JP6806732B2 - Manufacturing method of transparent conductive laminate - Google Patents

Manufacturing method of transparent conductive laminate Download PDF

Info

Publication number
JP6806732B2
JP6806732B2 JP2018092222A JP2018092222A JP6806732B2 JP 6806732 B2 JP6806732 B2 JP 6806732B2 JP 2018092222 A JP2018092222 A JP 2018092222A JP 2018092222 A JP2018092222 A JP 2018092222A JP 6806732 B2 JP6806732 B2 JP 6806732B2
Authority
JP
Japan
Prior art keywords
film
copper
copper oxide
transparent
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092222A
Other languages
Japanese (ja)
Other versions
JP2018174140A (en
Inventor
慎也 大本
慎也 大本
崇 口山
崇 口山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2018092222A priority Critical patent/JP6806732B2/en
Publication of JP2018174140A publication Critical patent/JP2018174140A/en
Application granted granted Critical
Publication of JP6806732B2 publication Critical patent/JP6806732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、透明フィルム基材上にパターニングされた銅系膜を備える透明導電積層体の製造方法に関する。 The present invention relates to a method for producing a transparent conductive laminate having a copper-based film patterned on a transparent film substrate.

近年、スマートフォン、タブレット、パソコン等種々の機器にタッチパネルが搭載されるようになってきた。従来、タッチパネルには、ドットスペーサーを介在させて対向配置した2つの導電膜(電極層)間のタッチ位置での導通を検知するアナログ抵抗膜方式が多く用いられていたが(例えば、特許文献1)、近年では、静電容量の変化を利用して指先のタッチ位置を検出する静電容量方式のタッチパネルの開発が普及している。 In recent years, touch panels have come to be installed in various devices such as smartphones, tablets, and personal computers. Conventionally, a touch panel has often used an analog resistance film method for detecting conduction at a touch position between two conductive films (electrode layers) arranged opposite to each other with a dot spacer interposed therebetween (for example, Patent Document 1). ), In recent years, the development of a capacitance type touch panel that detects the touch position of a fingertip by utilizing a change in capacitance has become widespread.

このような静電容量方式タッチパネルなどの表示機器において、透明電極としては、透明性に優れるインジウム−錫複合酸化物(ITO)薄膜が使用されているが、金属単体に比べて比抵抗が10倍以上高いため、大型画面への適用は難しいと言われている。そこで、このITOに代わって、静電容量制御の感度を高められると共に、低抵抗導電体であり、機械的強度にも優れるメッシュパターン銅ラインが着目され、最近では、多角形からなるメッシュパターンを表面電極とする表示機器の商品化が試みられるようになって来た(特許文献2)。電極をメッシュパターンとする理由は、静電容量を向上させるために導電体を面状に配置すること、および銅ラインは光を透過しないため、幾何学的に開口率を拡大させる必要があることにある。 In display devices such as such capacitive touch panels, an indium-tin composite oxide (ITO) thin film having excellent transparency is used as the transparent electrode, but the specific resistance is 10 times that of a single metal. It is said that it is difficult to apply it to a large screen because it is expensive. Therefore, instead of this ITO, a mesh pattern copper line, which is a low-resistance conductor and has excellent mechanical strength as well as being able to increase the sensitivity of capacitance control, has been attracting attention. Recently, a mesh pattern made of polygons has been used. Attempts have been made to commercialize display devices that use surface electrodes (Patent Document 2). The reason for using the mesh pattern for the electrodes is that the conductors are arranged in a plane to improve the capacitance, and the copper line does not transmit light, so it is necessary to geometrically increase the aperture ratio. It is in.

上記銅パターンを有する透明導電積層体は、表示機器の薄膜化、軽量化に伴い、フィルム基材を用いることが望まれている。一方、フィルムと銅パターンは密着性が乏しいことが知られている。そのため、フィルムと銅層との密着層としてモリブデン(Mo)、クロム(Cr)、タンタル(Ta)、タングステン(W)、ニッケル(Ni)、チタン(Ti)またはそれらの合金等からなる薄膜を用いることが検討され、密着力を改善する対策がとられてきた。 As the transparent conductive laminate having the copper pattern, it is desired to use a film base material as the display device becomes thinner and lighter. On the other hand, it is known that the film and the copper pattern have poor adhesion. Therefore, a thin film made of molybdenum (Mo), chromium (Cr), tantalum (Ta), tungsten (W), nickel (Ni), titanium (Ti) or an alloy thereof is used as the adhesion layer between the film and the copper layer. Has been examined, and measures have been taken to improve adhesion.

特許第3825487号公報Japanese Patent No. 3825487 国際公開第2009/108758号International Publication No. 2009/108758

フィルムと銅層との密着性を改善するために、モリブデン層、クロム層、タンタル層、タングステン層、ニッケル層、チタン層等の金属薄膜を形成すると、銅層と金属薄膜のエッチングレートの差が大きく異なるため、細線パターニングが難しいという課題がある。金属配線パターンを細線化しなければ、透明フィルム基材上に金属配線パターン形成した際に配線パターン跡が見えてしまい、所謂、配線パターンの非視認性が悪くなり、透明導電性フィルムの透明性を確保できず、透明導電性フィルムとして用いることに不都合が生じてしまう。また、最近、フィルムと銅膜の密着性の課題に加え、基材からのブリードにより銅膜が劣化することも確認された。 When a metal thin film such as a molybdenum layer, a chromium layer, a tantalum layer, a tungsten layer, a nickel layer, or a titanium layer is formed in order to improve the adhesion between the film and the copper layer, the difference in etching rate between the copper layer and the metal thin film is increased. There is a problem that it is difficult to pattern fine lines because they differ greatly. If the metal wiring pattern is not thinned, the wiring pattern traces will be visible when the metal wiring pattern is formed on the transparent film base material, so-called invisibility of the wiring pattern will deteriorate, and the transparency of the transparent conductive film will be improved. It cannot be secured, and there is a problem in using it as a transparent conductive film. Recently, in addition to the problem of adhesion between the film and the copper film, it has been confirmed that the copper film deteriorates due to bleeding from the base material.

本発明はこのような課題に鑑み、銅配線パターンの細線化が可能で、かつ信頼性に優れる透明導電積層体の製造方法を提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a method for producing a transparent conductive laminate capable of thinning a copper wiring pattern and having excellent reliability.

フィルム基材と銅膜の密着性を改善するための密着層として、エッチングレートが銅膜と近い酸化銅膜を、所定の製膜条件で形成することにより、フィルムと銅膜の密着性に優れ、耐湿熱性にも優れ、酸化銅と銅とが、共に1〜10μmの線幅に導電パターン形成された透明導電積層体が得られる。 As an adhesion layer for improving the adhesion between the film substrate and the copper film, a copper oxide film having an etching rate close to that of the copper film is formed under predetermined film forming conditions, so that the adhesion between the film and the copper film is excellent. It is also excellent in moisture and heat resistance, and a transparent conductive laminate in which copper oxide and copper are both formed in a conductive pattern with a line width of 1 to 10 μm can be obtained.

すなわち、本発明は、透明フィルム基材の少なくとも片面に酸化銅膜および銅膜を順に備え、酸化銅膜と銅膜が共に1〜10μmの線幅にパターニングされ、全光線透過率が80%以上である透明導電積層体の製造方法に関する。酸化銅膜は、50℃以上の基板温度でスパッタリング法により形成する。その際、アルゴンガスと酸素ガスを含む混合ガスを用い、混合ガスに対する酸素ガスの導入量は15体積%〜30体積%である。 That is, in the present invention, a copper oxide film and a copper film are sequentially provided on at least one side of the transparent film base material, both the copper oxide film and the copper film are patterned with a line width of 1 to 10 μm, and the total light transmittance is 80% or more. The present invention relates to a method for producing a transparent conductive laminate. The copper oxide film is formed by a sputtering method at a substrate temperature of 50 ° C. or higher. At that time, a mixed gas containing argon gas and oxygen gas is used, and the amount of oxygen gas introduced into the mixed gas is 15% by volume to 30% by volume.

好ましくは、透明フィルム基材上に上記条件で酸化銅膜と銅膜とが順に形成される工程と、銅膜に防錆処理を行う工程と、銅膜の上にレジスト膜を塗布後、レジスト配線用パターンを形成する工程と、配線用パターンをマスクとして、酸化銅膜及び銅膜を同一エッチャントにより同時にエッチングし、配線パターン形成する工程と、レジストパターンを剥離する工程を含む。酸化銅は銅ターゲットを用いて製膜されることが好ましい。酸化銅膜を透明フィルム基材の両面に薄膜形成し、銅を湿式メッキ法で製膜してもよい。 Preferably, a step of forming a copper oxide film and a copper film on a transparent film substrate in order under the above conditions, a step of performing a rust preventive treatment on the copper film, and a step of applying a resist film on the copper film and then resisting. It includes a step of forming a wiring pattern, a step of simultaneously etching a copper oxide film and a copper film with the same etchant using the wiring pattern as a mask to form a wiring pattern, and a step of peeling off a resist pattern. Copper oxide is preferably formed into a film using a copper target. A copper oxide film may be formed on both sides of a transparent film base material, and copper may be formed by a wet plating method.

透明導電積層体は、酸化銅膜の厚さdと銅膜の厚さdが、d=15〜50nm、d+d=600nm以下の関係を満たすことが好ましい。透明導電積層体を温度85℃、湿度85%の環境下に500時間放置した後の抵抗変化率は±10%以下が好ましい。 In the transparent conductive laminate, it is preferable that the thickness d 1 of the copper oxide film and the thickness d 2 of the copper film satisfy the relationship of d 1 = 15 to 50 nm and d 1 + d 2 = 600 nm or less. The rate of change in resistance of the transparent conductive laminate after being left in an environment of a temperature of 85 ° C. and a humidity of 85% for 500 hours is preferably ± 10% or less.

本発明によれば、透明フィルム基材上に酸化銅膜を所定の製造方法で形成することで、信頼性を維持しながら、銅配線パターンと透明フィルム基材の密着性を向上させることができ、かつ、酸化銅膜と銅膜のエッチングレートが近いことから、配線パターンの細線化を容易に行うことができる。 According to the present invention, by forming a copper oxide film on a transparent film base material by a predetermined manufacturing method, it is possible to improve the adhesion between the copper wiring pattern and the transparent film base material while maintaining reliability. Moreover, since the etching rates of the copper oxide film and the copper film are close to each other, the wiring pattern can be easily thinned.

導電積層体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a conductive laminate.

[透明導電性フィルムの実施形態]
以下、図面を参照しながら説明する。図1は、透明フィルム基材10上に、酸化銅膜21と銅膜22とを有する導電性フィルム100の模式断面図である。酸化銅膜21と銅膜22を合わせて積層膜23とする。
[Embodiment of Transparent Conductive Film]
Hereinafter, description will be made with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a conductive film 100 having a copper oxide film 21 and a copper film 22 on a transparent film base material 10. The copper oxide film 21 and the copper film 22 are combined to form a laminated film 23.

<酸化銅膜の製膜>
透明フィルム基材10上には酸化銅膜21が形成される。酸化銅膜は、酸化銅膜の上に形成される銅膜22に対し、透明フィルム基材10からの水分や有機物質の揮発を抑制するガスバリア層、或いは、透明フィルム基材に対するプラズマダメージを低減する保護層として作用し得る。さらに、本発明においては、酸化銅膜がフィルム基材からのブリードによる銅膜の劣化を抑制する作用をもたらし、さらには信頼性を満足させることもできる。
<Copper oxide film formation>
A copper oxide film 21 is formed on the transparent film base material 10. The copper oxide film reduces plasma damage to the gas barrier layer that suppresses volatilization of water and organic substances from the transparent film base material 10 or the transparent film base material with respect to the copper film 22 formed on the copper oxide film. Can act as a protective layer. Further, in the present invention, the copper oxide film has an effect of suppressing deterioration of the copper film due to bleeding from the film base material, and further, reliability can be satisfied.

透明フィルム基材10上への酸化銅膜21の形成方法は、ナノメートルレベルの均一な薄膜を形成しやすいという観点からドライコーティング法を用いることが好ましい。特に、数ナノメートル単位で膜厚を制御し、硬度や光学特性を調整する観点から、スパッタリング法が好ましい。透明フィルム基材10と酸化銅膜21との密着性を高める観点から、酸化銅膜の形成に先立って、透明フィルム基材10の表面に、コロナ放電処理やプラズマ処理等の表面処理が行われてもよい。 As a method for forming the copper oxide film 21 on the transparent film base material 10, it is preferable to use a dry coating method from the viewpoint that a uniform thin film at the nanometer level can be easily formed. In particular, the sputtering method is preferable from the viewpoint of controlling the film thickness in units of several nanometers and adjusting the hardness and optical characteristics. From the viewpoint of improving the adhesion between the transparent film base material 10 and the copper oxide film 21, the surface of the transparent film base material 10 is subjected to surface treatment such as corona discharge treatment or plasma treatment prior to the formation of the copper oxide film. You may.

上記酸化銅膜をスパッタリング法で製膜する場合、例えば、DCマグネトロンスパッタリング装置の場合には、銅ターゲットを使用することができる。スパッタ製膜は、製膜室内に、アルゴンや窒素等の不活性ガスおよび酸素ガスを含むキャリアガスを導入しながら行なう。アルゴンガスと酸素ガスの混合ガスに対する酸素ガスの導入量は、15体積%〜30体積%であることが好ましく、15体積%より多く30体積%未満がより好ましい。製膜時のパワー密度は、透明フィルムに過剰な熱を与えず、かつ生産性を損なわない範囲で調整される。パワー密度の適正値は平板型や円筒型などのカソードの形状や大きさに依存するが、平板型カソードの場合には、0.5W/cm〜10.0W/cm程度が好ましい。酸化銅膜製膜時の製膜室内の圧力(全圧)は、0.1Pa〜0.8Paが好ましく、0.3Pa〜0.6Paがより好ましい。酸化銅膜の製膜圧力の変化に伴ってモルフォロジー(表面の微細構造)が変化し、製膜圧力が高いほど、結晶粒が粗大化する傾向がある。このようなモルフォロジーの変化が、導電膜の比抵抗に影響を与えると考えられる。酸化銅膜製膜時の基板温度は、酸化銅膜の酸化を促進させるために50℃以上が好ましい。また、上限温度に関しては透明フィルム基材が耐熱性を有する範囲であればよく、例えば、90℃以下が好ましい。基板温度を50℃以上とすることで、酸化銅膜の酸化が促進され、透明フィルム基材と酸化銅膜との密着性向上に繋がり、また、90℃以下とすることでフィルム基材の脆化や寸法変化が抑制されるため、良質の薄膜を形成することができる。 When the copper oxide film is formed by a sputtering method, for example, in the case of a DC magnetron sputtering apparatus, a copper target can be used. Sputter film formation is performed while introducing a carrier gas containing an inert gas such as argon or nitrogen and an oxygen gas into the film formation chamber. The amount of oxygen gas introduced into the mixed gas of argon gas and oxygen gas is preferably 15% by volume to 30% by volume, more preferably more than 15% by volume and less than 30% by volume. The power density during film formation is adjusted within a range that does not give excessive heat to the transparent film and does not impair productivity. Although proper value of the power density is dependent on the cathode of the shape and size of such flat plate type or a cylindrical type, in the case of a flat type cathode, 0.5W / cm 2 ~10.0W / cm 2 is preferably about. The pressure (total pressure) in the film forming chamber at the time of forming the copper oxide film is preferably 0.1 Pa to 0.8 Pa, more preferably 0.3 Pa to 0.6 Pa. The morphology (microstructure of the surface) changes with the change in the film-forming pressure of the copper oxide film, and the higher the film-forming pressure, the coarser the crystal grains tend to be. It is considered that such a change in morphology affects the specific resistance of the conductive film. The substrate temperature at the time of forming the copper oxide film is preferably 50 ° C. or higher in order to promote the oxidation of the copper oxide film. The upper limit temperature may be in the range where the transparent film base material has heat resistance, and is preferably 90 ° C. or lower, for example. When the substrate temperature is 50 ° C. or higher, the oxidation of the copper oxide film is promoted, which leads to the improvement of the adhesion between the transparent film substrate and the copper oxide film, and when the substrate temperature is 90 ° C. or lower, the film substrate is brittle. Since embrittlement and dimensional change are suppressed, a good quality thin film can be formed.

<銅膜の製膜>
銅膜は酸化銅膜の上に積層形成される。銅膜は、スパッタリング法またはメッキ法により製膜できる。巻取式スパッタリング装置により製膜が行われる場合、透明フィルム基材10上に、酸化銅膜21と銅膜22とを連続して製膜してもよい。スパッタリング法を用いて形成する場合、銅膜製膜時の基板温度やパワー密度は特に制限されず、例えば、酸化銅膜の製膜に関して上述した基板温度やパワー密度の範囲であってもよい。銅膜製膜時の導入ガスは、アルゴンガスが好ましい。銅膜製膜時の製膜室内の圧力(全圧)は、0.1Pa〜1.0Paが好ましく、0.2Pa〜0.8Paがより好ましい。製膜圧力を上記範囲とすることで、導電性を向上させることができる。
<Copper film formation>
The copper film is laminated on the copper oxide film. The copper film can be formed by a sputtering method or a plating method. When the film is formed by the take-up sputtering apparatus, the copper oxide film 21 and the copper film 22 may be continuously formed on the transparent film base material 10. When the copper film is formed by the sputtering method, the substrate temperature and power density at the time of forming the copper film are not particularly limited, and may be, for example, in the range of the above-mentioned substrate temperature and power density for forming the copper oxide film. Argon gas is preferable as the introduction gas at the time of forming the copper film. The pressure (total pressure) in the film-forming chamber during copper film-forming is preferably 0.1 Pa to 1.0 Pa, more preferably 0.2 Pa to 0.8 Pa. By setting the film forming pressure within the above range, the conductivity can be improved.

<透明導電積層体の製造工程>
本発明の透明導電積層体の製造工程として、好ましくは、第1工程として透明フィルム基材上に、酸化銅膜を50℃以上の基板温度でスパッタリング法により形成し、第2工程として酸化銅膜の上に銅膜をスパッタリング法または湿式メッキ法により積層し、第3工程として銅膜上に防錆処理を行い、第4工程としてフォトリソグラフィー法によりレジストをパターニングし、第5工程としてレジストパターンをマスクとして、酸化銅膜及び銅膜を同一エッチャントにより同時にエッチングし、パターニングを行い、最後に第6工程として残ったレジストパターンを剥離する。
<Manufacturing process of transparent conductive laminate>
As a manufacturing step of the transparent conductive laminate of the present invention, preferably, a copper oxide film is formed on a transparent film substrate by a sputtering method at a substrate temperature of 50 ° C. or higher as a first step, and a copper oxide film is formed as a second step. A copper film is laminated on the copper film by a sputtering method or a wet plating method, a rust preventive treatment is performed on the copper film as a third step, a resist is patterned by a photolithography method as a fourth step, and a resist pattern is formed as a fifth step. As a mask, the copper oxide film and the copper film are simultaneously etched with the same etchant to perform patterning, and finally the resist pattern remaining as the sixth step is peeled off.

<透明フィルム基材>
透明フィルム基材10は少なくとも可視光領域で無色透明である。透明フィルム基材の材料としては、ポリエチレンテレフタレート(PET)やポリブチレンテレフテレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂やシクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。透明フィルム基材10は、易接着層、ハードコート層等の機能性層、光学調整層として機能するインデックスマッチング層を最表面に備えていてもよい。なお、易接着層を用いる場合、アクリル系樹脂が有する炭素及び酸素を介して、酸化銅膜と結合し、透明フィルム基材と酸化銅膜の密着力が強くなると推定されるため、アクリル系樹脂が好ましい。また、上記易接着層として、ウレタン系樹脂のように窒素原子を有する層を形成してもよい。窒素原子と酸化銅膜は配位結合により密着力が高められると推定される。透明フィルム基材10の厚みは特に限定されないが、10μm〜400μmが好ましく、25μm〜200μmがより好ましい。透明フィルム基材10の厚みが上記範囲であれば、耐久性と適度な柔軟性を有し、透明フィルム基材上に、巻取式スパッタリング製膜装置を用いたロール・トゥー・ロール方式により、生産性を高く製膜することが可能になる。
<Transparent film base material>
The transparent film base material 10 is colorless and transparent at least in the visible light region. Examples of the material of the transparent film base material include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Can be mentioned. The transparent film base material 10 may be provided on the outermost surface with a functional layer such as an easy-adhesion layer and a hard coat layer, and an index matching layer that functions as an optical adjustment layer. When the easy-adhesion layer is used, it is presumed that the acrylic resin is bonded to the copper oxide film via carbon and oxygen, and the adhesive force between the transparent film base material and the copper oxide film is strengthened. Is preferable. Further, as the easy-adhesion layer, a layer having a nitrogen atom such as a urethane resin may be formed. It is presumed that the adhesion between the nitrogen atom and the copper oxide film is enhanced by the coordination bond. The thickness of the transparent film base material 10 is not particularly limited, but is preferably 10 μm to 400 μm, more preferably 25 μm to 200 μm. When the thickness of the transparent film base material 10 is within the above range, it has durability and appropriate flexibility, and can be obtained by a roll-to-roll method using a winding sputtering film forming apparatus on the transparent film base material. It is possible to form a film with high productivity.

また、この透明高分子フィルム基材上の表面にプラズマ処理やコロナ放電、火炎、紫外線照射、電子線照射、化成、酸化等のエッチング処理を施したりして粗面化処理等の表面処理を施し、例えば、密着性を向上させてもよい。 In addition, the surface of this transparent polymer film substrate is subjected to surface treatment such as roughening treatment by subjecting it to etching treatment such as plasma treatment, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, and oxidation. For example, the adhesion may be improved.

<酸化銅膜>
透明フィルム基材10上に形成する酸化銅膜および銅膜は、酸化銅膜の厚さdと銅膜の厚さdとが、次の
(1)d=15〜50nm、好ましくは20〜35nm、
(2)d+d=600nm以下、好ましくは300nm以上500nm以下、の関係を有していてもよい。このような厚さ関係にすると、密着性が改善され、好ましい。酸化銅膜の厚さが薄すぎると、連続膜として形成されず密着層としての機能を十分に発揮できず、また、合計の膜厚が上記規定以上であると金属膜の応力が増し、基材フィルムと金属膜の密着性が低下する場合がある。
<Copper oxide film>
The copper oxide film and the copper film formed on the transparent film base material 10 have a copper oxide film thickness d 1 and a copper film thickness d 2 as follows (1) d 1 = 15 to 50 nm, preferably. 20-35 nm,
(2) It may have a relationship of d 1 + d 2 = 600 nm or less, preferably 300 nm or more and 500 nm or less. Adhesion is improved and it is preferable to have such a thickness relationship. If the thickness of the copper oxide film is too thin, it will not be formed as a continuous film and will not be able to fully function as an adhesion layer. The adhesion between the material film and the metal film may decrease.

酸化銅膜はCuO(1≦x≦2)であり、密着性向上の観点からは、より酸化度が高い方が好ましい。さらには、酸化銅膜は導電性を有しており、酸化銅上に直接湿式メッキ法で銅膜を製膜することができる。また、湿式メッキ法における銅膜の製膜速度向上を図る際は、酸化銅膜上にスパッタ銅膜を形成後、湿式メッキ法により銅膜を形成することが望ましい。 The copper oxide film is Cu x O (1 ≦ x ≦ 2), and from the viewpoint of improving adhesion, a higher degree of oxidation is preferable. Furthermore, the copper oxide film has conductivity, and a copper film can be formed directly on copper oxide by a wet plating method. Further, when improving the film forming speed of the copper film in the wet plating method, it is desirable to form the sputtered copper film on the copper oxide film and then form the copper film by the wet plating method.

<銅膜>
銅膜の平均表面粗さSaは2nm〜10nmが好ましく、Saが2nm〜5nmであることがさらに好ましい。銅膜の平均表面粗さが前記範囲より大きければ、導電パターンの導電率が低下する場合がある。
<Copper film>
The average surface roughness Sa of the copper film is preferably 2 nm to 10 nm, and more preferably Sa is 2 nm to 5 nm. If the average surface roughness of the copper film is larger than the above range, the conductivity of the conductive pattern may decrease.

[透明導電積層体]
本発明の透明導電積層体は、特に、パターンの非視認性や密着性が向上されていることから、静電容量方式タッチパネルの位置検出用電極として好ましく用いられる。
[Transparent conductive laminate]
The transparent conductive laminate of the present invention is particularly preferably used as a position detection electrode for a capacitive touch panel because the invisibility and adhesion of the pattern are improved.

透明導電積層体が“透明”とは、酸化銅膜及び銅膜が1〜10μmの線幅に細線パターニングされた後の透明導電積層体の全光線透過率が80%以上と定義する。細線パターニングは、1〜10μmの線幅で行うことが、パターンの非視認性や透過度の点において好ましい。 The term "transparent" of the transparent conductive laminate is defined as the total light transmittance of the transparent conductive laminate after the copper oxide film and the copper film are finely patterned to a line width of 1 to 10 μm to be 80% or more. The fine line patterning is preferably performed with a line width of 1 to 10 μm in terms of pattern invisibility and transparency.

下記実施例および比較例で得られた導電積層体について、導電積層体の表面の抵抗率、金属電極のパターニング後の全光線透過率、高温高湿信頼性、密着性の評価を行なった。
結果を表1に示す。
With respect to the conductive laminates obtained in the following Examples and Comparative Examples, the resistivity of the surface of the conductive laminate, the total light transmittance after patterning of the metal electrode, the high temperature and high humidity reliability, and the adhesion were evaluated.
The results are shown in Table 1.

<抵抗率>
導電積層体の抵抗率はシート抵抗を測定することで算出した。抵抗率=シート抵抗×膜厚の関係から計算した。表面抵抗は低抵抗率計ロレスタGP(MCP‐T710)(三菱化学社製)を用いて四探針圧接測定により測定し、各膜厚は透過型電子顕微鏡を用いて測定した。
<Resistivity>
The resistivity of the conductive laminate was calculated by measuring the sheet resistance. It was calculated from the relationship of resistivity = sheet resistance x film thickness. The surface resistance was measured by four-probe pressure contact measurement using a low resistivity meter Loresta GP (MCP-T710) (manufactured by Mitsubishi Chemical Corporation), and each film thickness was measured using a transmission electron microscope.

<光線透過率>
積層膜のパターニング後の全光線透過率はTt:JIS K7105(1981)に基づいた日本電色工業株式会社製の濁度計タイプNDH−5000によって測定した。透過率が80%以上のものを『○』、80%未満のものを『×』とした。
<Light transmittance>
The total light transmittance of the laminated film after patterning was measured by a turbidity meter type NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd. based on Tt: JIS K7105 (1981). Those having a transmittance of 80% or more were designated as "○", and those having a transmittance of less than 80% were designated as "x".

<高温高湿信頼性>
透明フィルム基材上に酸化銅膜及び銅膜を積層後、パターニングをしていない導電積層体を温度85℃、湿度85%の環境下に500時間放置する試験を行った。試験前の表面抵抗値(R)に対する試験後の表面抵抗値(R)の変化率〔つまり、R/R〕を求めて、高温高湿信頼性を評価した。
<High temperature and high humidity reliability>
After laminating the copper oxide film and the copper film on the transparent film substrate, a test was conducted in which the unpatterned conductive laminate was left to stand in an environment of a temperature of 85 ° C. and a humidity of 85% for 500 hours. The rate of change of the surface resistance value (R) after the test [that is, R / R 0 ] with respect to the surface resistance value (R 0 ) before the test was determined, and the high temperature and high humidity reliability was evaluated.

<密着性>
積層膜をJIS K5600に記載されたクロスカット試験法に準じ、縦・横それぞれの方向に1mm間隔でカッターナイフを用いて10本ずつ傷をつけ、セロハンテープを貼り付けて引き剥がし、この時に積層膜が基板から剥離するかを観察した。
密着力は最も高い強度レベル0から最も低い強度レベル5でランク付けし、1以下を良とした。
密着力の定義 JIS K5600参照。
0・・・カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
1・・・カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受ける領域が明確に5%を上回ることはない。
2・・・塗膜はカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが、15%を上回ることはない。
3・・・塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にははがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
4・・・塗膜はカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数箇所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に35%を上回ることはない。
5・・・分類4でも分類できないはがれ程度のもの。
<Adhesion>
According to the cross-cut test method described in JIS K5600, 10 scratches are made on each of the laminated films using a cutter knife at 1 mm intervals in each of the vertical and horizontal directions, and cellophane tape is attached and peeled off. It was observed whether the film peeled off from the substrate.
Adhesion was ranked from the highest strength level 0 to the lowest strength level 5, with 1 or less being good.
Definition of adhesion See JIS K5600.
0 ... The edges of the cut are completely smooth, and there is no peeling in the eyes of any grid.
1 ... Small peeling of the coating film at the intersection of cuts. The area affected by the crosscut does not clearly exceed 5%.
2 ... The coating film is peeled off along the edge of the cut and / or at the intersection. The cross-cut area is clearly affected by more than 5%, but not more than 15%.
3 ... The coating film is partially or wholly peeled off along the edge of the cut, and / or various parts of the eyes are partially or wholly peeled off. The cross-cut portion is clearly affected by more than 15% but not more than 35%.
4 ... The coating film has a large peeling partially or wholly along the edge of the cut, and / or some eyes are partially or wholly peeled off. The cross-cut portion is clearly not affected by more than 35%.
5 ... Peeling that cannot be classified even in classification 4.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[実施例1]
(酸化銅膜の製膜)
透明フィルム基材として、アクリル系樹脂からなる易接着層が両面に形成された厚み125μmの二軸延伸PETフィルムを用いた。このPETフィルムの両面に酸化銅膜を形成した。
[Example 1]
(Copper oxide film formation)
As the transparent film base material, a biaxially stretched PET film having a thickness of 125 μm in which easy-adhesion layers made of an acrylic resin were formed on both sides was used. Copper oxide films were formed on both sides of this PET film.

銅をターゲットとして用い、酸素ガス(流量:90sccm)とアルゴンガス(流量:270sccm)の混合ガスを装置内に導入しながら、製膜室内圧力:0.4Pa、パワー密度:1.7W/cm、製膜中のロール温度90℃の条件でスパッタリング製膜を行なった。得られた酸化銅膜の膜厚は20nmであった。 Using copper as a target, while introducing a mixed gas of oxygen gas (flow rate: 90 sccm) and argon gas (flow rate: 270 sccm) into the device, the film forming chamber pressure: 0.4 Pa, power density: 1.7 W / cm 2 , Sputtering film formation was performed under the condition of a roll temperature of 90 ° C. during film formation. The film thickness of the obtained copper oxide film was 20 nm.

(銅膜の製膜)
上記の酸化銅膜上に、銅膜を形成した。銅ターゲットを用い、アルゴンガス(流量:270sccm)を装置内に導入しながら、製膜室内圧力:0.4Pa、パワー密度:4.2W/cm、製膜中のロール温度90℃の条件で、スパッタリングを行なった。得られた銅膜の膜厚は300nmであった。
(Copper film formation)
A copper film was formed on the above copper oxide film. Using a copper target, while introducing argon gas (flow rate: 270 sccm) into the apparatus, under the conditions of film forming chamber pressure: 0.4 Pa, power density: 4.2 W / cm 2 , and roll temperature during film forming at 90 ° C. , Sputtering was performed. The film thickness of the obtained copper film was 300 nm.

(金属電極パターニング)
上記銅膜を形成後、銅膜上に防錆処理を行い、フォトリソグラフィー法によりレジスト膜をパターニングし、レジストパターンをマスクとして、酸化銅膜及び銅膜を塩化鉄(III)水溶液5%を用いて同時にエッチングし、金属配線パターニングを行い、最後に残ったレジスト配線用パターンを剥離して、線幅を5μmとした。
(Metal electrode patterning)
After forming the above copper film, rust prevention treatment is performed on the copper film, the resist film is patterned by a photolithography method, the resist pattern is used as a mask, and the copper oxide film and the copper film are used with 5% of an iron (III) chloride aqueous solution. At the same time, etching was performed to pattern the metal wiring, and the last remaining resist wiring pattern was peeled off to make the line width 5 μm.

[実施例2]
実施例1に対して、酸化銅製膜時の酸素導入量を50sccmに変更し、その他の条件を変更せずに透明導電積層体を作製した。
[Example 2]
With respect to Example 1, the amount of oxygen introduced during the copper oxide film formation was changed to 50 sccm, and a transparent conductive laminate was produced without changing other conditions.

[比較例1]
実施例1に対して、酸化銅膜を形成しなかったこと以外はその他の条件を変更せずに透明導電積層体を作製した。
[Comparative Example 1]
A transparent conductive laminate was produced without changing other conditions except that the copper oxide film was not formed with respect to Example 1.

[比較例2]
実施例1に対して、酸化銅膜の製膜温度を30℃に変更したこと以外は、その他の条件を変更せずに透明導電積層体を作製した。
[Comparative Example 2]
A transparent conductive laminate was produced without changing other conditions except that the film forming temperature of the copper oxide film was changed to 30 ° C. with respect to Example 1.

[比較例3]
実施例1に対して、酸化銅膜の製膜時の酸素量を30sccmに変更したこと以外は、その他の条件を変更せずに透明導電積層体を作製した。
[Comparative Example 3]
A transparent conductive laminate was prepared without changing other conditions except that the amount of oxygen at the time of forming the copper oxide film was changed to 30 sccm with respect to Example 1.

[比較例4]
実施例1に対して、酸化銅膜の製膜時の酸素量を120sccmに変更したこと以外は、その他の条件を変更せずに透明導電積層体を作製した。
[Comparative Example 4]
A transparent conductive laminate was prepared without changing other conditions except that the amount of oxygen at the time of forming the copper oxide film was changed to 120 sccm with respect to Example 1.

[比較例5]
実施例1に対して、酸化銅膜の代わりにニッケル層を形成した以外はその他の条件を変更せずに透明導電積層体を作製した。ニッケル層はスパッタ法により形成し、ニッケル層と銅膜はインラインで連続製膜して形成した。
[Comparative Example 5]
With respect to Example 1, a transparent conductive laminate was prepared without changing other conditions except that a nickel layer was formed instead of the copper oxide film. The nickel layer was formed by a sputtering method, and the nickel layer and the copper film were continuously formed in-line.

上記表1より明らかなように、実施例の透明導電性積層体は、タッチパネル用としての密着性及び全光線透過率を満足し、かつ高温高湿信頼性に優れることが分かる。 As is clear from Table 1 above, it can be seen that the transparent conductive laminate of the example satisfies the adhesion for the touch panel and the total light transmittance, and is excellent in high temperature and high humidity reliability.

実施例及び比較例から、酸化銅膜の酸化度を上げることで強い密着力を有することが出来る。これは、透明フィルム基材表面の炭素や酸素原子と、酸化銅膜の酸素原子が結合するためと考えられる。しかし、酸化度を上げるために製膜中の酸素量を所定の範囲より過剰に導入してしまうと、高温高湿信頼性が悪化してしまう。これは酸化銅膜の酸素が過剰で、酸化銅膜から銅膜へ酸素供給があり、比抵抗が変化したと考えられる。また、下地層として酸化銅ではなく、ニッケル層等の金属膜を形成すると、銅膜とのエッチングレートの違いからパターニング不良を起こし、全光線透過率が悪化する。 From Examples and Comparative Examples, a strong adhesive force can be obtained by increasing the degree of oxidation of the copper oxide film. It is considered that this is because the carbon and oxygen atoms on the surface of the transparent film base material are bonded to the oxygen atoms of the copper oxide film. However, if the amount of oxygen in the film formation is excessively introduced from a predetermined range in order to increase the degree of oxidation, the high temperature and high humidity reliability deteriorates. It is considered that this is because the copper oxide film has excess oxygen and oxygen is supplied from the copper oxide film to the copper film, and the resistivity changes. Further, if a metal film such as a nickel layer is formed as the base layer instead of copper oxide, patterning failure occurs due to the difference in etching rate with the copper film, and the total light transmittance deteriorates.

100 導電積層体
10 透明フィルム基材
21 酸化銅膜
22 銅膜
23 積層膜

100 Conductive laminate 10 Transparent film base material 21 Copper oxide film 22 Copper film 23 Laminated film

Claims (4)

透明フィルム基材の少なくとも片面に、1〜10μmの線幅の配線パターンを備え、全光線透過率が80%以上である透明導電積層体の製造方法であって、
前記透明フィルム基材は、前記配線パターンの形成面に、アクリル系の易接着層を備え、
前記配線パターンは、前記透明フィルム基材の前記易接着層上に、順に設けられた酸化銅膜および銅膜がともにパターニングされたものであり、
前記酸化銅膜を、銅ターゲットを用いて、50℃以上の基板温度でスパッタリング法により形成し、その際、アルゴンガスと酸素ガスを含む混合ガスを用い、前記混合ガスに対する前記酸素ガスの導入量が15体積%〜30体積%であり、酸化銅の組成がCu O(1≦x≦2)であることを特徴とする透明導電積層体の製造方法。
A method for producing a transparent conductive laminate having a wiring pattern having a line width of 1 to 10 μm on at least one side of a transparent film base material and having a total light transmittance of 80% or more.
The transparent film base material is provided with an acrylic-based easy-adhesion layer on the forming surface of the wiring pattern.
The wiring pattern is a pattern in which a copper oxide film and a copper film provided in order are both patterned on the easy-adhesion layer of the transparent film base material.
The copper oxide film is formed by a sputtering method at a substrate temperature of 50 ° C. or higher using a copper target, and at that time, a mixed gas containing argon gas and oxygen gas is used, and the amount of the oxygen gas introduced into the mixed gas. There Ri 15 vol% to 30 vol% der method for producing a transparent electroconductive laminate composition of copper oxide and said Cu x O (1 ≦ x ≦ 2) der Rukoto.
透明フィルム基材の少なくとも片面に、1〜10μmの線幅の配線パターンを備え、全光線透過率が80%以上である透明導電積層体の製造方法であって、
前記透明フィルム基材は、前記配線パターンの形成面に、アクリル系の易接着層を備え、
透明フィルム基材の前記易接着層上に、銅ターゲットを用いて、50℃以上の基板温度でスパッタリング法により酸化銅膜を形成する工程と、
前記酸化銅膜上に銅膜を積層する工程と、
前記銅膜に防錆処理を行う工程と、
前記防錆処理後の銅膜の上にレジスト膜を塗布後、レジストパターンを形成する工程と、
前記レジストパターンをマスクとして、前記酸化銅膜及び前記銅膜を同一エッチャントにより同時にエッチングし、線幅が1〜10μmの配線パターンを形成する工程と、
前記レジストパターンを剥離する工程と、を順に含み、
前記酸化銅膜を形成する工程において、アルゴンガスと酸素ガスを含む混合ガスを用い、前記混合ガスに対する前記酸素ガスの導入量が15体積%〜30体積%であり、酸化銅の組成がCu O(1≦x≦2)であることを特徴とする、透明導電積層体の製造方法。
A method for producing a transparent conductive laminate having a wiring pattern having a line width of 1 to 10 μm on at least one side of a transparent film base material and having a total light transmittance of 80% or more.
The transparent film base material is provided with an acrylic-based easy-adhesion layer on the forming surface of the wiring pattern.
A step of forming a copper oxide film on the easily adhesive layer of a transparent film substrate by a sputtering method at a substrate temperature of 50 ° C. or higher using a copper target .
The step of laminating a copper film on the copper oxide film and
The process of performing rust prevention treatment on the copper film and
A step of forming a resist pattern after applying a resist film on the copper film after the rust prevention treatment, and
Using the resist pattern as a mask, the copper oxide film and the copper film are simultaneously etched by the same etching to form a wiring pattern having a line width of 1 to 10 μm.
The steps of peeling the resist pattern are included in order.
Wherein in the step of forming the copper oxide film, using a mixed gas containing argon gas and oxygen gas, Ri the introduction amount of oxygen gas is 15 vol% to 30 vol% der for the gas mixture, the composition of the copper oxide Cu x O (1 ≦ x ≦ 2 ) der Rukoto characterized method for producing a transparent electroconductive laminate.
前記酸化銅膜の厚さが15〜60nmであり、前記酸化銅膜の厚さと前記銅膜の厚さの合計が600nm以下である、請求項1または2に記載の透明導電積層体の製造方法。 The method for producing a transparent conductive laminate according to claim 1 or 2 , wherein the thickness of the copper oxide film is 15 to 60 nm, and the total thickness of the copper oxide film and the copper film is 600 nm or less. .. 前記酸化銅膜と前記銅膜を、前記透明フィルム基材の両面に形成する請求項1〜のいずれかに記載の透明導電積層体の製造方法。 The method for producing a transparent conductive laminate according to any one of claims 1 to 3 , wherein the copper oxide film and the copper film are formed on both surfaces of the transparent film base material.
JP2018092222A 2018-05-11 2018-05-11 Manufacturing method of transparent conductive laminate Active JP6806732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092222A JP6806732B2 (en) 2018-05-11 2018-05-11 Manufacturing method of transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092222A JP6806732B2 (en) 2018-05-11 2018-05-11 Manufacturing method of transparent conductive laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014004478A Division JP2015133256A (en) 2014-01-14 2014-01-14 Transparent conductive laminate and method for manufacturing the same, and capacitance type touch panel

Publications (2)

Publication Number Publication Date
JP2018174140A JP2018174140A (en) 2018-11-08
JP6806732B2 true JP6806732B2 (en) 2021-01-06

Family

ID=64108778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092222A Active JP6806732B2 (en) 2018-05-11 2018-05-11 Manufacturing method of transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP6806732B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537126A (en) * 1991-07-30 1993-02-12 Toshiba Corp Wiring substrate and information memory medium using metallic oxide
JP2000223886A (en) * 1999-01-28 2000-08-11 Nisshinbo Ind Inc Perspective electromagnetic wave shield material and its manufacture
KR101102891B1 (en) * 2007-09-04 2012-01-10 삼성전자주식회사 Wire structure and thin film transistor using the same
JP6099875B2 (en) * 2011-11-22 2017-03-22 東レ株式会社 Manufacturing method of laminate
US9204535B2 (en) * 2012-04-18 2015-12-01 Lg Chem, Ltd. Conductive structure and method for manufacturing same

Also Published As

Publication number Publication date
JP2018174140A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6404663B2 (en) Method for producing transparent conductive laminate
JP6099875B2 (en) Manufacturing method of laminate
WO2016140073A1 (en) Substrate with conductive layers, substrate with touch-panel transparent electrodes, and method for fabricating same
TWI671663B (en) Conductive substrate for touch panel and method for producing conductive substrate for touch panel
JP2015133256A (en) Transparent conductive laminate and method for manufacturing the same, and capacitance type touch panel
TWI483272B (en) Conductive film and conductive film roll
JP5976970B1 (en) Light transmissive film
EP3264423B1 (en) Conductive structure and method for manufacturing same
JP6617607B2 (en) Film-forming method and method for manufacturing laminate substrate using the same
US20140027021A1 (en) Method for manufacturing conductive film roll
JP6806732B2 (en) Manufacturing method of transparent conductive laminate
TWI699675B (en) Conductive substrate and manufacturing method of conductive substrate
JP6597459B2 (en) Conductive substrate, method for manufacturing conductive substrate
TWI655570B (en) Conductive substrate, laminated conductive substrate, method for producing conductive substrate, and method for producing laminated conductive substrate
JP6285911B2 (en) Transparent conductive laminated film and method for producing the same
KR102443827B1 (en) Conductive substrate and liquid crystal touch panel
JP6103375B2 (en) Laminated body and laminated body manufacturing method used for manufacturing electronic parts, touch panel device including film sensor and film sensor, and film forming method for forming concentration gradient type metal layer
JP2017185689A (en) Conductive substrate
WO2017022573A1 (en) Conductive substrate
JPWO2017175629A1 (en) Conductive substrate
WO2024004401A1 (en) Conductive film and method for manufacturing conductive film
JP6613995B2 (en) Laminate film having substrate with cured layer
WO2016068153A1 (en) Conductive substrate production method
JP2019034253A (en) Printing method on long body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200721

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200804

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200915

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201027

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201201

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250