JP6802719B2 - Silicon carbide powder - Google Patents

Silicon carbide powder Download PDF

Info

Publication number
JP6802719B2
JP6802719B2 JP2017010415A JP2017010415A JP6802719B2 JP 6802719 B2 JP6802719 B2 JP 6802719B2 JP 2017010415 A JP2017010415 A JP 2017010415A JP 2017010415 A JP2017010415 A JP 2017010415A JP 6802719 B2 JP6802719 B2 JP 6802719B2
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
carbide powder
raw material
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010415A
Other languages
Japanese (ja)
Other versions
JP2018118866A (en
Inventor
石田 弘徳
弘徳 石田
増田 賢太
賢太 増田
潔 野中
潔 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017010415A priority Critical patent/JP6802719B2/en
Publication of JP2018118866A publication Critical patent/JP2018118866A/en
Application granted granted Critical
Publication of JP6802719B2 publication Critical patent/JP6802719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、昇華再結晶法(改良レーリー法)で炭化珪素の単結晶を製造する際の原料となる炭化珪素粉末に関する。 The present invention relates to a silicon carbide powder that is a raw material for producing a single crystal of silicon carbide by a sublimation recrystallization method (improved Rayleigh method).

炭化珪素粉末は、その高硬度性、高熱伝導性、高温耐熱性から、成形砥石、セラミックス部品等の材料として使用されている。また、炭化珪素の単結晶は、シリコンと比較すると、バンドギャップは約3倍、絶縁破壊電界強度は約10倍という物性を有するので、シリコンに代わるパワー半導体用基盤の材料として注目されている。 Silicon carbide powder is used as a material for forming grindstones, ceramic parts, etc. because of its high hardness, high thermal conductivity, and high temperature heat resistance. Further, since a single crystal of silicon carbide has physical properties such that the band gap is about 3 times and the dielectric breakdown electric field strength is about 10 times that of silicon, it is attracting attention as a material for a base for a power semiconductor instead of silicon.

炭化珪素単結晶の製造方法として、原料である炭化珪素粉末を2000℃以上の高温条件下において昇華させ、炭化珪素を単結晶成長させる昇華再結晶法がよく知られており、工業的に広く使用されている。この昇華再結晶法における原料で炭化珪素粉末に関して、様々な工夫がなされている。 As a method for producing a silicon carbide single crystal, a sublimation recrystallization method in which silicon carbide powder, which is a raw material, is sublimated under a high temperature condition of 2000 ° C. or higher to grow silicon carbide as a single crystal is well known and widely used industrially. Has been done. Various ideas have been made for silicon carbide powder as a raw material in this sublimation recrystallization method.

例えば、特許文献1には、炭化珪素粉末の全量中、目開き寸法Aと目開き寸法B(ただし、AはBよりも小さな値である。)の間の粒度を有する粉末の割合が、80体積%以上であり、かつ、上記目開き寸法Bが、上記目開き寸法Aの5倍以下であることを特徴とする炭化珪素粉末が開示されている。 For example, in Patent Document 1, the ratio of powder having a particle size between the opening size A and the opening size B (where A is a value smaller than B) is 80 in the total amount of silicon carbide powder. A silicon carbide powder is disclosed, which is characterized by a volume% or more and the opening size B being 5 times or less of the opening size A.

特開2016−84259号公報Japanese Unexamined Patent Publication No. 2016-84259

上記特許文献1は、炭化珪素粉末の粒度を調整することにより、昇華再結晶法の原料として用いた場合に、昇華速度の大きい炭化珪素粉末を提供する技術を開示しているが、炭化珪素粉末の形状については検討されていない。 Patent Document 1 discloses a technique for providing a silicon carbide powder having a high sublimation rate when used as a raw material for a sublimation recrystallization method by adjusting the particle size of the silicon carbide powder. The shape of is not considered.

したがって、本発明の目的は、炭化珪素粉末の形状を調整することにより、昇華再結晶法の原料として用いた場合に、昇華速度がより大きい炭化珪素粉末を提供することにある。 Therefore, an object of the present invention is to provide a silicon carbide powder having a higher sublimation rate when used as a raw material for a sublimation recrystallization method by adjusting the shape of the silicon carbide powder.

上記目的を達成するため、本発明の炭化珪素粉末は、昇華再結晶法により炭化珪素の単結晶を製造する際の原料として用いられる炭化珪素粉末において、長軸径/短軸径の比が5以下であり、短軸径/厚さの比が2以上である板状粉末を4〜26%含有し、前記炭化珪素粉末の粒度範囲をd〜d×α(μm)としたとき、α≦6であることを特徴とする。 In order to achieve the above object, the silicon carbide powder of the present invention has a major axis diameter / minor axis diameter ratio of 5 in the silicon carbide powder used as a raw material for producing a single crystal of silicon carbide by the sublimation recrystallization method. When 4 to 26% of plate-like powder having a minor axis diameter / thickness ratio of 2 or more is contained and the particle size range of the silicon carbide powder is d to d × α (μm), α ≦ It is characterized by being 6.

本発明の炭化珪素粉末によれば、板状粒子を特定の割合で含有することにより、昇華再結晶法により炭化珪素の単結晶を製造する際、黒鉛るつぼに充填するときの充填量のばらつきを抑制しつつ、粉末どうしの間隙を増やすことができる。また、炭化珪素粉末の粒度範囲をd〜d×α(μm)としたとき、α≦6であることにより、粉末どうしの間隙をより効果的に増やすことができる。このため、昇華速度を向上させることができる。 According to the silicon carbide powder of the present invention, by containing plate-like particles in a specific ratio, when a single crystal of silicon carbide is produced by the sublimation recrystallization method, the filling amount varies when the graphite crucible is filled. It is possible to increase the gap between powders while suppressing it. Further, when the particle size range of the silicon carbide powder is d to d × α (μm), the gap between the powders can be increased more effectively by setting α ≦ 6. Therefore, the sublimation speed can be improved.

本発明の炭化珪素粉末の板状粒子の形状を説明するための説明図である。It is explanatory drawing for demonstrating the shape of the plate-like particle of the silicon carbide powder of this invention. 本発明の実施例において、昇華再結晶法で炭化珪素の単結晶を製造する際に用いたるつぼの構造を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing the structure of a crucible used when producing a single crystal of silicon carbide by the sublimation recrystallization method in the examples of the present invention.

以下、本発明の実施形態を挙げて、本発明について更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to embodiments of the present invention.

まず、炭化珪素粉末の製造方法について説明する。ここでは、固相反応を利用した方法について説明するが、液相反応などを利用した方法であってもよい。 First, a method for producing silicon carbide powder will be described. Here, a method using a solid phase reaction will be described, but a method using a liquid phase reaction or the like may be used.

本発明の炭化珪素粉末の製造方法は、無機珪酸質原料と炭素質原料とを混合して焼成することにより、炭化珪素からなる塊状物を形成する焼成工程と、前記焼成工程で得られた炭化珪素からなる塊状物を衝撃式粉砕機によって粉砕して第1炭化珪素粉末を得る第1粉砕工程と、前記第1炭化珪素粉末を剪断式粉砕機によって粉砕して第2炭化珪素粉末を得る第2粉砕工程と、前記第1炭化珪素粉末と前記第2炭化珪素粉末とを混合して、長軸径/短軸径の比が5以下であり、短軸径/厚さの比が2以上である板状粉末を4〜26%含有する炭化珪素粉末を得る混合工程とを含む。 The method for producing silicon carbide powder of the present invention includes a firing step of forming a lump made of silicon carbide by mixing and firing an inorganic siliceous raw material and a carbonaceous raw material, and the carbonization obtained in the firing step. A first crushing step of crushing a mass made of silicon with an impact crusher to obtain a first silicon carbide powder, and a first crushing of the first silicon carbide powder with a shear crusher to obtain a second silicon carbide powder. 2 In the pulverization step, the first silicon carbide powder and the second silicon carbide powder are mixed, and the ratio of major axis diameter / minor axis diameter is 5 or less, and the ratio of minor axis diameter / thickness is 2 or more. It includes a mixing step of obtaining a silicon carbide powder containing 4 to 26% of the plate-like powder.

ここで、本発明における板状粉末の定義について、図1を参照して説明する。例えば図1に示すような形状の粉末(ただしこのような形状には限られない)において、投影面積が最も広くなる方向(この例では扁平な平面に対して垂直な方向)Aから見て、外径が最も長くなる方向(この例では対角線方向)を長軸方向Lとし、その方向でのサイズを長軸径とする。また、上記方向Aから見て、外径が最も短くなる方向(この例では短辺方向)を短軸方向Sとし、その方向でのサイズを短軸径とする。そして、長軸方向L及び短軸方向Sに対して直交する方向Tにおける最大サイズを厚さとする。そうした場合に、長軸径/短軸径の比が5以下であり、短軸径/厚さの比が2以上であるような粉末を、本発明では板状粉末と定義する。 Here, the definition of the plate-like powder in the present invention will be described with reference to FIG. For example, in the powder having the shape shown in FIG. 1 (but not limited to such a shape), when viewed from the direction A in which the projected area is the widest (in this example, the direction perpendicular to the flat plane). The direction in which the outer diameter is the longest (diagonal direction in this example) is the semimajor axis direction L, and the size in that direction is the semimajor axis diameter. Further, the direction in which the outer diameter is the shortest when viewed from the above direction A (in this example, the short side direction) is defined as the minor axis direction S, and the size in that direction is defined as the minor axis diameter. Then, the maximum size in the direction T orthogonal to the long axis direction L and the short axis direction S is defined as the thickness. In such a case, a powder having a major axis diameter / minor axis diameter ratio of 5 or less and a minor axis diameter / thickness ratio of 2 or more is defined as a plate-like powder in the present invention.

無機珪酸質原料としては、珪石などの結晶質シリカ、シリカフューム、シリカゲル等の非晶質シリカが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。無機珪酸質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非晶質)、炭素質原料との反応性などによって、適宜選ばれる。ただし、焼成時の反応性が良く、炉の制御が容易となるので、無機珪酸質原料としては、非晶質シリカを用いることが好ましい。 Examples of the inorganic siliceous raw material include crystalline silica such as silica stone, silica fume, and amorphous silica such as silica gel. These may be used individually by 1 type or in combination of 2 or more type. The average particle size of the inorganic siliceous raw material is appropriately selected depending on the environment at the time of firing, the state of the raw material (crystalline or amorphous), the reactivity with the carbonic raw material, and the like. However, it is preferable to use amorphous silica as the inorganic siliceous raw material because the reactivity at the time of firing is good and the control of the furnace is easy.

炭素質原料としては、例えば、天然黒鉛、人工黒鉛等の結晶性カーボン、カーボンブラック、コークス、活性炭等の非晶質カーボンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。炭素質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非晶質)、及び炭素質材料との反応性などによって、適宜選ばれる。 Examples of the carbonaceous raw material include crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon such as carbon black, coke, and activated carbon. These may be used individually by 1 type or in combination of 2 or more type. The average particle size of the carbonaceous raw material is appropriately selected depending on the environment at the time of firing, the state of the raw material (crystalline or amorphous), the reactivity with the carbonaceous material, and the like.

無機珪酸質原料と炭素質原料とを混合して、炭化珪素粉末用の原料を調整する。この際の混合方法は任意であり、湿式混合、乾式混合の何れであってもよい。混合の際の炭素質原料と無機珪酸質原料の混合モル比(C/Si)は、焼成時の環境、炭化珪素粉末用原料の粒径、反応性などを考慮して、最適なものを選択する。ここでいう「最適」とは、焼成によって得られる炭化珪素の収量を向上させ、且つ、無機珪酸質原料及び炭素質原料の未反応の残存量を小さくさせることを意味する。 The inorganic siliceous raw material and the carbonic raw material are mixed to prepare a raw material for silicon carbide powder. The mixing method at this time is arbitrary, and either wet mixing or dry mixing may be used. The optimum mixing molar ratio (C / Si) of the carbonaceous raw material and the inorganic siliceous raw material at the time of mixing is selected in consideration of the environment at the time of firing, the particle size of the raw material for silicon carbide powder, the reactivity, etc. To do. The term "optimal" as used herein means improving the yield of silicon carbide obtained by calcination and reducing the unreacted residual amount of the inorganic siliceous raw material and the carbonaceous raw material.

得られた混合粉末(炭化珪素製造用の原料)を2200℃以上、好ましくは2500℃以上で焼成して、塊状の炭化珪素を得る。 The obtained mixed powder (raw material for producing silicon carbide) is calcined at 2200 ° C. or higher, preferably 2500 ° C. or higher to obtain massive silicon carbide.

焼成方法は、特に限定されないが、外部加熱による方法、通電加熱による方法等が挙げられる。外部加熱の方法としては、例えば、流動層炉、バッチ式の炉などを用いる方法が挙げられる。通電加熱による方法としては、例えば、アチソン炉を用いる方法が挙げられる。本発明においては、板状結晶が得られやすいことから、アチソン炉を用いて焼成を行うことが好ましい。 The firing method is not particularly limited, and examples thereof include a method by external heating and a method by energization heating. Examples of the external heating method include a method using a fluidized bed furnace, a batch type furnace, and the like. Examples of the method by energization heating include a method using an Achison furnace. In the present invention, since plate-like crystals can be easily obtained, it is preferable to perform firing using an Athison furnace.

焼成雰囲気は、還元雰囲気であることが好ましい。還元性が弱い雰囲気下で焼成すると、炭化珪素の収率が低下するためである。 The firing atmosphere is preferably a reducing atmosphere. This is because the yield of silicon carbide decreases when firing in an atmosphere with weak reducing property.

なお、本明細書中、「アチソン炉」とは、上方が開口した箱型の間接抵抗加熱炉をいう。ここで、間接抵抗加熱とは、被加熱物に電流を直接流すのではなく、電流を流して発熱させた発熱体によって炭化珪素を得るものである。また、このようなアチソン炉の具体的構成の一例は、特開2013−112544号公報に記載されている。 In the present specification, the “Achison furnace” refers to a box-shaped indirect resistance heating furnace with an open upper part. Here, indirect resistance heating is to obtain silicon carbide by a heating element that generates heat by passing an electric current instead of directly passing an electric current through the object to be heated. Further, an example of a specific configuration of such an Achison furnace is described in Japanese Patent Application Laid-Open No. 2013-11254.

このような炉を用いることにより、下記式(1)に示した反応が生じ、炭化珪素(SiC)からなる塊状物が得られる。
SiO+3C→SiC+2CO …(1)
By using such a furnace, the reaction represented by the following formula (1) occurs, and a lump product made of silicon carbide (SiC) can be obtained.
SiO 2 + 3C → SiC + 2CO ... (1)

アチソン炉の発熱体の種類は、電気を通すことができるものであれば特に限定されるものではなく、例えば、黒鉛粉、カーボンロッド等が挙げられる。 The type of heating element of the Achison furnace is not particularly limited as long as it can conduct electricity, and examples thereof include graphite powder and carbon rods.

発熱体を構成する物質の形態は、特に限定されず、例えば、粉状、塊状等が挙げられる。発熱体は、アチソン炉の通電方向の両端に設けられた電極芯を結ぶように全体として棒状の形状になるように設けられる。ここでの棒状の形状とは例えば、円柱状、角柱状等が挙げられる。 The form of the substance constituting the heating element is not particularly limited, and examples thereof include powder and lumps. The heating element is provided so as to form a rod shape as a whole so as to connect the electrode cores provided at both ends in the energizing direction of the Achison furnace. Examples of the rod-shaped shape here include a columnar shape and a prismatic shape.

通電後、炉内に炭化珪素からなる塊状物が生成する。 After energization, a lump made of silicon carbide is formed in the furnace.

炉内が常温になるまで、アルゴンガス等の不活性ガスを導入して空冷を行う。そして、得られた炭化珪素からなる塊状物(インゴット)を粉砕する。 Air cooling is performed by introducing an inert gas such as argon gas until the inside of the furnace reaches room temperature. Then, a lump (ingot) made of the obtained silicon carbide is crushed.

本発明では、上記塊状物の粉砕を、衝撃式粉砕機によって粉砕して第1炭化珪素粉末を得る第1粉砕工程と、第1炭化珪素粉末を剪断式粉砕機によって粉砕して第2炭化珪素粉末を得る第2粉砕工程とで行う。 In the present invention, the crushing of the lump is crushed by an impact crusher to obtain a first silicon carbide powder, and the first silicon carbide powder is crushed by a shear crusher to obtain a second silicon carbide. This is performed in the second crushing step of obtaining the powder.

第1粉砕工程で用いる衝撃式粉砕機としては、例えば、ジョークラッシャー、ボールミル、ハンマーミル等が挙げられるが、ジョークラッシャーにより粗砕し、該粗砕物を所定の粒度になるまでボールミルによって粉砕することが好ましい。このような方法で粉砕することにより、図1を参照して説明した長軸径、短軸径、厚さが近似した形状(板状でない形状)の粉末が得られやすくなる。 Examples of the impact type crusher used in the first crushing step include a jaw crusher, a ball mill, a hammer mill, etc., which are roughly crushed by a jaw crusher and the coarsely crushed material is crushed by a ball mill until a predetermined particle size is reached. Is preferable. By pulverizing by such a method, it becomes easy to obtain a powder having a shape (non-plate shape) having a major axis diameter, a minor axis diameter, and a thickness similar to those described with reference to FIG.

その後、所望の粒度範囲になるように、粉砕物を分級することが好ましい。分級は、篩を用いた方法が最も簡便であり、好ましい。ただし、分級は、篩を用いた方法に限定されず、乾式、湿式の何れでもよい。また、乾式の分級として、気流を用いた例えば遠心式の分級方法を用いることもできる。 After that, it is preferable to classify the pulverized product so as to have a desired particle size range. As for the classification, the method using a sieve is the simplest and preferable. However, the classification is not limited to the method using a sieve, and may be either a dry method or a wet method. Further, as the dry classification, for example, a centrifugal classification method using an air flow can be used.

上記分級により、第1炭化珪素粉末として、篩の目開き寸法での粒度範囲がa〜bのものを得る。上記粒度範囲a〜bは、a,bがいずれも32〜4000μmの範囲にあって、b≦a×6となるようにすることが好ましく、a×2≦b≦a×6となるようにすることがより好ましい。なお、本発明における粒度範囲とは、粉末の80体積%以上がその粒度範囲に入ることを意味している。 By the above classification, the first silicon carbide powder having a particle size range of a to b in the opening size of the sieve is obtained. In the particle size ranges a to b, it is preferable that a and b are both in the range of 32 to 4000 μm and b ≦ a × 6, and a × 2 ≦ b ≦ a × 6. It is more preferable to do so. The particle size range in the present invention means that 80% by volume or more of the powder falls within the particle size range.

第2粉砕工程で用いる剪断式粉砕機としては、例えば、ディスクミル、ローラーミル、トップグラインダー等が挙げられるが、特にトップグラインダーが好ましい。トップグラインダーを用いる場合、前記第1粉砕工程で得られる第1炭化珪素粉末の篩の目開き寸法での粒度範囲がa〜bであるとき、トップグラインダーのディスクの間隔IはI=aで設定することが好ましい。 Examples of the shearing type crusher used in the second crushing step include a disc mill, a roller mill, and a top grinder, and a top grinder is particularly preferable. When a top grinder is used, when the particle size range of the first silicon carbide powder obtained in the first pulverization step in the mesh size of the sieve is a to b, the disc spacing I of the top grinder is set to I = a. It is preferable to do so.

第1粉砕工程で得られる第1炭化珪素粉末を、上記のような剪断式粉砕機で粉砕することにより、炭化珪素粉末が所定の方向に剪断されて、前述した定義による板状粉末が形成される。剪断式粉砕機で粉砕された粉末中の板状粉末の割合を更に増加させるため、所定の目開き寸法の篩にかけて、該篩にオンしたものを第2炭化珪素粉末として回収することが好ましい。例えばトップグラインダーを用いて粉砕した場合、上記篩の目開き寸法Oは、トップグラインダーのディスクの間隔Iに対してO=Iとすることが好ましい。 By pulverizing the first silicon carbide powder obtained in the first pulverization step with a shearing type pulverizer as described above, the silicon carbide powder is sheared in a predetermined direction to form a plate-like powder according to the above definition. To. In order to further increase the proportion of the plate-like powder in the powder crushed by the shear-type crusher, it is preferable to put the powder on a sieve having a predetermined opening size and recover the powder on the sieve as the second silicon carbide powder. For example, when pulverized using a top grinder, the opening size O of the sieve is preferably O = I with respect to the disc spacing I of the top grinder.

そして、第1粉砕工程で得られた第1炭化珪素粉末と、第2粉砕工程で得られた第2炭化珪素粉末とを所定の割合で混合することにより、前述した定義による板状粉末を4〜26%、好ましくは7〜23%含有する炭化珪素粉末を得る。 Then, by mixing the first silicon carbide powder obtained in the first pulverization step and the second silicon carbide powder obtained in the second pulverization step in a predetermined ratio, a plate-shaped powder according to the above definition is obtained. A silicon carbide powder containing ~ 26%, preferably 7-23% is obtained.

このように板状粉末を含有することにより、昇華再結晶法により炭化珪素単結晶を製造する際、黒鉛等からなるるつぼに充填したとき、板状粉末を含有しない場合に比べて粉末どうしの間隙が多くなり、昇華速度を高めることができる。 By containing the plate-shaped powder in this way, when a silicon carbide single crystal is produced by the sublimation recrystallization method, when it is filled in a crucible made of graphite or the like, the gap between the powders is larger than that in the case where the plate-shaped powder is not contained. Can be increased and the sublimation speed can be increased.

板状粉末の含有量が、4%未満では、昇華速度を高める効果が十分に得られず、26%を超えると、るつぼに充填する際の充填量のばらつきが大きくなって、得られる炭化珪素単結晶の品質にばらつきが生じる可能性がある。 If the content of the plate-like powder is less than 4%, the effect of increasing the sublimation rate cannot be sufficiently obtained, and if it exceeds 26%, the variation in the filling amount when filling the crucible becomes large, and the obtained silicon carbide is obtained. The quality of single crystals can vary.

第1炭化珪素粉末と、第2炭化珪素粉末との混合比(体積比)は、1:0.04〜0.35が好ましくい。上記のような混合比とすることにより、板状粉末の含有量を本発明で規定する範囲に調整しやすくすることができる。 The mixing ratio (volume ratio) of the first silicon carbide powder and the second silicon carbide powder is preferably 1: 0.04 to 0.35. By setting the mixing ratio as described above, the content of the plate-like powder can be easily adjusted within the range specified in the present invention.

なお、板状粉末の割合(%)は、光学顕微鏡で観察して求めることができる。具体的には、粉末が20個以上ある視野(倍率含め)を選択し、板状結晶とそれ以外の粒子数を計測する。この様な視野を他にも計測し、合計で5視野以上行って、全体の平均値として板状粉末の割合(%)を求めることができる。 The proportion (%) of the plate-like powder can be determined by observing with an optical microscope. Specifically, a field of view (including magnification) in which 20 or more powders are present is selected, and the number of plate-like crystals and other particles is measured. It is possible to measure other such visual fields and perform a total of 5 visual fields or more to obtain the ratio (%) of the plate-like powder as the overall average value.

こうして得られる本発明の炭化珪素粉末は、その粒度範囲をd〜d×αμmとしたとき、α≦6となるようにすることが望ましい。これによって、るつぼに充填したときに粉末どうしの間隙が良好に形成されて昇華速度を高めることができる。ただし、α<2の場合、商用生産的に収率が落ちるため、2≦α≦6とすることがより好ましい。α>6では、るつぼへの充填量が増えてしまい、粉末どうしの間隙が少なくなって昇華速度の低下を引き起こす傾向がある。 It is desirable that the silicon carbide powder of the present invention thus obtained has α ≦ 6 when the particle size range is d to d × α μm. As a result, when the crucible is filled, gaps between the powders are well formed and the sublimation rate can be increased. However, when α <2, the yield drops in commercial production, so it is more preferable to set 2 ≦ α ≦ 6. When α> 6, the filling amount in the crucible increases, the gap between the powders decreases, and the sublimation rate tends to decrease.

なお、本発明の炭化珪素粉末を用いて、昇華再結晶法により炭化珪素単結晶を製造する方法は、常法に従って行えばよく、特に限定されないが、概略は下記の通りである。 The method for producing a silicon carbide single crystal by the sublimation recrystallization method using the silicon carbide powder of the present invention may be carried out according to a conventional method, and is not particularly limited, but the outline is as follows.

まず、原料である炭化珪素粉末を例えば黒鉛製のるつぼ内に充填し、このるつぼを加熱装置内に配設する。ただし、炭化珪素粉末が中に充填される容器は、黒鉛製のるつぼに限定されず、昇華再結晶法で単結晶炭化珪素を製造する際に使用されるものであればよい。 First, silicon carbide powder, which is a raw material, is filled in a crucible made of graphite, for example, and the crucible is arranged in a heating device. However, the container in which the silicon carbide powder is filled is not limited to the graphite crucible, and may be any container used for producing single crystal silicon carbide by the sublimation recrystallization method.

そして、るつぼをアルゴンガス等の不活性ガス雰囲気とした減圧下で、るつぼ内の原料が2000〜2500℃となるように加熱する。ただし、るつぼの蓋の下面の炭化珪素単結晶が成長する部分は、これより100℃程度温度低くなるようにしておく。 Then, the crucible is heated so that the raw material in the crucible is 2000 to 2500 ° C. under reduced pressure in an atmosphere of an inert gas such as argon gas. However, the temperature of the portion of the lower surface of the crucible lid on which the silicon carbide single crystal grows is set to be about 100 ° C. lower than this.

この加熱を数時間から数十時間持続させる。これにより、原料である炭化珪素粉末が昇華して昇華ガスとなり、蓋の下面に到達して単結晶化し、この単結晶が成長することにより炭化珪素単結晶の塊状物を得ることができる。 This heating is sustained for several hours to several tens of hours. As a result, the silicon carbide powder, which is a raw material, sublimates into a sublimation gas, reaches the lower surface of the lid and becomes a single crystal, and the single crystal grows to obtain a lump of silicon carbide single crystal.

本発明の炭化珪素粉末は、板状粉末を4〜26%含有するので、るつぼに充填したときに、粉末どうしの間隙を多く形成することができ、炭化珪素の昇華速度を高めることができる。また、るつぼに充填したときの充填量のばらつきが少ないので、一定の品質の炭化珪素単結晶を得ることができる。 Since the silicon carbide powder of the present invention contains 4 to 26% of plate-like powder, many gaps can be formed between the powders when filled in a crucible, and the sublimation rate of silicon carbide can be increased. In addition, since there is little variation in the filling amount when the crucible is filled, a silicon carbide single crystal of a certain quality can be obtained.

以下、試験例により、本発明の実施例を説明する。ただし、本発明はこれらの実施例に限定されない。 Hereinafter, examples of the present invention will be described with reference to test examples. However, the present invention is not limited to these examples.

(試験例1)
下記の方法により、板状粉末の割合が異なる炭化珪素粉末を作成し、るつぼ充填時の比重のばらつきと、昇華再結晶法での昇華速度を求めた。
(Test Example 1)
Silicon carbide powders having different proportions of plate-like powders were prepared by the following methods, and the variation in specific gravity at the time of filling the crucible and the sublimation rate by the sublimation recrystallization method were determined.

[使用原料]
・Si源:非晶質シリカ
・C源:カーボンブラック(アモルファスカーボン)
[炭化ケイ素の製造]
上記原料を、2軸ミキサーを用いて炭素と珪素のモル比(C/Si)が3.0となるように混合して、炭化珪素製造用原料を得た。混合した各原料1000kgをアチソン炉で焼成した。焼成は、中心温度2500℃以上で16時間行った。
[Ingredients used]
・ Si source: Amorphous silica ・ C source: Carbon black (amorphous carbon)
[Manufacturing of silicon carbide]
The above raw materials were mixed using a twin-screw mixer so that the molar ratio (C / Si) of carbon and silicon was 3.0 to obtain a raw material for producing silicon carbide. 1000 kg of each mixed raw material was calcined in an Achison furnace. The firing was carried out at a center temperature of 2500 ° C. or higher for 16 hours.

[炭化珪素の粉砕・粒度調整]
得られた炭化珪素塊を、ジョークラッシャーで粉砕し、その後、ボールミル粉砕を行った。次いで、篩により分級して、篩の目開き寸法で125〜710μmの粒度範囲の第1炭化珪素粉末を得た。
[Crushing and adjusting particle size of silicon carbide]
The obtained silicon carbide lump was crushed with a jaw crusher, and then ball mill crushed. Then, the mixture was classified by a sieve to obtain a first silicon carbide powder having a particle size range of 125 to 710 μm in the mesh size of the sieve.

上記第1炭化珪素粉末の一部を抜き取り、トップグラインダーを用いてディスク間隔125μmで粉砕し、目開き125μmの篩で分級し、篩上の粉末を第2炭化珪素粉末として回収した。 A part of the first silicon carbide powder was extracted, pulverized using a top grinder at a disc interval of 125 μm, classified with a sieve having a mesh size of 125 μm, and the powder on the sieve was recovered as the second silicon carbide powder.

次いで、第1炭化珪素粉末と、第2炭化珪素粉末との配合比を変えて2軸ミキサーで混合し、後述する表1のNo.1〜7に示すように、板状粉末の割合が変化した炭化珪素粉末を作成した。なお、板状粉末の割合は、前述した方法で測定した。 Next, the first silicon carbide powder and the second silicon carbide powder were mixed with a biaxial mixer at different blending ratios, and No. 1 in Table 1 described later. As shown in 1 to 7, silicon carbide powder in which the ratio of the plate-like powder was changed was prepared. The ratio of the plate-like powder was measured by the method described above.

[比重のばらつき]
表1のNo.1〜7の炭化珪素粉末を、それぞれカーボンるつぼに充填し、下記の方法にて、比重のばらつきを測定した。
[Variation of specific gravity]
No. in Table 1 Each of the silicon carbide powders 1 to 7 was filled in a carbon crucible, and the variation in specific gravity was measured by the following method.

すなわち、図2に示すように、カーボンるつぼ1に各炭化珪素粉末2を100gずつ充填した。炭化珪素粉末を充填したるつぼ1をタッピングし、粉末の容積をるつぼ1の内寸から算出して、かさ比重を求めた。それぞれの試料について上記操作を10回繰り返し、かさ比重の最大値、最小値、平均値を求め、下記計算式(2)からばらつきを算出した。
ばらつき={(最大値―最小値)/平均値}×100(%)…(2)
That is, as shown in FIG. 2, 100 g of each silicon carbide powder 2 was filled in the carbon crucible 1. The crucible 1 filled with silicon carbide powder was tapped, and the volume of the powder was calculated from the inner dimensions of the crucible 1 to obtain the bulk specific gravity. The above operation was repeated 10 times for each sample, the maximum value, the minimum value, and the average value of the bulk specific gravity were obtained, and the variation was calculated from the following formula (2).
Variation = {(maximum value-minimum value) / average value} x 100 (%) ... (2)

[昇華速度]
るつぼ1に蓋4を被せ(この試験では種結晶をつけない)、アルゴン雰囲気下、0.5kPaの圧力下で、るつぼ1の下部(炭化珪素粉末2の周囲)の温度が2200℃となり、るつぼ1の上部(析出する単結晶3の周囲)の温度が2070℃となるように加熱することにより、るつぼ1中の炭化珪素粉末2を昇華させ、蓋4の下面に炭化珪素単結晶3を析出させた。加熱時間は6時間であった。そして、下記計算式(3)から昇華速度比を求めた。
昇華速度比=(100[g]−加熱処理後に残った重量[g])/6[時間]…(3)
[Sublimation speed]
The crucible 1 is covered with the lid 4 (seed crystals are not attached in this test), and the temperature of the lower part of the crucible 1 (around the silicon carbide powder 2) becomes 2200 ° C. under an argon atmosphere and a pressure of 0.5 kPa. By heating the upper part of 1 (around the precipitated single crystal 3) to 2070 ° C., the silicon carbide powder 2 in the crucible 1 is sublimated, and the silicon carbide single crystal 3 is precipitated on the lower surface of the lid 4. I let you. The heating time was 6 hours. Then, the sublimation rate ratio was obtained from the following formula (3).
Sublimation rate ratio = (100 [g] -weight remaining after heat treatment [g]) / 6 [hours] ... (3)

以上の結果を下記表1に示す。 The above results are shown in Table 1 below.

表1に示されるように、板状粉末の割合が本願発明で規定する範囲である試料No.3〜6は、るつぼ充填時のかさ比重のばらつきを比較的低く抑えつつ、昇華速度比を高めることができる。これに対して、板状粉末の割合が本願発明で規定する範囲よりも少ない試料No.1、2では、昇華速度比が向上しなかった。また、板状粉末の割合が本願発明で規定する範囲よりも多い試料No.7では、るつぼ充填時のかさ比重のばらつきが著しく大きくなることがわかる。 As shown in Table 1, the sample No. 1 in which the ratio of the plate-like powder is within the range specified in the present invention. In Nos. 3 to 6, the sublimation rate ratio can be increased while keeping the variation in bulk specific gravity at the time of filling the crucible relatively low. On the other hand, the sample No. in which the proportion of the plate-like powder is smaller than the range specified in the present invention. In 1 and 2, the sublimation rate ratio did not improve. In addition, the sample No. in which the proportion of the plate-like powder is larger than the range specified in the present invention. In No. 7, it can be seen that the variation in bulk specific gravity at the time of filling the crucible becomes remarkably large.

(試験例2)
試験例1における、第1炭化珪素粉末を得るときの篩による分級を、篩の目開き寸法で125〜1000μmの粒度範囲となるように行った他は、試験例1と同様にして、試料No.8の炭化珪素粉末を得た。この粉末について、試験例1と同様に、るつぼ充填時のかさ比重のばらつきと、昇華速度比を測定した。この結果を、試料No.4の結果と並記して下記表2に示す。
(Test Example 2)
In Test Example 1, the classification by the sieve when obtaining the first silicon carbide powder was carried out so that the mesh size of the sieve was 125 to 1000 μm, and the sample No. was the same as that of Test Example 1. .. 8 silicon carbide powders were obtained. For this powder, the variation in bulk specific gravity and the sublimation rate ratio at the time of filling the crucible were measured in the same manner as in Test Example 1. This result is presented in Sample No. The results of 4 are shown in Table 2 below.

なお、粒度範囲をd〜d×αとすると、試料No.4、8のαは、下記のようになる。 When the particle size range is d to d × α, the sample No. The α of 4 and 8 are as follows.

No.4:α=5.68
No.8:α=8
No. 4: α = 5.68
No. 8: α = 8

表2に示されるように、粒度範囲が大きい試料No.8は、粒度範囲が小さい試料No.4に比べて、昇華速度比が低下する傾向があることがわかる。 As shown in Table 2, the sample No. having a large particle size range. No. 8 is a sample No. 8 having a small particle size range. It can be seen that the sublimation rate ratio tends to decrease as compared with 4.

Claims (1)

昇華再結晶法により炭化珪素の単結晶を製造する際の原料として用いられる炭化珪素粉末の製造方法において、
炭化珪素からなる塊状物を衝撃式粉砕機によって粉砕し、分級することにより、篩の目開き寸法での粒度範囲がa〜bで、a,bがいずれも32〜4000μmの範囲にあって、b≦a×6である第1炭化珪素粉末を得る工程と、
前記第1炭化珪素粉末を剪断式粉砕機で粉砕することにより、長軸径/短軸径の比が5以下であり、短軸径/厚さの比が2以上である板状粉末を含む第2炭化珪素粉末を得る工程と、
前記第1炭化珪素粉末と前記第2炭化ケイ素粉末とを所定の割合で混合することにより、前記板状粉末の含有量が4〜26%であり、全体の前記炭素珪素粉末の粒度範囲をd〜d×α(μm)としたとき、α≦6である炭化ケイ素粉末を得る工程とを含むことを特徴とする炭化珪素粉末の製造方法。
In the method for producing silicon carbide powder used as a raw material when producing a single crystal of silicon carbide by the sublimation recrystallization method.
By crushing a mass made of silicon carbide with an impact crusher and classifying it, the particle size range in the mesh size of the sieve is a to b, and both a and b are in the range of 32 to 4000 μm. The step of obtaining the first silicon carbide powder having b ≦ a × 6 and
By crushing the first silicon carbide powder with a shearing type crusher, a plate-like powder having a major axis diameter / minor axis diameter ratio of 5 or less and a minor axis diameter / thickness ratio of 2 or more is included. The process of obtaining the second silicon carbide powder and
By mixing the first silicon carbide powder and the second silicon carbide powder in a predetermined ratio, the content of the plate-shaped powder is 4 to 26%, and the overall particle size range of the carbon silicon powder is d. A method for producing a silicon carbide powder, which comprises a step of obtaining a silicon carbide powder in which α ≦ 6 when ~ d × α (μm).
JP2017010415A 2017-01-24 2017-01-24 Silicon carbide powder Active JP6802719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017010415A JP6802719B2 (en) 2017-01-24 2017-01-24 Silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010415A JP6802719B2 (en) 2017-01-24 2017-01-24 Silicon carbide powder

Publications (2)

Publication Number Publication Date
JP2018118866A JP2018118866A (en) 2018-08-02
JP6802719B2 true JP6802719B2 (en) 2020-12-16

Family

ID=63043498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010415A Active JP6802719B2 (en) 2017-01-24 2017-01-24 Silicon carbide powder

Country Status (1)

Country Link
JP (1) JP6802719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113026095A (en) * 2021-03-15 2021-06-25 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for improving growth rate of silicon carbide crystal prepared by PVT method

Also Published As

Publication number Publication date
JP2018118866A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US20160160386A1 (en) Silicon carbide powder and method for producing silicon carbide single crystal
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JPWO2013027790A1 (en) Silicon carbide powder and method for producing the same
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
JP2015157737A (en) Method for producing silicon carbide powder
KR20170011159A (en) Compound semiconductor thermoelectric material and manufacturing method thereof
JP6809912B2 (en) Silicon Carbide Powder, Its Manufacturing Method, and Silicon Carbide Single Crystal Manufacturing Method
JP6802719B2 (en) Silicon carbide powder
US20160229698A1 (en) Method for producing ingot and powder of zirconium carbide
JP6640680B2 (en) Method for producing silicon carbide single crystal
JP6757688B2 (en) Silicon Carbide Powder, Its Manufacturing Method, and Silicon Carbide Single Crystal Manufacturing Method
JP6778100B2 (en) Method for producing silicon carbide powder and silicon carbide single crystal using the same as a raw material
JP2600762B2 (en) Method for producing zinc oxide whiskers
JPWO2018110560A1 (en) Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP6669469B2 (en) Silicon carbide powder
WO2018110567A1 (en) Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
JP6990136B2 (en) Silicon carbide powder
JP2019151533A (en) Silicon carbide powder
JP7019362B2 (en) Silicon carbide powder
JP6378041B2 (en) Silicon carbide powder, method for producing silicon carbide powder with adjusted particle size, and method for producing silicon carbide single crystal
JP6508583B2 (en) Method of manufacturing silicon carbide single crystal
JP2019119663A (en) SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
JP6616660B2 (en) Method for producing silicon carbide
JP6420735B2 (en) Silicon carbide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250