JP6802383B2 - 寄生容量を減少させ、誘導性結合器モードに結合するデバイスおよび方法 - Google Patents
寄生容量を減少させ、誘導性結合器モードに結合するデバイスおよび方法 Download PDFInfo
- Publication number
- JP6802383B2 JP6802383B2 JP2019535774A JP2019535774A JP6802383B2 JP 6802383 B2 JP6802383 B2 JP 6802383B2 JP 2019535774 A JP2019535774 A JP 2019535774A JP 2019535774 A JP2019535774 A JP 2019535774A JP 6802383 B2 JP6802383 B2 JP 6802383B2
- Authority
- JP
- Japan
- Prior art keywords
- superconductor layer
- trench
- superconductor
- dielectric substrate
- qubit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 56
- 230000003071 parasitic effect Effects 0.000 title description 31
- 230000001939 inductive effect Effects 0.000 title description 12
- 239000002887 superconductor Substances 0.000 claims description 267
- 239000000758 substrate Substances 0.000 claims description 116
- 239000002096 quantum dot Substances 0.000 claims description 82
- 238000005530 etching Methods 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 31
- 238000010168 coupling process Methods 0.000 claims description 30
- 238000005859 coupling reaction Methods 0.000 claims description 30
- 230000008878 coupling Effects 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 230000004907 flux Effects 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 198
- 230000008569 process Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- 238000007667 floating Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 230000005283 ground state Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 102100029203 F-box only protein 8 Human genes 0.000 description 1
- 101100334493 Homo sapiens FBXO8 gene Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005233 quantum mechanics related processes and functions Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/83—Element shape
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/20—Models of quantum computing, e.g. quantum circuits or universal quantum computers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
- H01L21/76891—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by using superconducting materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/12—Josephson-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N69/00—Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0156—Manufacture or treatment of devices comprising Nb or an alloy of Nb with one or more of the elements of group IVB, e.g. titanium, zirconium or hafnium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0912—Manufacture or treatment of Josephson-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
- H10N60/855—Ceramic superconductors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
誘電体基板の中で基板の上部の超伝導体層に隣接するトレンチを製造するために、たとえば、乾式化学エッチング(プラズマあり、またはプラズマなしの気相エッチング)、湿式エッチング、物理エッチング(誘導結合プラズマエッチングまたはイオンビームミリング)、物理化学エッチング(反応性イオンビームエッチングまたは化学反応併用イオンビームエッチング)、またはそれらの組合せを含む、様々な製造プロセスを使用することができる。
100 概略図
102 超伝導体材料、超伝導体層
102−1 超伝導体層
102−2 超伝導体層
102−3 超伝導体層
104 誘電体基板
106−1 第1のトレンチ
106−2 第2のトレンチ
108−1 第1の距離、幅
108−2 第2の距離、幅
110 概略図
112 深さ
114−1 第1のトレンチ
114−2 第2のトレンチ
116−1 幅
116−2 幅
120 概略図
122−1 トレンチ
122−2 トレンチ
124−1 第1の幅
124−2 第2の幅
126−1 第1の深さ
126−2 第2の深さ
130 概略図
200 概略図、サンプル
202−1 超伝導体層
202−2 超伝導体層
202−3 超伝導体層
204 誘電体基板
206 トレンチ
208 幅
210 ピラー
210−1 ピラー
210−2 ピラー
212 深さ、高さ
214 距離
216 長さ
240 概略図
260 概略図
300 プロセス
350 プロセス
411 超伝導体配線
400 Gmon結合器
402−1 Gmon量子ビット
402−2 Gmon量子ビット
404 結合器ネットワーク
406−1 制御線
406−2 制御線
408 超伝導体配線、結合器、誘導性結合器
410 結合器制御線
412 白で描かれる区域
414 配線
414−1 配線
414−2 配線
414−3 配線
415 配線の幅
416 接地平面
417 配線間の距離
419 ループ
500 レイアウト
502 誘電体基板
504 超伝導体層
506−1 トレンチ幅
506−2 トレンチ幅
510 曲線
520 曲線
530 曲線
540 曲線
550 点線
552 ロールオーバ点
Claims (12)
- 超伝導量子ビットを調整可能な結合器ネットワークに結合するための量子ビット結合デバイスであって、
トレンチ(206)を備える誘電体基板(204)であって、前記トレンチの誘電率が前記誘電体基板の誘電率よりも低い誘電体基板と、
前記誘電体基板の面上の第1の超伝導体層(202−2)であって、前記第1の超伝導体層の縁部が第1の方向に沿って延び、前記第1の超伝導体層の少なくとも一部が前記誘電体基板の前記面と接触し、対応する臨界温度以下で超伝導体特性を呈する超伝導体材料から前記第1の超伝導体層が形成され、前記誘電体基板内の前記トレンチの長さが、前記第1の超伝導体層の前記縁部に隣接して前記縁部に沿って前記第1の方向に延び、前記トレンチの幅が、前記第1の超伝導体層の幅に及び、前記誘電体基板が、前記トレンチ内に前記第1の超伝導体層を支持する1つまたは複数のピラー(210)を備える、第1の超伝導体層(202−2)と、
前記誘電体基板の前記面上の第2の超伝導体層(202−1)であって、前記第2の超伝導体層の少なくとも一部が前記誘電体基板の前記面と接触し、前記誘電体基板内の前記トレンチに隣接しており、前記第2の超伝導体層が超伝導体材料を含む、第2の超伝導体層(202−1)と、を備え、
前記第1の超伝導体層は、前記第2の超伝導体層に誘導的に結合され、前記超伝導量子ビットと前記調整可能な結合器ネットワークとの間の結合を提供する、量子ビット結合デバイス。 - 前記トレンチ(206)は、前記第1の超伝導体層(202−2)の下に少なくとも部分的に延びる、請求項1に記載のデバイス。
- 前記トレンチ(206)は、前記第1の超伝導体層(202−2)の下に完全に延びる、請求項1に記載のデバイス。
- 前記量子ビット結合デバイスが、少なくとも1つの結合器制御線を備える、請求項1から3のいずれか一項に記載のデバイス。
- さらに、前記量子ビット結合デバイスが、前記第2の超伝導体層(202−1)を備える、請求項4に記載のデバイス。
- 前記調整可能な結合器ネットワークに結合されるように配置されるさらなる超伝導量子ビットをさらに備え、前記さらなる超伝導量子ビットが、
前記誘電体基板(204)の前記面上の第3の超伝導体層(202−3)を含み、前記第3の超伝導体層の少なくとも一部が前記誘電体基板の前記面と接触し、前記超伝導体材料を含み、前記第3の超伝導体層は、前記第1の超伝導体層(202−2)に誘導的に結合される、請求項1から5のいずれか一項に記載のデバイス。 - 前記超伝導量子ビットが、gmon量子ビット、xmon量子ビット、または磁束量子ビットを備える、請求項1から6のいずれか一項に記載のデバイス。
- 前記第1の超伝導体層(202−2)、前記第2の超伝導体層(202−1)および前記第3の超伝導体層(202−3)は、共平面である、請求項6に記載のデバイス。
- 超伝導量子ビットを調整可能な結合器ネットワークに結合するための量子ビット結合デバイスを製造するための方法であって、
誘電体基板を設けるステップ(352)と、
前記誘電体基板の面上に第1の超伝導体層および第2の超伝導体層を堆積するステップ(354)であって、それにより前記第1の超伝導体層および前記第2の超伝導体層は誘導的に結合されて前記超伝導量子ビットと前記調整可能な結合器ネットワークとの間の結合を提供し、前記第1の超伝導体層の縁部が第1の方向に沿って延び、前記第1の超伝導体層の少なくとも一部が、前記誘電体基板の前記面と接触し、対応する臨界温度以下で超伝導体特性を呈する超伝導体材料を含む、ステップ(354)と、
前記誘電体基板内のトレンチをエッチングするステップ(356,358)であって、前記誘電体基板内の前記トレンチの長さが、前記第1の超伝導体層の前記縁部に隣接して前記縁部に沿って前記第1の方向に延び、前記トレンチの誘電率が前記誘電体基板の誘電率よりも低く、前記トレンチの幅が、前記第1の超伝導体層の幅に及び、前記第2の超伝導体層の少なくとも一部が前記誘電体基板内の前記トレンチに隣接している、ステップ(356,358)とを含み、
前記トレンチをエッチングするステップが、
前記第1の超伝導体層の上面から前記誘電体基板に延びる1つまたは複数の孔を含むように前記第1の超伝導体層をパターン形成するステップと、
エッチャントが前記1つまたは複数の孔を通して前記誘電体基板をエッチングするように前記量子ビット結合デバイスを前記エッチャントにさらすステップと、
前記誘電体基板における前記トレンチ内に前記第1の超伝導体層を支持する複数のピラーを残すために前記エッチャントを取り除くステップとを含む、量子ビット結合デバイスを製造するための方法。 - 前記トレンチをエッチングするステップが、前記誘電体基板の異方性エッチングを実施するステップ(356)を含む、請求項9に記載の方法。
- 前記トレンチは、前記第1の超伝導体層の下に少なくとも部分的に延びる、請求項9に記載の方法。
- 前記トレンチは、前記第1の超伝導体層の下に完全に延びる、請求項9に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662440172P | 2016-12-29 | 2016-12-29 | |
US62/440,172 | 2016-12-29 | ||
PCT/US2017/066567 WO2018125604A1 (en) | 2016-12-29 | 2017-12-15 | Reducing parasitic capacitance and coupling to inductive coupler modes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020503690A JP2020503690A (ja) | 2020-01-30 |
JP6802383B2 true JP6802383B2 (ja) | 2020-12-16 |
Family
ID=60943140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019535774A Active JP6802383B2 (ja) | 2016-12-29 | 2017-12-15 | 寄生容量を減少させ、誘導性結合器モードに結合するデバイスおよび方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US11127892B2 (ja) |
EP (2) | EP3563310B1 (ja) |
JP (1) | JP6802383B2 (ja) |
KR (1) | KR102211013B1 (ja) |
CN (2) | CN110249343B (ja) |
AU (2) | AU2017386234B2 (ja) |
CA (1) | CA3049097A1 (ja) |
WO (1) | WO2018125604A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3049097A1 (en) * | 2016-12-29 | 2018-07-05 | Google Llc | Reducing parasitic capacitance and coupling to inductive coupler modes |
US10847705B2 (en) * | 2018-02-15 | 2020-11-24 | Intel Corporation | Reducing crosstalk from flux bias lines in qubit devices |
US11255929B2 (en) * | 2018-03-27 | 2022-02-22 | Quinc.Tech Inc. | Electronic device for sensing magnetic fields |
US11289637B2 (en) * | 2019-04-11 | 2022-03-29 | International Business Machines Corporation | Transmon qubits with trenched capacitor structures |
US20200404806A1 (en) * | 2019-06-19 | 2020-12-24 | International Business Machines Corporation | Cryogenic packaging for thermalization of low temperature devices |
US11011693B2 (en) * | 2019-06-24 | 2021-05-18 | Intel Corporation | Integrated quantum circuit assemblies for cooling apparatus |
US11889770B2 (en) * | 2020-04-16 | 2024-01-30 | International Business Machines Corporation | Low loss conductive line using bridged conductor |
CN111931941B (zh) * | 2020-07-15 | 2021-09-17 | 北京百度网讯科技有限公司 | 高保真度超导电路结构及超导量子芯片、超导量子计算机 |
EP4002227A1 (en) * | 2020-11-23 | 2022-05-25 | IQM Finland Oy | Three-dimensional superconducting qubit and a method for manufacturing the same |
EP4033553A1 (en) * | 2021-01-26 | 2022-07-27 | IQM Finland Oy | Superconducting junction device and fabrication thereof |
EP4352664A1 (en) | 2021-06-11 | 2024-04-17 | Seeqc Inc. | System and method of flux bias for superconducting quantum circuits |
US11639973B2 (en) * | 2021-07-14 | 2023-05-02 | United States Of America As Represented By The Secretary Of The Navy | Superconducting electronic circuit |
US11630166B1 (en) * | 2021-08-30 | 2023-04-18 | United States Of America As Represented By The Secretary Of The Navy | Superconducting quantum interference array receiver and method for digitally controlling magnetic flux bias thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008085974A2 (en) * | 2007-01-08 | 2008-07-17 | Unniversity Of Connecticut | Nonvolatile memory and three-state fets using cladded quantum dot gate structure |
WO2009120638A2 (en) * | 2008-03-24 | 2009-10-01 | D-Wave Systems Inc. | Systems, devices, and methods for analog processing |
WO2010099312A2 (en) * | 2009-02-27 | 2010-09-02 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
US8954125B2 (en) | 2011-07-28 | 2015-02-10 | International Business Machines Corporation | Low-loss superconducting devices |
WO2013180780A2 (en) * | 2012-03-08 | 2013-12-05 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
US9219298B2 (en) | 2013-03-15 | 2015-12-22 | International Business Machines Corporation | Removal of spurious microwave modes via flip-chip crossover |
US9177814B2 (en) | 2013-03-15 | 2015-11-03 | International Business Machines Corporation | Suspended superconducting qubits |
US9025861B2 (en) | 2013-04-09 | 2015-05-05 | Google Inc. | System and method for floorplan reconstruction and three-dimensional modeling |
WO2015108589A2 (en) * | 2013-10-22 | 2015-07-23 | Massachusetts Institute Of Technology | Waveguide formation using cmos fabrication techniques |
EP3082073B1 (en) * | 2015-04-12 | 2019-01-16 | Hitachi Ltd. | Quantum information processing |
US9558908B2 (en) * | 2015-04-30 | 2017-01-31 | Honeywell International Inc. | Apparatuses, systems, and methods for ion traps |
US10318880B2 (en) * | 2015-05-13 | 2019-06-11 | Lawrence Livermore National Security, Llc | Ultra low noise materials and devices for cryogenic superconductors and quantum bits |
US9524470B1 (en) * | 2015-06-12 | 2016-12-20 | International Business Machines Corporation | Modular array of vertically integrated superconducting qubit devices for scalable quantum computing |
WO2017015321A1 (en) | 2015-07-20 | 2017-01-26 | North Carolina State University | Synthetic pathway for biological carbon dioxide sequestration |
US10658424B2 (en) | 2015-07-23 | 2020-05-19 | Massachusetts Institute Of Technology | Superconducting integrated circuit |
US10133984B2 (en) * | 2015-09-30 | 2018-11-20 | Microsoft Technology Licensing, Llc | Adiabatic phase gates in parity-based quantum computers |
CA3049097A1 (en) * | 2016-12-29 | 2018-07-05 | Google Llc | Reducing parasitic capacitance and coupling to inductive coupler modes |
-
2017
- 2017-12-15 CA CA3049097A patent/CA3049097A1/en active Pending
- 2017-12-15 CN CN201780085510.5A patent/CN110249343B/zh active Active
- 2017-12-15 EP EP17826383.6A patent/EP3563310B1/en active Active
- 2017-12-15 WO PCT/US2017/066567 patent/WO2018125604A1/en active Search and Examination
- 2017-12-15 KR KR1020197022107A patent/KR102211013B1/ko active IP Right Grant
- 2017-12-15 EP EP21159100.3A patent/EP3869420B1/en active Active
- 2017-12-15 CN CN202311543390.2A patent/CN117808110A/zh active Pending
- 2017-12-15 JP JP2019535774A patent/JP6802383B2/ja active Active
- 2017-12-15 AU AU2017386234A patent/AU2017386234B2/en active Active
- 2017-12-15 US US16/473,779 patent/US11127892B2/en active Active
-
2020
- 2020-12-31 AU AU2020294362A patent/AU2020294362B2/en active Active
-
2021
- 2021-08-18 US US17/405,373 patent/US11751490B2/en active Active
- 2021-08-18 US US17/405,448 patent/US11690301B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110249343A (zh) | 2019-09-17 |
AU2017386234A1 (en) | 2019-07-11 |
US11751490B2 (en) | 2023-09-05 |
US20210384402A1 (en) | 2021-12-09 |
AU2017386234B2 (en) | 2020-10-01 |
EP3869420A1 (en) | 2021-08-25 |
CN117808110A (zh) | 2024-04-02 |
CA3049097A1 (en) | 2018-07-05 |
US11127892B2 (en) | 2021-09-21 |
US20210384401A1 (en) | 2021-12-09 |
AU2020294362A1 (en) | 2021-02-25 |
EP3563310B1 (en) | 2021-05-19 |
US11690301B2 (en) | 2023-06-27 |
KR20190100344A (ko) | 2019-08-28 |
EP3869420B1 (en) | 2024-07-10 |
AU2020294362B2 (en) | 2022-08-04 |
US20190341540A1 (en) | 2019-11-07 |
CN110249343B (zh) | 2023-12-08 |
WO2018125604A1 (en) | 2018-07-05 |
JP2020503690A (ja) | 2020-01-30 |
KR102211013B1 (ko) | 2021-02-02 |
EP3563310A1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6802383B2 (ja) | 寄生容量を減少させ、誘導性結合器モードに結合するデバイスおよび方法 | |
KR102241971B1 (ko) | 양자 비트 디페이징을 감소시키기 위한 선택적 캡핑 | |
US20240023461A1 (en) | Quantum information processing device formation | |
KR20180102581A (ko) | 동평면 도파관 플럭스 큐비트를 이용한 프로그램 가능한 범용 양자 어닐링 | |
JP2022069496A (ja) | 超伝導量子コンピューティングのためのハイブリッド力学インダクタンスデバイス | |
CN109313726A (zh) | 使用电介质减薄来减少量子设备中的表面损耗和杂散耦合 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6802383 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |