柱状や、図3(a)に示す物性時間変化予測装置本体10Cのような板状とすることができる。
図12に示すように、電極70c及び70dは、物性時間変化予測装置本体10Lを挟み込むように設けられる。電極70c及び70dの形状は、特に限定されない。
物性時間変化予測装置1Lを構成する物性時間変化予測装置本体10Lとしては、例えば、上記第11の実施形態の物性時間変化予測装置1Kを構成する物性時間変化予測装置本体10Kと同じものが用いられる。
また、物性時間変化予測装置1Lは、図1に示す第1の実施形態に係る物性時間変化予測装置1Aと同様に電気遮断装置として用いることができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
物性時間変化予測装置本体10Lに含まれる時間変化素子の作用は、図11に示す第11の実施形態に係る物性時間変化予測装置本体10Kに含まれる時間変化素子の作用と同じであるため、説明を省略する。
物性時間変化予測装置1Lの作用は、図11に示す第11の実施形態に係る物性時間変化予測装置1Kの作用と同じであるため、説明を省略する。
物性時間変化予測装置1Lからなる電気遮断装置の作用は、図11に示す第11の実施形態に係る物性時間変化予測装置1Kからなる電気遮断装置の作用と同じであるため、説明を省略する。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
物性時間変化予測装置本体10Kに含まれる時間変化素子によれば、図1に示す第1の実施形態に係る時間変化素子40Aと同様の効果を奏する。
物性時間変化予測装置1Lによれば、図11に示す第11の実施形態に係る物性時間変化予測装置1Kと同様の効果を奏する。
物性時間変化予測装置1Lからなる電気遮断装置によれば、図11に示す第11の実施形態に係る物性時間変化予測装置1Kからなる電気遮断装置と同様の効果を奏する。
(第13の実施形態)
図13は、第13の実施形態に係る物性時間変化予測装置を示す模式的な斜視図である。図13に示す物性時間変化予測装置1M(1)は、物性時間変化予測装置本体10M(10)と、物性時間変化予測装置本体10Mに接触する電極70e、70f(70)とを備える。図13に示すように、1電極70e及び70fは、一部が物性時間変化予測装置本体10M中に浸漬するように設けられる。なお、物性時間変化予測装置本体10Mに接触する電極70は、図示しないが2個以上にすることができる。
物性時間変化予測装置本体10Mは、母材30M(30)と、この母材30M中に含まれる時間変化素子40M(40)と、を有する。なお、物性時間変化予測装置本体10Mは、スラリー状又はゲル状であり、流動性を有するため、容器60に収容される。このため、物性時間変化予測装置1は、物性時間変化予測装置本体10Mと、この物性時間変化予測装置本体10Mを収容する容器60と、を有する。
図13に示す第13の実施形態に係る物性時間変化予測装置1Mは、図9に示す第9の実施形態に係る物性時間変化予測装置1Iに、さらに、物性時間変化予測装置本体10Mに接触する電極70e、70f(70)を備えたものである。物性時間変化予測装置1Mの構成のうち、電極70e、70f(70)以外の構成は、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと実質的に同じである。このため、電極70e、70f(70)以外の構成についての説明を省略する。また、物性時間変化予測装置1Mは、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと同様に電気遮断装置として用いることができる。
電極70e、70f(70)は、形状が異なるものの、図11に示す第11の実施形態に係る物性時間変化予測装置1Kの電極70a、70b(70)と同様の材質及び作用を有するものである。このため、電極70e、70fについての説明を省略する。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の作用>
時間変化素子40Mの作用は、図3に示す第3の実施形態に係る時間変化素子40Cの作用と同じであるため、作用についての説明を省略する。
物性時間変化予測装置1Mの作用は、図9に示す第9の実施形態に係る物性時間変化予測装置1Iの作用と、図11に示す第11の実施形態に係る物性時間変化予測装置1Kの作用とを足したものに等しい。このため、作用についての説明を省略する。
物性時間変化予測装置1Mからなる電気遮断装置の作用は、図9に示す第9の実施形態の物性時間変化予測装置1Iからなる電気遮断装置の作用と、図11に示す第11の実施形態の物性時間変化予測装置1Kからなる電気遮断装置の作用とを足したものに等しい。このため、作用についての説明を省略する。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
時間変化素子40Mによれば、図3に示す第3の実施形態に係る時間変化素子40Cと同様の効果を奏する。
物性時間変化予測装置1Mによれば、図9に示す第9の実施形態に係る物性時間変化予測装置1I及び図11に示す第11の実施形態に係る物性時間変化予測装置1Kと同様の効果を奏する。
物性時間変化予測装置1Mからなる電気遮断装置によれば、図9に示す第9の実施形態に係る物性時間変化予測装置1Iからなる電気遮断装置及び図11に示す第11の実施形態に係る物性時間変化予測装置1Kからなる電気遮断装置と同様の効果を奏する。
(第13の実施形態の変形例)
図13に示す第13の実施形態の物性時間変化予測装置本体10Mでは、図9に示す第9の実施形態の物性時間変化予測装置本体10Iと同様に、時間変化相転移五酸化三チタンからなる粒子40Mは、分散した状態で、母材30M中に含まれる。
しかし、第13の実施形態の変形例として、物性時間変化予測装置本体10Mに代えて、図10に示す第10の実施形態に係る物性時間変化予測装置1Jの物性時間変化予測装置本体10Jを用いてもよい。すなわち、第13の実施形態の変形例として、物性時間変化予測装置本体10において、時間変化相転移五酸化三チタンからなる粒子40が、複数個が連結した状態で母材30中に含まれる、ようにしてもよい。
この変形例に係る物性時間変化予測装置の作用は、図10に示す第10の実施形態に係る物性時間変化予測装置1Jの作用と、図11に示す第11の実施形態に係る物性時間変化予測装置1Kの作用とを足したものに等しい。このため、作用についての説明を省略する。また、この変形例に係る物性時間変化予測装置は、図9に示す第9の実施形態に係る物性時間変化予測装置1Iと同様に電気遮断装置として用いることができる。
<時間変化素子、物性時間変化予測装置及び電気遮断装置の効果>
物性時間変化予測装置1Mの変形例に含まれる時間変化素子によれば、図3に示す第3の実施形態に係る時間変化素子40Cと同様の効果を奏する。
物性時間変化予測装置1Mの変形例によれば、図10に示す第10の実施形態に係る物性時間変化予測装置1J及び図11に示す第11の実施形態に係る物性時間変化予測装置1Kと同様の効果を奏する。
物性時間変化予測装置1Mの変形例からなる電気遮断装置によれば、図9に示す第9の実施形態に係る物性時間変化予測装置1Iからなる電気遮断装置及び図11に示す第11の実施形態に係る物性時間変化予測装置1Kからなる電気遮断装置と同様の効果を奏する。
上記第1の実施形態〜第13の実施形態の変形例の説明では、時間変化相転移材料が時間変化相転移五酸化三チタンであるとして説明した。しかし、上記実施形態では、時間変化相転移材料を時間変化相転移五酸化三チタン以外の物質とすることが可能である。このため、時間変化相転移材料が時間変化相転移五酸化三チタン以外の場合の上記実施形態の作用及び効果は、各時間変化相転移材料の製造後の時間経過に伴って物性が変化する特性に基づく作用及び効果となる。
また、第1の実施形態〜第13の実施形態の変形例の物性時間変化予測装置1において、カード状に形成可能なものについては、カード状体としてもよい。カード状体としては、例えば、クレジットカード、キャッシュカード、セキュリティカードとして用いることが可能な形状、大きさのものが挙げられる。物性時間変化予測装置1がカード状体であると、時間変化素子40が動力やエネルギーの供給がなくても製造後の時間経過に伴って相転移する性質を利用して、カード状体に使用期限を設けることができる。この物性時間変化予測装置1からなるカード状体は、時間変化相転移材料の製造後の時間経過に伴って相転移が進行する。このため、カード状体の情報を読み取る装置として、カード状体の相転移の進行状況に応じた物性の変化を読み取ることができる装置を用いると、カード状体の相転移の進行状況に応じてカード状体の使用期限を設定することができる。例えば、物性時間変化予測装置1からなるカード状体を、ある期間までは応答し、ある期間が過ぎると応答しないものとすることができる。物性時間変化予測装置1からなるカード状体を、クレジットカード、キャッシュカード、セキュリティカード等に用いると、セキュリティ上、好適である。
以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。
[実施例1]
図1に示す時間変化素子40Aからなる物性時間変化予測装置1Aを作製した。
(時間変化相転移五酸化三チタンの調製)
はじめに、原料としてルチル型及びアナターゼ型が含まれるTiOを用意した。このTiOのX線回折結果を図14の(b)に示す。次に、このTiOを、水素ガス雰囲気中で1140℃で2時間、焼成したところ、Ti粉末が得られた。得られたTi粉末のX線回折結果を図14の(a)に示す。図14の(a)のX線回折結果より、得られたTi粉末は、λ型Tiとβ型Tiとが一つの粉末試料の中に混在(共存)していることが分かった。
なお、得られたTi粉末は、後述の経時変化試験の結果より、製造直後からの時間の経過の程度が大きいほど、λ型Tiの組成比が減少しかつβ型Tiの組成比が増加することが分かった。このため、得られたTi粉末は、時間変化相転移五酸化三チタンであることが分かった。
時間変化相転移五酸化三チタン粉末は、製造直後からの経過日数が10日の時点で、λ相五酸化三チタンの相比率が82モル%、β相五酸化三チタンの相比率が13モル%、結晶粒の平均粒径(メジアン径)が390nmであった。なお、λ相五酸化三チタン(λ−Ti)及びβ相五酸化三チタン(β−Ti)の相比率は、株式会社リガク製X線回折装置で測定したX線回折パターンより計算した。
次に、複数個の時間変化相転移五酸化三チタン粉末を、空気中、25℃、1気圧の状態で放置した。そして、所定日数が経過した時間変化相転移五酸化三チタン粉末につき、上記と同様にして、λ相五酸化三チタン及びβ相五酸化三チタンの相比率を算出した。
これにより、製造直後から時間が経過した各時間変化相転移五酸化三チタン粉末における、λ相五酸化三チタン及びβ相五酸化三チタンの相比率を測定した。結果を図15に示す。図15は、時間変化相転移五酸化三チタン経過時間と、製造直後から時間が経過した時間変化相転移五酸化三チタンにおけるλ−Tiの相比率(λ相含有率)及びβ−Tiの相比率(β相含有率)と、の関係を示すグラフである。λ相含有率及びβ相含有率の単位は、モル%である。
図15より、製造後の経過時間の増加に伴って、λ相五酸化三チタンの相比率は単調減少する曲線を示し、β相五酸化三チタンの相比率は単調増加する曲線を示すことが分かった。
特願2017−068232号(出願日:2017年3月30日)の全内容は、ここに援用される。
以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
本発明によれば、動力やエネルギーの供給がなくても時間経過に伴って相転移する材料を含む時間変化素子を提供することができる。また、本発明によれば、上記時間変化素子を用い時間経過に伴う物性の経時的変化を予測する物性時間変化予測装置、及びこの物性時間変化予測装置を用いた電気遮断装置を提供することができる。
1、1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M 物性時間変化予測装置
10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J、10K、10L、10M 物性時間変化予測装置本体
30、30C、30D、30E、30F、30G、30H、30I、30J 母材
40、40A、40B、40C、40D、40E、40F、40G、40H、40I、40J 時間変化素子
45 時間変化相転移五酸化三チタンからなる粒子の連結体
50 基板
60 容器
70、70a、70b、70c、70d、70e、70f 電極

Claims (7)

  1. 外部からの刺激の有無に関わらず、製造後の時間経過に伴って固体間の相転移が進行する時間変化相転移材料を含み、
    組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性が時間経過に伴って変化する時間変化素子であって、
    前記時間変化相転移材料は、少なくともλ相五酸化三チタン(λ−Ti )の結晶粒を有する五酸化三チタンであることを特徴とする時間変化素子。
  2. 前記時間変化相転移材料は、λ相五酸化三チタン(λ−Ti)及びβ相五酸化三チタン(β−Ti)の結晶粒を有する五酸化三チタンであることを特徴とする請求項1に記載の時間変化素子。
  3. 前記時間変化相転移材料は、350℃未満でβ相五酸化三チタン(β−Ti)の結晶粒及びλ相五酸化三チタン(λ−Ti)の結晶粒を有し、350℃以上に加熱したときに前記β相五酸化三チタン(β−Ti)の結晶粒及びλ相五酸化三チタン(λ−Ti)の結晶粒の少なくとも一部が二酸化チタン(TiO)の結晶粒に変化する性質を有することを特徴とする請求項又はに記載の時間変化素子。
  4. 請求項1〜のいずれか1項に記載の時間変化素子を含む物性時間変化予測装置本体を備え、
    組成、体積、透過率、反射率、電気抵抗及び磁性からなる群より選択される1種以上の物性の経時的変化を予測することを特徴とする物性時間変化予測装置。
  5. カード状体であることを特徴とする請求項に記載の物性時間変化予測装置。
  6. 請求項又はに記載の物性時間変化予測装置からなり、前記電気抵抗の経時的変化を予測することを特徴とする電気遮断装置。
  7. 請求項又はに記載の物性時間変化予測装置からなり、前記体積の経時的変化を予測することを特徴とする電気遮断装置。
JP2019509587A 2017-03-30 2018-03-20 時間変化素子、物性時間変化予測装置及び電気遮断装置 Active JP6807564B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017068232 2017-03-30
JP2017068232 2017-03-30
PCT/JP2018/011014 WO2018180759A1 (ja) 2017-03-30 2018-03-20 時間変化素子、物性時間変化予測装置及び電気遮断装置

Publications (2)

Publication Number Publication Date
JPWO2018180759A1 JPWO2018180759A1 (ja) 2020-05-14
JP6807564B2 true JP6807564B2 (ja) 2021-01-06

Family

ID=63677315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509587A Active JP6807564B2 (ja) 2017-03-30 2018-03-20 時間変化素子、物性時間変化予測装置及び電気遮断装置

Country Status (4)

Country Link
US (1) US20200024150A1 (ja)
JP (1) JP6807564B2 (ja)
CN (1) CN110495002A (ja)
WO (1) WO2018180759A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332381B2 (en) * 2016-09-01 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Functional element and temperature sensor of crystal grain trititanium pentoxide
JP7357200B2 (ja) * 2019-07-02 2023-10-06 パナソニックIpマネジメント株式会社 酸化チタン系材料、蓄放熱デバイス、及び酸化チタン系材料の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA938735A (en) * 1971-10-01 1973-12-18 Multi-State Devices Ltd. Electrical relay
JPH08118532A (ja) * 1994-10-28 1996-05-14 Toppan Printing Co Ltd 二酸化チタン被覆フィルム
JP2006245251A (ja) * 2005-03-03 2006-09-14 Mitsubishi Materials Corp 非晶質状態が安定な相変化記録膜およびこの相変化記録膜を形成するためのスパッタリングターゲット
JP5403565B2 (ja) * 2009-09-11 2014-01-29 国立大学法人東北大学 相変化材料および相変化型メモリ素子
JP5736664B2 (ja) * 2010-04-30 2015-06-17 国立大学法人 東京大学 酸化チタン粒子、その製造方法、磁気メモリ、光情報記録媒体及び電荷蓄積型メモリ
JP5700622B2 (ja) * 2010-05-21 2015-04-15 国立大学法人 東京大学 酸化チタン薄膜、その製造方法、磁気メモリ、光情報記録媒体及び電荷蓄積型メモリ
ITBG20110034A1 (it) * 2011-08-01 2013-02-02 Abb Spa Dispositivo di comando per la richiusura di un interruttore in bassa tensione.
US8913418B2 (en) * 2013-03-14 2014-12-16 Intermolecular, Inc. Confined defect profiling within resistive random memory access cells
JP6607434B2 (ja) * 2015-03-11 2019-11-20 国立大学法人 東京大学 メモリ、メモリ装置および揮発性記録媒体
JP7056843B2 (ja) * 2016-03-22 2022-04-19 国立大学法人 東京大学 金属置換型酸化チタン、及び金属置換型酸化チタン焼結体の製造方法
CN106083030B (zh) * 2016-06-22 2019-11-12 成都锦钛精工科技有限公司 Ti3O5致密块体材料及其制备方法
JP6861393B2 (ja) * 2016-10-25 2021-04-21 パナソニックIpマネジメント株式会社 圧力センサ

Also Published As

Publication number Publication date
US20200024150A1 (en) 2020-01-23
WO2018180759A1 (ja) 2018-10-04
JPWO2018180759A1 (ja) 2020-05-14
CN110495002A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
Mohaideen et al. Enhancement in the magnetostriction of sintered cobalt ferrite by making self-composites from nanocrystalline and bulk powders
Bernardo et al. Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties
Martins et al. Dielectric and magnetic properties of ferrite/poly (vinylidene fluoride) nanocomposites
Suzuki et al. Melting of antiferromagnetic ordering in spinel oxide CoAl2O4
Töpfer et al. Transport and Magnetic Properties of the Perovskites La1-y MnO3 and LaMn1-z O3
Buscaglia et al. Fe2O3@ BaTiO3 core− shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases
Wang et al. Correlation between the structural distortions and thermoelectric characteristics in La1− x A x CoO3 (A= Ca and Sr)
JP6807564B2 (ja) 時間変化素子、物性時間変化予測装置及び電気遮断装置
Vulchev et al. Improving of the thermoelectric efficiency of LaCoO3 by double substitution with nickel and iron
JP6945129B2 (ja) 温度センサ
Akimoto et al. Single crystal X-ray diffraction study of the spinel-type LiMn2O4
EP2442930B1 (en) Nanocomposite thermoelectric conversion material and method of producing the same
Liu et al. Tailoring domain structure through manganese to modify the ferroelectricity, strain and magnetic properties of lead-free BiFeO3-based multiferroic ceramics
Radhakrishnan et al. Role of bond strength on the lattice thermal expansion and oxide ion conductivity in quaternary pyrochlore solid solutions
Acharya et al. Structure and electrical properties characterization of NiMn2O4 NTC ceramics
Schorne-Pinto et al. Insights on the stability and cationic nonstoichiometry of CuFeO2 delafossite
JP6861393B2 (ja) 圧力センサ
Chakraborty et al. Magnetoelectric Zn0. 2Co0. 8Fe2O4-PbZr0. 58Ti0. 42O3 nanocomposite for bistable memory and magnetic field sensor applications
Mandal et al. Zn doped NiFe2O4-Pb (Zr0. 58Ti0. 42) O3 multiferroic nanocomposites: Magnetoelectric coupling, dielectric and electrical transport
Mahato et al. Structural and electrical features of rare earth based double perovskite oxide: Pr2NiZrO6
Farooq et al. Temperature dependent thermal and impedance response of NiO/Fe2O3 composite and compound nanoparticles
Karamat et al. Electrical and dielectric studies of substituted holmium based pyrochlore zirconates nanomaterials
Minouei et al. Rapid microwave-assisted synthesis and magnetic properties of high-entropy spinel (Cr0. 2Mn0. 2Fe0. 2Co0. 2-xNi0. 2Znx) 3O4 nanoparticles
Kozuka et al. LaCo1–x Ni x O3 with Improved Electrical Conductivity
Cheng et al. Tunable dielectric behaviors of magnetic field of PZT5/NiFe2O4 ceramic particle magnetoelectric composites at room temperature

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R151 Written notification of patent or utility model registration

Ref document number: 6807564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151