JP2019119663A - SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME - Google Patents

SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME Download PDF

Info

Publication number
JP2019119663A
JP2019119663A JP2018002580A JP2018002580A JP2019119663A JP 2019119663 A JP2019119663 A JP 2019119663A JP 2018002580 A JP2018002580 A JP 2018002580A JP 2018002580 A JP2018002580 A JP 2018002580A JP 2019119663 A JP2019119663 A JP 2019119663A
Authority
JP
Japan
Prior art keywords
sic
sic powder
single crystal
powder
sphericity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002580A
Other languages
Japanese (ja)
Inventor
石田 弘徳
Hironori Ishida
弘徳 石田
増田 賢太
Kenta Masuda
賢太 増田
潔 野中
Kiyoshi Nonaka
潔 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018002580A priority Critical patent/JP2019119663A/en
Publication of JP2019119663A publication Critical patent/JP2019119663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide SiC powder capable of uniformizing an obtained SiC single crystal, when being used as a raw material in a sublimation recrystallization method; and to provide a manufacturing method of a SiC single crystal using the same.SOLUTION: SiC powder contains particles having the degree of sphericity of 0.85 or less as much as 60 mass% or more. A manufacturing method of a SiC single crystal includes a filling step S1 for filling a container with SiC powder containing particles having the degree of sphericity of 0.85 or less as much as 60 mass% or more, an installation step S2 for moving the container filled with SiC powder and installing it in a heating apparatus, and a SiC single crystal generation step S3 for obtaining a SiC single crystal by sublimating SiC powder by being heated in the heating apparatus.SELECTED DRAWING: Figure 1

Description

本発明は、SiC(炭化珪素)粉末及びこれを用いたSiC単結晶の製造方法に関する。   The present invention relates to a SiC (silicon carbide) powder and a method for producing an SiC single crystal using the same.

SiC単結晶は、優れた電気特性を有しており、省エネルギー志向が高まる近年においてSi(シリコン)に代わるパワー半導体用基板の材料として注目されている。   SiC single crystals have excellent electrical characteristics, and are attracting attention as materials for power semiconductor substrates to replace Si (silicon) in recent years, where the energy saving intention is increasing.

SiC単結晶の製造方法として、原料であるSiC粉末を2000℃以上の高温条件下において昇華させ、SiCを単結晶成長させる昇華再結晶法(改良レーリー法)がよく知られており、工業的に広く使用されている。   As a method of producing a SiC single crystal, a sublimation recrystallization method (a modified Lely method) is well known, in which a raw material SiC powder is sublimed under high temperature conditions of 2000 ° C. or more to grow SiC single crystal. It is widely used.

昇華再結晶法においては、黒鉛製の坩堝などの容器にSiC粉末を充填し、この容器を加熱炉などの加熱装置内で加熱する。ここで、一般的に、SiC粉末を容器に投入する量は、重量によって管理され、投入されたSiC粉末の表面は作業者によってならされる。   In the sublimation recrystallization method, a container such as a crucible made of graphite is filled with SiC powder, and the container is heated in a heating device such as a heating furnace. Here, in general, the amount of charging the SiC powder into the container is controlled by weight, and the surface of the charged SiC powder is leveled by the worker.

特許文献1には、容器に均一に充填するために、流動性指数が高いSiC粉末を用いることが開示されている。これは、充填密度が不均一であると、目的とするポリタイプ以外の異種ポリタイプが混入し、結晶欠陥が発生しやすくなるからである。   Patent Document 1 discloses that a SiC powder having a high flowability index is used to uniformly fill a container. This is because when the packing density is nonuniform, different polytypes other than the target polytype are mixed, and crystal defects are easily generated.

特開2016−147790号公報JP, 2016-147790, A

しかしながら、SiC粉末の流動性が高いと、作業者が容器にSiC粉末を充填した場所から加熱装置内に設置するまでの移動時などに容器に振動や衝撃などが加わることにより、容器内のSiC粉末の高さが変化する。また、SiCを充填する際の注ぎ口から容器までの注ぎ高さなどの充填のやり方が違えば、同じ量のSiC粉末を充填しても容器内のSiC粉末の高さは変化する。このようにして生じる容器内のSiC粉末の高さの変化は、作業者の個人差に依存する。   However, if the flowability of the SiC powder is high, the SiC in the container is subjected to vibration, impact, etc. when moving from the place where the operator filled the container to the SiC powder to place in the heating apparatus. The height of the powder changes. Also, if the filling method such as the pouring height from the spout to the container in filling the SiC is different, the height of the SiC powder in the container changes even if the same amount of SiC powder is filled. The change in height of the SiC powder in the container that occurs in this way depends on the individual differences of the workers.

このようなSiC粉末の高さの変化は、SiC粉末間の隙間の変化を伴うものであり、昇華特性に影響を及ぼす。そのため、結果として、得られるSiC単結晶の均一性が確保されないという課題があった。   Such a change in the height of the SiC powder is accompanied by a change in the gap between the SiC powders and affects the sublimation characteristics. Therefore, as a result, there is a problem that the uniformity of the obtained SiC single crystal can not be secured.

本発明は、昇華再結晶法において原料として用いた場合に、得られるSiC単結晶の均一化を図ることが可能なSiC粉末、及びこれを用いたSiC単結晶の製造方法を提供することを目的とする。   An object of the present invention is to provide a SiC powder capable of achieving uniformization of the obtained SiC single crystal when used as a raw material in a sublimation recrystallization method, and a method of producing a SiC single crystal using the same. I assume.

本発明のSiC粉末は、球形度が0.85以下である粒子が60質量%以上含まれることを特徴する。   The SiC powder of the present invention is characterized by containing 60% by mass or more of particles having a sphericity of 0.85 or less.

本発明のSiC粉末を昇華再結晶法によりSiC単結晶を製造する際の原料粉末として用いれば、後述する実施例から分かるように、容器内にSiC粉末を充填したときのSiC粉末の高さと、SiC粉末を充填した容器を加熱装置内に設置したときのSiC粉末の高さの差、さらにはその高さのばらつきが、作業者による個人差を含めて小さい。   When the SiC powder of the present invention is used as a raw material powder for producing a SiC single crystal by a sublimation recrystallization method, as will be understood from the examples described later, the height of the SiC powder when the SiC powder is filled in the container; When the container filled with the SiC powder is installed in the heating apparatus, the difference in height of the SiC powder and the variation in the height thereof are small, including the individual differences among workers.

これにより、容器内におけるSiC粉末間の隙間のばらつきを抑制することができるので、昇華特性の変動が抑制され、結果として、得られる単結晶SiCの品質の均一性を図ることが可能となる。   Thereby, it is possible to suppress the variation of the gap between the SiC powders in the container, so that the variation of the sublimation characteristics is suppressed, and as a result, it is possible to achieve the uniformity of the quality of single crystal SiC obtained.

本発明のSiC単結晶の製造方法は、球形度が0.85以下である粒子が60質量%以上含まれるSiC粉末を容器に充填する工程と、前記SiC粉末を充填した容器を移動させて、加熱装置内に設置する工程と、前記加熱装置内を加熱して、前記SiC粉末を昇華させ、SiC単結晶を得る工程とを備えることを特徴とする。   In the method of producing an SiC single crystal according to the present invention, a step of filling a container with an SiC powder containing 60 mass% or more of particles having a sphericity of 0.85 or less, and moving the container filled with the SiC powder The method further comprises the steps of: installing in a heating device; and heating the inside of the heating device to sublime the SiC powder to obtain a SiC single crystal.

本発明のSiC単結晶の製造方法によれば、前記本発明のSiC粉末を原料としているので、得られる単結晶SiCの品質の均一性を図ることが可能となる。   According to the method of manufacturing an SiC single crystal of the present invention, since the SiC powder of the present invention is used as a raw material, it is possible to achieve uniformity in the quality of single crystal SiC obtained.

本発明の実施形態に係るSiC単結晶の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the SiC single crystal which concerns on embodiment of this invention.

本発明の実施形態に係るSiC粉末について説明する。本SiC粉末は、昇華再結晶法によりSiC単結晶を製造する際に、原料として用いられる。   The SiC powder according to the embodiment of the present invention will be described. The present SiC powder is used as a raw material when producing a SiC single crystal by a sublimation recrystallization method.

ここで、昇華再結晶法によりSiC単結晶を製造する方法について図1を参照して説明する。   Here, a method of producing a SiC single crystal by a sublimation recrystallization method will be described with reference to FIG.

まず、原料粉末であるSiC粉末を容器に充填する充填工程S1を行う。容器は、例えば黒鉛製の坩堝であるが、これに限定されず、昇華再結晶法によってSiC単結晶を製造する際に使用されるものであればよい。   First, a filling step S1 of filling a container with SiC powder which is a raw material powder is performed. The container is, for example, a crucible made of graphite, but the container is not limited thereto, and may be any container as long as it is used when producing a SiC single crystal by a sublimation recrystallization method.

一般的に、SiC粉末を容器に投入する量は、重量によって管理されており、投入されたSiC粉末の表面は作業者によってならされる。   Generally, the amount of SiC powder introduced into the container is controlled by weight, and the surface of the introduced SiC powder is leveled by the worker.

次に、SiC粉末を充填した容器を移動させて、加熱装置内に設置する設置工程S2を行う。SiC粉末が充填された容器は、そのまま移動されて加熱装置内に設置されることもあるが、保管場所にて保管された後に加熱装置内に設置されることもある。   Next, the container filled with the SiC powder is moved to perform the installation step S2 of installing in the heating device. The container filled with the SiC powder may be moved as it is and placed in the heating device, or may be placed in the heating device after being stored in a storage location.

次に、加熱装置内を加熱して、SiC粉末を昇華させ、SiC単結晶を得るSiC単結晶生成工程S3を行う。具体的には、例えば、加熱装置内の雰囲気をアルゴンガス等の不活性ガス雰囲気とした減圧下で、容器内のSiC粉末が2000〜2500℃となるように加熱する。ただし、容器の蓋の下面のSiC単結晶が成長する部分は、これより100℃程度温度低くなるようにしておくことが好ましい。   Next, the inside of the heating device is heated to sublime the SiC powder, and an SiC single crystal production step S3 for obtaining a SiC single crystal is performed. Specifically, for example, the SiC powder in the container is heated to 2000 to 2500 ° C. under a reduced pressure in which the atmosphere in the heating device is an inert gas atmosphere such as argon gas. However, it is preferable that the temperature at which the portion of the lower surface of the lid of the container on which the SiC single crystal grows grow be about 100 ° C. lower.

この加熱を数時間から数十時間持続させる。これにより、SiC粉末が昇華して昇華ガスとなり、蓋の下面に到達して単結晶化し、この単結晶が成長することによりSiC単結晶の塊状物を得ることができる。   This heating is continued for several hours to several tens of hours. Thereby, the SiC powder is sublimed to become a sublimation gas, and reaches the lower surface of the lid to be single-crystallized, and a single-crystal is grown, whereby a lump of SiC single crystal can be obtained.

本実施形態において原料であるSiC粉末は、球形度Spが0.85以下である粒子が60質量%以上含まれており、さらに好ましくは、球形度Spが0.85以下である粒子が80質量%以上含まれている。   In the present embodiment, the SiC powder as the raw material contains 60% by mass or more of particles having a sphericity Sp of 0.85 or less, more preferably 80 mass of particles having a sphericity Sp of 0.85 or less % Or more is included.

球形度Spは次式(1)によって定義される。
Sp=4πS/L ・・・(1)
The sphericity Sp is defined by the following equation (1).
Sp = 4πS / L 2 (1)

ここで、Sは粒子の観察像の投影断面積、Lは粒子の観察像の外周長(周囲長)である。粒子の観察像は、SEM(走査型電子顕微鏡)や光学顕微鏡で観察した粒子を観察した二次元像である。真円の球形度Spは1であり、球形度Spが1に近いほど真円に近いことを意味する。   Here, S is the projected cross-sectional area of the observation image of the particle, and L is the outer peripheral length (peripheral length) of the observation image of the particle. The observation image of the particles is a two-dimensional image obtained by observing the particles observed by SEM (scanning electron microscope) or an optical microscope. The sphericity Sp of a true circle is 1, and the closer the sphericity Sp is to 1, the closer it is to a perfect circle.

原料であるSiC粉末において球形度Spが0.85以下である粒子が60質量%以上含まれていれば、後述する実施例から分かるように、容器内にSiC粉末を充填したときのSiC粉末の高さと、SiC粉末を充填した容器を加熱装置内に設置したときのSiC粉末の高さの差、さらにはその高さのばらつきが、作業者による個人差を含めて小さい。   As long as 60 mass% or more of particles having a sphericity Sp of 0.85 or less are contained in the raw material SiC powder, as will be understood from the examples described later, the SiC powder when filled with the SiC powder The height, the difference in height of the SiC powder when the container filled with the SiC powder is installed in the heating apparatus, and the variation in the height are small, including individual differences among workers.

これにより、容器内におけるSiC粉末間の隙間のばらつきを抑制することができるので、昇華特性の変動が抑制され、結果として、得られる単結晶SiCの品質の均一性を図ることが可能となる。   Thereby, it is possible to suppress the variation of the gap between the SiC powders in the container, so that the variation of the sublimation characteristics is suppressed, and as a result, it is possible to achieve the uniformity of the quality of single crystal SiC obtained.

一方、原料であるSiC粉末において球形度Spが0.85以下である粒子が60質量%未満しか含まれていなければ、後述する比較例から分かるように、容器内にSiC粉末を充填したときのSiC粉末の高さと、SiC粉末を充填した容器加熱装置内に設置したときのSiC粉末の高さの差、さらにはその高さのばらつきが、作業者による個人差を含めて大きい。   On the other hand, if less than 60% by mass of particles having a sphericity Sp of 0.85 or less is contained in the raw material SiC powder, as can be seen from a comparative example described later, when the SiC powder is filled in the container The difference between the height of the SiC powder and the height of the SiC powder when installed in a container heating apparatus filled with the SiC powder, and the variation in the height are large including the individual differences among workers.

これにより、容器内におけるSiC粉末間の隙間の変化が大きくなるので、昇華特性の変動の影響が生じ、結果として、得られる単結晶SiCの品質の均一性を図ることが困難に可能となる。   As a result, the change in the gap between the SiC powders in the container becomes large, so that the influence of the fluctuation of the sublimation characteristic occurs, and as a result, it becomes difficult to achieve the uniformity of the quality of the obtained single crystal SiC.

球形度Spが0.85以下のSiC粉末は、SiCの大きな粒子もしくは塊状物を粉砕して得ることが好ましい。特に、アチソン法によって得たSiCの塊状物を粉砕して得ることが好ましい。   The SiC powder having a sphericity Sp of 0.85 or less is preferably obtained by grinding large particles or a lump of SiC. In particular, it is preferable to obtain by grinding a block of SiC obtained by the Achison method.

なお、SiC粉末の純度、粒度及びブレーン比表面積などは、昇華再結晶法によりSiC単結晶を製造する際に原料粉末として使用される従来のSiC粉末と同様であればよい。   The purity, particle size, and specific surface area of the SiC powder may be the same as conventional SiC powder used as a raw material powder when producing a SiC single crystal by a sublimation recrystallization method.

以下、本発明の実施形態に係るSiC粉末を製造する方法の一例について説明する。この製造方法は、原料作成工程、塊状物作成工程、粉砕工程、分級工程、測定工程及び混合工程を備える。   Hereinafter, an example of a method of manufacturing SiC powder concerning an embodiment of the present invention is explained. This manufacturing method comprises a raw material preparation step, a lump preparation step, a grinding step, a classification step, a measurement step and a mixing step.

まず、Si(珪素)を含む無機珪酸質原料と炭素質原料とを混合してSiC製造用原料を得る原料作成工程を行う。無機珪酸質原料としては、珪石などの結晶質シリカ、シリカフューム、シリカゲル等の非結晶シリカが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。無機珪酸質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非結晶質)、炭素質材料との反応性などによって、適宜選ばれる。   First, a raw material preparation step of obtaining a raw material for SiC production by mixing an inorganic siliceous raw material containing Si (silicon) and a carbonaceous raw material is performed. Examples of the inorganic siliceous material include crystalline silica such as silica stone, non-crystalline silica such as silica fume and silica gel. You may use these individually by 1 type or in combination of 2 or more types. The average particle diameter of the inorganic siliceous raw material is appropriately selected depending on the environment at the time of firing, the state of the raw material (crystalline and non-crystalline), the reactivity with the carbonaceous material, and the like.

炭素質材料としては、例えば、天然黒鉛、人工黒鉛等の結晶性カーボン、カーボンブラック、コークス、活性炭等の非晶質カーボンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。炭素質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非結晶質)、及び炭素質材料との反応性などによって、適宜選ばれる。   Examples of the carbonaceous material include crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon such as carbon black, coke and activated carbon. You may use these individually by 1 type or in combination of 2 or more types. The average particle size of the carbonaceous raw material is appropriately selected depending on the environment at the time of firing, the state of the raw material (crystalline and non-crystalline), the reactivity with the carbonaceous material, and the like.

無機珪酸質原料と炭素質原料とを混合して、SiC粉末用の原料を調製する。この際の混合方法は任意であり、湿式混合、乾式混合の何れであってもよいが、例えば、二軸ミキサーなどによって混合すればよい。   The inorganic siliceous raw material and the carbonaceous raw material are mixed to prepare a raw material for SiC powder. The mixing method in this case is arbitrary, and may be either wet mixing or dry mixing, and for example, it may be mixed by a twin screw mixer or the like.

混合の際の無機珪酸質材料と炭素質原料の混合モル比(C/Si)は、焼成時の環境、SiC粉末用原料の粒径、反応性などを考慮して、最適なものを選択する。ここでいう「最適」とは、焼成によって得られるSiCの収量を向上させ、且つ、無機珪酸質材料及び炭素質材料の未反応の残存量を小さくさせることを意味する。   The mixing molar ratio (C / Si) of the inorganic siliceous material and the carbonaceous material at the time of mixing is selected in consideration of the environment at the time of firing, the particle size of the raw material for SiC powder, reactivity, etc. . The term "optimal" as used herein means to improve the yield of SiC obtained by firing and to reduce the unreacted residual amount of the inorganic siliceous material and the carbonaceous material.

次に、アチソン法でSiCの塊状物を得る塊状物形成工程を行う。塊状物形成工程においては、原料作成工程で得たSiC製造用原料を、アチソン炉で2200℃以上で焼成し、SiCからなる塊状物を得る。アチソン炉は、一般的なものを用いればよい。   Next, a mass forming step is performed to obtain a mass of SiC by the Atchison method. In the lump formation step, the raw material for SiC production obtained in the raw material formation step is fired at 2200 ° C. or higher in an Acheson furnace to obtain a lump consisting of SiC. The Acheson furnace may be a general one.

なお、本明細書中、「アチソン炉」とは、上方が開口して箱型の間接抵抗加熱炉をいう。ここで、間接抵抗加熱とは、被加熱物に電流を直接流すのではなく、電流を流して発熱させた発熱体によってSiCを得るものである。また、このようなアチソン炉の具体的構成の一例は、特開2013−112544号公報に記載されている。   In the present specification, the "Acheson furnace" refers to a box-shaped indirect resistance heating furnace whose upper side is opened. Here, indirect resistance heating is to obtain SiC by means of a heating element that generates heat by flowing a current, instead of flowing the current directly to the object to be heated. Moreover, an example of a specific structure of such an Atchison furnace is described in Unexamined-Japanese-Patent No. 2013-112544.

このような炉を用いることにより、式(2)に示した反応が生じ、SiCからなる塊状物が得られる。
SiO+3C→SiC+2CO ・・・(2)
By using such a furnace, the reaction shown in Formula (2) occurs and a lump made of SiC is obtained.
SiO 2 + 3C → SiC + 2CO (2)

アチソン炉の発熱体の種類は、電気を通すことができるものであれば特に限定されず、例えば、黒鉛粉、カーボンロッド等が挙げられる。   The type of the heating element of the Acheson furnace is not particularly limited as long as it can pass electricity, and examples thereof include graphite powder and carbon rods.

発熱体を構成する物質の形態は、特に限定されず、例えば、粉状、塊状等が挙げられる。発熱体は、アチソン炉の通電方向の両端に設けられた電極芯を結ぶように全体として棒状の形状になるように設けられる。ここでの棒状の形状とは例えば、円柱状、角柱状等が挙げられる。   The form of the substance constituting the heating element is not particularly limited, and examples thereof include powdery, massive and the like. The heating element is provided in a bar-like shape as a whole so as to connect the electrode cores provided at both ends of the Acheson furnace in the current supply direction. Examples of the rod-like shape here include a cylindrical shape and a prismatic shape.

通電後、炉内にSiCからなる塊状物が生成する。そして、炉内が常温になるまで、アルゴンガス等の不活性ガスを導入して空冷を行う。冷却後、炉内からSiC塊状物を取り出す。   After energization, a lump of SiC is formed in the furnace. Then, an inert gas such as argon gas is introduced to perform air cooling until the inside of the furnace reaches a normal temperature. After cooling, the SiC lump is taken out from the furnace.

次に、塊状物形成工程で得たSiCの塊状物を粉砕してSiC粉末を得る粉砕工程を行う。粉砕方法は限定されないが、例えば、ジョークラシャー、ローラーミル、ディスクグラインダー、ボールミル、ジェットミルなどを用いて粉砕すればよい。ただし、一般的には、粉砕中に摩耗が生じ難いように、ジョークラッシャー又はローラーミルを用いて粉砕されることが多い。しかしながら、これらの粉砕機を用いた粉砕では、粒度分布の調整を行うことは難しく、昇華再結晶法によってSiC単結晶を得る際の原料となるSiC粉末に適した粒度範囲内に入るものが少なく、歩留まりに劣る。   Next, the mass of SiC obtained in the mass forming step is pulverized to obtain an SiC powder. The grinding method is not limited, and for example, grinding may be performed using a jaw crusher, a roller mill, a disc grinder, a ball mill, a jet mill, and the like. However, in general, it is often crushed using a jaw crusher or a roller mill so that abrasion is less likely to occur during crushing. However, in pulverization using these pulverizers, it is difficult to adjust the particle size distribution, and few fall within the particle size range suitable for the SiC powder that is the raw material for obtaining SiC single crystals by the sublimation recrystallization method. Poor in yield.

そこで、粒度分布の調整が可能なボールミル又はジェットミルを用いて粉砕することが好ましい。ただし、ボールミルにおいては、粉砕力が弱い条件で長時間の粉砕を行うと、粉砕中にSiC粒子の端部が丸められて球形に近づき、球形度Spが大きくなり過ぎる。   Then, it is preferable to grind | pulverize using the ball mill or jet mill which can adjust particle size distribution. However, in a ball mill, if grinding is performed for a long time under weak crushing power, the ends of the SiC particles are rounded during grinding, approaching a spherical shape, and the sphericity Sp becomes too large.

よって、球形度Spが大きくなり過ぎないように、粉砕力が強い条件で短時間の粉砕を行うことが好ましい。なお、粉砕力の強弱は、ボール径、ボール数、ボールの材質、ミルに投入する塊状物の量、ミルの回転速度などによって調整することが可能である。   Therefore, it is preferable to carry out grinding for a short time under conditions of high grinding power so that the sphericity Sp does not become too large. The strength of the pulverizing force can be adjusted by the ball diameter, the number of balls, the material of the balls, the amount of lumps fed to the mill, the rotational speed of the mill, and the like.

次に、粉砕工程で粉砕したSiC粉末を分級する分級工程を行う。分級工程においては、SiC粉末を所定の粒度範囲に限定する。分級は、所望の粒径に応じた篩を用いた方法が最も簡便であり、好ましい。ただし、分級は、篩を用いた方法に限定されず、乾式、湿式の何れで行ってもよい。また、乾式の分級として、気流を用いた例えば遠心式の分級方法を用いることもできる。   Next, a classification step of classifying the SiC powder ground in the grinding step is performed. In the classification step, the SiC powder is limited to a predetermined particle size range. Classification is most conveniently and preferably a method using a sieve according to the desired particle size. However, classification is not limited to the method using a sieve, and may be performed either dry or wet. Further, as a dry classification, for example, a centrifugal classification method using an air flow can also be used.

次に、分級工程で得たSiC粉末における、球形度Spが0.85以下の粒子である粒子の割合を測定する測定工程を行う。球形度Spは、SEMや光学顕微鏡で観察した粒子を観察した像に対して、上記(1)式により求めればよい。ただし、これでは煩雑であるので、マルバーン社製の粒子画像分析装置モフォロギG3などの画像分析装置を用いて、球形度Spを測定すればよい。   Next, in the SiC powder obtained in the classification step, a measurement step of measuring the proportion of particles having a sphericity Sp of 0.85 or less is performed. The sphericity Sp may be obtained by the above equation (1) for an image obtained by observing particles observed with an SEM or an optical microscope. However, since this is complicated, the sphericity Sp may be measured using an image analysis device such as particle image analysis device Mophorogi G3 manufactured by Malvern.

次に、必要に応じて、粉砕工程における粉砕態様が異なり、測定工程において測定された球形度Spが0.85以下の粒子である粒子の割合が異なる複数種のSiC粉末を混合して、球形度Spが0.85以下の粒子である粒子の割合が60質量%以上であるSiC粉末を得る混合工程を行う。   Next, if necessary, different grinding modes in the grinding step are different, and plural types of SiC powders having different proportions of particles having a sphericity Sp of 0.85 or less measured in the measurement step are mixed to obtain a spherical shape. The mixing step is performed to obtain a SiC powder in which the proportion of particles having a degree Sp of 0.85 or less is 60% by mass or more.

すなわち、球形度Spが0.85以下の粒子である粒子の割合が60質量%以上のSiC粉末が得られるように、複数種のSiC粉末を、測定工程で測定した含有率を考慮して適宜な割合で混合する。混合方法は、限定されないが、例えば、二軸ミキサーを用いればSiC粉末の破砕を伴うことなく均一に混合することができる。なお、測定工程で測定したSiC粉末において球形度Spが0.85以下の粒子である粒子の割合が60質量%以上である場合には、混合工程を省略してもよい。   That is, in order to obtain a SiC powder having a proportion of particles having a sphericity Sp of 0.85 or less at 60 mass% or more, a plurality of types of SiC powders are appropriately selected in consideration of the content ratio measured in the measurement step. Mix at a certain ratio. The mixing method is not limited, but for example, a twin screw mixer can be used to uniformly mix without crushing the SiC powder. In the SiC powder measured in the measurement step, the mixing step may be omitted if the proportion of particles which are particles having a sphericity Sp of 0.85 or less is 60% by mass or more.

なお、以上はアチソン法で得られたSiCの塊状物を粉砕して作製される場合の説明であるが、SiCの塊状物ではなく、SiCの焼結体や単結晶などを、同様に粉砕、分級、混合などしてもよい。   Note that the above is an explanation of the case where the block of SiC obtained by the Acheson method is manufactured by grinding, but not a block of SiC but a sintered body or single crystal of SiC, etc. Classification, mixing, etc. may be performed.

以下、本発明の実施例及び比較例について説明する。ただし、本発明は実施例に限定されない。   Hereinafter, Examples and Comparative Examples of the present invention will be described. However, the present invention is not limited to the examples.

(SiC粉末の作製)
まず、原料作成工程のおける無機珪酸質原料としてシリカ(非晶質シリカ)を、炭素質原料としてカーボンブラック(アモルファスカーボン)を用意した。そして、これらの原料を二軸ミキサーを用いて、炭素と珪素のモル比(C/SiO)が3.0となるように混合して、SiC粉末製造用の原料を得た。
(Preparation of SiC powder)
First, silica (amorphous silica) was prepared as an inorganic siliceous material in the material preparation step, and carbon black (amorphous carbon) was prepared as a carbonaceous material. Then, these raw materials by using a biaxial mixer, the molar ratio of carbon and silicon (C / SiO 2) is mixed so that 3.0 to obtain a material for SiC powder production.

次に、塊状物作成工程において、原料作成工程で得た原料を、中心温度を2500℃以上としたアチソン炉で12時間焼成した。これにより、SiCの塊状物を得た。   Next, in the lump formation process, the raw material obtained in the raw material preparation process was fired for 12 hours in an Acheson furnace with a center temperature of 2500 ° C. or higher. Thereby, a lump of SiC was obtained.

次に、粉砕工程において、得られたSiCの塊状物をジョークラッシャーで粉砕し、篩分けで3mm以下のSiC粉末とした。そして、このSiC粉末を、ボールミルを用いて粉砕して、SiC粉末を得た。   Next, in the pulverizing step, the obtained lump of SiC is pulverized with a jaw crusher, and sifted into a SiC powder of 3 mm or less. And this SiC powder was grind | pulverized using a ball mill, and SiC powder was obtained.

通常のボールミルにおける処理量を1、ボール量を1としたとき、処理量を1.4、ボール量を0.8として粉砕することで、AのSiC粉末を得た。また、処理量を0.6、ボール量を1.2として粉砕することで、BのSiC粉末を得た。   When the processing amount in a normal ball mill is 1, and the ball amount is 1, the SiC powder of A is obtained by grinding the processing amount at 1.4 and the ball amount at 0.8. The B powder was obtained by grinding with a treatment amount of 0.6 and a ball amount of 1.2.

次に、分級工程において、篩を用いて、A及びBのSiC粉末の粒度範囲を150μm以上500μm以下とした。   Next, in the classification step, the particle size range of the A and B SiC powders was made 150 μm or more and 500 μm or less using a sieve.

次に、測定工程において、分級工程で分級したA及びBのSiC粉末の球形度Spをマルバーン社製の粒子画像分析装置モフォロギG3を用いて、1000個ずつ測定した。AのSiC粉末において、球形度Spが0.85以下の粒子の割合は81質量%であった。一方、BのSiC粉末において、球形度Spが0.85以下の粒子の割合は12質量%であった。   Next, in the measurement step, the sphericity Sp of the SiC powders of A and B classified in the classification step was measured 1000 by 1000 using a particle image analyzer Mophorogi G3 manufactured by Malvern. In the SiC powder of A, the proportion of particles having a sphericity Sp of 0.85 or less was 81% by mass. On the other hand, in the SiC powder of B, the proportion of particles having a sphericity Sp of 0.85 or less was 12% by mass.

次に、実施例2及び比較例1,2においては、混合工程として、後記の表1に示す割合で、AとBとのSiC粉末を二軸ミキサーを用いて混合した。これにより、球形度Spが0.85以下の割合は、質量平均から算出して、表1のようになった。   Next, in Example 2 and Comparative Examples 1 and 2, SiC powders of A and B were mixed using a twin-screw mixer at a ratio shown in Table 1 below as a mixing step. As a result, the ratio of the sphericity Sp of 0.85 or less was calculated from the mass average and was as shown in Table 1.

(SiC粉末の充填及び坩堝の設置)
作業者である、甲、乙又は甲及び乙が、実施例1においてはAのSiC粉末を、実施例2及び比較例1,2においては混合工程で工程したSiC粉末を、それぞれ1500gずつ、作業台上に静置されている黒鉛製の坩堝内に充填した。この坩堝は、内径100mm、高さ150mmの円筒形状のものであった。作業者は、充填時において、漏斗を用いてSiC粉末を坩堝内に投入し、全量を投入した後、坩堝を少しゆらし、その表面をヘラでならした。そして、充填後、坩堝の底面からSiC粉末の上面までの高さを測定した。
(Filling of SiC powder and installation of crucible
The workers A, S or S and A, in Example 1, work the SiC powder of A, and in Example 2 and Comparative Examples 1 and 2, work 1500 g of each of the SiC powder processed in the mixing step. It was filled in a crucible made of graphite which was placed on a table. The weir had a cylindrical shape with an inner diameter of 100 mm and a height of 150 mm. At the time of filling, the operator charged the SiC powder into the crucible using a funnel, filled the entire amount, then slightly shaken the crucible and smoothed the surface with a spatula. Then, after filling, the height from the bottom of the crucible to the top of the SiC powder was measured.

そして、SiC粉末を坩堝に充填した各作業者は、坩堝を両手で持った状態で徒歩で20m移動し、加熱炉内の台上に坩堝を設置した。そして、この炉内において、坩堝の底面からSiC粉末の上面までの高さを測定した。この高さの充填直後の高さに対する割合を求めた。結果は表1に示した。なお、各実施例1,2及び比較例1,2共に3回ずつ行った。   Then, each worker who filled the SiC powder in the crucible moved 20 m on foot while holding the crucible with both hands, and installed the crucible on the table in the heating furnace. Then, in this furnace, the height from the bottom of the crucible to the top of the SiC powder was measured. The ratio of this height to the height immediately after filling was determined. The results are shown in Table 1. Each of Examples 1 and 2 and Comparative Examples 1 and 2 was performed three times.

(考察)
実施例1においては、表1から分かるように、高さの変化は何れも2%以下と小さく、且つ、そのばらつきも1%と小さかった。
(Discussion)
In Example 1, as can be seen from Table 1, the change in height was as small as 2% or less, and the variation was also as small as 1%.

実施例2においては、表1から分かるように、高さの変化は何れも4%以下と小さく、且つ、そのばらつきも1%と小さかった。さらに、作業者の違いによる高さの変動も1%以下と小さかった。   In Example 2, as can be seen from Table 1, the change in height was as small as 4% or less, and the variation was also as small as 1%. Furthermore, the variation in height due to the difference in workers was also small, less than 1%.

一方、比較例1においては、表1から分かるように、高さの変化は最大9%と大きく、且つ、そのばらつきも最大4%と大きかった。さらに、作業者の違いによる高さの変動も最大4%と大きかった。   On the other hand, in Comparative Example 1, as can be seen from Table 1, the change in height was as large as 9% at the maximum, and the variation was as large as 4% as the maximum. In addition, the variation in height due to differences in workers was as large as 4%.

比較例2においては、表1から分かるように、高さの変化は最大13%と大きく、且つ、そのばらつきも6%と大きかった。   In Comparative Example 2, as can be seen from Table 1, the change in height was as large as 13% at maximum, and the variation was also as large as 6%.

以上から、実施例1,2のように球形度Spが0.85以下の粒子の割合が60質量%以上であるSiC粉末の場合、坩堝内にSiC粉末を充填したときのSiC粉末の高さと、SiC粉末を充填した坩堝を加熱装置内に設置したときのSiC粉末の高さの差、さらにはその高さのばらつきが、作業者による個人差を含めて小さかった、
一方、比較例1,2のように球形度Spが0.85以下の粒子の割合が60質量%未満であるSiC粉末の場合、坩堝内にSiC粉末を充填したときのSiC粉末の高さと、SiC粉末を充填した坩堝を加熱装置内に設置したときのSiC粉末の高さの差、さらにはその高さのばらつきが、作業者による個人差を含めて大きかった、
From the above, in the case of the SiC powder in which the ratio of particles having a sphericity Sp of 0.85 or less is 60 mass% or more as in Examples 1 and 2, the height of the SiC powder when the SiC powder is filled in the crucible and , The difference in height of the SiC powder when the crucible filled with the SiC powder was installed in the heating apparatus, and further, the variation in the height was small, including the individual difference among workers.
On the other hand, in the case of the SiC powder in which the proportion of particles having a sphericity Sp of 0.85 or less is less than 60 mass% as in Comparative Examples 1 and 2, the height of the SiC powder when the SiC powder is filled in the crucible; When the crucible filled with the SiC powder was placed in the heating apparatus, the height difference of the SiC powder and the dispersion of the height were large including the individual differences among workers.

Claims (2)

球形度が0.85以下である粒子が60質量%以上含まれることを特徴するSiC粉末。   60 mass% or more of particle | grains whose sphericity is 0.85 or less are contained, SiC powder characterized by the above-mentioned. 球形度が0.85以下である粒子が60質量%以上含まれるSiC粉末を容器に充填する工程と、
前記SiC粉末を充填した容器を移動させて、加熱装置内に設置する工程と、
前記加熱装置内を加熱して、前記SiC粉末を昇華させ、SiC単結晶を得る工程とを備えることを特徴とするSiC単結晶の製造方法。
Filling a container with an SiC powder containing 60% by mass or more of particles having a sphericity of 0.85 or less;
Moving the container filled with the SiC powder for installation in a heating device;
And d) heating the inside of the heating device to sublime the SiC powder to obtain a SiC single crystal.
JP2018002580A 2018-01-11 2018-01-11 SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME Pending JP2019119663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002580A JP2019119663A (en) 2018-01-11 2018-01-11 SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002580A JP2019119663A (en) 2018-01-11 2018-01-11 SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME

Publications (1)

Publication Number Publication Date
JP2019119663A true JP2019119663A (en) 2019-07-22

Family

ID=67306021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002580A Pending JP2019119663A (en) 2018-01-11 2018-01-11 SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME

Country Status (1)

Country Link
JP (1) JP2019119663A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218311A (en) * 1988-06-09 1990-01-22 Stemcor Corp Hexagonal silicon carbide platelet and preform, and its production and use
JP2001072407A (en) * 1999-09-02 2001-03-21 Denki Kagaku Kogyo Kk Silicon carbide powder and abrasive
JP2007070474A (en) * 2005-09-07 2007-03-22 Denki Kagaku Kogyo Kk Inorganic powder and use thereof
JP2011510828A (en) * 2008-02-07 2011-04-07 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Abrasive powder
JP2015044726A (en) * 2013-07-31 2015-03-12 太平洋セメント株式会社 Silicon carbide powder, and method for manufacturing silicon carbide single crystal
JP2015074565A (en) * 2013-10-07 2015-04-20 信濃電気製錬株式会社 Spherical silicon carbide powder and method for producing the same
US20150218004A1 (en) * 2012-10-18 2015-08-06 Lg Innotek Co., Ltd. Silicon carbide powder, and preparation method therefor
JP2017081800A (en) * 2015-10-30 2017-05-18 太平洋セメント株式会社 Silicon carbide powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218311A (en) * 1988-06-09 1990-01-22 Stemcor Corp Hexagonal silicon carbide platelet and preform, and its production and use
JP2001072407A (en) * 1999-09-02 2001-03-21 Denki Kagaku Kogyo Kk Silicon carbide powder and abrasive
JP2007070474A (en) * 2005-09-07 2007-03-22 Denki Kagaku Kogyo Kk Inorganic powder and use thereof
JP2011510828A (en) * 2008-02-07 2011-04-07 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Abrasive powder
US20150218004A1 (en) * 2012-10-18 2015-08-06 Lg Innotek Co., Ltd. Silicon carbide powder, and preparation method therefor
JP2015044726A (en) * 2013-07-31 2015-03-12 太平洋セメント株式会社 Silicon carbide powder, and method for manufacturing silicon carbide single crystal
JP2015074565A (en) * 2013-10-07 2015-04-20 信濃電気製錬株式会社 Spherical silicon carbide powder and method for producing the same
JP2017081800A (en) * 2015-10-30 2017-05-18 太平洋セメント株式会社 Silicon carbide powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
加藤智久: "昇華特性に優れたSiC粉末原料を開発", 産総研TODAY, JPN7021003304, 2014, JP, pages 15, ISSN: 0004576027 *

Similar Documents

Publication Publication Date Title
US9816200B2 (en) Silicon carbide powder and method for producing silicon carbide single crystal
CN103209923A (en) Silicon carbide powder for production of silicon carbide single crystal, and method for producing same
JP6742183B2 (en) Method for producing silicon carbide single crystal ingot
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JPS638041B2 (en)
JP2018118874A (en) Silicon carbide powder, method for manufacturing the same and method for manufacturing silicon carbide single crystal
JP2018030760A (en) Production method of silicon carbide single crystal
JP6757688B2 (en) Silicon Carbide Powder, Its Manufacturing Method, and Silicon Carbide Single Crystal Manufacturing Method
JP6778100B2 (en) Method for producing silicon carbide powder and silicon carbide single crystal using the same as a raw material
JP6669469B2 (en) Silicon carbide powder
JP2019119663A (en) SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME
JP2018118866A (en) Silicon carbide powders
JP2019151533A (en) Silicon carbide powder
JP3977472B2 (en) Method for producing high density isotropic graphite material having low thermal expansion coefficient
JP7019362B2 (en) Silicon carbide powder
JP6990136B2 (en) Silicon carbide powder
JP2019112239A (en) SiC POWDER, AND PRODUCTION METHO THEREOF
JP6420735B2 (en) Silicon carbide powder
JP6508583B2 (en) Method of manufacturing silicon carbide single crystal
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
JP2016084259A (en) Silicon carbide powder, method for producing silicon carbide powder having regulated particle size, and method for producing silicon carbide single crystal
JP6581405B2 (en) Silicon carbide powder, method for producing the same, and method for producing silicon carbide single crystal
JP6616660B2 (en) Method for producing silicon carbide
JP2017171564A (en) Production method of silicon carbide single crystal
JP4017857B2 (en) Method for producing aluminum oxide powder and aluminum oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308