JP2018030760A - Production method of silicon carbide single crystal - Google Patents

Production method of silicon carbide single crystal Download PDF

Info

Publication number
JP2018030760A
JP2018030760A JP2016164606A JP2016164606A JP2018030760A JP 2018030760 A JP2018030760 A JP 2018030760A JP 2016164606 A JP2016164606 A JP 2016164606A JP 2016164606 A JP2016164606 A JP 2016164606A JP 2018030760 A JP2018030760 A JP 2018030760A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide powder
repose
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016164606A
Other languages
Japanese (ja)
Other versions
JP6640680B2 (en
Inventor
潔 野中
Kiyoshi Nonaka
潔 野中
石田 弘徳
Hironori Ishida
弘徳 石田
増田 賢太
Kenta Masuda
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016164606A priority Critical patent/JP6640680B2/en
Publication of JP2018030760A publication Critical patent/JP2018030760A/en
Application granted granted Critical
Publication of JP6640680B2 publication Critical patent/JP6640680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a silicon carbide single crystal capable of improving a sublimation rate of silicon carbide powder which is a raw material.SOLUTION: A crucible is filled with silicon carbide powder which is a raw material, and the silicon carbide powder is sublimed, to thereby produce single crystal silicon carbide. A repose angle of silicon carbide powder which is the raw material is 25° or larger and 45° or smaller, more preferably, 30° or larger and 40° or smaller.SELECTED DRAWING: None

Description

本発明は、炭化珪素単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon carbide single crystal.

炭化珪素単結晶は、その高硬度性、高熱伝導性、高温耐熱性から、成形砥石、セラミックス部品等の材料として使用されている。また、炭化珪素は、シリコンと比較すると、バンドギャップは約3倍、絶縁破壊電界強度は約10倍という物性を有するので、シリコンに代わるパワー半導体用基盤の材料として注目されている。   Silicon carbide single crystals are used as materials for molding wheels, ceramic parts and the like because of their high hardness, high thermal conductivity, and high temperature heat resistance. In addition, silicon carbide is attracting attention as a power semiconductor substrate material that replaces silicon because it has properties of about 3 times the band gap and about 10 times the dielectric breakdown electric field strength compared to silicon.

炭化珪素単結晶の製造方法として、原料である炭化珪素粉末を2000℃以上の高温条件下において昇華させ、炭化珪素を単結晶成長させる昇華再結晶法がよく知られており、工業的に広く使用されている。この昇華再結晶法における原料で炭化珪素粉末に関して、様々な工夫がなされている。   As a method for producing a silicon carbide single crystal, a sublimation recrystallization method in which silicon carbide powder as a raw material is sublimated under a high temperature condition of 2000 ° C. or higher to grow a single crystal of silicon carbide is well known and widely used industrially. Has been. Various ideas have been made regarding silicon carbide powder as a raw material in the sublimation recrystallization method.

例えば、特許文献1には、表面部及びその近傍に他の部分に充填される粒子よりも大径の粒径500μmから1000μmの炭化珪素粉末が充填されるように、炭化珪素粉末をるつぼ内に充填することが開示されている。   For example, in Patent Document 1, silicon carbide powder is placed in a crucible so that silicon carbide powder having a particle diameter of 500 μm to 1000 μm larger than particles filled in other portions in the surface portion and the vicinity thereof is filled. Filling is disclosed.

また、特許文献2には、粒径が50μmから200μmと小径の炭化珪素粉末を、粒径が300μmから700μmと大径の炭化珪素粉末で覆うように、炭化珪素粉末をるつぼ内に充填することが開示されている。   In Patent Document 2, a silicon carbide powder is filled in a crucible so that a silicon carbide powder having a small particle size of 50 μm to 200 μm is covered with a silicon carbide powder having a large particle size of 300 μm to 700 μm. Is disclosed.

特開2000−7492号公報JP 2000-7492 A 特開2009−51702号公報JP 2009-51702 A

上記特許文献1及び2に開示された技術では、炭化珪素粒子が小径であれば、昇華速度が速く、且つ昇華が安定するので好ましいが、小径粒子だけを用いれば、昇華よりも焼結が優勢になるので、大径粒子を混在させている。   In the techniques disclosed in Patent Documents 1 and 2, if the silicon carbide particles have a small diameter, it is preferable because the sublimation speed is high and sublimation is stable. However, if only the small diameter particles are used, sintering is superior to sublimation. Therefore, large-diameter particles are mixed.

しかしながら、粒径の異なる炭化珪素粒子を混在させると、原料が不均一になり工程が不安化になりやすく、又、小径粒子が昇華し、昇華速度が低下する。   However, when silicon carbide particles having different particle diameters are mixed, the raw materials become non-uniform and the process is likely to become uneasy, and the small-diameter particles sublimate and the sublimation rate decreases.

よって、昇華速度の低下の要因として、単に粒度範囲を規定するだけでは不十分であり、別の要因があると考えられる。   Therefore, it is considered that simply defining the particle size range is not enough as a factor of lowering the sublimation speed, and there is another factor.

本発明は、原料である炭化珪素粉末の昇華速度の向上を図ることが可能な炭化珪素単結晶の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the silicon carbide single crystal which can aim at the improvement of the sublimation rate of the silicon carbide powder which is a raw material.

本発明は、容器内に原料となる炭化珪素粉末を充填し、前記炭化珪素粉末を昇華させて、炭化珪素単結晶を製造する方法において、前記炭化珪素粉末の安息角は25°以上45°以下であることを特徴する。   The present invention is a method of filling a silicon carbide powder as a raw material in a container and sublimating the silicon carbide powder to produce a silicon carbide single crystal, wherein the angle of repose of the silicon carbide powder is 25 ° or more and 45 ° or less. It is characterized by being.

安息角が25°未満であれば、容器内に原料となる炭化珪素粉末を充填したとき、炭化珪素粉末間の隙間が小さ過ぎ、昇華速度が遅くなる。一方、安息角が45°を超えると、容器内に原料となる炭化珪素粉末を充填したとき、炭化珪素粉末間に大きな空洞が生じ、容器の充填量が減って、昇華速度が遅くなるからである。なお、安息角は、JIS R9301−2−2:1999「アルミナ粉末−第2部:物性測定方法−2:安息角」に記載されている測定方法に準じて測定すればよい。   If the angle of repose is less than 25 °, when silicon carbide powder as a raw material is filled in the container, the gap between the silicon carbide powders is too small and the sublimation rate is slow. On the other hand, if the angle of repose exceeds 45 °, when silicon carbide powder as a raw material is filled in the container, large cavities are formed between the silicon carbide powders, the amount of filling of the container is reduced, and the sublimation rate is reduced. is there. The angle of repose may be measured in accordance with the measurement method described in JIS R9301-2-2: 1999 “Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”.

本発明によれば、安息角が25°以上45°以下であるので、容器内に原料である炭化珪素粉末を充填したとき、炭化珪素粉末間に適度の空洞が生じ、昇華速度が良好になる。   According to the present invention, since the angle of repose is 25 ° or more and 45 ° or less, when the silicon carbide powder as the raw material is filled in the container, appropriate cavities are generated between the silicon carbide powders, and the sublimation rate is improved. .

本発明において、前記炭化珪素粉末の安息角は30°以上40°以下であることが好ましい。   In the present invention, the angle of repose of the silicon carbide powder is preferably 30 ° or more and 40 ° or less.

この場合、特に、粒子同士の接触点が多いために粒子が焼結したり、凹凸が粗大なために粒子の比表面積が小さくなったりすることによる昇華速度の低下を抑制することができ、特に昇華速度が大きくなる。   In this case, in particular, since the particles are sintered because there are many contact points between the particles, the decrease in the sublimation rate due to the decrease in the specific surface area of the particles due to the roughness can be suppressed. Increases sublimation speed.

また、本発明において、前記炭化珪素粉末の軽装かさ密度は0.8g/cm以上1.5g/cm以下であることが好ましい。 In the present invention, the light bulk density of the silicon carbide powder is preferably 0.8 g / cm 3 or more and 1.5 g / cm 3 or less.

この場合、容器内に原料である炭化珪素粉末を充填したとき、炭化珪素粉末間に適度の空洞が生じ、昇華速度が良好になる。なお、軽装かさ密度は、JIS R9301−2−3:1999「アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度」に記載されている軽装かさ密度の測定方法に準じて測定すればよい。   In this case, when the silicon carbide powder as a raw material is filled in the container, appropriate cavities are generated between the silicon carbide powders, and the sublimation rate is improved. The light bulk density is the same as the light bulk density measurement method described in JIS R9301-2-3: 1999 "Alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density". What is necessary is just to measure according to it.

また、本発明において、前記炭化珪素粉末の粒度範囲は、45μm以上3350μm未満であることが好ましい。   Moreover, in this invention, it is preferable that the particle size range of the said silicon carbide powder is 45 micrometers or more and less than 3350 micrometers.

炭化珪素粉末の粒度が45μm未満であると、安息角が25°以上45°以下であっても、粒子同士が接触する接触点の数が極めて大きくなり、容易に焼結し、焼結が過度に進むおそれがある。一方、炭化珪素粉末の粒度が3350μm以上であると、安息角が25°以上45°以下であっても、粒子が粗大となり比表面積が小さくなるので、十分な昇華速度が得られないからである。   When the particle size of the silicon carbide powder is less than 45 μm, even if the angle of repose is 25 ° or more and 45 ° or less, the number of contact points where the particles are in contact with each other is extremely large, and the sintering is easily performed and the sintering is excessive. There is a risk of proceeding. On the other hand, when the particle size of the silicon carbide powder is 3350 μm or more, even if the angle of repose is 25 ° or more and 45 ° or less, the particles become coarse and the specific surface area becomes small, so that a sufficient sublimation rate cannot be obtained. .

以下、本発明の実施形態に係る炭化珪素単結晶の製造方法について説明する。   Hereinafter, the manufacturing method of the silicon carbide single crystal which concerns on embodiment of this invention is demonstrated.

まず、炭化珪素単結晶の製造方法で原料として用いる炭化珪素粉末の製造方法について説明する。ここでは、固相反応を利用した方法について説明するが、液相反応などを利用した方法であってもよい。   First, the manufacturing method of the silicon carbide powder used as a raw material with the manufacturing method of a silicon carbide single crystal is demonstrated. Although a method using a solid phase reaction will be described here, a method using a liquid phase reaction or the like may be used.

炭化珪素粉末の製造方法は、珪素を含む無機珪酸質原料及び炭素を含む炭素質原料を混合して、炭化珪素製造用原料を得る工程と、この炭化珪素製造用原料を2500℃以上で焼成し、炭化珪素からなる塊状物を得る工程と、不活性ガスを導入して、この塊状物を常温まで空冷する工程と、空冷した塊状物を粉砕する工程と、得られた粉砕物を分級し、所望の炭化珪素粉末を得る工程とを含む。   The method for producing silicon carbide powder includes a step of mixing a silicon-containing inorganic siliceous raw material and a carbonaceous raw material containing carbon to obtain a silicon carbide production raw material, and firing the silicon carbide production raw material at 2500 ° C. or higher. , A step of obtaining a lump of silicon carbide, a step of introducing an inert gas, air cooling the lump to room temperature, a step of crushing the air-cooled lump, and classifying the obtained pulverized product, Obtaining a desired silicon carbide powder.

無機珪酸質原料としては、珪石などの結晶質シリカ、シリカフューム、シリカゲル等の非晶質シリカが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。無機珪酸質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非晶質)、炭素質原料との反応性などによって、適宜選ばれる。ただし、焼成時の反応性が良く、炉の制御が容易となるので、無機珪酸質原料として非晶質シリカを用いることが好ましい。   Examples of the inorganic siliceous raw material include crystalline silica such as silica, amorphous silica such as silica fume and silica gel. These may be used alone or in combination of two or more. The average particle size of the inorganic siliceous material is appropriately selected depending on the environment during firing, the state of the material (crystalline or amorphous), the reactivity with the carbonaceous material, and the like. However, it is preferable to use amorphous silica as the inorganic siliceous raw material because the reactivity during firing is good and the furnace is easily controlled.

炭素質原料としては、例えば、天然黒鉛、人工黒鉛等の結晶性カーボン、カーボンブラック、コークス、活性炭等の非晶質カーボンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。炭素質原料の平均粒径は、焼成時の環境、原料の状態(結晶質、非晶質)、及び無機珪酸質原料との反応性などによって、適宜選ばれる。   Examples of the carbonaceous raw material include crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon such as carbon black, coke and activated carbon. These may be used alone or in combination of two or more. The average particle diameter of the carbonaceous raw material is appropriately selected depending on the environment during firing, the state of the raw material (crystalline or amorphous), the reactivity with the inorganic siliceous raw material, and the like.

無機珪酸質原料と炭素質原料とを混合して、炭化珪素粉末用の原料を調整する。この際の混合方法は任意であり、湿式混合、乾式混合の何れであってもよい。混合の際の炭素質原料と無機珪酸質原料の混合モル比(C/Si)は、焼成時の環境、炭化珪素粉末用の原料の粒径、反応性などを考慮して、最適なものを選択する。ここでいう「最適」とは、焼成によって得られる炭化珪素の収量を向上させ、且つ、無機珪酸質原料及び炭素質原料の未反応の残存量を小さくさせることを意味する。   An inorganic siliceous raw material and a carbonaceous raw material are mixed to prepare a raw material for silicon carbide powder. The mixing method at this time is arbitrary, and may be either wet mixing or dry mixing. The mixing molar ratio (C / Si) of the carbonaceous raw material and the inorganic siliceous raw material at the time of mixing should be optimized in consideration of the environment during firing, the particle size of the raw material for silicon carbide powder, the reactivity, etc. select. The term “optimum” as used herein means improving the yield of silicon carbide obtained by firing and reducing the unreacted residual amount of the inorganic siliceous raw material and carbonaceous raw material.

得られた混合粉末(炭化珪素粉末用の原料)を2500℃以上で焼成して、塊状の炭化珪素を得る。   The obtained mixed powder (raw material for silicon carbide powder) is fired at 2500 ° C. or higher to obtain bulk silicon carbide.

焼成方法は、特に限定されないが、外部加熱による方法、通電加熱による方法等が挙げられる。外部加熱の方法としては、例えば、流動層炉、バッチ式の炉などを用いる方法が挙げられる。通電加熱による方法としては、例えば、アチソン炉を用いる方法が挙げられる。アチソン炉としては、一般的なものを用いればよい。   The firing method is not particularly limited, and examples thereof include a method using external heating and a method using current heating. Examples of the external heating method include a method using a fluidized bed furnace, a batch type furnace, and the like. Examples of the method using electric heating include a method using an Atchison furnace. A general furnace may be used as the Atchison furnace.

焼成雰囲気は、還元雰囲気であることが好ましい。還元性が弱い雰囲気下で焼成すると、炭化珪素の収率が低下するためである。   The firing atmosphere is preferably a reducing atmosphere. This is because the yield of silicon carbide is reduced when fired in an atmosphere having low reducing ability.

なお、本明細書中、「アチソン炉」とは、上方が開口した箱型の間接抵抗加熱炉をいう。ここで、間接抵抗加熱とは、被加熱物に電流を直接流すのではなく、電流を流して発熱させた発熱体によって炭化珪素を得るものである。また、このようなアチソン炉の具体的構成の一例は、特開2013−112544号公報に記載されている。   In the present specification, the “Atchison furnace” refers to a box-type indirect resistance heating furnace having an open top. Here, the indirect resistance heating does not directly flow an electric current to an object to be heated, but obtains silicon carbide by a heating element that generates heat by flowing an electric current. An example of a specific configuration of such an Atchison furnace is described in Japanese Patent Laid-Open No. 2013-112544.

このような炉を用いることにより、式(1)に示した反応が生じ、炭化珪素(SiC)からなる塊状物が得られる。
SiO+3C→SiC+2CO ・・・(1)
By using such a furnace, the reaction shown in Formula (1) occurs, and a lump made of silicon carbide (SiC) is obtained.
SiO 2 + 3C → SiC + 2CO (1)

アチソン炉の発熱体の種類は、電気を通すことができるものであれば特に限定されるものではなく、例えば、黒鉛粉、カーボンロッド等が挙げられる。   The type of the heating element of the Atchison furnace is not particularly limited as long as it can conduct electricity, and examples thereof include graphite powder and carbon rod.

発熱体を構成する物質の形態は、特に限定されず、例えば、粉状、塊状等が挙げられる。発熱体は、アチソン炉の通電方向の両端に設けられた電極芯を結ぶように全体として棒状の形状になるように設けられる。ここでの棒状の形状とは例えば、円柱状、角柱状等が挙げられる。   The form of the substance constituting the heating element is not particularly limited, and examples thereof include powder and lump. The heating element is provided so as to have a rod-like shape as a whole so as to connect the electrode cores provided at both ends in the energizing direction of the Atchison furnace. Examples of the rod shape here include a columnar shape and a prismatic shape.

通電後、炉内に炭化珪素からなる塊状物が生成する。   After energization, a lump made of silicon carbide is generated in the furnace.

炉内が常温になるまで、アルゴンガス等の不活性ガスを導入して空冷を行う。そして、得られた炭化珪素からなる塊状物(インゴット)を粉砕する。粉砕方法は、特に限定されないが、例えば、粉砕機としてトップグラインダ、ディスクミル、ジョークラッシャー等を用いた粉砕方法が挙げられる。   Air cooling is performed by introducing an inert gas such as argon gas until the temperature inside the furnace reaches room temperature. And the lump (ingot) which consists of obtained silicon carbide is grind | pulverized. The pulverization method is not particularly limited, and examples thereof include a pulverization method using a top grinder, a disk mill, a jaw crusher, or the like as a pulverizer.

その後、所望の粒度範囲に応じたふるいを用いて、粉砕物を分級する。分級は、ふるいを用いた方法が最も簡便であり、好ましい。ただし、分級は、ふるいを用いた方法に限定されず、乾式、湿式の何れでもよい。また、乾式の分級として、気流を用いた例えば遠心式の分級方法を用いることもできる。   Thereafter, the pulverized product is classified using a sieve according to a desired particle size range. For classification, a method using a sieve is the simplest and preferable. However, classification is not limited to a method using a sieve, and may be either dry or wet. Further, as a dry classification, for example, a centrifugal classification method using an air flow can be used.

次に、この原料を用いて、昇華再結晶法により炭化珪素単結晶を製造する方法について説明する。   Next, a method for producing a silicon carbide single crystal by sublimation recrystallization using this raw material will be described.

まず、原料である炭化珪素粉末を例えば黒鉛製のるつぼ内に充填し、このるつぼを加熱装置内に配設する。ただし、炭化珪素粉末が中に充填される容器は、黒鉛製のるつぼに限定されず、昇華再結晶法で単結晶炭化珪素を製造する際に使用されるものであればよい。   First, the raw material silicon carbide powder is filled into a crucible made of graphite, for example, and this crucible is disposed in a heating device. However, the container in which the silicon carbide powder is filled is not limited to a graphite crucible, and any container may be used as long as it is used when producing single crystal silicon carbide by a sublimation recrystallization method.

そして、るつぼをアルゴンガス等の不活性ガス雰囲気とした減圧下で、るつぼ内の原料が2000〜2500℃となるように加熱する。ただし、るつぼの蓋の下面の炭化珪素単結晶が成長する部分は、これより100℃程度温度が低くなるようにしておく。   And it heats so that the raw material in a crucible may become 2000-2500 degreeC under pressure reduction which made the crucible inert gas atmosphere, such as argon gas. However, the temperature of the portion where the silicon carbide single crystal grows on the lower surface of the lid of the crucible is about 100 ° C. lower than this.

この加熱を数時間から数十時間持続させる。これにより、原料である炭化珪素粉末が昇華して昇華ガスとなり、蓋の下面に到達して単結晶化し、この単結晶が成長することにより炭化珪素単結晶の塊状物を得ることができる。   This heating is continued for several hours to several tens of hours. Thereby, the silicon carbide powder as a raw material is sublimated to become a sublimation gas, reaches the lower surface of the lid and is single-crystallized, and this single crystal grows, whereby a lump of silicon carbide single crystal can be obtained.

アチソン炉などで焼成して得られた塊状物を粉砕して得られる炭化珪素粒子の形状は、粉砕方法が異なれば異なり、安息角も異なる。例えば、トップグラインダ、ディスクミルを用いて粉砕されて得られた炭化珪素粉末は、ボールミルを用いて粉砕されたものと比較して、角部が大きく且つ角部が多く、崩れ易くなるので、安息角が小さくなる。   The shape of the silicon carbide particles obtained by pulverizing the lump obtained by firing in an Atchison furnace or the like is different if the pulverization method is different, and the angle of repose is also different. For example, a silicon carbide powder obtained by pulverization using a top grinder or a disk mill has larger corners and more corners than those pulverized using a ball mill. The corner becomes smaller.

さらに、粉砕方法が同じであっても、粒度が異なれば、形状が異なり、安息角も異なる。例えば、トップグラインダ、ディスクミルを用いて粉砕されて得られた炭化珪素粉末においては、粒度が小さいほど一般的に角部が小さく且つ角部が少なく、崩れ易くなるので、安息角が小さくなる。さらに、粒度範囲が広がるほど、崩れ難くなるので、安息角は大きくなる。   Furthermore, even if the grinding method is the same, if the particle size is different, the shape is different and the angle of repose is also different. For example, in a silicon carbide powder obtained by pulverization using a top grinder or a disk mill, the smaller the particle size, the smaller the corners and the fewer corners, and the easier it is to collapse, so the angle of repose becomes smaller. Furthermore, the angle of repose becomes larger as the particle size range becomes wider because it becomes more difficult to collapse.

このように、粉砕方法又は粒度範囲によって、安息角が異なる炭化珪素粒子を得ることができる。   Thus, silicon carbide particles having different repose angles can be obtained depending on the pulverization method or the particle size range.

本発明において、昇華再結晶法により炭化珪素単結晶を製造する際の原料である炭化珪素粉末の安息角は、25°以上45°以下である。さらに、安息角は、28°以上42°以下であることが好ましく、30°以上40°以下であることがより好ましい。なお、安息角は、JIS R9301−2−2:1999「アルミナ粉末−第2部:物性測定方法−2:安息角」に記載されている測定方法に準じて測定すればよい。   In the present invention, the angle of repose of the silicon carbide powder that is a raw material for producing a silicon carbide single crystal by the sublimation recrystallization method is 25 ° or more and 45 ° or less. Furthermore, the angle of repose is preferably 28 ° or more and 42 ° or less, and more preferably 30 ° or more and 40 ° or less. The angle of repose may be measured in accordance with the measurement method described in JIS R9301-2-2: 1999 “Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”.

安息角が25°未満であれば、るつぼに炭化珪素粉末を充填したとき、充填された炭化珪素粉末が密に充填され粒子同士の接触点が増えるため、昇華中に粒子同士が焼結し、昇華ガスが発生する充填物の表面積が小さくなるので、昇華速度が遅くなる。   If the angle of repose is less than 25 °, when the crucible is filled with silicon carbide powder, the filled silicon carbide powder is densely packed and the number of contact points between the particles increases, so that the particles sinter during sublimation, Since the surface area of the filling material in which the sublimation gas is generated is reduced, the sublimation speed is reduced.

一方、安息角が45°を超えるような粒子は粗大な凹凸を多く持つが、凹凸が粗大なものばかりであると、すなわち粒子が粗大な結晶からなっているということであり、微細な結晶からなる粒子と比べて粒子の比表面積としては小さくなり、昇華速度が遅くなる。   On the other hand, particles having an angle of repose exceeding 45 ° have many coarse irregularities, but the irregularities are only coarse, that is, the particles are composed of coarse crystals. The specific surface area of the particles is smaller than that of the resulting particles, and the sublimation rate is reduced.

安息角が25°以上45°以下であれば、るつぼに炭化珪素粉末を充填したとき、炭化珪素粉末間に適度の空洞が生じ、昇華速度が良好になる。   If the angle of repose is 25 ° or more and 45 ° or less, when the crucible is filled with silicon carbide powder, moderate cavities are generated between the silicon carbide powders, and the sublimation rate is improved.

これは、同じ粒度でも安息角が大きい粒子のほうが、粒子同士の表面の凹凸で互いに引っかかりやすく、るつぼ内に不規則な形状の空隙を残した状態で充填されるからである。また、安息角の大きい粒子は表面に凹凸を有するため、粒子の比表面積が大きく、粒子表面から発生する昇華ガスの発生量が多くなりやすい。なお、昇華再結晶法においては、原料の表面に存在する数μmから十数μm程度の細孔は、昇華初期に原料内の昇華再結晶により閉塞するため、必ずしも昇華ガスの発生量に寄与しない。   This is because particles with the same particle size and a large angle of repose are more likely to be caught by the irregularities on the surface of the particles, and are filled in a state of leaving irregularly shaped voids in the crucible. In addition, since particles having a large angle of repose have irregularities on the surface, the specific surface area of the particles is large, and the amount of sublimation gas generated from the particle surface tends to increase. In the sublimation recrystallization method, pores of about several μm to several tens of μm existing on the surface of the raw material are blocked by sublimation recrystallization in the raw material in the initial stage of sublimation, and therefore do not necessarily contribute to the generation amount of sublimation gas. .

さらに、安息角が28°以上42°以下、さらには、30°以上40°以下であると、前述した接触点、比表面積の観点から特に好ましい粒子形状となり、昇華速度が速くなる。   Furthermore, when the angle of repose is 28 ° or more and 42 ° or less, and further 30 ° or more and 40 ° or less, the particle shape is particularly preferable from the viewpoint of the contact point and the specific surface area described above, and the sublimation rate is increased.

さらに、アチソン炉で炭化珪素粉末を焼成する際、燃焼状態の木材チップを添加し、炉表面の一酸化炭素を空気と素早く燃焼させることが好ましい。これにより、一酸化炭素が炉の外周で燃焼し除去されるため、炉の外周部の一酸化炭素分圧が下がり、炉の径方向における一酸化炭素分圧の勾配が一定化する。その結果、炭化珪素単結晶が放射状に成長し、これを粉砕したときに針状のものが得やすくなると考えられる。このようにして得られた炭化珪素粉末は、針状のものが多くなり、安息角が25°以上45°以下の範囲に収まりやすい。   Furthermore, when firing the silicon carbide powder in the Atchison furnace, it is preferable to add wood chips in a burned state and quickly burn the carbon monoxide on the furnace surface with air. Thereby, since carbon monoxide is burned and removed at the outer periphery of the furnace, the carbon monoxide partial pressure at the outer periphery of the furnace is lowered, and the gradient of the carbon monoxide partial pressure in the radial direction of the furnace is made constant. As a result, it is considered that a silicon carbide single crystal grows radially and it becomes easier to obtain a needle-like one when pulverized. The silicon carbide powder obtained in this manner has a lot of needle-like powders, and the angle of repose tends to fall within the range of 25 ° to 45 °.

さらに、本発明において、昇華再結晶法により炭化珪素単結晶を製造する際の原料である炭化珪素粉末の軽装かさ密度は、0.8g/cm以上1.5g/cm以下であることが好ましい。さらに、軽装かさ密度は、0.9g/cm以上1.5g/cm以下、特に、1.0g/cm以上1.4g/cm以下であることがより好ましい。なお、軽装かさ密度は、JIS R9301−2−3:1999「アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度」に記載されている軽装かさ密度の測定方法に準じて測定すればよい。 Furthermore, in the present invention, the light bulk density of the silicon carbide powder, which is a raw material for producing a silicon carbide single crystal by the sublimation recrystallization method, is 0.8 g / cm 3 or more and 1.5 g / cm 3 or less. preferable. Further, the light bulk density is 0.9 g / cm 3 or more and 1.5 g / cm 3 or less, and more preferably 1.0 g / cm 3 or more and 1.4 g / cm 3 or less. The light bulk density is the same as the light bulk density measurement method described in JIS R9301-2-3: 1999 "Alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density". What is necessary is just to measure according to it.

軽装かさ密度が0.8g/cm未満であれば、るつぼに炭化珪素粉末を充填したとき、炭化珪素粉末間に大きな空洞が生じ、るつぼ内の充填量が減って、昇華速度が遅くなるからである。 If the light bulk density is less than 0.8 g / cm 3 , when silicon carbide powder is filled in the crucible, large cavities are formed between the silicon carbide powders, the filling amount in the crucible is reduced, and the sublimation rate is reduced. It is.

一方、軽装かさ密度が1.5g/cmを超えると、るつぼに炭化珪素粉末を充填したとき、炭化珪素粉末間の隙間が小さ過ぎ、昇華速度が遅くなるからである。 On the other hand, when the light bulk density exceeds 1.5 g / cm 3 , when the silicon carbide powder is filled in the crucible, the gap between the silicon carbide powders is too small, and the sublimation rate becomes slow.

軽装かさ密度が0.8g/cm以上1.5g/cm以下であれば、るつぼに炭化珪素粉末を充填したとき、炭化珪素粉末間に適度の空洞が生じ、昇華速度が良好になる。 When the light bulk density is 0.8 g / cm 3 or more and 1.5 g / cm 3 or less, when the crucible is filled with silicon carbide powder, appropriate cavities are generated between the silicon carbide powders, and the sublimation rate is improved.

また、炭化珪素粉末の粒度範囲は、45μm以上3350μm未満であることが好ましい。炭化珪素粉末の粒度が45μm未満であると、安息角が25°以上45°以下であっても、粒子同士が接触する接触点の数が極めて大きくなり、容易に焼結し、焼結が過度に進むおそれがある。一方、炭化珪素粉末の粒度が3350μm以上であると、安息角が25°以上45°以下であっても、粒子が粗大となり比表面積が小さくなるので、十分な昇華速度が得られない。   The particle size range of the silicon carbide powder is preferably 45 μm or more and less than 3350 μm. When the particle size of the silicon carbide powder is less than 45 μm, even if the angle of repose is 25 ° or more and 45 ° or less, the number of contact points where the particles are in contact with each other is extremely large, and the sintering is easily performed and the sintering is excessive. There is a risk of proceeding. On the other hand, when the particle size of the silicon carbide powder is 3350 μm or more, even if the angle of repose is 25 ° or more and 45 ° or less, the particles become coarse and the specific surface area becomes small, so that a sufficient sublimation rate cannot be obtained.

なお、粒子の粒度範囲がA以上B未満であるとは、粒子粉末の粒度分布のD5がA以上であり、D95がB未満であるということを意味する。すなわち、目開きAのふるいでふるった時のふるい下の重量が5%未満、且つ、目開きBのふるいでふるった時のふるい上の重量が5%以下であることを意味する。   The particle size range of the particles being A or more and less than B means that D5 of the particle size distribution of the particle powder is A or more and D95 is less than B. That is, it means that the weight under the sieve when sieved with the sieve of A is less than 5%, and the weight of the sieve when sieved with the sieve B is 5% or less.

以下、本発明の実施例を説明する。ただし、本発明はこれら実施例に限定されない。   Examples of the present invention will be described below. However, the present invention is not limited to these examples.

(実施例1)
まず、無機珪酸質原料として非晶質のシリカ粉末を、炭素質原料としてカーボンブラック(アモルファスカーボン)を用意した。そして、これらの原料を2軸ミキサーを用いて、炭素と珪素のモル比(C/SiO)が3.0となるように混合して、炭化珪素粉末製造用の原料を得た。
Example 1
First, amorphous silica powder was prepared as an inorganic siliceous material, and carbon black (amorphous carbon) was prepared as a carbonaceous material. These raw materials were mixed using a biaxial mixer so that the molar ratio of carbon to silicon (C / SiO 2 ) was 3.0 to obtain a raw material for producing silicon carbide powder.

そして、この原料を、中心温度を2500℃以上としたアチソン炉で12時間焼成した。これにより、炭化珪素の塊状物を得た。アチソン炉の内寸は、長さ2500mm、幅1000mm、高さ850mmであった。   And this raw material was baked for 12 hours in the Atchison furnace which made the center temperature 2500 degreeC or more. Thereby, a lump of silicon carbide was obtained. The internal dimensions of the Atchison furnace were 2500 mm in length, 1000 mm in width, and 850 mm in height.

焼成の際、加熱開始から2時間毎に、木材チップに着火して燃焼状態にしたもの約200gを炉の上部に供給し、炉内で発生し外部に漏出した一酸化炭素が大気中の酸素と接触して速やかに燃焼するようにした。なお、木材チップは、市販品を目開き10mmのふるいを用いて、粒度が10mm以上に限定したものを用いた。   At the time of firing, about 200 g of wood chips ignited and combusted every 2 hours from the start of heating are supplied to the upper part of the furnace, and carbon monoxide generated in the furnace and leaked outside is oxygen in the atmosphere. To quickly burn on contact. In addition, the wood chip used the thing which limited the particle size to 10 mm or more using the sieve with a 10 mm opening as a commercial item.

得られた円筒形状の塊状物を、まず、目開き3mmのふるいを用いて都度ふるい下を除きながら、トップグラインダを用いて全量3mm以下に粉砕を粉砕し、その後ディスクミルを用いて2mm以下に粉砕し、炭化珪素粉末を得た。得られた炭化珪素粉末は結晶質であった。   The obtained cylindrical lump is first pulverized to a total amount of 3 mm or less using a top grinder while removing the bottom of the sieve using a 3 mm sieve and then reduced to 2 mm or less using a disk mill. By grinding, silicon carbide powder was obtained. The obtained silicon carbide powder was crystalline.

そして、得られた炭化珪素粉末を、目開き500μm及び1700μmのふるいを用いて、粒度が500μm以上1700μm未満の範囲に限定した。そして、この炭化珪素粉末の安息角を求めた。   And the obtained silicon carbide powder was limited to the range whose particle size is 500 micrometers or more and less than 1700 micrometers using the sieve of 500 micrometers and 1700 micrometers of openings. And the angle of repose of this silicon carbide powder was determined.

ここで、安息角は、JIS R9301−2−2:1999「アルミナ粉末−第2部:物性測定方法−2:安息角」に記載されている測定方法に準じて測定した。具体的には以下の通りである。   Here, the angle of repose was measured according to the measurement method described in JIS R9301-2-2: 1999 “Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”. Specifically, it is as follows.

安息角測定用の土台として、研磨仕上げしたステンレス製であって、一辺300mm、厚さ6mmの正方形板を用意した。この土台には、互いに45°で交わる4本の直線を放射状に刻んだ。   As a foundation for measuring the angle of repose, a square plate made of polished stainless steel and having a side of 300 mm and a thickness of 6 mm was prepared. On this foundation, four straight lines intersecting at 45 ° with each other were radiated.

直線の交点の真上に、足部内径6mm、開口部角度60°のステンレス製の漏斗を、足部の先端と土台との距離が40mmとなるよう垂直に設置し、固定した。そして、炭化珪素粉末を、約60g/分の速度で、漏斗の側面を伝わせるように、粉末の山の先端が漏斗の先端に達するまで流し入れた。   A stainless steel funnel having a foot inner diameter of 6 mm and an opening angle of 60 ° was installed directly above the intersection of the straight lines so that the distance between the tip of the foot and the base was 40 mm and fixed. Then, the silicon carbide powder was poured at a rate of about 60 g / min until the tip of the powder pile reached the tip of the funnel so as to be transmitted along the side of the funnel.

流し入れ終わった時の粉末の広がりの大きさを測定するため、土台上の4本の直線と粉末の広がり(飛び散った粒子は除外する)が交わる部分それぞれ(直線それぞれに2箇所ずつ)に印をつけ、4本の直線それぞれについて印間の距離を測定したて、粉末の広がり直径を得た。   In order to measure the size of the spread of the powder at the end of pouring, mark each part where the four straight lines on the base and the spread of the powder (excluding scattered particles) intersect (two on each straight line) The distance between the marks was measured for each of the four straight lines, and the spread diameter of the powder was obtained.

JIS R9301−2−2に記載のアルミナ粉末と比べ、炭化珪素粉末は土台の板上で不規則に跳ねて飛散しやすいので、3回測定を行い、その平均の広がり直径を安息角の計算に用いた。   Compared to the alumina powder described in JIS R9301-2-2, silicon carbide powder tends to scatter and fly irregularly on the base plate, so measure three times and calculate the average spread diameter to calculate the angle of repose. Using.

粉末の広がり直径をD(mm)、漏斗足部の内径をd(=6mm)、粉末の高さをh(=40mm)とすると、安息角θは以下の式(2)で算出される。
θ=tan−1[(2h/(D−d)] ・・・(2)
When the spread diameter of the powder is D (mm), the inner diameter of the funnel foot is d (= 6 mm), and the height of the powder is h (= 40 mm), the angle of repose θ is calculated by the following equation (2).
θ = tan −1 [(2h / (D−d)] (2)

炭化珪素粉末の安息角は、31°であった。   The angle of repose of the silicon carbide powder was 31 °.

さらに、炭化珪素粉末の軽装かさ密度を求めた。ここで、軽装かさ密度は、JIS R9301−2−3:1999「アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度」に記載されている軽装かさ密度の測定方法と同様にして測定した。炭化珪素粉末の軽装かさ密度は、1.18g/cmであった。 Further, the light bulk density of the silicon carbide powder was determined. Here, the light bulk density is measured according to JIS R9301-2-3: 1999 "Alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density". Measured in the same manner as above. The light bulk density of the silicon carbide powder was 1.18 g / cm 3 .

次に、炭化珪素粉末150gを、内寸が直径100mm、高さ200mmであって、側面厚み5mm、底面厚み8mmの黒鉛製のるつぼ内に充填した。この際、炭化珪素粉末の回収を容易にするために、直径100mm、厚さ2mm、重量約2.8gのカーボン紙をるつぼ内の底面に敷いた。また、厚さ5mmのカーボン製の蓋でるつぼに蓋をした。るつぼの蓋に種結晶は付着させなかった。   Next, 150 g of silicon carbide powder was filled into a graphite crucible having an inner dimension of 100 mm in diameter and a height of 200 mm and having a side surface thickness of 5 mm and a bottom surface thickness of 8 mm. At this time, carbon paper having a diameter of 100 mm, a thickness of 2 mm, and a weight of about 2.8 g was laid on the bottom of the crucible to facilitate the recovery of the silicon carbide powder. The crucible was covered with a carbon lid having a thickness of 5 mm. No seed crystals were attached to the crucible lid.

るつぼを加熱装置内に配置し、アルゴン雰囲気且つ1Torr(133Pa)の圧力下とした状態で、加熱した。この加熱は、るつぼの底面中心部を測定する放射温度計によって測定される温度を、初めは10℃/分の昇温速度で上昇させ、2200℃となった後、その状態を10時間保持した。   The crucible was placed in a heating apparatus and heated in an argon atmosphere and a pressure of 1 Torr (133 Pa). In this heating, the temperature measured by a radiation thermometer that measures the center of the bottom of the crucible was first increased at a rate of temperature increase of 10 ° C./min. After reaching 2200 ° C., the state was maintained for 10 hours. .

その後、るつぼ内を常温まで空冷した。るつぼの蓋の下面には炭化珪素単結晶の塊状物が生成されていた。そして、るつぼの底に残っていた炭化珪素粉末を回収した。このとき、るつぼの内壁面に固着していた炭化珪素粉末は、一度昇華したものとして回収しなかった。   Thereafter, the inside of the crucible was cooled to room temperature. A lump of silicon carbide single crystal was formed on the lower surface of the lid of the crucible. And the silicon carbide powder which remained in the bottom of the crucible was collect | recovered. At this time, the silicon carbide powder adhering to the inner wall surface of the crucible was not recovered as once sublimated.

加熱前の炭化珪素粉末とカーボン板との重量の和から加熱後に回収した炭化珪素粉末とカーボン板との重量の和を差し引いた重量を昇華した炭化珪素粉末の重量として求めた。   The weight obtained by subtracting the sum of the weights of the silicon carbide powder and the carbon plate recovered after heating from the sum of the weights of the silicon carbide powder and the carbon plate before heating was determined as the weight of the sublimated silicon carbide powder.

るつぼを用いた加熱を3回行い、昇華した炭化珪素粉末の重量の平均値を求めた。そして、この平均値を加熱時間である10時間で除することによって、昇華速度を求めた。昇華速度は、1.48g/hであった。   Heating with a crucible was performed three times, and the average value of the weight of the sublimated silicon carbide powder was determined. And the sublimation rate was calculated | required by remove | dividing this average value by 10 hours which are heating time. The sublimation rate was 1.48 g / h.

(実施例2〜8)
実施例2〜8では、実施例1で塊状物を粉砕して得られた炭化珪素粉末を、用いるふるいを変えて、粒度を表1に記載した範囲に限定した。表1に示すように、安息角は25°から41°であり、軽装かさ密度は1.01g/cmから1.33g/cmであった。
(Examples 2 to 8)
In Examples 2-8, the particle size was limited to the range described in Table 1 by changing the sieve to be used in the silicon carbide powder obtained by pulverizing the lump in Example 1. As shown in Table 1, the angle of repose is 41 ° from 25 °, loosed bulk density was 1.33 g / cm 3 from 1.01 g / cm 3.

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、1.07g/hから1.40g/hであった。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rate was 1.07 g / h to 1.40 g / h.

(実施例9,10)
アチソン炉での焼成時間を2500℃以上、保持時間を18時間とし、実施例1と同様に塊状物を粉砕して得られた炭化珪素粉末を、用いるふるいを変えて、粒度を表1に記載した範囲に限定した。実施例1、2と同様の粒度に調整した。表1に示すように、安息角は、それぞれ28°,26°であり、軽装かさ密度は1.30g/cm,1.38g/cmであった。
(Examples 9 and 10)
The firing time in the Atchison furnace is 2500 ° C. or more, the holding time is 18 hours, and the silicon carbide powder obtained by pulverizing the lump in the same manner as in Example 1 is changed in the sieve to be used. The range was limited. The particle size was adjusted to the same as in Examples 1 and 2. As shown in Table 1, the angle of repose was 28 ° and 26 °, respectively, and the light bulk density was 1.30 g / cm 3 and 1.38 g / cm 3 .

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、それぞれ1.22g/h,1.16g/hであった。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rates were 1.22 g / h and 1.16 g / h, respectively.

(実施例11)
実施例1と同様にして得られた炭化珪素粉末を、目開き45μm及び1700μmのふるいを用いて、粒度が45μm以上1700μm未満の範囲に限定した。安息角は32°であるが、軽装かさ密度は1.52g/cmであり、1.5g/cmを超えていた。
(Example 11)
The silicon carbide powder obtained in the same manner as in Example 1 was limited to a particle size range of 45 μm or more and less than 1700 μm using a sieve having openings of 45 μm and 1700 μm. The angle of repose is 32 °, but loosed bulk density was 1.52 g / cm 3, was greater than 1.5 g / cm 3.

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、1.03g/hであり、実施例1〜10と比較すると劣っていた。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rate was 1.03 g / h, which was inferior to Examples 1-10.

これは、るつぼに炭化珪素粉末を充填したとき、炭化珪素粉末間の隙間が小さ過ぎたため、昇華速度が遅くなったと考えられる。   This is probably because when the crucible was filled with silicon carbide powder, the gap between the silicon carbide powders was too small, so that the sublimation rate was slow.

(実施例12)
実施例1と同様にして得られた炭化珪素粉末を、目開き45μm及び4750μmのふるいを用いて、粒度が45μm以上4750μm未満の範囲に限定した。表1に示すように、安息角は34°であり、軽装かさ密度は1.41g/cmであった。
(Example 12)
The silicon carbide powder obtained in the same manner as in Example 1 was limited to a particle size range of 45 μm or more and less than 4750 μm using a sieve having openings of 45 μm and 4750 μm. As shown in Table 1, the angle of repose was 34 °, and the light bulk density was 1.41 g / cm 3 .

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、1.04g/hであり、実施例1〜10と比較すると劣っていた。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rate was 1.04 g / h, which was inferior to Examples 1-10.

これは、4750μm付近の大きな径の粗大な炭化珪素粉末が存在するので軽装かさ密度は大きくなったが、炭化珪素粉末間に大きな隙間が生じたため、昇華速度が遅くなったと考えられる。   This is thought to be due to the presence of coarse silicon carbide powder having a large diameter in the vicinity of 4750 μm, so that the light bulk density was increased, but because a large gap was formed between the silicon carbide powders, the sublimation rate was slowed.

(比較例1〜4)
比較例1〜4では、焼成の際に、木材チップを添加しなかったことを除いて、実施例1と同様に、アチソン炉を用いて炭化珪素粉末の焼成を行った。そして、得られた塊状物をボールミルで粉砕して、炭化珪素粉末を得た。
(Comparative Examples 1-4)
In Comparative Examples 1 to 4, silicon carbide powder was fired using an Atchison furnace in the same manner as in Example 1 except that wood chips were not added during firing. And the obtained lump was grind | pulverized with the ball mill and the silicon carbide powder was obtained.

そして、得られた炭化珪素粉末を、用いるふるいを変えて、粒度を表1に記載した範囲に限定した。表1に示すように、安息角は16°から23°であり、軽装かさ密度は1.28g/cmから1.61g/cmであった。 The obtained silicon carbide powder was changed in the sieve to be used, and the particle size was limited to the range shown in Table 1. As shown in Table 1, the angle of repose is 23 ° from 16 °, loosed bulk density was 1.61 g / cm 3 from 1.28 g / cm 3.

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、0.42g/hから0.95g/hであり、実施例1〜12と比較して劣っていた。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rate was 0.42 g / h to 0.95 g / h, which was inferior to Examples 1-12.

これは、得られた塊状物をボールミルで粉砕したので、角の凸部が除去され丸まったためと、焼成の際に木材チップを添加しなかったので、針状の炭化珪素粉末が少なくなったためとによって、るつぼに充填された炭化珪素粉末が詰り過ぎ、昇華速度が遅くなったためであると考えられる。   This is because the obtained lump was pulverized with a ball mill, so that the convex portions at the corners were removed and rounded, and because no wood chips were added during firing, the amount of acicular silicon carbide powder was reduced. This is considered to be because the silicon carbide powder filled in the crucible was clogged too much and the sublimation rate was slow.

(比較例5,6)
比較例5,6では、市販の炭化珪素粉末を、用いるふるいを変えて、粒度を表1に記載した範囲に限定した。表1に示すように、安息角はそれぞれ23°、21°であり、軽装かさ密度は1.45g/cm、1.53g/cmであった。
(Comparative Examples 5 and 6)
In Comparative Examples 5 and 6, the commercially available silicon carbide powder was limited to the range described in Table 1 by changing the sieve to be used. As shown in Table 1, the repose angles were 23 ° and 21 °, respectively, and the light bulk density was 1.45 g / cm 3 and 1.53 g / cm 3 .

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、それぞれ0.81g/h、0.75g/hであり、実施例1〜12と比較して劣っていた。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rates were 0.81 g / h and 0.75 g / h, respectively, which were inferior to Examples 1-12.

これは、炭化珪素粉末の安息角が小さく、且つ軽装かさ密度が大きいので、るつぼに充填された炭化珪素粉末が詰り過ぎ、昇華速度が遅くなったとためである考えられる。   This is probably because the angle of repose of the silicon carbide powder is small and the light bulk density is high, so that the silicon carbide powder filled in the crucible is clogged too much and the sublimation rate is slowed.

(比較例7,8)
比較例7,8では、実施例1と同様に、アチソン炉を用いて炭化珪素粉末の焼成を行った。そして、得られた塊状物を強化ナイロン製ハンマーで粉砕して、炭化珪素粉末を得た。
(Comparative Examples 7 and 8)
In Comparative Examples 7 and 8, as in Example 1, the silicon carbide powder was fired using the Atchison furnace. And the obtained lump was pulverized with a reinforced nylon hammer to obtain silicon carbide powder.

そして、得られた炭化珪素粉末を、用いるふるいを変えて、粒度を表1に記載した範囲に限定した。表1に示すように、安息角はそれぞれ46°、48°であり、軽装かさ密度は1.07g/cm、1.03g/cmであった。 The obtained silicon carbide powder was changed in the sieve to be used, and the particle size was limited to the range shown in Table 1. As shown in Table 1, the angle of repose was 46 ° and 48 °, respectively, and the light bulk density was 1.07 g / cm 3 and 1.03 g / cm 3 .

この炭化珪素粉末を、実施例1と同様に、るつぼに充填して、加熱した。昇華速度は、表1に示すように、それぞれ0.91g/h、0.88g/hであり、実施例1〜12と比較して劣っていた。   This silicon carbide powder was filled in a crucible and heated as in Example 1. As shown in Table 1, the sublimation rates were 0.91 g / h and 0.88 g / h, respectively, which were inferior to those of Examples 1-12.

これは、得られた塊状物をハンマーで粉砕したので、元々割れ易い方向に沿って割れたため、炭化珪素粉末が極度に針状化したことによって、るつぼに充填された炭化珪素粉末の間に大きな空洞が生じ過ぎ、昇華速度が遅くなったためであると考えられる。   This is because the lump obtained was pulverized with a hammer and originally cracked in the direction in which it was easily cracked. This is thought to be because the cavities were formed too much and the sublimation rate was slow.

Claims (4)

容器内に原料となる炭化珪素粉末を充填し、前記炭化珪素粉末を昇華させて、単結晶炭化珪素を製造する方法において、
前記炭化珪素粉末の安息角は25°以上45°以下であることを特徴する炭化珪素単結晶の製造方法。
In a method for producing a single crystal silicon carbide by filling silicon carbide powder as a raw material in a container and sublimating the silicon carbide powder,
The repose angle of the silicon carbide powder is 25 ° or more and 45 ° or less, and the method for producing a silicon carbide single crystal.
前記炭化珪素粉末の安息角は30°以上40°以下であることを特徴する請求項1に記載の炭化珪素単結晶の製造方法。   2. The method for producing a silicon carbide single crystal according to claim 1, wherein an angle of repose of the silicon carbide powder is not less than 30 ° and not more than 40 °. 前記炭化珪素粉末の軽装かさ密度は0.8g/cm以上1.5g/cm以下であることを特徴する請求項1又は2に記載の炭化珪素単結晶の製造方法。 The method for producing a silicon carbide single crystal according to claim 1 or 2, wherein a light bulk density of the silicon carbide powder is 0.8 g / cm 3 or more and 1.5 g / cm 3 or less. 前記炭化珪素粉末の粒度範囲は、45μm以上3350μm未満であることを特徴する請求項1から3の何れか1項に記載の炭化珪素単結晶の製造方法。   4. The method for producing a silicon carbide single crystal according to claim 1, wherein a particle size range of the silicon carbide powder is 45 μm or more and less than 3350 μm. 5.
JP2016164606A 2016-08-25 2016-08-25 Method for producing silicon carbide single crystal Active JP6640680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164606A JP6640680B2 (en) 2016-08-25 2016-08-25 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164606A JP6640680B2 (en) 2016-08-25 2016-08-25 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2018030760A true JP2018030760A (en) 2018-03-01
JP6640680B2 JP6640680B2 (en) 2020-02-05

Family

ID=61304444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164606A Active JP6640680B2 (en) 2016-08-25 2016-08-25 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP6640680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790270A (en) * 2019-11-13 2020-02-14 安徽科达新材料有限公司 Novel carbonization process for graphite negative electrode material
CN112210824A (en) * 2019-07-11 2021-01-12 Skc株式会社 Powder for growing silicon carbide ingot and method for producing silicon carbide ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524248B1 (en) * 2020-09-28 2023-07-15 Ebner Ind Ofenbau Process for growing crystals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210824A (en) * 2019-07-11 2021-01-12 Skc株式会社 Powder for growing silicon carbide ingot and method for producing silicon carbide ingot
EP3763852A1 (en) * 2019-07-11 2021-01-13 SKC Co., Ltd. A composition for preparing a silicon carbide ingot and a method for preparing a silicon carbide ingot using the same
CN110790270A (en) * 2019-11-13 2020-02-14 安徽科达新材料有限公司 Novel carbonization process for graphite negative electrode material

Also Published As

Publication number Publication date
JP6640680B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
KR102145650B1 (en) Silicon carbide powder and method for producing silicon carbide single crystal
JP5706671B2 (en) Silicon carbide powder for producing silicon carbide single crystal by sublimation recrystallization method and method for producing the same
Satapathy et al. Microwave synthesis of phase-pure, fine silicon carbide powder
JP5975176B2 (en) Silicon nitride powder for mold release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder, casting mold for polycrystalline silicon ingot and manufacturing method thereof, and polycrystalline silicon using the mold Manufacturing method of ingot casting
JP6640680B2 (en) Method for producing silicon carbide single crystal
JP6809912B2 (en) Silicon Carbide Powder, Its Manufacturing Method, and Silicon Carbide Single Crystal Manufacturing Method
JP2015157737A (en) Method for producing silicon carbide powder
JPS62100412A (en) Production of alumina-zirconia compound powder body
JP6778100B2 (en) Method for producing silicon carbide powder and silicon carbide single crystal using the same as a raw material
JP2013095637A (en) SPHERICAL α-TYPE SILICON CARBIDE, PRODUCTION METHOD THEREOF, AND SINTERED BODY OR ORGANIC RESIN COMPOSITE USING THE SILICON CARBIDE AS RAW MATERIAL
JP3827459B2 (en) Silicon nitride powder and method for producing the same
JP6669469B2 (en) Silicon carbide powder
WO2018110560A1 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP2016003157A (en) Silicon nitride powder for mold release agent of mold for molding polycrystalline silicon ingot and manufacturing method therefor, silicon nitride powder-containing slurry for mold release agent of mold for molding polycrystalline silicon ingot, and mold for molding polycrystalline silicone ingot and manufacturing method therefor
JP6184732B2 (en) Silicon carbide granules and method for producing the same
JP7019362B2 (en) Silicon carbide powder
JP6802719B2 (en) Silicon carbide powder
JP6420735B2 (en) Silicon carbide powder
WO2018110567A1 (en) Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
JP2019151533A (en) Silicon carbide powder
RU2559485C1 (en) Zirconium diboride producing method
JP6378041B2 (en) Silicon carbide powder, method for producing silicon carbide powder with adjusted particle size, and method for producing silicon carbide single crystal
JP2017171564A (en) Production method of silicon carbide single crystal
JP6990136B2 (en) Silicon carbide powder
JP2019119663A (en) SiC POWDER, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250