JP6803850B2 - Surface-treated steel sheet for battery containers - Google Patents

Surface-treated steel sheet for battery containers Download PDF

Info

Publication number
JP6803850B2
JP6803850B2 JP2017554215A JP2017554215A JP6803850B2 JP 6803850 B2 JP6803850 B2 JP 6803850B2 JP 2017554215 A JP2017554215 A JP 2017554215A JP 2017554215 A JP2017554215 A JP 2017554215A JP 6803850 B2 JP6803850 B2 JP 6803850B2
Authority
JP
Japan
Prior art keywords
nickel
layer
iron
steel sheet
battery container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017554215A
Other languages
Japanese (ja)
Other versions
JPWO2017094919A1 (en
Inventor
健悟 淺田
健悟 淺田
正男 周田
正男 周田
功太 貞木
功太 貞木
三奈木 秀幸
秀幸 三奈木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Publication of JPWO2017094919A1 publication Critical patent/JPWO2017094919A1/en
Application granted granted Critical
Publication of JP6803850B2 publication Critical patent/JP6803850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/134Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、電池容器用表面処理鋼板に関する。 The present invention relates to a surface-treated steel sheet for a battery container.

近年、オーディオ機器や携帯電話など、多方面において携帯用機器が用いられ、その作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。このような電池は、搭載される機器の高性能化に伴い、長寿命化および高性能化などが求められており、正極活物質や負極活物質などからなる発電要素を充填する電池容器も電池の重要な構成要素としての性能の向上が求められている。 In recent years, portable devices have been used in various fields such as audio devices and mobile phones, and alkaline batteries as primary batteries, nickel-metal hydride batteries as secondary batteries, lithium ion batteries and the like have been widely used as their operating power sources. Such batteries are required to have a longer life and higher performance as the performance of the equipment to be mounted is improved, and a battery container filled with a power generation element composed of a positive electrode active material or a negative electrode active material is also a battery. It is required to improve the performance as an important component of.

このような電池容器を形成するための表面処理鋼板として、たとえば、特許文献1,2では、鋼板上にニッケルめっき層を形成した後、熱処理を施すことにより鉄−ニッケル拡散層を形成してなる表面処理鋼板が開示されている。
一方で、電池の高容量化および軽量化の要求に伴って、電池容器には容積率向上のための缶壁の薄い電池容器が求められている。たとえば、特許文献3,4のように、加工前の表面処理鋼板の厚みに対し加工後の電池容器の缶壁の厚みが薄くなるような加工を施すことが知られている。
As a surface-treated steel sheet for forming such a battery container, for example, in Patent Documents 1 and 2, an iron-nickel diffusion layer is formed by forming a nickel plating layer on the steel sheet and then performing a heat treatment. Surface-treated steel sheets are disclosed.
On the other hand, with the demand for higher capacity and lighter weight of batteries, a battery container having a thin can wall for improving the floor area ratio is required for the battery container. For example, as in Patent Documents 3 and 4, it is known that processing is performed so that the thickness of the can wall of the battery container after processing becomes thinner than the thickness of the surface-treated steel sheet before processing.

特開2014−009401号公報Japanese Unexamined Patent Publication No. 2014-009401 特開平6−2104号公報Japanese Unexamined Patent Publication No. 6-2104 国際公開第2009/107318号International Publication No. 2009/107318 国際公開第2014/156002号International Publication No. 2014/156002

しかしながら、上記特許文献1,2では、鉄−ニッケル拡散層を形成する際の熱処理の条件が、高温または長時間であるため、得られる表面処理鋼板は、基材である鋼板の鉄とニッケルめっき層のニッケルとの相互拡散が進みやすい。本発明者らは、従来の熱処理条件下で熱処理を施した場合、電池容器への加工後に電池として用いた場合に、電池容器内面からの鉄の溶出量が多くなる場合があり、より耐食性が低下しやすいおそれがあるとの知見を得た。電池容器形成時に露出した鉄は電池特性を向上させるため好ましいとされていたが、本発明者らの研究により熱処理前に形成するニッケルめっき層が薄い場合、鉄の露出が局所的に増えることが明らかになった。溶出量が多くなった場合には、より耐食性が低下しやすいおそれがある。 However, in Patent Documents 1 and 2, since the heat treatment conditions for forming the iron-nickel diffusion layer are high temperature or long time, the obtained surface-treated steel sheet is iron and nickel-plated on the base steel sheet. Mutual diffusion of the layer with nickel is likely to proceed. When the present inventors perform heat treatment under conventional heat treatment conditions, the amount of iron eluted from the inner surface of the battery container may increase when the battery is used as a battery after being processed into a battery container, resulting in higher corrosion resistance. We obtained the finding that it may easily decrease. Iron exposed during the formation of the battery container was considered preferable because it improves the battery characteristics, but according to the research by the present inventors, when the nickel plating layer formed before the heat treatment is thin, the exposure of iron may increase locally. It was revealed. When the amount of elution increases, the corrosion resistance may be more likely to decrease.

また、上記特許文献3,4では、電池容器の缶壁の厚みを薄くすることによって、電池容器内面における鉄の溶出量が多くなる場合があり、電池容器内面の耐食性が低下してしまうという問題があった。 Further, in Patent Documents 3 and 4, there is a problem that by reducing the thickness of the can wall of the battery container, the amount of iron eluted on the inner surface of the battery container may increase, and the corrosion resistance of the inner surface of the battery container decreases. was there.

本発明の目的は、電池容器とした際に缶壁の厚みを薄くして容積率を向上させた場合においても、耐食性に優れた電池容器用表面処理鋼板を提供することである。 An object of the present invention is to provide a surface-treated steel sheet for a battery container having excellent corrosion resistance even when the thickness of the can wall is reduced to improve the floor area ratio when the battery container is used.

本発明によれば、鋼板と、前記鋼板の電池容器内面となる面上に形成された鉄−ニッケル拡散層と、前記鉄−ニッケル拡散層上に形成され、最表層を構成するニッケル層と、を備える電池容器用表面処理鋼板であって、高周波グロー放電発光分光分析装置によって前記電池容器用表面処理鋼板の表面から深さ方向に向かってFe強度およびNi強度を連続的に測定した際において、Fe強度が第1所定値を示す深さ(D1)と、Ni強度が第2所定値を示す深さ(D2)との差分(D2−D1)である前記鉄−ニッケル拡散層の厚みが、0.04〜0.31μmであり、前記鉄−ニッケル拡散層および前記ニッケル層に含まれるニッケルの合計量が、4.4g/m以上、10.8g/m未満である電池容器用表面処理鋼板が提供される。なお、前記第1所定値を示す深さ(D1)は、前記測定により測定されたFe強度の飽和値に対して、10%の強度を示す深さであり、前記第2所定値を示す深さ(D2)は、前記測定によりNi強度が極大値を示した後、さらに深さ方向に向かって測定を行った際に、該極大値に対して10%の強度を示す深さである。 According to the present invention, a steel plate, an iron-nickel diffusion layer formed on the inner surface of the battery container of the steel plate, and a nickel layer formed on the iron-nickel diffusion layer and forming the outermost layer. When the Fe strength and Ni strength are continuously measured from the surface of the surface-treated steel plate for a battery container in the depth direction by a high-frequency glow discharge emission spectroscopic analyzer. The thickness of the iron-nickel diffusion layer, which is the difference (D2-D1) between the depth (D1) at which the Fe strength indicates the first predetermined value and the depth (D2) at which the Ni intensity indicates the second predetermined value, is a 0.04~0.31Myuemu, wherein the iron - the total amount of nickel contained in the nickel diffusion layer and the nickel layer, 4.4 g / m 2 or more, the battery container surface is less than 10.8 g / m 2 A treated steel plate is provided. The depth (D1) indicating the first predetermined value is a depth indicating an intensity of 10% with respect to the saturation value of the Fe intensity measured by the measurement, and is a depth indicating the second predetermined value. (D2) is a depth that shows an intensity of 10% with respect to the maximum value when the measurement is further performed in the depth direction after the Ni intensity shows a maximum value by the above measurement.

本発明の電池容器用表面処理鋼板において、前記ニッケル層の表面部分の平均結晶粒径が0.2〜0.6μmであることが好ましい。
本発明の電池容器用表面処理鋼板において、前記ニッケル層の厚みが0.4〜1.2μmであることが好ましい。
本発明の電池容器用表面処理鋼板において、前記ニッケル層における10gfの荷重で測定されるビッカース硬度(HV)が200〜280であることが好ましい。
In the surface-treated steel sheet for a battery container of the present invention, the average crystal grain size of the surface portion of the nickel layer is preferably 0.2 to 0.6 μm.
In the surface-treated steel sheet for a battery container of the present invention, the thickness of the nickel layer is preferably 0.4 to 1.2 μm.
In the surface-treated steel sheet for a battery container of the present invention, the Vickers hardness (HV) measured at a load of 10 gf in the nickel layer is preferably 200 to 280.

本発明によれば、上述した電池容器用表面処理鋼板からなる電池容器が提供される。
また、本発明によれば、上述した電池容器を備える電池が提供される。
According to the present invention, a battery container made of the above-mentioned surface-treated steel plate for a battery container is provided.
Further, according to the present invention, a battery including the above-mentioned battery container is provided.

さらに、本発明によれば、鋼板の電池容器内面となる面上に、ニッケル量で4.4g/m以上、10.8g/m未満のニッケルめっき層を形成するニッケルめっき工程と、
前記ニッケルめっき層を形成した鋼板に対して、450〜600℃の温度で30秒〜2分の間保持することにより熱処理を施すことで、厚さ0.04〜0.31μmの鉄−ニッケル拡散層および最表層を構成するニッケル層を形成する熱処理工程と、を有する電池容器用表面処理鋼板の製造方法が提供される。
Furthermore, according to the present invention, on the surface to be the battery container inner surface of the steel sheet, a nickel amount 4.4 g / m 2 or more, and nickel plating step of forming a nickel plating layer of less than 10.8 g / m 2,
The steel sheet on which the nickel plating layer is formed is heat-treated by holding it at a temperature of 450 to 600 ° C. for 30 seconds to 2 minutes to diffuse iron-nickel having a thickness of 0.04 to 0.31 μm. Provided is a method for producing a surface-treated steel sheet for a battery container, which comprises a heat treatment step of forming a layer and a nickel layer constituting the outermost layer .

本発明によれば、電池容器とした際に缶壁の厚みを薄くして容積率を向上させた場合においても、耐食性に優れた電池容器用表面処理鋼板を提供することができる。また、本発明によれば、このような電池容器用表面処理鋼板を用いて得られる電池容器および電池を提供することができる。 According to the present invention, it is possible to provide a surface-treated steel sheet for a battery container having excellent corrosion resistance even when the thickness of the can wall is reduced to improve the floor area ratio when the battery container is used. Further, according to the present invention, it is possible to provide a battery container and a battery obtained by using such a surface-treated steel plate for a battery container.

本発明に係る電池容器用表面処理鋼板を適用した電池の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the battery which applied the surface-treated steel plate for a battery container which concerns on this invention. 図1のII-II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 本発明に係る電池容器用表面処理鋼板の一実施形態であって図2のIII部の拡大断面図である。It is an embodiment of the surface-treated steel sheet for a battery container according to the present invention, and is an enlarged cross-sectional view of part III of FIG. 図3に示す電池容器用表面処理鋼板を製造する方法を説明するための図である。It is a figure for demonstrating the method of manufacturing the surface-treated steel plate for a battery container shown in FIG. 実施例および比較例の電池容器用表面処理鋼板について、高周波グロー放電発光分光分析装置によってFe強度およびNi強度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the Fe intensity and Ni intensity by the high frequency glow discharge emission spectrophotometer about the surface-treated steel sheet for a battery container of an Example and a comparative example. 実施例および比較例の電池容器用表面処理鋼板について、表面の硬度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the surface hardness of the surface-treated steel sheet for a battery container of an Example and a comparative example. 実施例および比較例の電池容器用表面処理鋼板の反射電子像を示す写真である。It is a photograph which shows the reflected electron image of the surface-treated steel plate for a battery container of an Example and a comparative example. 実施例1の電池容器用表面処理鋼板から形成した電池容器内面について、反射電子像、鉄の元素マップおよびニッケルの元素マップを示す写真である。It is a photograph which shows the reflected electron image, the elemental map of iron, and the elemental map of nickel about the inner surface of a battery container formed from the surface-treated steel plate for a battery container of Example 1. 実施例2の電池容器用表面処理鋼板から形成した電池容器内面について、反射電子像、鉄の元素マップおよびニッケルの元素マップを示す写真である。It is a photograph which shows the reflected electron image, the elemental map of iron and the elemental map of nickel about the inner surface of a battery container formed from the surface-treated steel plate for a battery container of Example 2. 比較例1の電池容器用表面処理鋼板から形成した電池容器内面について、反射電子像、鉄の元素マップおよびニッケルの元素マップを示す写真である。It is a photograph which shows the reflected electron image, the elemental map of iron, and the elemental map of nickel about the inner surface of a battery container formed from the surface-treated steel plate for a battery container of Comparative Example 1. 比較例2の電池容器用表面処理鋼板にから形成した電池容器内面ついて、反射電子像、鉄の元素マップおよびニッケルの元素マップを示す写真である。It is a photograph which shows the reflected electron image, the elemental map of iron, and the elemental map of nickel about the inner surface of the battery container formed from the surface-treated steel plate for the battery container of Comparative Example 2. 参考例の電池容器用表面処理鋼板の反射電子像を示す写真である。It is a photograph which shows the reflected electron image of the surface-treated steel plate for a battery container of a reference example. 図12に示す反射電子像を拡大した写真である。It is an enlarged photograph of the reflected electron image shown in FIG. 実施例および比較例の電池容器用表面処理鋼板から形成した電池容器内面について、鉄の露出面積割合を測定した結果を示すグラフである。It is a graph which shows the result of having measured the exposed area ratio of iron about the inner surface of a battery container formed from the surface-treated steel plate for a battery container of an Example and a comparative example. ニッケルめっき層を形成した鋼板について、熱処理を施した後の表面硬度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the surface hardness of the steel sheet which formed the nickel plating layer after heat treatment.

以下、図面に基づいて本発明の一実施形態について説明する。本発明に係る電池容器用表面処理鋼板は、所望の電池の形状に応じた外形形状に加工される。電池としては、特に限定されないが、一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などを例示することができ、これらの電池の電池容器の部材として、本発明に係る電池容器用表面処理鋼板を用いることができる。以下においては、アルカリ電池の電池容器を構成する正極缶に、本発明に係る電池容器用表面処理鋼板を用いた実施形態にて、本発明を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The surface-treated steel sheet for a battery container according to the present invention is processed into an outer shape corresponding to a desired battery shape. The battery is not particularly limited, and examples thereof include an alkaline battery as a primary battery, a nickel hydrogen battery as a secondary battery, a lithium ion battery, and the like, and the present invention relates to a member of the battery container of these batteries. A surface-treated steel plate for a battery container can be used. In the following, the present invention will be described in an embodiment in which the surface-treated steel plate for a battery container according to the present invention is used for the positive electrode can constituting the battery container of an alkaline battery.

図1は、本発明に係る電池容器用表面処理鋼板を適用したアルカリ電池2の一実施形態を示す斜視図、図2は、図1のII-II線に沿う断面図である。本例のアルカリ電池2は、有底円筒状の正極缶21の内部に、セパレータ25を介して正極合剤23および負極合剤24が充填され、正極缶21の開口部内面側には、負極端子22、集電体26およびガスケット27から構成される封口体がカシメ付けられてなる。なお、正極缶21の底部中央には凸状の正極端子211が形成されている。そして、正極缶21には、絶縁性の付与および意匠性の向上等のために、絶縁リング28を介して外装29が装着されている。 FIG. 1 is a perspective view showing an embodiment of an alkaline battery 2 to which a surface-treated steel plate for a battery container according to the present invention is applied, and FIG. 2 is a cross-sectional view taken along the line II-II of FIG. In the alkaline battery 2 of this example, the positive electrode mixture 23 and the negative electrode mixture 24 are filled inside the bottomed cylindrical positive electrode can 21 via the separator 25, and the negative electrode is formed on the inner surface side of the opening of the positive electrode can 21. A sealing body composed of a terminal 22, a current collector 26, and a gasket 27 is crimped. A convex positive electrode terminal 211 is formed in the center of the bottom of the positive electrode can 21. An exterior 29 is attached to the positive electrode can 21 via an insulating ring 28 in order to impart insulating properties and improve design.

図1に示すアルカリ電池2の正極缶21は、本発明に係る電池容器用表面処理鋼板を、深絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法などにより成形加工することで得られる。以下、図3を参照して、本発明に係る電池容器用表面処理鋼板(表面処理鋼板1)の構成について説明する。 The positive electrode can 21 of the alkaline battery 2 shown in FIG. 1 is a surface-treated steel sheet for a battery container according to the present invention, which is subjected to a deep drawing method, a drawing ironing method (DI processing method), a drawing stretch processing method (DTR processing method), and the like. Alternatively, it can be obtained by molding by a processing method that combines stretching processing and ironing processing after drawing processing. Hereinafter, the configuration of the surface-treated steel sheet for a battery container (surface-treated steel sheet 1) according to the present invention will be described with reference to FIG.

図3は、図2に示す正極缶21のIII部を拡大して示す断面図であり、同図において上側が図1のアルカリ電池2の内面(アルカリ電池2の正極合剤23と接触する面)に相当する。本実施形態の表面処理鋼板1は、図3に示すように、表面処理鋼板1の基材を構成する鋼板11上に、鉄−ニッケル拡散層12およびニッケル層14が形成されてなる。 FIG. 3 is an enlarged cross-sectional view showing a portion III of the positive electrode can 21 shown in FIG. 2, in which the upper side is the inner surface of the alkaline battery 2 of FIG. 1 (the surface in contact with the positive electrode mixture 23 of the alkaline battery 2). ) Corresponds to. As shown in FIG. 3, the surface-treated steel plate 1 of the present embodiment is formed by forming an iron-nickel diffusion layer 12 and a nickel layer 14 on a steel plate 11 constituting the base material of the surface-treated steel plate 1.

本実施形態の表面処理鋼板1は、高周波グロー放電発光分光分析装置によって測定される鉄−ニッケル拡散層12の厚みが、0.04〜0.31μmであり、かつ、鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量が、4.4g/m以上、10.8g/m未満である。これにより、本実施形態の表面処理鋼板1は、電池容器とした際に缶壁の厚みを薄くして容積率を向上させた場合においても、耐食性に優れたものとなる。
また、本実施形態においては、ニッケル層14は、表面部分の平均結晶粒径が0.2〜0.6μmであることが好ましい。これにより、本実施形態の表面処理鋼板1は、電池容器として用いた際の耐食性により優れたものとなる。
In the surface-treated steel sheet 1 of the present embodiment, the thickness of the iron-nickel diffusion layer 12 measured by the high-frequency glow discharge emission spectroscopic analyzer is 0.04 to 0.31 μm, and the iron-nickel diffusion layer 12 and the total amount of nickel contained in the nickel layer 14, 4.4 g / m 2 or more and less than 10.8 g / m 2. As a result, the surface-treated steel sheet 1 of the present embodiment has excellent corrosion resistance even when the thickness of the can wall is reduced to improve the floor area ratio when the battery container is used.
Further, in the present embodiment, the nickel layer 14 preferably has an average crystal grain size of 0.2 to 0.6 μm on the surface portion. As a result, the surface-treated steel sheet 1 of the present embodiment becomes more excellent in corrosion resistance when used as a battery container.

<鋼板11>
本実施形態の鋼板11としては、成形加工性に優れているものであればよく特に限定されないが、たとえば、低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、炭素量が0.003重量%以下の極低炭素鋼、または極低炭素鋼にTiやNbなどを添加してなる非時効性極低炭素鋼を用いることができる。鋼板の厚みは特に限定されないが、好ましくは0.2〜0.5mmである。厚すぎる場合、拡散に必要な熱量が不足し拡散層が十分に形成されない恐れがある。薄すぎる場合、後の電池缶として必要な厚みが確保できない場合や熱の伝わりが早く拡散層の厚みの制御が困難となる恐れがある。
<Steel plate 11>
The steel sheet 11 of the present embodiment is not particularly limited as long as it is excellent in moldability, but is, for example, low carbon aluminum killed steel (carbon content 0.01 to 0.15% by weight) and carbon content of 0. Ultra-low carbon steel of .003% by weight or less, or non-aging ultra-low carbon steel obtained by adding Ti, Nb, etc. to the ultra-low carbon steel can be used. The thickness of the steel sheet is not particularly limited, but is preferably 0.2 to 0.5 mm. If it is too thick, the amount of heat required for diffusion may be insufficient and the diffusion layer may not be sufficiently formed. If it is too thin, the thickness required for a later battery can cannot be secured, or heat is transferred quickly, making it difficult to control the thickness of the diffusion layer.

本実施形態においては、これらの鋼の熱間圧延板を酸洗して表面のスケール(酸化膜)を除去した後、冷間圧延し、次いで電解洗浄後に、焼鈍、調質圧延したもの、または前記冷間圧延、電解洗浄後、焼鈍をせずに調質圧延を施したものを鋼板11として用いる。 In the present embodiment, the hot-rolled plates of these steels are pickled to remove surface scale (oxide film), then cold-rolled, then electrolytically washed, then annealed, temper-rolled, or After the cold rolling and electrolytic cleaning, the steel sheet 11 is subjected to temper rolling without annealing.

<鉄−ニッケル拡散層12、ニッケル層14>
本実施形態の表面処理鋼板1では、鉄−ニッケル拡散層12は、鋼板11上にニッケルめっき層13を形成した後、熱拡散処理を行うことにより、鋼板11を構成する鉄と、ニッケルめっき層13を構成するニッケルとを熱拡散させることにより形成される鉄とニッケルが相互に拡散している層である。ニッケル層14は、前記熱拡散処理を行った際、ニッケルめっき層13のうち鉄が拡散しなかった表層に近い部分が、熱により再結晶し軟質化した層である。
<Iron-nickel diffusion layer 12, nickel layer 14>
In the surface-treated steel plate 1 of the present embodiment, the iron-nickel diffusion layer 12 is formed by forming a nickel plating layer 13 on the steel plate 11 and then performing a thermal diffusion treatment to form an iron forming the steel plate 11 and a nickel plating layer. It is a layer in which iron and nickel are mutually diffused, which is formed by thermally diffusing the nickel constituting 13. The nickel layer 14 is a layer in which the portion of the nickel plating layer 13 near the surface layer on which iron has not diffused is recrystallized and softened by heat when the heat diffusion treatment is performed.

このような熱拡散処理により得られる鉄−ニッケル拡散層12を形成することで、表面処理鋼板1を電池容器として用いた場合に、電池を構成する電解液等に、鋼板が広い面積で直接接触することを防止することができ、さらに、ニッケル層14のニッケルと鋼板11の鉄との電位差を緩和する鉄−ニッケル拡散層12を有することにより、耐食性および電池特性を良好なものとすることができる。また、鉄−ニッケル拡散層12を形成することで、鋼板11とニッケル層14との密着性を向上させることができる。 By forming the iron-nickel diffusion layer 12 obtained by such heat diffusion treatment, when the surface-treated steel sheet 1 is used as a battery container, the steel sheet comes into direct contact with the electrolytic solution or the like constituting the battery over a wide area. Further, by having the iron-nickel diffusion layer 12 that relaxes the potential difference between the nickel of the nickel layer 14 and the iron of the steel sheet 11, the corrosion resistance and the battery characteristics can be improved. it can. Further, by forming the iron-nickel diffusion layer 12, the adhesion between the steel plate 11 and the nickel layer 14 can be improved.

鉄−ニッケル拡散層12を形成するためのニッケルめっき層13は、たとえば、ニッケルめっき浴を用いることで、鋼板11上に形成することができる。ニッケルめっき浴としては、ニッケルめっきで通常用いられているめっき浴、すなわち、ワット浴や、スルファミン酸浴、ほうフッ化物浴、塩化物浴などを用いることができる。たとえば、ニッケルめっき層13は、ワット浴として、硫酸ニッケル200〜350g/L、塩化ニッケル20〜60g/L、ほう酸10〜50g/Lの浴組成のものを用い、pH3.0〜4.8(好ましくはpH3.6〜4.6)、浴温50〜70℃にて、電流密度10〜40A/dm(好ましくは20〜30A/dm)の条件で形成することができる。The nickel plating layer 13 for forming the iron-nickel diffusion layer 12 can be formed on the steel plate 11 by using, for example, a nickel plating bath. As the nickel plating bath, a plating bath usually used for nickel plating, that is, a watt bath, a sulfamic acid bath, a boron fluoride bath, a chloride bath and the like can be used. For example, the nickel plating layer 13 uses a watt bath having a bath composition of nickel sulfate 200 to 350 g / L, nickel chloride 20 to 60 g / L, and boric acid 10 to 50 g / L, and has a pH of 3.0 to 4.8 (pH 3.0 to 4.8). It can be formed at a pH of 3.6 to 4.6), a bath temperature of 50 to 70 ° C., and a current density of 10 to 40 A / dm 2 (preferably 20 to 30 A / dm 2 ).

なお、ニッケルめっき層としては、硫黄を含む光沢めっきは電池特性の低下のおそれがあるため好ましくないが、硫黄を不可避的不純物量以上含まない無光沢めっきはもちろん、半光沢めっきも本発明においては適用可能である。めっきにより得られる層の硬度は、半光沢めっきは無光沢めっきより硬いものの、本発明における拡散層を形成するための熱処理によって、半光沢めっきの硬度は無光沢めっきと同程度かやや高い程度となるためである。ニッケルめっき層として半光沢めっきを形成する場合には、上記めっき浴に半光沢剤を添加すればよい。半光沢剤としてはめっき後のニッケルめっき層の硫黄が含有されない(例えば蛍光X線での測定において含有率0.05%以下)となる半光沢剤であれば特に限定されないが、例えば、不飽和アルコールのポリオキシ−エチレン付加物等の脂肪族不飽和アルコール、不飽和カルボン酸、ホルムアルデヒド、クマリンなどを用いることが可能である。 As the nickel plating layer, glossy plating containing sulfur is not preferable because it may deteriorate the battery characteristics. However, in the present invention, not only matte plating containing no sulfur in an amount of unavoidable impurities or more, but also semi-glossy plating is used. Applicable. The hardness of the layer obtained by plating is harder than that of matte plating in semi-gloss plating, but the hardness of semi-gloss plating is about the same as or slightly higher than that of matte plating by the heat treatment for forming the diffusion layer in the present invention. This is to become. When semi-gloss plating is formed as the nickel plating layer, a semi-bright agent may be added to the plating bath. The semi-brightening agent is not particularly limited as long as it is a semi-brightening agent that does not contain sulfur in the nickel plating layer after plating (for example, the content is 0.05% or less in the measurement with fluorescent X-ray), but is not particularly saturated. Aliphatic unsaturated alcohols such as polyoxy-ethylene adducts of alcohols, unsaturated carboxylic acids, formaldehyde, coumarin and the like can be used.

本実施形態では、図4に示すように、上述したニッケルめっき層13を鋼板11上に形成し、その後、熱拡散処理を行うことで鉄−ニッケル拡散層12およびニッケル層14を形成し、図3に示すような表面処理鋼板1を得ることができる。 In the present embodiment, as shown in FIG. 4, the above-mentioned nickel plating layer 13 is formed on the steel plate 11, and then the iron-nickel diffusion layer 12 and the nickel layer 14 are formed by performing a thermal diffusion treatment. A surface-treated steel sheet 1 as shown in 3 can be obtained.

本実施形態においては、熱拡散処理を行う前のニッケルめっき層13のニッケル量は、熱拡散処理によって得られる鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量に相当する。 In the present embodiment, the amount of nickel in the nickel plating layer 13 before the heat diffusion treatment corresponds to the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 obtained by the heat diffusion treatment.

熱拡散処理によって得られる鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量(熱拡散処理を行う前のニッケルめっき層13のニッケル量)は、4.4g/m以上、10.8g/m未満であればよいが、好ましくは5.5g/m以上、10.8g/m未満、より好ましくは6.5g/m以上、10.8g/m未満である。鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量が少なすぎると、ニッケルによる耐食性の向上効果が不十分となり、得られる表面処理鋼板1を電池容器とした際に、耐食性が低下してしまう。一方、鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量が多すぎると、得られる表面処理鋼板1を電池容器とした際に、缶壁の厚みが厚くなってしまい、電池容器内部の容積が小さくなってしまう(容積率が低下してしまう。)。鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量は、たとえば、ICP分析法にて測定することができる鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量(総重量)に基づいて算出する方法により求めることができる。あるいは、鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量は、ニッケルめっき層13を形成した後で、熱拡散処理を行う前に、蛍光X線測定を行うことで、ニッケルめっき層13を構成するニッケル原子の付着量を測定し、測定した付着量に基づいて算出する方法によっても求めることができる。The total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 obtained by the heat diffusion treatment (the amount of nickel in the nickel plating layer 13 before the heat diffusion treatment) is 4.4 g / m 2 or more and 10 .8g / m may be less than 2, but preferably 5.5 g / m 2 or more and less than 10.8 g / m 2, more preferably 6.5 g / m 2 or more, is less than 10.8 g / m 2 .. If the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 is too small, the effect of improving the corrosion resistance by nickel is insufficient, and when the obtained surface-treated steel sheet 1 is used as a battery container, the corrosion resistance is lowered. Resulting in. On the other hand, if the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 is too large, the thickness of the can wall becomes thick when the obtained surface-treated steel plate 1 is used as a battery container, and the battery container. The internal volume becomes smaller (the floor area ratio decreases). The total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 is, for example, the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 which can be measured by ICP analysis method (total amount). It can be obtained by a method of calculating based on (weight). Alternatively, the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 is nickel-plated by performing fluorescent X-ray measurement after the nickel plating layer 13 is formed and before the thermal diffusion treatment is performed. It can also be obtained by a method of measuring the adhesion amount of nickel atoms constituting the layer 13 and calculating based on the measured adhesion amount.

熱拡散処理の条件は、ニッケルめっき層13の厚みに応じて、適宜、選択すればよいが、熱処理温度が、450〜600℃、より好ましくは480〜590℃、さらに好ましくは500〜550℃であり、熱処理における均熱時間が、好ましくは30秒〜2分、より好ましくは30〜100秒、さらに好ましくは45〜90秒である。また、熱処理において、均熱時間に加えて昇温・冷却時間含めた時間は2〜7分が好ましく、より好ましくは3〜5分である。熱拡散処理の方法としては、熱処理温度および熱処理時間を上記範囲に調整しやすいという観点より、連続焼鈍法が好ましい。 The conditions for the heat diffusion treatment may be appropriately selected according to the thickness of the nickel plating layer 13, but the heat treatment temperature is 450 to 600 ° C., more preferably 480 to 590 ° C., still more preferably 500 to 550 ° C. The soaking time in the heat treatment is preferably 30 seconds to 2 minutes, more preferably 30 to 100 seconds, and even more preferably 45 to 90 seconds. Further, in the heat treatment, the time including the temperature raising / cooling time in addition to the soaking time is preferably 2 to 7 minutes, more preferably 3 to 5 minutes. As the method of heat diffusion treatment, the continuous annealing method is preferable from the viewpoint that the heat treatment temperature and the heat treatment time can be easily adjusted within the above ranges.

本発明においては、上述したように熱拡散処理を行うことにより、鋼板11と、ニッケル層14との間に、鉄−ニッケル拡散層12を形成することができ、その結果として、表面処理鋼板1を、鋼板11上に、下から順に、鉄−ニッケル拡散層12、ニッケル層14を有するような構成(Ni/Fe−Ni/Fe)とすることができる。 In the present invention, the iron-nickel diffusion layer 12 can be formed between the steel plate 11 and the nickel layer 14 by performing the heat diffusion treatment as described above, and as a result, the surface-treated steel plate 1 Can be configured to have an iron-nickel diffusion layer 12 and a nickel layer 14 on the steel plate 11 in this order from the bottom (Ni / Fe-Ni / Fe).

本実施形態では、このようにして形成される鉄−ニッケル拡散層12は、高周波グロー放電発光分光分析装置によって測定される厚みが0.04〜0.31μmであればよく、好ましくは0.05〜0.27μm、より好ましくは0.08〜0.25μm、さらに好ましくは0.09〜0.20μmである。鉄−ニッケル拡散層12の厚みが薄すぎると、得られる表面処理鋼板1において、ニッケル層14の密着性が低下してしまう恐れがある。一方、鉄−ニッケル拡散層12の厚みが厚すぎると、得られる表面処理鋼板1のニッケル層14において、鉄の露出量が多くなってしまい、これにより、電池として用いた場合に、電池容器内面からの鉄の溶出量が多くなり、耐食性が低下してしまう。 In the present embodiment, the iron-nickel diffusion layer 12 thus formed may have a thickness of 0.04 to 0.31 μm measured by a high-frequency glow discharge emission spectroscopic analyzer, preferably 0.05. It is ~ 0.27 μm, more preferably 0.08 to 0.25 μm, still more preferably 0.09 to 0.20 μm. If the thickness of the iron-nickel diffusion layer 12 is too thin, the adhesion of the nickel layer 14 may decrease in the obtained surface-treated steel sheet 1. On the other hand, if the thickness of the iron-nickel diffusion layer 12 is too thick, the exposed amount of iron in the nickel layer 14 of the obtained surface-treated steel sheet 1 becomes large, and as a result, the inner surface of the battery container is used as a battery. The amount of iron eluted from the iron increases, and the corrosion resistance decreases.

なお、鉄−ニッケル拡散層12の厚みは、高周波グロー放電発光分光分析装置を用いて、表面処理鋼板1について、最表面から鋼板11へ深さ方向にFe強度およびNi強度の変化を連続的に測定することにより求めることができる。 The thickness of the iron-nickel diffusion layer 12 is such that the Fe strength and Ni strength of the surface-treated steel sheet 1 are continuously changed in the depth direction from the outermost surface to the steel sheet 11 by using a high-frequency glow discharge emission spectroscopic analyzer. It can be obtained by measuring.

具体的には、まず、高周波グロー放電発光分光分析装置を用いて、表面処理鋼板1中のFe強度を、Fe強度が飽和するまで測定し、Fe強度の飽和値を基準として、Fe強度がその飽和値の10%となる深さを、ニッケル層14と鉄−ニッケル拡散層12との境界とする。たとえば、後述する実施例の表面処理鋼板1の測定結果である図5(A)を参照して説明する。なお、図5(A)では、縦軸がFe強度およびNi強度を示しており、横軸が高周波グロー放電発光分光分析装置により表面処理鋼板1の表面から深さ方向に測定した際の測定時間を示す。 Specifically, first, the Fe intensity in the surface-treated steel sheet 1 is measured by using a high-frequency glow discharge emission spectroscopic analyzer until the Fe intensity is saturated, and the Fe intensity is determined based on the saturation value of the Fe intensity. The depth of 10% of the saturation value is defined as the boundary between the nickel layer 14 and the iron-nickel diffusion layer 12. For example, it will be described with reference to FIG. 5A, which is a measurement result of the surface-treated steel sheet 1 of the embodiment described later. In FIG. 5A, the vertical axis shows the Fe intensity and the Ni intensity, and the horizontal axis shows the measurement time when measured in the depth direction from the surface of the surface-treated steel sheet 1 by the high-frequency glow discharge emission spectroscopic analyzer. Is shown.

本実施形態では、まず、Fe強度の測定結果に基づいて、Fe強度の飽和値を求める。Fe強度の飽和値は、Fe強度の時間変化率(Fe強度変化/秒)からもとめる。Fe強度の時間変化率は、測定開始後にFeが検出されると急激に大きくなり極大値を過ぎると減少しほぼゼロ付近で安定する。ほぼゼロ付近で安定した時が飽和値であり、Fe強度の時間変化率は具体的には、0.02(Fe強度/秒)以下の値となった深さ方向の測定時間をFeの強度が飽和したと見なせる。
図5(A)に示す例では、Fe強度の飽和値は、測定時間20秒付近の70程度の値となり、Fe強度がその飽和値の10%である7程度になった深さを、ニッケル層14と鉄−ニッケル拡散層12との境界として検知することができる。
In the present embodiment, first, the saturation value of Fe intensity is obtained based on the measurement result of Fe intensity. The saturation value of Fe intensity is obtained from the time change rate of Fe intensity (Fe intensity change / sec). The rate of change in Fe intensity with time increases sharply when Fe is detected after the start of measurement, decreases after the maximum value, and stabilizes near zero. The saturation value is when it stabilizes near zero, and the time change rate of Fe intensity is specifically 0.02 (Fe intensity / sec) or less. The measurement time in the depth direction is the Fe intensity. Can be regarded as saturated.
In the example shown in FIG. 5 (A), the saturation value of Fe intensity is about 70 with a measurement time of about 20 seconds, and the depth at which Fe intensity is about 7 which is 10% of the saturation value is nickel. It can be detected as a boundary between the layer 14 and the iron-nickel diffusion layer 12.

一方、鉄−ニッケル拡散層12と鋼板11との境界は、次のようにして検知することができる。すなわち、高周波グロー放電発光分光分析装置を用いて表面処理鋼板1のNi強度を測定した際に、得られたNi強度の変化のグラフから極大値を抽出し、Ni強度が、その極大値を示した後に、その極大値の10%の値となる深さを、鉄−ニッケル拡散層12と鋼板11との境界と判断する。たとえば、図5(A)を参照すると、Ni強度の極大値が、測定時間9秒付近の70程度の値であるため、Ni強度がその極大値の10%である7程度になった深さを、ニッケルめっき層13と鋼板11との境界として検知することができる。 On the other hand, the boundary between the iron-nickel diffusion layer 12 and the steel plate 11 can be detected as follows. That is, when the Ni strength of the surface-treated steel plate 1 was measured using a high-frequency glow discharge emission spectroscopic analyzer, a maximum value was extracted from the obtained graph of the change in Ni strength, and the Ni strength showed the maximum value. After that, the depth of 10% of the maximum value is determined to be the boundary between the iron-nickel diffusion layer 12 and the steel plate 11. For example, referring to FIG. 5 (A), since the maximum value of Ni strength is a value of about 70 in the measurement time of about 9 seconds, the depth of Ni strength is about 7 which is 10% of the maximum value. Can be detected as the boundary between the nickel plating layer 13 and the steel plate 11.

そして、本実施形態では、上述したようにして判断した各層の境界に基づいて、鉄−ニッケル拡散層12の厚みを求めることができる。具体的には、高周波グロー放電発光分光分析装置を用いて測定した際に、Fe強度がその飽和値に対して10%の強度となった時点を起点として、Ni強度が、その極大値を示した後に、極大値に対して10%の強度となった時点までの測定時間を算出し、算出した測定時間に基づいて、鉄−ニッケル拡散層12の厚みを求めることができる。
なお、測定時間に基づき表面処理鋼板1の鉄-ニッケル拡散層12の厚みを求めるには、既知のめっき厚を有する熱拡散処理をしていないニッケルめっき鋼板の高周波グロー放電発行分光分析を行い、測定した図(たとえば、後述する比較例1の測定結果を示す図5(C))に見える、鉄−ニッケル拡散層として算出される深さ厚み分は、実際の測定対象である表面処理鋼板1の鉄−ニッケル拡散層12の算出時に差し引く必要がある。すなわち、図5(A)のグラフから算出される鉄−ニッケル拡散層12部分の厚み(図5(A)において、Fe強度がその飽和値に対して10%の強度となった時点を起点として、Ni強度が、その極大値を示した後に、極大値に対して10%の強度となった時点までの測定時間を厚みに換算した値)から、同様にして図5(B)のグラフから算出される厚みを差し引くことで、図5(A)のグラフにおける実際の鉄−ニッケル拡散層12の厚みを求めることができる。
本発明においては上記のように既知のめっき厚を有する熱処理をしていないニッケルめっき鋼板について高周波グロー放電発行分光分析を行い鉄−ニッケル拡散層として算出される厚み分を「基準の厚み」とし、D1とD2との差分(D2−D1)は前述のように基準の厚みを差し引いたものを指す。
なお、高周波グロー放電発光分光分析装置における測定上、ニッケルめっき層の厚みの増加に伴い、ニッケルめっき層の測定から算出される基準の厚みが厚くなるため、鉄−ニッケル拡散層を求める際には各々のめっき付着量において基準の厚みを確認するか、めっき付着量の異なる2種類以上の熱処理を行う前のサンプルにて基準の厚みの測定を行い、めっき付着量と基準の厚みとの関係式を求めて算出することが望ましい。
Then, in the present embodiment, the thickness of the iron-nickel diffusion layer 12 can be obtained based on the boundary of each layer determined as described above. Specifically, when measured using a high-frequency glow discharge emission spectroscopic analyzer, the Ni intensity shows its maximum value starting from the time when the Fe intensity becomes 10% of the saturation value. After that, the measurement time until the strength becomes 10% with respect to the maximum value can be calculated, and the thickness of the iron-nickel diffusion layer 12 can be obtained based on the calculated measurement time.
In order to determine the thickness of the iron-nickel diffusion layer 12 of the surface-treated steel plate 1 based on the measurement time, a high-frequency glow discharge issuance spectroscopic analysis of a nickel-plated steel plate having a known plating thickness and not subjected to thermal diffusion treatment is performed. The depth thickness calculated as the iron-nickel diffusion layer, which can be seen in the measured figure (for example, FIG. 5 (C) showing the measurement result of Comparative Example 1 described later), is the surface-treated steel plate 1 which is the actual measurement target. It is necessary to deduct when calculating the iron-nickel diffusion layer 12 of. That is, the thickness of the iron-nickel diffusion layer 12 portion calculated from the graph of FIG. 5 (A) (starting from the time when the Fe intensity becomes 10% of the saturation value in FIG. 5 (A)). , The value obtained by converting the measurement time from the time when the Ni strength reaches the maximum value to 10% of the maximum value into the thickness), and similarly from the graph of FIG. 5 (B). By subtracting the calculated thickness, the actual thickness of the iron-nickel diffusion layer 12 in the graph of FIG. 5 (A) can be obtained.
In the present invention, the thickness calculated as the iron-nickel diffusion layer by performing high-frequency glow discharge issuance spectroscopic analysis on the non-heat-treated nickel-plated steel sheet having the known plating thickness as described above is defined as the "reference thickness". The difference between D1 and D2 (D2-D1) refers to the one obtained by subtracting the reference thickness as described above.
In addition, in the measurement with the high-frequency glow discharge emission spectroscopic analyzer, as the thickness of the nickel plating layer increases, the reference thickness calculated from the measurement of the nickel plating layer becomes thicker. Therefore, when obtaining the iron-nickel diffusion layer, Check the standard thickness for each plating adhesion amount, or measure the standard thickness with a sample before performing two or more types of heat treatment with different plating adhesion amounts, and the relational expression between the plating adhesion amount and the standard thickness. It is desirable to obtain and calculate.

また、熱拡散処理をしていないニッケルめっき鋼板を測定することで、深さ時間(高周波グロー放電発光分光分析装置による測定時間)と実際の厚みの関係を求めることが出来ることから、この数値(深さ時間と実際の厚みとの関係を示す数値)を利用して、実際の測定対象となる表面処理鋼板1の鉄−ニッケル拡散層12の厚みおよびニッケル層14の厚みに換算することができる。 In addition, by measuring the nickel-plated steel plate that has not been heat-diffused, the relationship between the depth time (measurement time by the high-frequency glow discharge emission spectroscopic analyzer) and the actual thickness can be obtained. It can be converted into the thickness of the iron-nickel diffusion layer 12 and the thickness of the nickel layer 14 of the surface-treated steel plate 1 to be actually measured by using (a numerical value indicating the relationship between the depth time and the actual thickness). ..

なお、このように高周波グロー放電発光分光分析装置により鉄−ニッケル拡散層12の厚みを測定する際には、高周波グロー放電発光分光分析装置の性能や測定条件等に起因して、鉄−ニッケル拡散層12の厚みの検出限界値がある場合がある。たとえば、鋼板11として触針式粗度計にて計測される表面粗度Raが0.05〜3μmである鋼板を用いて作成したニッケルめっき熱処理鋼板1を高周波グロー放電発光分光分析装置の測定径φ5mmで測定した場合、高周波グロー放電発光分光分析装置による厚みの検出可能領域(形状上の検出限界値)は0.04μm程度であり、高周波グロー放電発光分光分析装置により測定した鉄−ニッケル拡散層12の厚みが検出限界値以下である場合には、該鉄−ニッケル拡散層12の厚みは、0μm超、0.04μm未満であるとみなすことができる。すなわち、ニッケルめっき層13を鋼板11上に形成し、その後、熱拡散処理を行うことで鉄−ニッケル拡散層12およびニッケル層14を形成した場合には、高周波グロー放電発光分光分析装置により鉄−ニッケル拡散層12の厚みを測定した際に、検出限界値以下であったとしても、該鉄−ニッケル拡散層12の厚みは、0μm超、0.04μm未満であるとみなすことができる。なお、ニッケルめっき層13を鋼板11上に形成した後、熱拡散処理を施さないでニッケルめっき鋼板を得た場合については、該ニッケルめっき鋼板には、鉄−ニッケル拡散層12が形成されていない(鉄−ニッケル拡散層12の厚みが0である)とみなすことができる。 When the thickness of the iron-nickel diffusion layer 12 is measured by the high-frequency glow discharge emission spectrophotometer in this way, the iron-nickel diffusion is caused by the performance and measurement conditions of the high-frequency glow discharge emission spectroscopy analyzer. There may be a detection limit for the thickness of the layer 12. For example, a nickel-plated heat-treated steel plate 1 prepared by using a steel plate having a surface roughness Ra of 0.05 to 3 μm measured by a stylus type roughness meter as the steel plate 11 is measured by a high-frequency glow discharge emission spectroscopic analyzer. When measured at φ5 mm, the thickness detectable region (detection limit value on the shape) by the high-frequency glow discharge emission spectroscopic analyzer is about 0.04 μm, and the iron-nickel diffusion layer measured by the high-frequency glow discharge emission spectroscopic analyzer. When the thickness of 12 is equal to or less than the detection limit value, the thickness of the iron-nickel diffusion layer 12 can be considered to be more than 0 μm and less than 0.04 μm. That is, when the nickel-plated layer 13 is formed on the steel plate 11 and then the iron-nickel diffusion layer 12 and the nickel layer 14 are formed by performing a thermal diffusion treatment, the iron-is produced by a high-frequency glow discharge emission spectroscopic analyzer. When the thickness of the nickel diffusion layer 12 is measured, even if it is equal to or less than the detection limit value, the thickness of the iron-nickel diffusion layer 12 can be considered to be more than 0 μm and less than 0.04 μm. When the nickel-plated steel plate 13 is formed on the steel plate 11 and then the nickel-plated steel plate is obtained without heat diffusion treatment, the iron-nickel diffusion layer 12 is not formed on the nickel-plated steel plate. It can be regarded as (the thickness of the iron-nickel diffusion layer 12 is 0).

鉄−ニッケル拡散層12の厚みは、熱処理温度が高いほど、または熱処理時間が長いほど鉄とニッケルの相互拡散が進みやすくなるため、厚みが大きくなる。鉄とニッケルは相互に拡散するため、形成される鉄−ニッケル拡散層12は、拡散前の鋼板11とニッケルめっき層13の界面に対し、鋼板11側にも広がるが、ニッケルめっき層13側にも拡散する。熱処理温度を高くしすぎると、または熱処理時間を長くしすぎると、鉄−ニッケル拡散層12が厚くなり、ニッケル層14が薄くなる。たとえば、鉄−ニッケル拡散層12の厚みが0.3μm超となる。本発明者等はこのような表面処理鋼板を電池容器に成形した場合に、鉄の露出が増えることが原因と考えられる溶出量の増加があることを見出した。電池容器内面における鉄の露出は、表面処理鋼板1においてニッケル層14の厚みがほぼなくなり、鉄が表層に達した場合だけでなく、表面処理鋼板1の状態で鉄が表層に達していない場合においても、電池容器内面において鉄が多く露出し、かつ、局所的に露出する部分が現れることが原因と考えられる。この場合には、表面処理鋼板1を、電池容器として長期間にわたって保管ないし使用した場合に、局所的に鉄が露出した部分から鉄が電解液に溶出してしまい、鉄の溶出に伴って発生するガスにより電池内部の内圧が上昇してしまうおそれがある。
特に本発明者等は、電池の高容量化のために、ニッケルめっき層を薄くした場合または、電池缶形成後の缶壁の厚みを形成前の表面処理鋼板の厚みより薄くするような加工を行った場合、より耐食性が低下しやすいおそれがあることを見出し、このような厳しい加工条件においても、本実施形態の表面処理鋼板1は格段の耐食性を発揮することを突き止めた。さらに、電池の高容量化のためにはニッケルめっき層の厚みを薄くし、かつ、缶壁の厚みを薄くすることが考えられるが、これらの手段はいずれも電池容器の耐食性を低下させる要因となる。本発明者らは、従来の表面処理鋼板では高容量化のためのこれらの手段と耐食性向上との両立という新たな課題を見出し、高容量化にも対応可能な新たな構成を見出したものである。
The thickness of the iron-nickel diffusion layer 12 becomes larger as the heat treatment temperature is higher or the heat treatment time is longer because mutual diffusion between iron and nickel is more likely to proceed. Since iron and nickel diffuse with each other, the formed iron-nickel diffusion layer 12 spreads to the steel plate 11 side with respect to the interface between the steel plate 11 and the nickel plating layer 13 before diffusion, but to the nickel plating layer 13 side. Also spreads. If the heat treatment temperature is too high or the heat treatment time is too long, the iron-nickel diffusion layer 12 becomes thick and the nickel layer 14 becomes thin. For example, the thickness of the iron-nickel diffusion layer 12 is more than 0.3 μm. The present inventors have found that when such a surface-treated steel sheet is formed into a battery container, there is an increase in the amount of elution which is considered to be caused by an increase in iron exposure. The exposure of iron on the inner surface of the battery container is not only when the thickness of the nickel layer 14 on the surface-treated steel sheet 1 is almost eliminated and the iron reaches the surface layer, but also when the iron does not reach the surface layer in the state of the surface-treated steel sheet 1. However, it is considered that the cause is that a large amount of iron is exposed on the inner surface of the battery container and a locally exposed portion appears. In this case, when the surface-treated steel sheet 1 is stored or used as a battery container for a long period of time, iron elutes from the locally exposed portion of iron into the electrolytic solution, which is generated as the iron elutes. There is a risk that the internal pressure inside the battery will rise due to the gas generated.
In particular, the present inventors have performed processing such that the nickel plating layer is thinned or the thickness of the can wall after forming the battery can is made thinner than the thickness of the surface-treated steel sheet before forming in order to increase the capacity of the battery. When this is done, it has been found that the corrosion resistance may be more likely to decrease, and it has been found that the surface-treated steel sheet 1 of the present embodiment exhibits remarkably corrosion resistance even under such severe processing conditions. Further, in order to increase the capacity of the battery, it is conceivable to reduce the thickness of the nickel plating layer and the thickness of the can wall, but all of these means are factors that reduce the corrosion resistance of the battery container. Become. The present inventors have found a new problem of achieving both these means for increasing the capacity and improvement of corrosion resistance in the conventional surface-treated steel sheet, and have found a new configuration capable of increasing the capacity. is there.

本実施形態においては、上述したように、表面処理鋼板1について、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量を4.4g/m以上、10.8g/m未満という比較的少ない範囲に制御することにより、電池容器とした際に缶壁の厚みを薄くすることができ、これにより、得られる電池の容積率を顕著に向上させることができる。しかも、本実施形態の表面処理鋼板1によれば、鉄−ニッケル拡散層12の厚みを0.04〜0.31μm以下とすることにより、上述したように電池容器とした際に缶壁の厚みを薄くして容積率を向上させた場合においても、電池容器を、耐食性に優れたものとすることが可能となる。なお、従来、電池容器の缶壁の厚みを薄くした場合には、電池容器内面における鉄の溶出量が多くなる場合があり、これにより、電池容器内面の耐食性が低下してしまう場合があった。一方、電池容器とした際の耐食性を向上させる方法としては、電池容器内面に形成する鉄−ニッケル拡散層やニッケル層の厚みを厚くする方法があるが、この場合には、電池容器とした際に缶壁の厚みが厚くなり、容積率が低下してしまうという問題があった。そのため、電池容器用表面処理鋼板の技術においては、電池容器とした際の容積率と、耐食性とを、両立させることが困難であった。これに対して、本実施形態によれば、鉄−ニッケル拡散層12の厚みと、上述した鉄−ニッケル拡散層12およびニッケル層14に含まれるニッケルの合計量とを、それぞれ上記範囲に制御することにより、電池容器とした際の容積率と、耐食性とを、高度にバランスさせた表面処理鋼板1を提供することが可能となるものである。In the present embodiment, as described above, the surface-treated steel sheet 1, the iron - the total amount of nickel contained in the nickel diffusion layer and the nickel layer 4.4 g / m 2 or more, compared of less than 10.8 g / m 2 By controlling the temperature within a small range, the thickness of the can wall can be reduced when the battery container is used, and as a result, the floor area ratio of the obtained battery can be significantly improved. Moreover, according to the surface-treated steel sheet 1 of the present embodiment, by setting the thickness of the iron-nickel diffusion layer 12 to 0.04 to 0.31 μm or less, the thickness of the can wall when the battery container is used as described above. Even when the volume ratio is improved by thinning the battery container, the battery container can be made excellent in corrosion resistance. Conventionally, when the thickness of the can wall of the battery container is reduced, the amount of iron eluted on the inner surface of the battery container may increase, which may reduce the corrosion resistance of the inner surface of the battery container. .. On the other hand, as a method of improving the corrosion resistance when the battery container is used, there is a method of increasing the thickness of the iron-nickel diffusion layer and the nickel layer formed on the inner surface of the battery container. In this case, when the battery container is used. In addition, there is a problem that the thickness of the can wall becomes thick and the volume ratio decreases. Therefore, in the technique of the surface-treated steel sheet for a battery container, it is difficult to achieve both the floor area ratio and the corrosion resistance when the battery container is used. On the other hand, according to the present embodiment, the thickness of the iron-nickel diffusion layer 12 and the total amount of nickel contained in the iron-nickel diffusion layer 12 and the nickel layer 14 described above are controlled within the above ranges, respectively. This makes it possible to provide the surface-treated steel sheet 1 in which the volume ratio of the battery container and the corrosion resistance are highly balanced.

また、従来、ニッケルめっき層および鉄−ニッケル拡散層を備える表面処理鋼板において、電池容器として成形する際の加工性を向上させる観点、電池容器の耐食性を向上させる観点、鉄−ニッケル拡散層の密着性を確保する観点などにより、鉄−ニッケル拡散層の厚みを0.5μm以上とする方法が知られていた(たとえば、特開2009−263727号公報の段落0018。)。ここで、このように鉄−ニッケル拡散層の厚みを0.5μm以上とするためには、鋼板にニッケルめっき層を形成した後の熱拡散処理の条件を、長時間あるいは高温とする必要がある。たとえば、熱拡散処理の条件を長時間とする場合には、熱処理温度:400〜600℃、熱処理時間:1〜8時間とする条件が知られている。また、熱拡散処理の条件を高温とする場合には、熱処理温度:700〜800℃、熱処理時間:30秒〜2分とする条件が知られている。このような状況において、本発明者等は、熱拡散処理を上述した長時間または高温の条件で行うと、表面処理鋼板を構成する鋼板の鉄が熱拡散しすぎてしまい、得られた表面処理鋼板を電池容器に成形した際に、鉄の溶出量が増えてしまうとの知見を得て、これにより、上述したように、電池内部でガスが発生し、ガスの発生に起因して電池内部の内圧が上昇してしまうおそれがあることを見出した。加えて、熱処理温度が700〜800℃、30秒〜2分で行った場合は、ニッケル層14の硬度が低下しすぎることにより、金型への焼き付きが多くなる問題がある。 Further, conventionally, in a surface-treated steel sheet provided with a nickel plating layer and an iron-nickel diffusion layer, from the viewpoint of improving workability when molding as a battery container, from the viewpoint of improving the corrosion resistance of the battery container, adhesion of the iron-nickel diffusion layer From the viewpoint of ensuring the properties, a method of increasing the thickness of the iron-nickel diffusion layer to 0.5 μm or more has been known (for example, paragraph 0018 of JP-A-2009-263727). Here, in order to increase the thickness of the iron-nickel diffusion layer to 0.5 μm or more, it is necessary to set the conditions for the heat diffusion treatment after forming the nickel plating layer on the steel sheet for a long time or at a high temperature. .. For example, when the condition of the heat diffusion treatment is long, it is known that the heat treatment temperature is 400 to 600 ° C. and the heat treatment time is 1 to 8 hours. Further, when the condition of the heat diffusion treatment is high temperature, it is known that the heat treatment temperature is 700 to 800 ° C. and the heat treatment time is 30 seconds to 2 minutes. In such a situation, when the heat diffusion treatment is performed under the above-mentioned long-term or high-temperature conditions, the present inventors heat-diffuse the iron of the steel sheet constituting the surface-treated steel sheet, and the obtained surface treatment We obtained the finding that the amount of iron eluted increases when a steel sheet is molded into a battery container, and as a result, as described above, gas is generated inside the battery, and the inside of the battery is caused by the generation of gas. It was found that the internal pressure of the battery may rise. In addition, when the heat treatment temperature is 700 to 800 ° C. for 30 seconds to 2 minutes, the hardness of the nickel layer 14 is excessively lowered, so that there is a problem that seizure to the mold is increased.

これに対し、本実施形態によれば、表面処理鋼板1について、鉄−ニッケル拡散層12の厚みを0.04〜0.31μmとし、かつ、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量を4.4g/m以上、10.8g/m未満の範囲に制御することにより、表面処理鋼板1を電池容器へ成形したときの内面側に、鋼板の鉄が露出する面積を減少させ、表面処理鋼板1を電池容器として用いた場合の耐食性を向上させることが可能となり、加えて、表面処理鋼板1を電池容器に加工する際の加工性をより向上させることも可能となった。On the other hand, according to the present embodiment, for the surface-treated steel sheet 1, the thickness of the iron-nickel diffusion layer 12 is 0.04 to 0.31 μm, and the thickness of the nickel contained in the iron-nickel diffusion layer and the nickel layer is the total amount of 4.4 g / m 2 or more, by controlling the range of less than 10.8 g / m 2, the surface treated steel sheet 1 on the inner surface at the shaping of the battery container, the area of iron of the steel sheet is exposed It is possible to reduce the amount and improve the corrosion resistance when the surface-treated steel sheet 1 is used as the battery container, and in addition, it is possible to further improve the workability when the surface-treated steel sheet 1 is processed into the battery container. It was.

また、本実施形態では、熱拡散処理後のニッケル層14の厚みは、好ましくは0.5〜1.20μm、より好ましくは0.60〜1.20μm、さらに好ましくは0.70〜1.17μmである。熱拡散処理後のニッケル層14の厚みを上記のような比較的薄い範囲に制御することにより、鉄−ニッケル拡散層12による耐食性を向上させる効果を十分に確保しながら、電池容器とした場合の壁厚を薄くすることができ、電池容器内の容積を増大させることができる。これにより、電池容器に充填する正極合剤23および負極合剤24などの内容物の量を増加させることができ、得られる電池の電池特性を向上させることができる。熱拡散処理後のニッケル層14の厚みは、上述した高周波グロー放電発光分光分析装置を用いた測定により、ニッケル層14と鉄−ニッケル拡散層12との境界を検知することで求めることができる。すなわち、高周波グロー放電発光分光分析装置により表面処理鋼板1の表面の測定を開始した時点を起点として、Fe強度がその飽和値に対して10%の強度となった時点までの測定時間を算出し、算出した測定時間に基づいて、ニッケル層14の厚みを求めることができる。 Further, in the present embodiment, the thickness of the nickel layer 14 after the heat diffusion treatment is preferably 0.5 to 1.20 μm, more preferably 0.60 to 1.20 μm, and further preferably 0.70 to 1.17 μm. Is. When the thickness of the nickel layer 14 after the thermal diffusion treatment is controlled to a relatively thin range as described above, the effect of improving the corrosion resistance of the iron-nickel diffusion layer 12 is sufficiently ensured, and the battery container is used. The wall thickness can be reduced and the volume inside the battery container can be increased. As a result, the amount of contents such as the positive electrode mixture 23 and the negative electrode mixture 24 to be filled in the battery container can be increased, and the battery characteristics of the obtained battery can be improved. The thickness of the nickel layer 14 after the thermal diffusion treatment can be determined by detecting the boundary between the nickel layer 14 and the iron-nickel diffusion layer 12 by measurement using the high-frequency glow discharge emission spectroscopic analyzer described above. That is, the measurement time is calculated from the time when the measurement of the surface of the surface-treated steel sheet 1 is started by the high-frequency glow discharge emission spectroscopic analyzer to the time when the Fe intensity becomes 10% of the saturation value. , The thickness of the nickel layer 14 can be obtained based on the calculated measurement time.

また、本実施形態では、熱拡散処理後のニッケル層14は、表面部分の平均結晶粒径が、好ましくは0.2〜0.6μm、より好ましくは0.3〜0.6μm、さらに好ましくは0.3〜0.5μmである。本実施形態では、ニッケル層14の表面部分の平均結晶粒径は特に限定されるものではないが、平均結晶粒径が小さすぎると、めっき応力が内在したままとなってしまい、この際には、電池容器として成形加工する際に、表面処理鋼板1に、鋼板11まで達する深いひび割れが生じ、鋼板11の鉄が露出してしまう場合がある。この場合には、鋼板11の露出した部分から鉄が溶出し、鉄の溶出に伴って発生するガスにより電池内部の内圧が上昇してしまうおそれがある。一方、上述したように、表面処理鋼板1に鋼板11まで達するひび割れが発生してしまうと不具合が発生してしまうが、電池容器の電池特性を向上させるという観点より、表面処理鋼板1の電池容器の内面側には、微細なひび割れが発生していた方が好ましい。この点について、ニッケル層14の表面部分の平均結晶粒径が大きすぎると、ニッケル層14の硬度が低くなりすぎてしまう場合があり(ニッケル層14が軟化しすぎてしまい)、この場合には、表面処理鋼板1を電池容器として成形加工する際に、電池容器内面に微細なひび割れを発生させることができないため、電池特性を向上させる効果、すなわち、ひび割れによって電池容器と正極合剤との接触面積を増大させ、電池の内部抵抗を低下させて電池特性を向上させる効果が、十分に得られなくなってしまうおそれがある。 Further, in the present embodiment, the nickel layer 14 after the heat diffusion treatment has an average crystal grain size of a surface portion of preferably 0.2 to 0.6 μm, more preferably 0.3 to 0.6 μm, still more preferably. It is 0.3 to 0.5 μm. In the present embodiment, the average crystal grain size of the surface portion of the nickel layer 14 is not particularly limited, but if the average crystal grain size is too small, the plating stress remains inherent, and in this case, When molding as a battery container, the surface-treated steel plate 1 may be deeply cracked to reach the steel plate 11, and the iron of the steel plate 11 may be exposed. In this case, iron may elute from the exposed portion of the steel sheet 11, and the internal pressure inside the battery may increase due to the gas generated by the elution of iron. On the other hand, as described above, if the surface-treated steel plate 1 is cracked to reach the steel plate 11, a problem occurs. However, from the viewpoint of improving the battery characteristics of the battery container, the battery container of the surface-treated steel plate 1 is used. It is preferable that fine cracks are generated on the inner surface side of the above. Regarding this point, if the average crystal grain size of the surface portion of the nickel layer 14 is too large, the hardness of the nickel layer 14 may become too low (the nickel layer 14 becomes too soft), and in this case, When the surface-treated steel sheet 1 is molded as a battery container, fine cracks cannot be generated on the inner surface of the battery container, so that the effect of improving the battery characteristics, that is, the contact between the battery container and the positive electrode mixture due to the cracks The effect of increasing the area, lowering the internal resistance of the battery, and improving the battery characteristics may not be sufficiently obtained.

本実施形態によれば、表面処理鋼板1について、ニッケルめっき層13の厚みを比較的薄いものとした場合においても、鉄−ニッケル拡散層12の厚みを0.04〜0.31μmと比較的薄いものとすることにより、表面処理鋼板1を電池容器へ成形したときの内面側に、鋼板の鉄が露出する面積を抑制し、表面処理鋼板1を電池容器として用いた場合の耐食性を向上させることが可能となった。加えて、本実施形態によれば、ニッケル層14の表面部分の平均結晶粒径を0.2〜0.6μmに制御することにより、表面処理鋼板1を電池容器に加工する際の加工性をより向上させることも可能となった。さらに、本実施形態によれば、鉄−ニッケル拡散層12およびニッケル層14の厚みを比較的薄いものとしているため、表面処理鋼板1を製造する際において、コスト的に有利になり、また、電池容器に成形して電池を組み立てた際に電池容器の内容量を増やすことが可能となり、電池特性の向上につながる。 According to the present embodiment, the thickness of the iron-nickel diffusion layer 12 of the surface-treated steel sheet 1 is relatively thin, 0.04 to 0.31 μm, even when the thickness of the nickel plating layer 13 is relatively thin. By doing so, the area where the iron of the steel sheet is exposed on the inner surface side when the surface-treated steel sheet 1 is molded into the battery container is suppressed, and the corrosion resistance when the surface-treated steel sheet 1 is used as the battery container is improved. Is now possible. In addition, according to the present embodiment, by controlling the average crystal grain size of the surface portion of the nickel layer 14 to 0.2 to 0.6 μm, the workability when processing the surface-treated steel sheet 1 into a battery container can be improved. It has become possible to improve it further. Further, according to the present embodiment, since the thickness of the iron-nickel diffusion layer 12 and the nickel layer 14 is relatively thin, it is advantageous in terms of cost when manufacturing the surface-treated steel sheet 1, and the battery. When the battery is assembled by molding into a container, the internal capacity of the battery container can be increased, which leads to improvement of battery characteristics.

なお、ニッケル層14の表面部分の平均結晶粒径は、熱拡散処理における熱処理温度が高いほど、大きくなる傾向にあるが、本発明者等は、平均結晶粒径の大きさは温度範囲によって段階的に大きくなることを見出した。熱処理を施さないものに対し、低温、例えば300℃であっても熱処理を施したものは結晶粒が大きくなる。熱処理温度を400〜600℃の間とした場合には、温度が高くなるほど結晶粒径が少し大きくなるが、温度による結晶粒径の大きさの差はあまり大きくない。熱処理温度が700℃を超えると急激に平均結晶粒径が大きくなる。そのため、熱拡散処理の熱処理温度を制御することにより、ニッケル層14の表面部分の平均結晶粒径を調整することができる。特に、平均結晶粒径の粗大化を抑制し、ニッケル層14の表面硬度を硬めにすることにより、電池特性の向上および電池容器への加工の際の金型へのニッケル層14の焼き付き抑制効果が狙えることから、熱処理温度は430〜550℃が特に好ましい。すなわち、熱処理温度を上記範囲としてニッケル層14の表面硬度を硬めにすることにより、電池容器として成形加工する際に、表面処理鋼板1の電池容器の内面側に、鋼板11まで達しない程度の微細なひび割れを発生させることができ、このひび割れによって電池容器と正極合剤との接触面積を増大させ、電池の内部抵抗を低下させて、電池特性をより向上させることができるようになる。 The average crystal grain size of the surface portion of the nickel layer 14 tends to increase as the heat treatment temperature in the thermal diffusivity treatment increases. However, the present inventors have determined that the size of the average crystal grain size depends on the temperature range. I found that it would grow in size. The crystal grains become larger in the one subjected to the heat treatment even at a low temperature, for example, 300 ° C., as opposed to the one not subjected to the heat treatment. When the heat treatment temperature is between 400 and 600 ° C., the crystal grain size becomes slightly larger as the temperature rises, but the difference in crystal grain size depending on the temperature is not so large. When the heat treatment temperature exceeds 700 ° C., the average crystal grain size sharply increases. Therefore, the average crystal grain size of the surface portion of the nickel layer 14 can be adjusted by controlling the heat treatment temperature of the thermal diffusion treatment. In particular, by suppressing the coarsening of the average crystal grain size and making the surface hardness of the nickel layer 14 harder, the effect of improving the battery characteristics and suppressing the seizure of the nickel layer 14 on the mold during processing into a battery container is achieved. The heat treatment temperature is particularly preferably 430 to 550 ° C. That is, by setting the heat treatment temperature within the above range and making the surface hardness of the nickel layer 14 harder, when molding as a battery container, the surface-treated steel plate 1 is fine enough not to reach the inner surface side of the battery container. Cracks can be generated, and the cracks can increase the contact area between the battery container and the positive electrode mixture, reduce the internal resistance of the battery, and further improve the battery characteristics.

本実施形態では、ニッケル層14の表面部分の平均結晶粒径は、たとえば、表面処理鋼板1の表面を走査型電子顕微鏡(SEM)で測定し、得られた反射電子像を用いて求めることができる。 In the present embodiment, the average crystal grain size of the surface portion of the nickel layer 14 can be determined, for example, by measuring the surface of the surface-treated steel sheet 1 with a scanning electron microscope (SEM) and using the obtained backscattered electron image. it can.

具体的には、まず、表面処理鋼板1の表面を必要に応じてエッチングした後、たとえば図7(A)に示すように、表面処理鋼板1の表面を走査型電子顕微鏡(SEM)で測定する。なお、図7(A)は、後述する実施例の表面処理鋼板1を、倍率10,000倍で測定して得られた反射電子像を示す画像である。そして、得られた反射電子像に、長さ10μmの長さの直線を任意の本数(たとえば四本)引く。そして、直線毎に、直線上に位置する結晶粒の数nに基づいて、結晶粒径dを、d=10/(n+1)の式により求め、それぞれの直線について求めた結晶粒径dの平均値を、ニッケルめっき層13の表面部分の平均結晶粒径とすることができる。 Specifically, first, the surface of the surface-treated steel sheet 1 is etched as necessary, and then the surface of the surface-treated steel sheet 1 is measured with a scanning electron microscope (SEM), for example, as shown in FIG. 7A. .. Note that FIG. 7A is an image showing a reflected electron image obtained by measuring the surface-treated steel sheet 1 of the embodiment described later at a magnification of 10,000 times. Then, an arbitrary number (for example, four) of straight lines having a length of 10 μm is drawn on the obtained backscattered electron image. Then, for each straight line, the crystal grain size d is obtained by the formula d = 10 / (n + 1) based on the number n of crystal grains located on the straight line, and the average of the crystal grain sizes d obtained for each straight line is obtained. The value can be the average crystal grain size of the surface portion of the nickel plating layer 13.

また、本実施形態では、熱拡散処理後のニッケル層14の表面硬度は、10gfの荷重で測定されるビッカース硬度(HV)で、好ましくは200〜280、より好ましくは210〜250である。熱拡散処理後のニッケル層14の表面硬度を上記範囲とすることにより、得られる表面処理鋼板1を電池容器に加工する際の加工性が向上するとともに、表面処理鋼板1を電池容器に用いた際の耐食性が向上する。 Further, in the present embodiment, the surface hardness of the nickel layer 14 after the heat diffusion treatment is the Vickers hardness (HV) measured with a load of 10 gf, preferably 200 to 280, and more preferably 210 to 250. By setting the surface hardness of the nickel layer 14 after the heat diffusion treatment within the above range, the workability when processing the obtained surface-treated steel sheet 1 into a battery container is improved, and the surface-treated steel sheet 1 is used for the battery container. Corrosion resistance is improved.

本実施形態においては、表面処理鋼板1について、鉄−ニッケル拡散層12の厚みと、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量とを、それぞれ上記範囲に制御する方法としては、上述した条件で熱拡散処理を行う方法が挙げられる。すなわち、鋼板11にニッケルめっき層13を形成した後、熱処理温度450〜600℃、熱処理時間30秒〜2分の条件で、熱拡散処理を行う方法が挙げられる。
また、本実施形態において、得られる表面処理鋼板1について、ニッケル層14の表面部分の平均結晶粒径を上述した範囲に制御とする方法としても、同様の条件で熱拡散処理を行う方法が挙げられる。すなわち、鋼板11にニッケルめっき層13を形成した後、熱処理温度450〜600℃、熱処理時間30秒〜2分の条件で、熱拡散処理を行う方法が挙げられる。
In the present embodiment, as a method for controlling the thickness of the iron-nickel diffusion layer 12 and the total amount of nickel contained in the iron-nickel diffusion layer and the nickel layer in the surface-treated steel sheet 1 within the above ranges, respectively, A method of performing the heat diffusion treatment under the above-mentioned conditions can be mentioned. That is, a method of forming the nickel plating layer 13 on the steel sheet 11 and then performing the heat diffusion treatment under the conditions of a heat treatment temperature of 450 to 600 ° C. and a heat treatment time of 30 seconds to 2 minutes can be mentioned.
Further, in the present embodiment, as a method of controlling the average crystal grain size of the surface portion of the nickel layer 14 in the above-mentioned range with respect to the obtained surface-treated steel sheet 1, a method of performing a thermal diffusion treatment under the same conditions can be mentioned. Be done. That is, a method of forming the nickel plating layer 13 on the steel sheet 11 and then performing the heat diffusion treatment under the conditions of a heat treatment temperature of 450 to 600 ° C. and a heat treatment time of 30 seconds to 2 minutes can be mentioned.

なお、鉄−ニッケル拡散層12の厚みは、熱拡散処理における熱処理温度が高いほど、および熱処理時間が長いほど、厚くなる傾向にある。そのため、熱拡散処理の熱処理温度および熱処理時間を制御することにより、鉄−ニッケル拡散層12の厚み、および(鉄−ニッケル拡散層12の厚み/ニッケル層14の厚み)の比を調整することができる。ただし300℃では鉄−ニッケル拡散層は形成され難いため、鉄−ニッケル拡散層12の厚み、および(鉄−ニッケル拡散層12の厚み/ニッケル層14の厚み)の比を上記範囲に制御する観点より、480℃以上で熱拡散処理を行うことが好ましい。 The thickness of the iron-nickel diffusion layer 12 tends to increase as the heat treatment temperature in the heat diffusion treatment increases and the heat treatment time increases. Therefore, the thickness of the iron-nickel diffusion layer 12 and the ratio of (thickness of the iron-nickel diffusion layer 12 / thickness of the nickel layer 14) can be adjusted by controlling the heat treatment temperature and the heat treatment time of the heat diffusion treatment. it can. However, since the iron-nickel diffusion layer is difficult to form at 300 ° C., the viewpoint of controlling the thickness of the iron-nickel diffusion layer 12 and the ratio (thickness of the iron-nickel diffusion layer 12 / thickness of the nickel layer 14) within the above range. Therefore, it is preferable to carry out the heat diffusion treatment at 480 ° C. or higher.

本実施形態の表面処理鋼板1は、以上のようにして構成される。 The surface-treated steel sheet 1 of the present embodiment is configured as described above.

本実施形態の表面処理鋼板1は、深絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法などにより、図1,2に示すアルカリ電池2の正極缶21や、その他の電池の電池容器などに成形加工されて用いられる。 The surface-treated steel sheet 1 of the present embodiment includes a deep drawing method, a drawing ironing method (DI processing method), a drawing stretch processing method (DTR processing method), or a processing method in which stretching processing and ironing processing are used in combination after drawing processing. Therefore, the positive electrode can 21 of the alkaline battery 2 shown in FIGS. 1 and 2 and the battery container of other batteries are molded and used.

<表面処理鋼板1の製造方法>
次いで、本実施形態の表面処理鋼板1の製造方法について、説明する。
<Manufacturing method of surface-treated steel sheet 1>
Next, a method for manufacturing the surface-treated steel sheet 1 of the present embodiment will be described.

まず、鋼板11を準備し、上述したように、鋼板11に対してニッケルめっきを施すことにより、鋼板11の電池容器内面となる面にニッケルめっき層13を形成する。なお、ニッケルめっき層13は、鋼板11の電池容器内面となる面だけでなく、反対の面にも形成されることが好ましい。ニッケルめっき層13を鋼板11の両面に形成する際には、鋼板11における電池容器の内面となる面と、電池容器の外面となる面とに、別々の組成のめっき浴を用いて、組成や表面粗度などが異なるニッケルめっき層13をそれぞれ形成してもよいが、製造効率を向上させる観点より、鋼板11の両面に、同じめっき浴を用いて1工程でニッケルめっき層13を形成することが好ましい。 First, the steel plate 11 is prepared, and as described above, the steel plate 11 is nickel-plated to form the nickel-plated layer 13 on the inner surface of the battery container of the steel plate 11. The nickel plating layer 13 is preferably formed not only on the inner surface of the battery container of the steel plate 11 but also on the opposite surface. When the nickel plating layer 13 is formed on both sides of the steel sheet 11, the inner surface of the battery container and the outer surface of the battery container of the steel sheet 11 are formed by using plating baths having different compositions. The nickel plating layers 13 having different surface roughness and the like may be formed, but from the viewpoint of improving the manufacturing efficiency, the nickel plating layers 13 are formed on both sides of the steel sheet 11 in one step using the same plating bath. Is preferable.

次いで、ニッケルめっき層13を形成した鋼板11に対して、上述した条件で熱拡散処理を行うことにより、鋼板11を構成する鉄と、ニッケルめっき層13を構成するニッケルとを熱拡散させ、鉄−ニッケル拡散層12およびニッケル層14を形成する。これにより、図3に示すような表面処理鋼板1が得られる。 Next, the steel sheet 11 on which the nickel plating layer 13 is formed is heat-diffused under the above-mentioned conditions to thermally diffuse the iron constituting the steel sheet 11 and the nickel constituting the nickel plating layer 13 to iron. -The nickel diffusion layer 12 and the nickel layer 14 are formed. As a result, the surface-treated steel sheet 1 as shown in FIG. 3 is obtained.

なお、本実施形態では、得られた表面処理鋼板1に対して、調質圧延を行ってもよい。これにより、表面処理鋼板1の電池容器の内面となる面の表面粗度を調整することができ、表面処理鋼板1を電池容器として用いた際に、電池容器と正極合剤との接触面積を増大させ、電池の内部抵抗を低下させることができ、電池特性を向上させることができる。 In this embodiment, the obtained surface-treated steel sheet 1 may be subjected to temper rolling. Thereby, the surface roughness of the surface of the surface-treated steel sheet 1 which is the inner surface of the battery container can be adjusted, and when the surface-treated steel sheet 1 is used as the battery container, the contact area between the battery container and the positive electrode mixture can be adjusted. It can be increased, the internal resistance of the battery can be lowered, and the battery characteristics can be improved.

以上のようにして、本実施形態の表面処理鋼板1は製造される。 As described above, the surface-treated steel sheet 1 of the present embodiment is manufactured.

本実施形態の表面処理鋼板1では、上述したように、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量を4.4g/m以上、10.8g/m未満という比較的少ない範囲に制御し、かつ、高周波グロー放電発光分光分析装置によって測定される鉄−ニッケル拡散層12の厚みを0.04〜0.31μm以下という比較的薄い範囲とすることにより、得られるアルカリ電池2について、電池容器の缶壁の厚みを薄くして容積率を顕著に向上させたものとしながら、さらに、電池容器の内面側に鋼板の鉄が露出する面積を抑制し、電池容器の耐食性を向上させることができる。また、上述したように、ニッケル層14の表面部分の平均結晶粒径を好ましくは0.2〜0.6μmとすることにより、ニッケル層14の硬度を適度なものとすることができ、これにより、電池容器として成形加工する際に、表面処理鋼板1に深いひび割れが生じて鉄が露出してしまうことをより有効に抑制しながら、電池容器内面に微細なひび割れを発生させて、電池特性をより有効に向上させるという優れた効果が得られる。さらには、上述したように、ニッケル層14の厚みを好ましくは0.5μm以上とすることにより、表面処理鋼板1を電池容器に用いた際の耐食性がより向上し、このような電池内部のガス発生およびこれに起因する電池内部の内圧の上昇を、より有効に防止することができる。したがって、本実施形態の表面処理鋼板1は、たとえば、アルカリ電池、ニッケル水素電池などのアルカリ性の電解液を用いる電池や、リチウムイオン電池などの電池容器として好適に用いることができる。In the surface treated steel sheet 1 of the present embodiment, as described above, the iron - the total amount of nickel contained in the nickel diffusion layer and the nickel layer 4.4 g / m 2 or more, a relatively small of less than 10.8 g / m 2 The alkaline battery 2 obtained by controlling the range and setting the thickness of the iron-nickel diffusion layer 12 measured by the high-frequency glow discharge emission spectroscopic analyzer to a relatively thin range of 0.04 to 0.31 μm or less. The thickness of the can wall of the battery container is reduced to significantly improve the volume ratio, and the area where iron of the steel plate is exposed on the inner surface side of the battery container is suppressed to improve the corrosion resistance of the battery container. Can be made to. Further, as described above, the hardness of the nickel layer 14 can be made appropriate by setting the average crystal grain size of the surface portion of the nickel layer 14 to preferably 0.2 to 0.6 μm. When molding as a battery container, the surface-treated steel sheet 1 is more effectively prevented from being exposed to iron due to deep cracks, and fine cracks are generated on the inner surface of the battery container to improve the battery characteristics. An excellent effect of improving more effectively can be obtained. Further, as described above, by setting the thickness of the nickel layer 14 to preferably 0.5 μm or more, the corrosion resistance when the surface-treated steel sheet 1 is used in the battery container is further improved, and the gas inside the battery is further improved. It is possible to more effectively prevent the occurrence and the increase in the internal pressure inside the battery due to this. Therefore, the surface-treated steel plate 1 of the present embodiment can be suitably used as, for example, a battery using an alkaline electrolytic solution such as an alkaline battery or a nickel-metal hydride battery, or a battery container such as a lithium ion battery.

以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

《参考例A》
原板として、下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板11を準備した。
C:0.045重量%、Mn:0.23重量%、Si:0.02重量%、P:0.012重量%、S:0.009重量%、Al:0.063重量%、N:0.0036重量%、残部:Feおよび不可避的不純物
<< Reference example A >>
As the original plate, a steel plate 11 obtained by annealing a cold-rolled low-carbon aluminum killed steel plate (thickness 0.25 mm) having the following chemical composition was prepared.
C: 0.045% by weight, Mn: 0.23% by weight, Si: 0.02% by weight, P: 0.012% by weight, S: 0.009% by weight, Al: 0.063% by weight, N: 0.0036% by weight, balance: Fe and unavoidable impurities

そして、準備した鋼板11について、アルカリ電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にて電解めっきを行い、鋼板11上に、付着量が10.7g/mとなるようにニッケルめっき層13を形成した。その後、ニッケルめっき層13の厚みは、蛍光X線測定により、その付着量を求めた。結果を表1に示す。
浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸45g/L
pH:3.5〜4.5
浴温:60℃
電流密度:20A/dm
通電時間:18秒
Then, the prepared steel sheet 11 is subjected to alkaline electrolytic degreasing and pickling by immersion in sulfuric acid, and then electrolytic plating is performed under the following conditions so that the amount of nickel adhered to the steel sheet 11 is 10.7 g / m 2. The plating layer 13 was formed. After that, the thickness of the nickel plating layer 13 was determined by fluorescent X-ray measurement to determine the amount of adhesion thereof. The results are shown in Table 1.
Bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 45 g / L
pH: 3.5-4.5
Bath temperature: 60 ° C
Current density: 20A / dm 2
Energizing time: 18 seconds

次いで、ニッケルめっき層13を形成した鋼板11に対して、連続焼鈍により、熱処理温度430℃、熱処理時間1分、還元雰囲気の条件で熱拡散処理を行なうことにより、鉄−ニッケル拡散層12およびニッケル層14を形成し、表面処理鋼板1を得た。 Next, the steel sheet 11 on which the nickel plating layer 13 was formed was subjected to thermal diffusion treatment under the conditions of a heat treatment temperature of 430 ° C., a heat treatment time of 1 minute, and a reducing atmosphere by continuous annealing to obtain an iron-nickel diffusion layer 12 and nickel. The layer 14 was formed to obtain a surface-treated steel plate 1.

次いで、得られた表面処理鋼板1に対して、伸び率1%の条件下にて調質圧延を行った。 Next, the obtained surface-treated steel sheet 1 was subjected to temper rolling under the condition of an elongation rate of 1%.

そして、調質圧延後の表面処理鋼板1を用いて、下記の方法に従い、鉄−ニッケル拡散層12およびニッケル層14の厚みの測定、ニッケル層14の表面硬度の測定、ニッケル層14の平均結晶粒径の測定、走査型電子顕微鏡(SEM)による表面の観察を行った。 Then, using the surface-treated steel plate 1 after temper rolling, the thickness of the iron-nickel diffusion layer 12 and the nickel layer 14 is measured, the surface hardness of the nickel layer 14 is measured, and the average crystal of the nickel layer 14 is measured according to the following method. The particle size was measured and the surface was observed with a scanning electron microscope (SEM).

<鉄−ニッケル拡散層12およびニッケル層14の厚みの測定>
表面処理鋼板1について、高周波グロー放電発光分光分析装置を用いて、最表面から鋼板11へ深さ方向にFe強度およびNi強度の変化を連続的に測定し、Fe強度がその飽和値に対して10%の強度となった時点を起点として、Ni強度が、その極大値を示した後に、極大値に対して10%の強度となった時点までの測定時間を算出し、算出した測定時間に基づいて、鉄−ニッケル拡散層12の厚みを求めた。なお、鉄−ニッケル拡散層12の厚みを求める際には、まず、後述する熱拡散処理をしていないニッケルめっき鋼板(比較例1)の高周波グロー放電発行分光分析を行った結果(図5(C))について、鉄−ニッケル拡散層として測定される厚み分(図5(C)において、Fe強度がその飽和値に対して10%の強度となった時点を起点として、Ni強度が、その極大値を示した後に、極大値に対して10%の強度となった時点までの測定時間を厚みに換算した値)を、基準の厚みとして測定した。なお、基準の厚みは0.30μmであった。そして、この基準の厚み分を、実施例1の表面処理鋼板1の鉄−ニッケル拡散層12の厚みの測定結果から差し引くことで、実施例1における、実際の鉄−ニッケル拡散層12の厚みを求めた。また、ニッケル層14については、高周波グロー放電発光分光分析装置により表面処理鋼板1の表面の測定を開始した時点を起点として、Fe強度がその飽和値に対して10%の強度となった時点までの測定時間を算出し、算出した測定時間に基づいて、ニッケル層14の厚みを求めた。そして、測定した結果に基づいて、ニッケル層14の厚みに対する、鉄−ニッケル拡散層12の厚みの比(鉄−ニッケル拡散層12の厚み/ニッケル層14の厚み)を求めた。結果を図5(A)および表1に示す。なお、表1中においては、(鉄−ニッケル拡散層12の厚み/ニッケル層14の厚み)の比を、「厚み比率Fe−Ni/Ni」と記載した。
なお、高周波グロー放電発光分光分析装置における測定上、ニッケルめっき層の厚みの増加に伴い、ニッケルめっき層の測定から算出される基準の厚みが厚くなるため、鉄−ニッケル拡散層を求める際には各々のめっき量において基準の厚みを確認するか、めっき量の異なる2種類以上の熱処理を行う前のサンプルにて基準の厚みの測定を行い、めっき量と基準の厚みとの関係式を求めて算出することが望ましい。
<Measurement of thickness of iron-nickel diffusion layer 12 and nickel layer 14>
With respect to the surface-treated steel plate 1, changes in Fe strength and Ni strength are continuously measured in the depth direction from the outermost surface to the steel plate 11 using a high-frequency glow discharge emission spectrophotometer, and the Fe strength is measured with respect to the saturation value. Starting from the time when the strength reaches 10%, after the Ni strength shows its maximum value, the measurement time until the time when the strength reaches 10% with respect to the maximum value is calculated, and the calculated measurement time is used. Based on this, the thickness of the iron-nickel diffusion layer 12 was determined. When determining the thickness of the iron-nickel diffusion layer 12, first, the result of high-frequency glow discharge issuance spectroscopic analysis of a nickel-plated steel sheet (Comparative Example 1) that has not been subjected to the thermal diffusion treatment described later (FIG. 5 (FIG. 5). Regarding C)), the Ni strength is the thickness of the iron-nickel diffusion layer (in FIG. 5C, starting from the time when the Fe strength becomes 10% of the saturation value). After showing the maximum value, the measurement time until the strength became 10% of the maximum value was converted into the thickness) was measured as the reference thickness. The reference thickness was 0.30 μm. Then, by subtracting this reference thickness from the measurement result of the thickness of the iron-nickel diffusion layer 12 of the surface-treated steel sheet 1 of Example 1, the actual thickness of the iron-nickel diffusion layer 12 in Example 1 can be obtained. I asked. The nickel layer 14 starts at the time when the surface of the surface-treated steel sheet 1 is measured by the high-frequency glow discharge emission spectroscopic analyzer and ends at the time when the Fe intensity becomes 10% of the saturation value. The thickness of the nickel layer 14 was determined based on the calculated measurement time. Then, based on the measurement result, the ratio of the thickness of the iron-nickel diffusion layer 12 to the thickness of the nickel layer 14 (thickness of the iron-nickel diffusion layer 12 / thickness of the nickel layer 14) was determined. The results are shown in FIG. 5 (A) and Table 1. In Table 1, the ratio of (thickness of iron-nickel diffusion layer 12 / thickness of nickel layer 14) is described as "thickness ratio Fe-Ni / Ni".
In addition, in the measurement with the high-frequency glow discharge emission spectroscopic analyzer, as the thickness of the nickel plating layer increases, the reference thickness calculated from the measurement of the nickel plating layer becomes thicker. Therefore, when obtaining the iron-nickel diffusion layer, Confirm the standard thickness for each plating amount, or measure the standard thickness with a sample before performing two or more types of heat treatment with different plating amounts, and obtain the relational expression between the plating amount and the standard thickness. It is desirable to calculate.

<ニッケル層14の表面硬度の測定>
表面処理鋼板1のニッケル層14について、微小硬度計(株式会社明石製作所製、型番:MVK−G2)により、ダイヤモンド圧子を用いて、荷重:10gf、保持時間:10秒の条件でビッカース硬度(HV)を測定することにより、表面硬度の測定を行った。結果を図6に示す。
<Measurement of surface hardness of nickel layer 14>
The Vickers hardness (HV) of the nickel layer 14 of the surface-treated steel sheet 1 was measured by a microhardness meter (manufactured by Akashi Seisakusho Co., Ltd., model number: MVK-G2) using a diamond indenter under the conditions of load: 10 gf and holding time: 10 seconds. ) Was measured to measure the surface hardness. The results are shown in FIG.

<ニッケル層14の平均結晶粒径の測定>
まず、表面処理鋼板1の表面をエッチングした。具体的には、表面処理鋼板1の表面に、硫酸銅水和物を濃度200g/Lで溶解させた水溶液を0.1ml滴下し、その直後に塩酸を0.1ml滴下し、30秒間保持することでエッチングし、その後、水洗して乾燥させた。次いで、表面処理鋼板1について、走査型電子顕微鏡(SEM)により表面の反射電子像を得て、得られた反射電子像上に、図7(A)に示すように四本の直線を引き、上述した方法にしたがって、各直線上に位置する結晶粒の数から、ニッケル層14の平均結晶粒径を算出した。結果を図7(A)および表1に示す。
<Measurement of average crystal grain size of nickel layer 14>
First, the surface of the surface-treated steel sheet 1 was etched. Specifically, 0.1 ml of an aqueous solution prepared by dissolving copper sulfate hydrate at a concentration of 200 g / L is added dropwise to the surface of the surface-treated steel sheet 1, and immediately after that, 0.1 ml of hydrochloric acid is added dropwise and held for 30 seconds. Etched, then washed with water and dried. Next, a reflected electron image on the surface of the surface-treated steel plate 1 was obtained by a scanning electron microscope (SEM), and four straight lines were drawn on the obtained reflected electron image as shown in FIG. 7 (A). According to the method described above, the average crystal grain size of the nickel layer 14 was calculated from the number of crystal grains located on each straight line. The results are shown in FIG. 7 (A) and Table 1.

<走査型電子顕微鏡(SEM)による表面の観察>
表面処理鋼板1を用いて、ニッケル層14を電池容器の内面側とし、缶壁の厚みが0.15mmとなるように、LR6(JIS規格)の電池容器を作製した。そして、得られた電池容器について、底から10mm、25mm、および40mmの部分を、走査型電子顕微鏡(SEM)およびエネルギー分散型X線分析により測定することで、反射電子像、鉄の元素マップ、およびニッケルの元素マップを得た。結果を図8(A)〜8(C)に示す。なお、図8(A)〜8(C)においては、「Image」と記載された画像が反射電子像であり、「Feka」と記載された画像が鉄の元素マップであり、「Nika」と記載された画像がニッケルの元素マップである。なお、鉄の元素マップでは、鉄によるkα線が観測された部分が白く写っている。ニッケルの元素マップでも、同様に、ニッケルによるkα線が観測された部分が白く写っている。鉄の元素マップの画像については、画像処理ソフトにて2値化して、得られた画像全体に対する白く写っている部分の面積割合(すなわち、鉄の露出面積割合)を測定した。結果を図14および表2に示す。
<Observation of the surface with a scanning electron microscope (SEM)>
Using the surface-treated steel plate 1, a battery container of LR6 (JIS standard) was produced so that the nickel layer 14 was on the inner surface side of the battery container and the thickness of the can wall was 0.15 mm. Then, with respect to the obtained battery container, the portions 10 mm, 25 mm, and 40 mm from the bottom were measured by a scanning electron microscope (SEM) and energy dispersive X-ray analysis to obtain a reflected electron image and an elemental map of iron. And obtained an elemental map of nickel. The results are shown in FIGS. 8 (A) to 8 (C). In FIGS. 8 (A) to 8 (C), the image described as "Image" is a reflected electron image, and the image described as "Feka" is an elemental map of iron, which is referred to as "Nika". The image described is an elemental map of nickel. In the elemental map of iron, the part where the kα ray due to iron is observed is shown in white. Similarly, in the elemental map of nickel, the part where the kα ray due to nickel is observed appears in white. The image of the elemental map of iron was binarized with image processing software, and the area ratio of the white portion to the entire obtained image (that is, the exposed area ratio of iron) was measured. The results are shown in FIG. 14 and Table 2.

《実施例1》
ニッケルめっき層13を形成した鋼板11に対して熱拡散処理を行う際の熱処理温度を600℃とした以外は、参考例Aと同様にして表面処理鋼板1を作製し、同様に測定および観察を行った。結果を図5(B),6,7(B),9,14および表1,2に示す。
<< Example 1 >>
A surface-treated steel sheet 1 was produced in the same manner as in Reference Example A except that the heat treatment temperature for performing the thermal diffusion treatment on the steel sheet 11 on which the nickel plating layer 13 was formed was set to 600 ° C., and measurement and observation were carried out in the same manner. went. The results are shown in FIGS. 5 (B), 6, 7 (B), 9, 14 and Tables 1 and 2.

《比較例1》
ニッケルめっき層13を形成した鋼板11に対して、熱拡散処理および調質圧延をいずれも行わなかった以外は、実施例1と同様の条件にて、ニッケルめっき鋼板を作製した。そして、作製したニッケルめっき鋼板について、上述したように、高周波グロー放電発行分光分析により測定を行い、図5(C)に示す測定結果を得て、鉄−ニッケル拡散層として測定される厚み分(図5(C)において、Fe強度がその飽和値に対して10%の強度となった時点を起点として、Ni強度が、その極大値を示した後に、極大値に対して10%の強度となった時点までの測定時間を厚みに換算した値)を、基準の厚みとして測定した。また、なお、比較例1では、ニッケル層14に代えて、ニッケルめっき層13の表面硬度および平均結晶粒径を測定した。なお、比較例1では、ニッケルめっき層13の平均結晶粒径を測定する際には、表面のエッチングは行わなかった。結果を図5(C),6,7(C),10,14および表1,2に示す。
<< Comparative Example 1 >>
A nickel-plated steel sheet was produced under the same conditions as in Example 1 except that the steel sheet 11 on which the nickel-plated layer 13 was formed was not subjected to any heat diffusion treatment or temper rolling. Then, as described above, the produced nickel-plated steel sheet is measured by high-frequency glow discharge issuance spectroscopic analysis, the measurement result shown in FIG. 5C is obtained, and the thickness measured as the iron-nickel diffusion layer ( In FIG. 5C, starting from the time when the Fe intensity becomes 10% of the saturation value, the Ni intensity shows the maximum value, and then the intensity is 10% of the maximum value. The value obtained by converting the measurement time up to that point into thickness) was measured as the reference thickness. Further, in Comparative Example 1, the surface hardness and the average crystal grain size of the nickel plating layer 13 were measured instead of the nickel layer 14. In Comparative Example 1, the surface was not etched when the average crystal grain size of the nickel plating layer 13 was measured. The results are shown in FIGS. 5 (C), 6, 7 (C), 10, 14 and Tables 1 and 2.

《比較例2》
ニッケルめっき層13を形成した鋼板11に対して熱拡散処理を行う際の熱処理温度を700℃とし、調質圧延を行わなかった以外は、実施例1と同様にして表面処理鋼板1を作製し、同様に測定および観察を行った。なお、比較例2では、ニッケル層14の平均結晶粒径を測定する際には、表面のエッチングは行わなかった。結果を図5(D),6,7(D),11,14および表1,2に示す。
<< Comparative Example 2 >>
A surface-treated steel sheet 1 was produced in the same manner as in Example 1 except that the heat treatment temperature at which the heat diffusion treatment was performed on the steel sheet 11 on which the nickel plating layer 13 was formed was 700 ° C. and temper rolling was not performed. , And the same measurement and observation were performed. In Comparative Example 2, the surface was not etched when measuring the average crystal grain size of the nickel layer 14. The results are shown in FIGS. 5 (D), 6, 7 (D), 11, 14 and Tables 1 and 2.

Figure 0006803850
Figure 0006803850

Figure 0006803850
Figure 0006803850

《参考例1》
原板として、実施例1と同様の鋼板11を準備した。そして、準備した鋼板11について、アルカリ電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にて電解めっきを行い、鋼板11上に、厚さが20μmとなるようにニッケルめっき層13を形成した。なお、ニッケルめっき層13の厚みは、蛍光X線測定により、その付着量を求めた。
浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸45g/L
pH:3.5〜4.5
浴温:60℃
<< Reference example 1 >>
As the original plate, the same steel plate 11 as in Example 1 was prepared. Then, the prepared steel sheet 11 is subjected to alkaline electrolytic degreasing and pickling by immersion in sulfuric acid, and then electrolytically plated under the following conditions to form a nickel plating layer 13 on the steel sheet 11 so as to have a thickness of 20 μm. did. The thickness of the nickel plating layer 13 was determined by fluorescent X-ray measurement.
Bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 45 g / L
pH: 3.5-4.5
Bath temperature: 60 ° C

そして、ニッケルめっき層13を形成した鋼板11について、走査型電子顕微鏡(SEM)により測定することで、表面の反射電子像を得た。結果を図12(A),13(A)に示す。なお、図13(A)は、図12(A)を拡大した画像である。 Then, the steel plate 11 on which the nickel plating layer 13 was formed was measured with a scanning electron microscope (SEM) to obtain a reflected electron image on the surface. The results are shown in FIGS. 12 (A) and 13 (A). Note that FIG. 13 (A) is an enlarged image of FIG. 12 (A).

次いで、ニッケルめっき層13を形成した鋼板11について、上述したニッケル層14の表面硬度の測定と同じ方法により、ニッケルめっき層13の表面硬度の測定を行った。結果を図15に示す。 Next, with respect to the steel plate 11 on which the nickel plating layer 13 was formed, the surface hardness of the nickel plating layer 13 was measured by the same method as the measurement of the surface hardness of the nickel layer 14 described above. The results are shown in FIG.

《参考例2》
参考例1と同様に、鋼板11を準備して、鋼板11上にニッケルめっき層13を形成した。次いで、ニッケルめっき層13を形成した鋼板11に対して、連続焼鈍により、熱処理温度300℃、熱処理時間41秒、還元雰囲気の条件で熱拡散処理を行なうことにより、鉄−ニッケル拡散層12およびニッケル層14を形成し、表面処理鋼板1を得た。
<< Reference example 2 >>
In the same manner as in Reference Example 1, the steel plate 11 was prepared and the nickel plating layer 13 was formed on the steel plate 11. Next, the steel sheet 11 on which the nickel plating layer 13 was formed was subjected to thermal diffusion treatment under the conditions of a heat treatment temperature of 300 ° C., a heat treatment time of 41 seconds, and a reducing atmosphere by continuous annealing to obtain an iron-nickel diffusion layer 12 and nickel. The layer 14 was formed to obtain a surface-treated steel plate 1.

そして、得られた表面処理鋼板1について、参考例1と同様に、表面の反射電子像を得て、ニッケル層14の表面硬度の測定を行った。結果を図15に示す。 Then, the surface hardness of the nickel layer 14 was measured by obtaining a reflected electron image on the surface of the obtained surface-treated steel sheet 1 in the same manner as in Reference Example 1. The results are shown in FIG.

《参考例3〜8》
ニッケルめっき層13を形成した鋼板11に対して熱拡散処理を行う際の熱処理温度を、400℃(参考例3)、500℃(参考例4)、600℃(参考例5)、700℃(参考例6)、800℃(参考例7)、900℃(参考例8)とした以外は、参考例2と同様にして表面処理鋼板1を作製し、参考例1と同様に測定を行った。結果を図12(B)〜12(E),13(B)〜13(E),15に示す。
<< Reference Examples 3 to 8 >>
The heat treatment temperature for performing the thermal diffusion treatment on the steel sheet 11 on which the nickel plating layer 13 is formed is 400 ° C. (Reference Example 3), 500 ° C. (Reference Example 4), 600 ° C. (Reference Example 5), 700 ° C. (Reference Example 5). A surface-treated steel sheet 1 was produced in the same manner as in Reference Example 2 except that the temperatures were set to Reference Example 6), 800 ° C. (Reference Example 7), and 900 ° C. (Reference Example 8), and measurements were performed in the same manner as in Reference Example 1. .. The results are shown in FIGS. 12 (B) to 12 (E), 13 (B) to 13 (E), and 15.

表1に示すように、鉄−ニッケル拡散層12の厚みが0.04〜0.31μmであり、かつ、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量が4.4g/m以上、10.8g/m未満である参考例A,実施例1では、図8,9における鉄の元素マップで示されるように、鋼板11が表面処理鋼板1の表面まで拡散したことに由来する鉄のkα線は観測されなかった。具体的には、図14および表2に示すように、参考例A,実施例1では、鉄の元素マップ全体に対する白い部分の面積割合(鉄の露出面積割合)が11%以下と小さく、鋼板11が表面処理鋼板1の表面まで拡散したことに由来する鉄のkα線は観測されなかった。なお、図8,9における鉄の元素マップでは、鉄のkα線が観測された白い部分がまばらに存在しているが、これは、表面処理鋼板1の表面の微細な疵によって、ごくわずかに鋼板11が露出していることに起因するものであると考えられ、熱拡散処理によって鋼板11が表面処理鋼板1の表面まで拡散したことに起因するものではないと判断できる。As shown in Table 1, the thickness of the iron-nickel diffusion layer 12 is 0.04 to 0.31 μm, and the total amount of nickel contained in the iron-nickel diffusion layer and the nickel layer is 4.4 g / m 2. As mentioned above, in Reference Example A and Example 1 which are less than 10.8 g / m 2 , the steel plate 11 is diffused to the surface of the surface-treated steel plate 1 as shown by the element map of iron in FIGS. 8 and 9. No kα rays of iron were observed. Specifically, as shown in FIGS. 14 and 2, in Reference Example A and Example 1, the area ratio of the white portion (the exposed area ratio of iron) to the entire element map of iron is as small as 11% or less, and the steel plate No kα rays of iron derived from the diffusion of 11 to the surface of the surface-treated steel sheet 1 were observed. In the elemental map of iron in FIGS. 8 and 9, white parts where kα rays of iron were observed are sparsely present, but this is very slight due to fine flaws on the surface of the surface-treated steel sheet 1. It is considered that the cause is that the steel plate 11 is exposed, and it can be determined that the cause is not that the steel plate 11 is diffused to the surface of the surface-treated steel plate 1 by the heat diffusion treatment.

また、図7に示すように、熱拡散処理を行った参考例A、実施例1は、熱拡散処理を行わなかった比較例1と比較して、熱拡散処理の熱処理温度が高くなるほど、結晶の粒子が大きくなっている(すなわち、結晶粒径が大きくなっている)ことが分かる。これは、熱処理温度が高いほど、ニッケル層14を構成する粒子の再結晶が進み、結晶粒径が大きくなることに起因すると考えられる。 Further, as shown in FIG. 7, in Reference Example A and Example 1 in which the thermal diffusion treatment was performed, as compared with Comparative Example 1 in which the thermal diffusion treatment was not performed, the higher the heat treatment temperature of the thermal diffusion treatment, the more crystals were crystallized. It can be seen that the particles of are larger (that is, the crystal grain size is larger). It is considered that this is because the higher the heat treatment temperature, the more the recrystallization of the particles constituting the nickel layer 14 progresses and the larger the crystal grain size.

また、図15に示すように、参考例1〜8における表面硬度の測定結果から、熱拡散処理の熱処理温度を300℃より大きくすることにより、ニッケル層14の表面硬度が低くなっている(ニッケルめっき層13が軟化している)ことが確認できる。このことから、ニッケル層14を構成する粒子の再結晶が進んでいると考えられる。なお、参考例1〜8では、ニッケルめっき層13の厚みを20μmと厚くしているため、表面硬度を測定する際に、下地である鋼板11の影響を受けずに、適切にニッケル層14の硬度を測定することができた。したがって、熱拡散処理の熱処理温度を400℃または630℃とした参考例A、実施例1では、ニッケル層14を構成する粒子の再結晶が進み、ニッケル層14の表面硬度が適度なものとなっていると考えられる。 Further, as shown in FIG. 15, from the measurement results of the surface hardness in Reference Examples 1 to 8, the surface hardness of the nickel layer 14 is lowered by making the heat treatment temperature of the thermal diffusion treatment higher than 300 ° C. (nickel). It can be confirmed that the plating layer 13 is softened). From this, it is considered that the recrystallization of the particles constituting the nickel layer 14 is progressing. In Reference Examples 1 to 8, since the thickness of the nickel plating layer 13 is as thick as 20 μm, the nickel layer 14 can be appropriately used without being affected by the underlying steel plate 11 when measuring the surface hardness. The hardness could be measured. Therefore, in Reference Example A and Example 1 in which the heat treatment temperature of the thermal diffusion treatment is 400 ° C. or 630 ° C., recrystallization of the particles constituting the nickel layer 14 proceeds, and the surface hardness of the nickel layer 14 becomes appropriate. It is thought that it is.

一方、表1に示すように、熱拡散処理を行わなかった比較例1では、ニッケル層14の平均結晶粒径が0.2μm未満となってしまった。これにより、比較例1では、ニッケル層14の表面硬度が高くなりすぎてしまい、電池容器として成形加工する際に、表面処理鋼板1に、鋼板11まで達する深いひび割れが生じ、鋼板11の鉄が露出して、電池容器の耐食性が低下してしまうと考えられる。
また、表1に示すように、および熱拡散処理の熱処理温度を700℃とした比較例2では、鉄−ニッケル拡散層12の厚みが0.5μm以上となってしまい、また、ニッケル層14の厚みが0.85μm未満となり、これにより、図11における鉄の元素マップで示されるように、鋼板11の鉄が表面処理鋼板1の表面付近まで拡散したことに由来する鉄のkα線が観測された。すなわち、上述した図8,9と比較して、図11における鉄の元素マップでは、鉄のkα線に由来する白い点が多く、さらに固まって存在している(実際に、図14および表2を参照すると、図8,9(参考例A、実施例1)の鉄の元素マップでは、画像全体に対する白い部分の面積割合(鉄の露出面積割合)が11%以下である一方、図11(比較例2)の鉄の元素マップでは、電池容器の底から25mmおよび40mmにおいて15%以上と高くなっている。)。
On the other hand, as shown in Table 1, in Comparative Example 1 in which the thermal diffusion treatment was not performed, the average crystal grain size of the nickel layer 14 was less than 0.2 μm. As a result, in Comparative Example 1, the surface hardness of the nickel layer 14 becomes too high, and when molding as a battery container, the surface-treated steel sheet 1 is deeply cracked to reach the steel sheet 11, and the iron of the steel sheet 11 is formed. It is considered that the battery container is exposed and the corrosion resistance of the battery container is lowered.
Further, as shown in Table 1, and in Comparative Example 2 in which the heat treatment temperature of the heat diffusion treatment was 700 ° C., the thickness of the iron-nickel diffusion layer 12 was 0.5 μm or more, and the nickel layer 14 had a thickness of 0.5 μm or more. The thickness became less than 0.85 μm, and as a result, as shown in the elemental map of iron in FIG. 11, kα rays of iron derived from the diffusion of iron in the steel plate 11 to the vicinity of the surface of the surface-treated steel plate 1 were observed. It was. That is, compared with FIGS. 8 and 9 described above, in the elemental map of iron in FIG. 11, there are many white spots derived from the kα line of iron, and they are further solidified (actually, FIGS. 14 and 2). In the iron element map of FIGS. 8 and 9 (Reference Example A, Example 1), the area ratio of the white portion (the ratio of the exposed area of iron) to the entire image is 11% or less, while FIG. In the elemental map of iron in Comparative Example 2), it is as high as 15% or more at 25 mm and 40 mm from the bottom of the battery container).

特に、熱処理温度が700℃である比較例2では、熱処理温度が430℃および600℃である参考例A、実施例1と比較して、電池容器の底から10mm、25mmおよび40mmのいずれの箇所においても、鉄の露出面積割合が増加している。このような比較例2における鉄の露出面積割合の増加は、特に、電池容器の底から25mmおよび40mmにおいて顕著である。これは、表面処理鋼板1を用いて電池容器を形成する際、電池容器の底から遠いほど、つまり電池容器の口部分に近いほど、表面処理鋼板1は、延伸方向(電池容器に成形する際のプレス方向)と円周方向に絞られる力が加わり、より高負荷の加工が施されることとなる。 In particular, in Comparative Example 2 in which the heat treatment temperature is 700 ° C., any of 10 mm, 25 mm and 40 mm from the bottom of the battery container is compared with Reference Example A and Example 1 in which the heat treatment temperatures are 430 ° C. and 600 ° C. Also, the proportion of exposed area of iron is increasing. Such an increase in the exposed area ratio of iron in Comparative Example 2 is particularly remarkable at 25 mm and 40 mm from the bottom of the battery container. This is because when the surface-treated steel sheet 1 is used to form the battery container, the farther from the bottom of the battery container, that is, the closer to the mouth portion of the battery container, the more the surface-treated steel sheet 1 is drawn in the stretching direction (when forming into the battery container). A force that is squeezed in the press direction) and the circumferential direction is applied, resulting in higher load machining.

熱処理温度を700℃とした比較例2においては、熱拡散処理が過度に進んでニッケル層14の厚みが薄くなりすぎたことにより、上述した高負荷の加工が施された部分(電池容器の底から遠い部分)において、特に鋼板11の鉄の露出が増加してしまったと考えられる。このことは、図11に示す鉄の元素マップおよびニッケルの元素マップからも確認することができる。すなわち、図11を参照すると、鉄の元素マップでは、電池容器の底から遠いほど鉄の露出面積割合が増加しているとともに、鉄がまとまって露出している部分が多くなっている。このような鉄の元素マップを、対応するニッケルの元素マップと対照すると、鉄の元素マップ中における鉄がまとまって露出している部分の位置は、ニッケルの元素マップ中のニッケルの検出量が少なくなっている部分の位置と対応している。これにより、比較例2では、ニッケル層14の厚みが薄くなっている部分において、鉄の露出が増加していることが確認できる。 In Comparative Example 2 in which the heat treatment temperature was 700 ° C., the heat diffusion treatment proceeded excessively and the thickness of the nickel layer 14 became too thin, so that the portion subjected to the above-mentioned high load processing (bottom of the battery container). It is considered that the iron exposure of the steel plate 11 has increased especially in the portion far from the steel plate 11. This can also be confirmed from the elemental map of iron and the elemental map of nickel shown in FIG. That is, referring to FIG. 11, in the elemental map of iron, the proportion of the exposed area of iron increases as the distance from the bottom of the battery container increases, and the portion where iron is collectively exposed increases. Comparing such an elemental map of iron with the corresponding elemental map of nickel, the position of the part where iron is collectively exposed in the elemental map of iron has a small amount of nickel detected in the elemental map of nickel. It corresponds to the position of the part that is. As a result, in Comparative Example 2, it can be confirmed that the exposure of iron is increased in the portion where the thickness of the nickel layer 14 is thin.

このことから、鋼板11の鉄が表面処理鋼板1の表面付近まで拡散したことにより、鉄−ニッケルの拡散が進み過ぎ、表層のニッケル層が薄くなりすぎたために、表面処理鋼板1をプレス成型する際に、電池缶内面におけるニッケルによる被覆が不完全になってしまうと考えられる。さらに、表1に示すように、比較例2では、ニッケル層14の平均結晶粒径が0.6μm超であり、図6よりビッカース硬度が参考例A、実施例1に対し低くなっていた。 From this, since the iron of the steel sheet 11 diffused to the vicinity of the surface of the surface-treated steel sheet 1, the diffusion of iron-nickel proceeded too much and the nickel layer on the surface layer became too thin, so that the surface-treated steel sheet 1 was press-molded. At that time, it is considered that the nickel coating on the inner surface of the battery can becomes incomplete. Further, as shown in Table 1, in Comparative Example 2, the average crystal grain size of the nickel layer 14 was more than 0.6 μm, and the Vickers hardness was lower than that of Reference Example A and Example 1 from FIG.

なお、熱拡散処理を行わなかった比較例1は、図14および表2に示す鉄の露出面積割合の数値のみに関していえば、430℃および600℃で熱拡散処理を行った参考例A、実施例1と比較して低い値となる傾向にある。しかしながら、比較例1では、図10に示す元素マップを参照すると、図8,9に示す参考例A、実施例1の元素マップと比較して、鉄の露出が特定の位置でまとまって発生している傾向にあり、この傾向は、特に、電池容器の底から10mmの箇所における元素マップで顕著である。これは、熱拡散処理を行わなかった比較例1において、表面のニッケルめっき層13が硬すぎることに起因すると考えられる。すなわち、表面処理鋼板1を電池容器に成形する際には、電池容器の底面部分がプレスに用いるパンチの円周部と接触し、曲げ加工が施されることとなるが、比較例1の表面処理鋼板1は、表面のニッケルめっき層13が硬すぎるため、この曲げ加工時に、表面に深い割れが発生しやすくなってしまう。したがって、比較例1の表面処理鋼板1は、電池容器として用いた際に、表面に深い割れが発生した場合には、局所的に鉄が露出して、鉄が電解液に溶出してしまい、鉄の溶出に伴って電池内部にガスが発生するおそれがある。このようなガスが発生すると、電池内部の内圧が上昇してしまうおそれがある。 In Comparative Example 1 in which the heat diffusion treatment was not performed, Reference Example A in which the heat diffusion treatment was performed at 430 ° C. and 600 ° C. was carried out with respect only to the numerical values of the exposed area ratio of iron shown in FIGS. 14 and 2. The value tends to be lower than that of Example 1. However, in Comparative Example 1, when referring to the element map shown in FIG. 10, as compared with the element maps of Reference Example A and Example 1 shown in FIGS. 8 and 9, iron exposure occurs collectively at a specific position. This tendency is particularly remarkable in the elemental map at a position 10 mm from the bottom of the battery container. It is considered that this is because the nickel plating layer 13 on the surface is too hard in Comparative Example 1 in which the thermal diffusion treatment was not performed. That is, when the surface-treated steel sheet 1 is formed into a battery container, the bottom surface portion of the battery container comes into contact with the circumferential portion of the punch used for pressing and is bent, but the surface of Comparative Example 1 Since the nickel plating layer 13 on the surface of the treated steel sheet 1 is too hard, deep cracks are likely to occur on the surface during this bending process. Therefore, when the surface-treated steel sheet 1 of Comparative Example 1 is used as a battery container, if deep cracks occur on the surface, iron is locally exposed and iron is eluted into the electrolytic solution. Gas may be generated inside the battery due to the elution of iron. When such a gas is generated, the internal pressure inside the battery may rise.

《実施例2》
原板として、下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板11を準備した。
C:0.045重量%、Mn:0.23重量%、Si:0.02重量%、P:0.012重量%、S:0.009重量%、Al:0.063重量%、N:0.0036重量%、残部:Feおよび不可避的不純物
<< Example 2 >>
As the original plate, a steel plate 11 obtained by annealing a cold-rolled low-carbon aluminum killed steel plate (thickness 0.25 mm) having the following chemical composition was prepared.
C: 0.045% by weight, Mn: 0.23% by weight, Si: 0.02% by weight, P: 0.012% by weight, S: 0.009% by weight, Al: 0.063% by weight, N: 0.0036% by weight, balance: Fe and unavoidable impurities

そして、準備した鋼板11について、アルカリ電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にて電解めっきを行い、鋼板11上に、付着量が8.9g/mとなるようにニッケルめっき層13を形成した。その後、ニッケルめっき層13の厚みは、蛍光X線測定により、その付着量を求めた。
浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸45g/L
pH:3.5〜4.5
浴温:60℃
電流密度:20A/dm
通電時間:16秒
Then, the prepared steel sheet 11 is subjected to alkaline electrolytic degreasing and pickling by immersion in sulfuric acid, and then electrolytic plating is performed under the following conditions so that the amount of nickel adhered to the steel sheet 11 is 8.9 g / m 2. The plating layer 13 was formed. After that, the thickness of the nickel plating layer 13 was determined by fluorescent X-ray measurement to determine the amount of adhesion thereof.
Bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 45 g / L
pH: 3.5-4.5
Bath temperature: 60 ° C
Current density: 20A / dm 2
Energizing time: 16 seconds

次いで、ニッケルめっき層13を形成した鋼板11に対して、連続焼鈍により、熱処理温度480℃、熱処理時間30秒、還元雰囲気の条件で熱拡散処理を行なうことにより、鉄−ニッケル拡散層12およびニッケル層14を形成し、表面処理鋼板1を得た。 Next, the steel sheet 11 on which the nickel plating layer 13 was formed was subjected to thermal diffusion treatment under the conditions of a heat treatment temperature of 480 ° C., a heat treatment time of 30 seconds, and a reducing atmosphere by continuous annealing to obtain an iron-nickel diffusion layer 12 and nickel. The layer 14 was formed to obtain a surface-treated steel plate 1.

次いで、得られた表面処理鋼板1に対して、伸び率1%の条件下にて調質圧延を行った。調質圧延後の表面処理鋼板1の厚みは、0.250mmであった。 Next, the obtained surface-treated steel sheet 1 was subjected to temper rolling under the condition of an elongation rate of 1%. The thickness of the surface-treated steel sheet 1 after temper rolling was 0.250 mm.

そして、表面処理鋼板1を用いて、上述した方法に従い、鉄−ニッケル拡散層12およびニッケル層14の厚みの測定を行った。また、測定した結果に基づいて、ニッケル層14の厚みに対する、鉄−ニッケル拡散層12の厚みの比(鉄−ニッケル拡散層12の厚み/ニッケル層14の厚み)を求めた。結果を表3に示す。 Then, using the surface-treated steel sheet 1, the thicknesses of the iron-nickel diffusion layer 12 and the nickel layer 14 were measured according to the method described above. Further, based on the measurement results, the ratio of the thickness of the iron-nickel diffusion layer 12 to the thickness of the nickel layer 14 (thickness of the iron-nickel diffusion layer 12 / thickness of the nickel layer 14) was determined. The results are shown in Table 3.

《実施例3〜9》
ニッケルめっき層13の厚み、およびニッケルめっき層13を形成した鋼板11に対する連続焼鈍の条件(熱処理条件)を、表3に示すように変更した以外は、実施例3と同様に、表面処理鋼板1を得て、同様に測定を行った。結果を表3に示す。
<< Examples 3 to 9 >>
The surface-treated steel sheet 1 is the same as in Example 3 except that the thickness of the nickel plating layer 13 and the conditions for continuous annealing (heat treatment conditions) for the steel sheet 11 on which the nickel plating layer 13 is formed are changed as shown in Table 3. Was obtained, and the measurement was performed in the same manner. The results are shown in Table 3.

《比較例3》
ニッケルめっき層13を形成した後に連続焼鈍および調質圧延をいずれも行わなかった以外は、実施例3と同様の条件にて、ニッケルめっき鋼板を作製した。結果を表3に示す。
<< Comparative Example 3 >>
A nickel-plated steel sheet was produced under the same conditions as in Example 3 except that neither continuous annealing nor temper rolling was performed after the nickel-plated layer 13 was formed. The results are shown in Table 3.

《比較例4〜6》
ニッケルめっき層13の厚み、およびニッケルめっき層13を形成した鋼板11に対する連続焼鈍の条件(熱処理条件)を、表3に示すように変更した以外は、実施例3と同様に、表面処理鋼板1を得て、同様に測定を行った。結果を表3に示す。
<< Comparative Examples 4 to 6 >>
The surface-treated steel sheet 1 is the same as in Example 3 except that the thickness of the nickel plating layer 13 and the conditions for continuous annealing (heat treatment conditions) for the steel sheet 11 on which the nickel plating layer 13 is formed are changed as shown in Table 3. Was obtained, and the measurement was performed in the same manner. The results are shown in Table 3.

Figure 0006803850
Figure 0006803850

次いで、実施例3,4および比較例4〜6の表面処理鋼板1、ならびに比較例3のニッケルめっき鋼板について、下記の方法にしたがい、電池容器に成形した場合における、電池容器の耐食性の評価を行った。 Next, the corrosion resistance of the surface-treated steel sheets 1 of Examples 3 and 4 and Comparative Examples 4 to 6 and the nickel-plated steel sheets of Comparative Example 3 were evaluated when they were formed into a battery container according to the following method. went.

<耐食性評価(その1)>
表面処理鋼板1をプレス機で所定形状に打ち抜くことでブランクを作製し、ニッケル層14が内面側となるように、下記条件にて絞り加工を行うことで、電池容器を作製した(なお、ニッケルめっき鋼板を用いた場合には、ニッケルめっき層13が内面側となるように電池容器を作製した。)。すなわち、絞りダイス(または、しごきダイス)を6段配置してなる絞り兼しごき機と、パンチとを用いて、ブランクに対して絞りしごき加工を行うことで筒状体を得て、得られた筒状体の開口部付近の耳部を切断することにより、電池容器を得た。絞り加工は、加工後の缶底から10mmの位置における缶壁の厚みが±5%となるようにクリアランスを設定したダイスを用いた。
次いで、得られた電池容器について、10mol/Lの水酸化カリウムの溶液を充填して密封し、60℃、480時間の条件で保持した後、電池容器の内面から溶液中に溶出したFeイオンの溶出量を、高周波誘導結合プラズマ発光分光分析法(ICP)(島津製作所製 ICPE−9000)により測定し、以下の基準で評価した。以下の基準においては、評価がAまたはBであれば、電池容器の内面からの鉄の溶出が十分に抑制されていると判断した。結果を表4に示す。
A:Feイオンの溶出量が33mg/L未満
B:Feイオンの溶出量が33〜35mg/L
C:Feイオンの溶出量が35mg/L超
<Corrosion resistance evaluation (1)>
A blank was produced by punching the surface-treated steel sheet 1 into a predetermined shape with a press machine, and a battery container was produced by drawing under the following conditions so that the nickel layer 14 was on the inner surface side (nickel). When a plated steel plate was used, the battery container was prepared so that the nickel plating layer 13 was on the inner surface side.) That is, a tubular body was obtained by squeezing and ironing a blank using a squeezing and squeezing machine in which squeezing dies (or ironing dies) were arranged in 6 stages and a punch. A battery container was obtained by cutting the ear portion near the opening of the tubular body. For drawing, a die having a clearance set so that the thickness of the can wall at a position 10 mm from the bottom of the can after processing was ± 5% was used.
Next, the obtained battery container was filled with a solution of 10 mol / L potassium hydroxide, sealed, held at 60 ° C. for 480 hours, and then Fe ions eluted from the inner surface of the battery container into the solution. The elution amount was measured by radio frequency inductively coupled plasma emission spectroscopy (ICP) (ICPE-9000 manufactured by Shimadzu Corporation) and evaluated according to the following criteria. In the following criteria, if the evaluation was A or B, it was judged that the elution of iron from the inner surface of the battery container was sufficiently suppressed. The results are shown in Table 4.
A: Fe ion elution amount is less than 33 mg / L B: Fe ion elution amount is 33 to 35 mg / L
C: Fe ion elution amount exceeds 35 mg / L

Figure 0006803850
Figure 0006803850

表4に示すように、鉄−ニッケル拡散層12の厚みが0.04〜0.31μmであり、かつ、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量が4.4g/m以上、10.8g/m未満である実施例3,4は、いずれも、耐食性に優れるという結果であった。すなわち、実施例3,4は、従来の表面処理鋼板と同等の耐食性を有する比較例5,6を基準とした場合に、この比較例5,6に対して同等以上の耐食性を有することが確認された。As shown in Table 4, the thickness of the iron-nickel diffusion layer 12 is 0.04 to 0.31 μm, and the total amount of nickel contained in the iron-nickel diffusion layer and the nickel layer is 4.4 g / m 2. As mentioned above, all of Examples 3 and 4 having a value of less than 10.8 g / m 2 were found to have excellent corrosion resistance. That is, it was confirmed that Examples 3 and 4 have the same or higher corrosion resistance as those of Comparative Examples 5 and 6 based on Comparative Examples 5 and 6 having the same corrosion resistance as the conventional surface-treated steel sheet. Was done.

一方、表4に示すように、熱拡散処理を行わなかった比較例3は、耐食性の評価結果が良好であったものの、熱拡散処理を行わなかったことで鉄−ニッケル拡散層12が形成されておらず、これにより、ニッケルめっき層13の密着性に劣るものと考えられる。
さらに、熱拡散処理を行った場合であっても、過剰な熱拡散処理により、鉄−ニッケル拡散層12の厚みが厚くなりすぎた場合には、ニッケル層14の表面に鉄が露出してしまったと考えられ、比較例5のように、従来の表面処理鋼板と同等の耐食性を有する比較例6を基準とした場合に、この比較例6に対して、耐食性が同等以下であるという結果であった。
また、比較例6の表面処理鋼板は、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量が多すぎる(ニッケルめっき層13の厚みが厚すぎる)ため、電池容器として用いた場合に、缶壁が厚くなってしまい、容積率が低下してしまうと考えられる。
On the other hand, as shown in Table 4, in Comparative Example 3 in which the heat diffusion treatment was not performed, although the evaluation result of the corrosion resistance was good, the iron-nickel diffusion layer 12 was formed by not performing the heat diffusion treatment. It is considered that the adhesion of the nickel plating layer 13 is inferior due to this.
Further, even when the heat diffusion treatment is performed, if the thickness of the iron-nickel diffusion layer 12 becomes too thick due to the excessive heat diffusion treatment, iron is exposed on the surface of the nickel layer 14. As a result, when Comparative Example 6 having the same corrosion resistance as the conventional surface-treated steel sheet is used as a reference as in Comparative Example 5, the corrosion resistance is equal to or less than that of Comparative Example 6. It was.
Further, in the surface-treated steel sheet of Comparative Example 6, the total amount of nickel contained in the iron-nickel diffusion layer and the nickel layer is too large (the thickness of the nickel plating layer 13 is too thick), so that when used as a battery container, It is considered that the can wall becomes thick and the volume ratio decreases.

次いで、実施例3,4および比較例4の表面処理鋼板1について、下記の方法にしたがい、
耐食性評価(その1)よりも高負荷の絞りしごき加工を行うことで電池容器を作製し、より厳しい条件で電池容器の耐食性の評価を行った。
Next, the surface-treated steel sheets 1 of Examples 3 and 4 and Comparative Example 4 were subjected to the following methods.
A battery container was produced by performing squeezing and ironing with a higher load than the corrosion resistance evaluation (No. 1), and the corrosion resistance of the battery container was evaluated under stricter conditions.

<耐食性評価(その2)>
絞り兼しごき機における6段の絞りダイス(または、しごきダイス)として、以下のように、耐食性評価(その1)よりも高負荷の絞りしごき加工を行うことで電池容器を作製した以外は、耐食性評価(その1)と同様に電池容器の作製およびFeイオンの溶出量の測定を行い、以下の基準で評価を行った。結果を表5に示す。
絞りしごき加工は、加工後の缶底から10mmの位置における缶壁の厚みが0.15mmになるようにクリアランスを設定したダイスを用いた。
また、電池容器の内面から溶液中に溶出したFeイオンの溶出量については、以下の基準で評価した。以下の基準においては、評価がAまたはBであれば、電池容器の内面からの鉄の溶出が十分に抑制されていると判断した。
A:Feイオンの溶出量が35mg/L未満
B:Feイオンの溶出量が35〜38mg/L
C:Feイオンの溶出量が38mg/L超
<Corrosion resistance evaluation (2)>
As a 6-stage drawing die (or ironing die) in a drawing and ironing machine, corrosion resistance is obtained except that a battery container is manufactured by performing drawing and ironing processing with a higher load than the corrosion resistance evaluation (No. 1) as shown below. Similar to the evaluation (No. 1), the battery container was prepared and the amount of Fe ions eluted was measured, and the evaluation was performed according to the following criteria. The results are shown in Table 5.
For the squeezing process, a die having a clearance set so that the thickness of the can wall at a position 10 mm from the bottom of the can after processing was 0.15 mm was used.
The amount of Fe ions eluted from the inner surface of the battery container into the solution was evaluated according to the following criteria. In the following criteria, if the evaluation was A or B, it was judged that the elution of iron from the inner surface of the battery container was sufficiently suppressed.
A: Fe ion elution amount is less than 35 mg / L B: Fe ion elution amount is 35 to 38 mg / L
C: Fe ion elution amount exceeds 38 mg / L

Figure 0006803850
Figure 0006803850

表5に示すように、鉄−ニッケル拡散層12の厚みが0.04〜0.31μmであり、かつ、鉄−ニッケル拡散層およびニッケル層に含まれるニッケルの合計量が4.4g/m以上、10.8g/m未満である実施例3,4は、上述した耐食性評価(その1)よりも高負荷の絞りしごき加工を行うことで電池容器を作製した場合においても、耐食性に優れるという結果であった。As shown in Table 5, the thickness of the iron-nickel diffusion layer 12 is 0.04 to 0.31 μm, and the total amount of nickel contained in the iron-nickel diffusion layer and the nickel layer is 4.4 g / m 2. As described above, Examples 3 and 4 having a value of less than 10.8 g / m 2 are excellent in corrosion resistance even when a battery container is produced by performing squeezing and ironing with a higher load than the above-mentioned corrosion resistance evaluation (No. 1). Was the result.

一方、表5に示すように、過剰な熱拡散処理により、鉄−ニッケル拡散層12の厚みが厚くなりすぎた比較例4は、ニッケル層14の表面に鉄が露出してしまったと考えられ、高負荷の絞りしごき加工を行うことで電池容器を作製した際に、耐食性に劣るという結果であった。 On the other hand, as shown in Table 5, in Comparative Example 4 in which the thickness of the iron-nickel diffusion layer 12 became too thick due to the excessive thermal diffusion treatment, it is considered that iron was exposed on the surface of the nickel layer 14. The result was that the corrosion resistance was inferior when the battery container was manufactured by performing a high-load drawing and ironing process.

1…表面処理鋼板
11…鋼板
12…鉄−ニッケル拡散層
13…ニッケルめっき層
14…ニッケル層
2…アルカリ電池
21…正極缶
211…正極端子
22…負極端子
23…正極合剤
24…負極合剤
25…セパレータ
26…集電体
27…ガスケット
28…絶縁リング
29…外装
1 ... Surface-treated steel plate 11 ... Steel plate 12 ... Iron-nickel diffusion layer 13 ... Nickel plating layer 14 ... Nickel layer 2 ... Alkaline battery 21 ... Positive electrode can 211 ... Positive electrode terminal 22 ... Negative electrode terminal 23 ... Positive electrode mixture 24 ... Negative electrode mixture 25 ... Separator 26 ... Current collector 27 ... Gasket 28 ... Insulation ring 29 ... Exterior

Claims (7)

鋼板と、
前記鋼板の電池容器内面となる面上に形成された鉄−ニッケル拡散層と、
前記鉄−ニッケル拡散層上に形成され、最表層を構成するニッケル層と、を備える電池容器用表面処理鋼板であって、
高周波グロー放電発光分光分析装置によって前記電池容器用表面処理鋼板の表面から深さ方向に向かってFe強度およびNi強度を連続的に測定した際において、Fe強度が第1所定値を示す深さ(D1)と、Ni強度が第2所定値を示す深さ(D2)との差分(D2−D1)である前記鉄−ニッケル拡散層の厚みが、0.04〜0.31μmであり、
前記鉄−ニッケル拡散層および前記ニッケル層に含まれるニッケルの合計量が、4.4g/m以上、10.8g/m未満である電池容器用表面処理鋼板。
(前記第1所定値を示す深さ(D1)は、前記測定により測定されたFe強度の飽和値に対して、10%の強度を示す深さであり、
前記第2所定値を示す深さ(D2)は、前記測定によりNi強度が極大値を示した後、さらに深さ方向に向かって測定を行った際に、該極大値に対して10%の強度を示す深さである。)
Steel plate and
An iron-nickel diffusion layer formed on the inner surface of the battery container of the steel plate,
A surface-treated steel sheet for a battery container, comprising a nickel layer formed on the iron-nickel diffusion layer and forming the outermost layer.
When the Fe strength and Ni strength are continuously measured from the surface of the surface-treated steel sheet for a battery container to the depth direction by a high-frequency glow discharge emission spectroscopic analyzer, the depth at which the Fe strength shows the first predetermined value ( The thickness of the iron-nickel diffusion layer, which is the difference (D2-D1) between D1) and the depth (D2) at which the Ni strength shows the second predetermined value, is 0.04 to 0.31 μm.
Wherein the iron - the total amount of nickel contained in the nickel diffusion layer and the nickel layer, 4.4 g / m 2 or more, the battery case for surface treated steel sheet is less than 10.8 g / m 2.
(The depth (D1) indicating the first predetermined value is a depth indicating an intensity of 10% with respect to the saturation value of the Fe intensity measured by the measurement.
The depth (D2) indicating the second predetermined value is 10% of the maximum value when the measurement is further performed in the depth direction after the Ni intensity shows the maximum value by the measurement. Depth indicating strength. )
前記ニッケル層の表面部分の平均結晶粒径が0.2〜0.6μmである請求項1に記載の電池容器用表面処理鋼板。 The surface-treated steel sheet for a battery container according to claim 1, wherein the average crystal grain size of the surface portion of the nickel layer is 0.2 to 0.6 μm. 前記ニッケル層の厚みが0.4〜1.2μmである請求項1または2に記載の電池容器用表面処理鋼板。 The surface-treated steel sheet for a battery container according to claim 1 or 2, wherein the nickel layer has a thickness of 0.4 to 1.2 μm. 前記ニッケル層における10gfの荷重で測定されるビッカース硬度(HV)が200〜280である請求項1〜3のいずれかに記載の電池容器用表面処理鋼板。 The surface-treated steel sheet for a battery container according to any one of claims 1 to 3, wherein the Vickers hardness (HV) measured at a load of 10 gf in the nickel layer is 200 to 280. 請求項1〜のいずれかに記載の電池容器用表面処理鋼板からなる電池容器。 A battery container made of a surface-treated steel plate for a battery container according to any one of claims 1 to 4 . 請求項に記載の電池容器を備える電池。 A battery comprising the battery container according to claim 5 . 鋼板の電池容器内面となる面上に、ニッケル量で4.4g/m以上、10.8g/m未満のニッケルめっき層を形成するニッケルめっき工程と、
前記ニッケルめっき層を形成した鋼板に対して、450〜600℃の温度で30秒〜2分の間保持することにより熱処理を施すことで、厚さ0.04〜0.31μmの鉄−ニッケル拡散層および最表層を構成するニッケル層を形成する熱処理工程と、を有する電池容器用表面処理鋼板の製造方法。
On the surface to be battery container inner surface of the steel sheet, a nickel amount 4.4 g / m 2 or more, and nickel plating step of forming a nickel plating layer of less than 10.8 g / m 2,
The steel sheet on which the nickel plating layer is formed is heat-treated by holding it at a temperature of 450 to 600 ° C. for 30 seconds to 2 minutes to diffuse iron-nickel having a thickness of 0.04 to 0.31 μm. A method for producing a surface-treated steel sheet for a battery container, comprising a heat treatment step of forming a layer and a nickel layer constituting the outermost layer .
JP2017554215A 2015-12-03 2016-12-05 Surface-treated steel sheet for battery containers Active JP6803850B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015236710 2015-12-03
JP2015236710 2015-12-03
PCT/JP2016/086119 WO2017094919A1 (en) 2015-12-03 2016-12-05 Surface-treated steel plate for cell container

Publications (2)

Publication Number Publication Date
JPWO2017094919A1 JPWO2017094919A1 (en) 2018-09-20
JP6803850B2 true JP6803850B2 (en) 2020-12-23

Family

ID=58797470

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017554216A Active JP6803851B2 (en) 2015-12-03 2016-12-05 Surface-treated steel sheet for battery containers
JP2017554217A Active JP6803852B2 (en) 2015-12-03 2016-12-05 Nickel-plated heat-treated steel sheet for battery cans
JP2017554215A Active JP6803850B2 (en) 2015-12-03 2016-12-05 Surface-treated steel sheet for battery containers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017554216A Active JP6803851B2 (en) 2015-12-03 2016-12-05 Surface-treated steel sheet for battery containers
JP2017554217A Active JP6803852B2 (en) 2015-12-03 2016-12-05 Nickel-plated heat-treated steel sheet for battery cans

Country Status (6)

Country Link
US (8) US10873061B2 (en)
EP (3) EP3385412A4 (en)
JP (3) JP6803851B2 (en)
KR (6) KR102538655B1 (en)
CN (3) CN108291323B (en)
WO (3) WO2017094921A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538655B1 (en) 2015-12-03 2023-05-30 도요 고한 가부시키가이샤 Surface-treated steel sheet for battery containers
USD899355S1 (en) * 2016-08-15 2020-10-20 Milwaukee Electric Tool Corporation Battery
DK3526827T3 (en) 2016-10-14 2022-09-19 Milwaukee Electric Tool Corp BATTERY UNIT
US11946121B2 (en) 2017-07-28 2024-04-02 Jfe Steel Corporation Steel sheet for battery outer tube cans, battery outer tube can and battery
JP6451919B1 (en) * 2017-07-28 2019-01-16 Jfeスチール株式会社 Steel plate for battery outer can, battery outer can and battery
CN111989424B (en) * 2018-04-13 2024-04-23 日本制铁株式会社 Ni diffusion-plated steel sheet and method for producing Ni diffusion-plated steel sheet
JP7047600B2 (en) * 2018-05-30 2022-04-05 株式会社デンソー Surface covering member and its manufacturing method
WO2020137874A1 (en) 2018-12-27 2020-07-02 日本製鉄株式会社 Ni-PLATED STEEL SHEET HAVING EXCELLENT POST-PROCESSING CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR
WO2020137887A1 (en) 2018-12-27 2020-07-02 日本製鉄株式会社 Ni-plated steel sheet and method for manufacturing ni-plated steel sheet
USD911926S1 (en) * 2019-03-13 2021-03-02 Ningbo Roca Superior Products E-Commerce Co., Ltd Rechargeable battery
USD929315S1 (en) * 2019-03-15 2021-08-31 The Coleman Company, Inc. Interchangeable battery
SG11202111895SA (en) * 2019-04-27 2021-11-29 Toyo Kohan Co Ltd Surface-treated steel sheet and production method therefor
KR102691037B1 (en) * 2019-05-17 2024-08-02 한국전력공사 Method for forming plating layers of thermoelectric material and thermoelectric material
KR102383727B1 (en) * 2019-07-16 2022-04-07 주식회사 티씨씨스틸 Manufacturing method of nikel palted steel sheet and nikel palted steel sheet prepared threfrom
CN114746584B (en) * 2019-12-20 2024-10-29 日本制铁株式会社 Ni-plated steel sheet and method for producing Ni-plated steel sheet
US11773503B2 (en) 2019-12-20 2023-10-03 Nippon Steel Corporation Ni-plated steel sheet and method for manufacturing Ni-plated steel sheet
US11981108B2 (en) * 2020-03-03 2024-05-14 Nippon Steel Corporation Ni-plated steel sheet and manufacturing method thereof
KR20220131307A (en) * 2020-03-03 2022-09-27 닛폰세이테츠 가부시키가이샤 Ni-coated steel sheet and its manufacturing method
KR102477435B1 (en) * 2020-12-09 2022-12-15 주식회사 티씨씨스틸 Nickel plated heat treated steel sheet having excellent processaibility and manufacturing method thereof
KR102514058B1 (en) 2021-05-20 2023-03-28 주식회사 티씨씨스틸 Nickel plated stainless steel sheet having excellent processaibility and manufacturing method thereof
DE102021118765A1 (en) * 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Component with integrated nickel diffusion layer
WO2024090570A1 (en) * 2022-10-28 2024-05-02 東洋鋼鈑株式会社 Ni-PLATED STEEL SHEET AND BATTERY CONTAINER
WO2024202153A1 (en) * 2023-03-29 2024-10-03 日本製鉄株式会社 Nickel clad plate and method for manufacturing same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045612B2 (en) 1992-06-22 2000-05-29 東洋鋼鈑株式会社 High corrosion resistant nickel-plated steel strip and its manufacturing method
EP1111697A1 (en) 1999-05-27 2001-06-27 Toyo Kohan Co., Ltd Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
CN1312787C (en) 2002-04-22 2007-04-25 东洋钢钣株式会社 Surface treated steel sheet for battery case, battery case and battery using the case
CN1184360C (en) * 2002-08-09 2005-01-12 中国科学院电子学研究所 Anti-corrosion process for pure iron
US7280401B2 (en) * 2003-07-10 2007-10-09 Telairity Semiconductor, Inc. High speed data access memory arrays
JP4491208B2 (en) * 2003-08-29 2010-06-30 パナソニック株式会社 Battery can, manufacturing method thereof, and battery
JP4817724B2 (en) 2004-08-23 2011-11-16 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
US8039146B2 (en) * 2006-07-26 2011-10-18 Panasonic Corporation Electrochemical device comprising alkaline electroylte
JP2008041527A (en) 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Battery can, and battery using it
EP2262034B1 (en) 2008-02-25 2014-03-12 Panasonic Corporation Battery can, method for manufacturing the same and device for manufacturing the same, and battery using batery can
CN102458701A (en) 2009-06-09 2012-05-16 东洋钢钣株式会社 Ni-plated steel sheet and method for manufacturing battery case using same
KR101244554B1 (en) * 2009-08-26 2013-03-18 도요 고한 가부시키가이샤 Ni-plated steel sheet for battery can having excellent pressability
JP5408777B2 (en) * 2009-09-18 2014-02-05 東洋鋼鈑株式会社 Oiling pipe
TWI451005B (en) * 2011-04-07 2014-09-01 Nippon Steel & Sumitomo Metal Corp Ni containing surface treated steel sheet for can and producing method thereof
WO2012147843A1 (en) * 2011-04-28 2012-11-01 東洋鋼鈑株式会社 Surface-treated steel sheet for battery cases, battery case, and battery
KR20140053138A (en) * 2011-06-30 2014-05-07 도요 고한 가부시키가이샤 Surface-treated steel plate, fuel pipe, cell can
JP5668709B2 (en) 2012-02-22 2015-02-12 新日鐵住金株式会社 Surface-treated steel sheet for lithium ion battery case with excellent press formability and manufacturing method thereof
JP2014009401A (en) 2012-07-03 2014-01-20 Toyo Kohan Co Ltd Surface treated steel sheet for battery vessel, method for producing the same, battery vessel and battery
JP6023513B2 (en) * 2012-08-29 2016-11-09 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container and battery
WO2014156002A1 (en) 2013-03-25 2014-10-02 パナソニック株式会社 Method for manufacturing circular cylinderical battery
JP6200719B2 (en) * 2013-07-31 2017-09-20 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for battery container
KR102538655B1 (en) 2015-12-03 2023-05-30 도요 고한 가부시키가이샤 Surface-treated steel sheet for battery containers
JP7293746B2 (en) 2019-03-14 2023-06-20 富士フイルムビジネスイノベーション株式会社 Information processing device and program

Also Published As

Publication number Publication date
US20180351138A1 (en) 2018-12-06
CN108291323A (en) 2018-07-17
KR20230079249A (en) 2023-06-05
CN108368628A (en) 2018-08-03
US10950828B2 (en) 2021-03-16
EP3385412A4 (en) 2019-05-08
CN108368628B (en) 2021-05-07
US11799156B2 (en) 2023-10-24
KR20180087388A (en) 2018-08-01
KR20180083430A (en) 2018-07-20
JPWO2017094920A1 (en) 2018-09-20
EP3385411A4 (en) 2019-04-17
US20210028415A1 (en) 2021-01-28
WO2017094920A1 (en) 2017-06-08
US20230387517A1 (en) 2023-11-30
US20240047790A1 (en) 2024-02-08
KR20230078837A (en) 2023-06-02
JPWO2017094919A1 (en) 2018-09-20
EP3385411A1 (en) 2018-10-10
WO2017094921A1 (en) 2017-06-08
KR102538662B1 (en) 2023-05-30
US11196114B2 (en) 2021-12-07
US11699824B2 (en) 2023-07-11
EP3385410A4 (en) 2019-04-17
KR102538655B1 (en) 2023-05-30
WO2017094919A1 (en) 2017-06-08
JP6803851B2 (en) 2020-12-23
US10873061B2 (en) 2020-12-22
US20220166092A1 (en) 2022-05-26
CN108291323B (en) 2021-02-23
JPWO2017094921A1 (en) 2018-09-20
US20210151824A1 (en) 2021-05-20
EP3385410A1 (en) 2018-10-10
CN108368629B (en) 2021-03-09
US20180366691A1 (en) 2018-12-20
US20180347061A1 (en) 2018-12-06
KR102538675B1 (en) 2023-05-30
JP6803852B2 (en) 2020-12-23
KR20180083939A (en) 2018-07-23
US11824212B2 (en) 2023-11-21
EP3385412A1 (en) 2018-10-10
KR20230078836A (en) 2023-06-02
CN108368629A (en) 2018-08-03

Similar Documents

Publication Publication Date Title
JP6803850B2 (en) Surface-treated steel sheet for battery containers
JP7187469B2 (en) Surface-treated steel sheet and manufacturing method thereof
KR102479919B1 (en) Manufacturing method of surface-treated steel sheet for battery container
TWI650892B (en) Steel sheet for outer jacket can of battery, outer jacket can of battery and battery
KR20160037845A (en) Surface-treated steel sheet for use as battery casing, battery casing, and battery
JP6798979B2 (en) Manufacturing method of surface-treated steel sheet for battery container and surface-treated steel sheet for battery container
JPWO2005018021A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6803850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250