JP6801727B2 - Mechanical screws and their manufacturing methods - Google Patents

Mechanical screws and their manufacturing methods Download PDF

Info

Publication number
JP6801727B2
JP6801727B2 JP2019035647A JP2019035647A JP6801727B2 JP 6801727 B2 JP6801727 B2 JP 6801727B2 JP 2019035647 A JP2019035647 A JP 2019035647A JP 2019035647 A JP2019035647 A JP 2019035647A JP 6801727 B2 JP6801727 B2 JP 6801727B2
Authority
JP
Japan
Prior art keywords
less
mechanical
mechanical screw
toughness
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019035647A
Other languages
Japanese (ja)
Other versions
JP2019163538A (en
Inventor
木村 達己
達己 木村
和臣 市川
和臣 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019163538A publication Critical patent/JP2019163538A/en
Application granted granted Critical
Publication of JP6801727B2 publication Critical patent/JP6801727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、円筒体の内周面または外周面に多条ねじを有する機械式ねじおよびその製造方法に関するものである。機械式ねじは、鋼管杭、鋼管矢板および構真柱などの地中に打設されて構造体となる鋼管を相互に接合する際の機械式継手として機能するものである。
巨大地震などの際にねじ底からの脆性破壊を抑制させた、靭性に優れるねじ式機械継手およびその製造方法に関するものである。
The present invention relates to a mechanical screw having a multi-threaded screw on the inner peripheral surface or the outer peripheral surface of the cylindrical body and a method for manufacturing the same. Mechanical screws function as mechanical joints for joining steel pipes, such as steel pipe piles, steel pipe sheet piles, and structural pillars, which are placed in the ground to form structures.
The present invention relates to a threaded mechanical joint having excellent toughness and a method for manufacturing the same, which suppresses brittle fracture from the thread bottom in the event of a large earthquake or the like.

地滑り抑止用の鋼管杭や長尺の支持杭等は、施工場所の条件によって、例えば直径が200〜1500mm程度で長さが数十mにも及ぶものが必要になる。このような場合、施工現場において杭の打設途中で短尺の鋼管杭の複数本を順次接合することが必要となる。この接合には、接合対象となる鋼管杭のそれぞれの端部に取り付けられて機械式の接合継手となる、機械ねじが用いられる。 Depending on the conditions of the construction site, steel pipe piles and long support piles for landslide prevention, for example, need to have a diameter of about 200 to 1500 mm and a length of several tens of meters. In such a case, it is necessary to sequentially join a plurality of short steel pipe piles during the pile driving at the construction site. For this joining, mechanical screws are used, which are attached to the respective ends of the steel pipe piles to be joined to form a mechanical joining joint.

地滑り抑止用の鋼管杭や長尺の支持杭、構真柱等を接合する際は、施工場所や想定応力条件によって、接合継手となる機械式ねじの直径が1200mm超え、厚さが50mmを超えることもある。さらに、機械式ねじには、降伏強度:680MPa以上、引張強度:780MPa以上の高強度を有し、大断面で厚肉であることが要求されるようになっている。 When joining steel pipe piles for landslide prevention, long support piles, structural pillars, etc., the diameter of the mechanical screw used as the joint will exceed 1200 mm and the thickness will exceed 50 mm, depending on the construction site and assumed stress conditions. Sometimes. Further, the mechanical screw has a high strength of yield strength: 680 MPa or more and tensile strength: 780 MPa or more, and is required to have a large cross section and a thick wall.

このような機械式接合継手の例として、特許文献1に開示された、「鋼管杭の接合継手」がある。この鋼管杭の接合継手の典型例を図1に示す。図1に示す接合継手1は、鋼管杭2および3を接合する継手であり、接合される一方の鋼管杭2の端面に固着された、雄ねじを有する雄側筒体10と、他方の鋼管杭3の端面に固着された、雌ねじを有する雌側筒体20とからなる。それぞれの筒体に形成されるねじは、3条以上の多条ねじになっている。雄側筒体10に雌側筒体20をねじ込むことによって、鋼管杭2および3を接合する継手となる。その際、雌側筒体20の基端に形成した内周座11に雄側筒体10の先端部21が当接するとともに、雌側筒体20の先端傾斜部12は雄側筒体10の基端傾斜部22と当接し、雄側筒体10および雌側筒体20が隙間なく合体する。 As an example of such a mechanical joint, there is a "steel pipe pile joint" disclosed in Patent Document 1. A typical example of the joint of the steel pipe pile is shown in FIG. The joint joint 1 shown in FIG. 1 is a joint for joining steel pipe piles 2 and 3, and has a male side cylinder 10 having a male screw and fixed to the end face of one of the steel pipe piles 2 to be joined, and the other steel pipe pile. It is composed of a female side cylinder 20 having a female screw, which is fixed to the end face of 3. The screws formed on each cylinder are multi-threaded screws having three or more threads. By screwing the female side cylinder 20 into the male side cylinder 10, it becomes a joint for joining the steel pipe piles 2 and 3. At that time, the tip portion 21 of the male side cylinder 10 comes into contact with the inner peripheral seat 11 formed at the base end of the female side cylinder 20, and the tip inclined portion 12 of the female side cylinder 20 is the male side cylinder 10. It comes into contact with the base end inclined portion 22, and the male side cylinder 10 and the female side cylinder 20 are united without a gap.

上記の雄側筒体10または雌側筒体20となる機械式ねじは、例えば図2に示すような工程で製造される。すなわち、連続鋳造製のブルームまたは造塊法による鋼塊(インゴット)を熱間圧延により大棒とする。この大棒を再加熱後、据込み鍛造、穿孔、穴広げ、リング鍛造を行って円筒状の機械式ねじ用素材としたのち、焼入れ、そして焼戻し処理を行う。次いで、機械加工により、機械式ねじ用素材の外周面および内周面の切削並びにねじ切りを行って、所定の機械式ねじに成形する。なお、図2に示す機械式ねじは雌側筒体に供するものである。なお、雄側筒体は機械式ねじ用素材の外周側にねじ切りを行うことになる。 The mechanical screw to be the male side cylinder 10 or the female side cylinder 20 is manufactured by, for example, the process shown in FIG. That is, a bloom made by continuous casting or a steel ingot by the ingot method is made into a large bar by hot rolling. After reheating this large rod, it is subjected to stationary forging, drilling, hole expansion, and ring forging to obtain a cylindrical mechanical screw material, which is then quenched and tempered. Next, by machining, the outer peripheral surface and the inner peripheral surface of the mechanical screw material are cut and threaded to form a predetermined mechanical screw. The mechanical screw shown in FIG. 2 is provided for the female side cylinder. The male side cylinder is threaded on the outer peripheral side of the mechanical screw material.

機械式ねじの断面形状をリング鍛造後の素材形状と比較して図3に示す。なお、図3には、図1における雌側筒体20となる機械式ねじの場合を示し、典型的な寸法も併記している。図3に示すように、素材の外周面および内周面を均等に切削したのち、雌側筒体の場合は、内周面にねじ切りが行われる。
さて、巨大地震などにより機械式ねじは主としてねじ底にねじりや引張応力などの応力集中を生じる。一方、ねじ加工後のねじ底は、図3の素材の周壁部分の拡大図を図4に示すように、機械式ねじ用素材の径方向厚みの中心となることが一般的である。これは、雄側筒体の場合も同様である。そのため、巨大地震によるねじ底からの破壊を抑制するためには、素材の肉厚中心部において高強度で且つ靭性に優れる機械式ねじを提供する必要がある。
The cross-sectional shape of the mechanical screw is shown in FIG. 3 in comparison with the material shape after ring forging. Note that FIG. 3 shows the case of the mechanical screw which is the female side cylinder 20 in FIG. 1, and the typical dimensions are also shown. As shown in FIG. 3, after the outer peripheral surface and the inner peripheral surface of the material are evenly cut, in the case of the female side cylinder, the inner peripheral surface is threaded.
By the way, mechanical screws mainly cause stress concentration such as torsion and tensile stress on the screw bottom due to a huge earthquake or the like. On the other hand, the screw bottom after threading is generally the center of the radial thickness of the material for mechanical screws, as shown in FIG. 4 which is an enlarged view of the peripheral wall portion of the material of FIG. This also applies to the male side cylinder. Therefore, in order to suppress the destruction from the screw bottom due to a huge earthquake, it is necessary to provide a mechanical screw having high strength and excellent toughness at the center of the wall thickness of the material.

特開2015−155622号公報JP-A-2015-155622

しかしながら、近年の直径が1200mmを超え、かつ厚さが50mmを超えるような、大断面かつ厚肉の機械式ねじでは、厚み中心部の偏析の存在や熱処理時の冷却速度の低下などに起因して高強度化および強靭化の両立は極めて困難であった。 However, in recent years, mechanical screws with a large cross section and thick wall with a diameter of more than 1200 mm and a thickness of more than 50 mm are caused by the presence of segregation at the center of the thickness and a decrease in the cooling rate during heat treatment. Therefore, it was extremely difficult to achieve both high strength and toughness.

そこで、本発明は、特に、上記した大断面かつ厚肉の機械式ねじにおいて、高強度化および強靭化を両立するための方途について与えることを目的とする。本発明の他の目的は、高強度かつ高靭性の機械式ねじを製造する方法について提案することにある。 Therefore, it is an object of the present invention to provide a method for achieving both high strength and toughness, particularly in the above-mentioned large-section and thick-walled mechanical screw. Another object of the present invention is to propose a method for producing a mechanical screw having high strength and high toughness.

発明者らは、直径が1200mmを超え、かつ厚さが50mmを超えるような、大断面かつ厚肉の機械式ねじにおいて、耐震性向上のために高強度で強靭な特性を得るための手法について鋭意研究を行った。具体的には、0.2%耐力が680MPa以上および引張強さ780MPa以上であり、また、巨大地震時のねじ底からの破壊を抑制するために、上記した円筒形の機械式ねじ用素材における径方向厚み中心部(以下、1/2t部ともいう)の0℃での2mmVノッチシャルピー吸収エネルギーが47J以上とすることを所期して種々の検討を重ねた。 The inventors have described a method for obtaining high-strength and tough properties for improving seismic resistance in large-section and thick-walled mechanical screws having a diameter of more than 1200 mm and a thickness of more than 50 mm. We conducted diligent research. Specifically, the 0.2% proof stress is 680 MPa or more and the tensile strength is 780 MPa or more, and in order to suppress the fracture from the screw bottom at the time of a large earthquake, the radial direction of the above-mentioned cylindrical mechanical screw material. Various studies were repeated with the expectation that the 2 mm V notch Charpy absorption energy at 0 ° C. at the center of the thickness (hereinafter, also referred to as 1 / 2t portion) would be 47J or more.

すなわち、図3に示したとおり、機械式ねじのねじ底は、機械加工前の円筒形の機械式ねじ用素材における1/2t部に対応し、この1/2t部は出発材であるブルームやインゴットにおいてマクロ偏析が発生しやすい上に焼入れ処理において冷却速度が遅くなって組織が粗くなる部位であることから、1/2t部では強度や靭性を確保するのが難しい。従って、この1/2t部における、強度や靭性を向上することが重要になる。 That is, as shown in FIG. 3, the screw bottom of the mechanical screw corresponds to the 1 / 2t portion of the cylindrical mechanical screw material before machining, and this 1 / 2t portion corresponds to the bloom or the starting material. Since macrosegregation is likely to occur in the ingot and the cooling rate is slowed in the quenching process to roughen the structure, it is difficult to secure strength and toughness in the 1 / 2t portion. Therefore, it is important to improve the strength and toughness in this 1 / 2t portion.

以上を踏まえて鋭意検討したところ、成分組成を元素毎に規制することに加えて、所定の制約下で成分組成を設計することが、特に機械式ねじ用素材における1/2t部における強度や靭性の向上に有効であることを見出し、本発明を完成するに到った。本発明の要旨構成は、次のとおりである。 As a result of diligent studies based on the above, in addition to regulating the component composition for each element, designing the component composition under predetermined constraints is especially important for the strength and toughness of the mechanical screw material at 1 / 2t. We have found that it is effective in improving the above, and have completed the present invention. The gist structure of the present invention is as follows.

1.円筒体の内周面または外周面に多条ねじを有する機械式ねじであって、前記円筒体は、
質量%で、
C:0.05〜0.18%、
Si:0.01〜1.00%、
Mn:0.6〜2.0%、
P:0.025%以下、
S:0.015%以下、
Al:0.001〜0.050%、
Ti:0.005〜0.025%、
B:0.0005〜0.0030%および
N:0.0020〜0.0060%
を含み、さらに、
Cu:0.8%以下、
Ni:3.0%以下、
Cr:1.5%以下、
Mo:1.5%以下、
V:0.3%以下および
Nb:0.1%以下
のいずれか2種以上を含み、残部がFeおよび不可避的不純物の成分組成を有し、次式(1)に示すDi値が140〜280、次式(2)式に示すCeq値が0.60〜0.70%である、機械式ねじ。
Di=25.4×DI0C×f・Si×f・Mn×f・Cu×f・Ni×f・Cr×f・Mo×f・V×1.3 …(1)
ここで、DI0C=0.3241×√C(%)
f・Si=0.75Si(%)+1
f・Mn=3.33Mn(%)+1
f・Cu=0.35Cu(%)+1
f・Ni=0.36Ni(%)+1
f・Cr=2.16Cr(%)+1
f・Mo=3.00Mo(%)+1
f・V=1.75V(%)+1
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 …(2)
但し、上式(1)におけるM(%)および上式(2) におけるM(Mは元素記号)は、当該元素の質量%を意味する。
1. 1. A mechanical screw having a multi-threaded screw on the inner peripheral surface or the outer peripheral surface of the cylindrical body, and the cylindrical body is
By mass%
C: 0.05-0.18%,
Si: 0.01-1.00%,
Mn: 0.6-2.0%,
P: 0.025% or less,
S: 0.015% or less,
Al: 0.001 to 0.050%,
Ti: 0.005 to 0.025%,
B: 0.0005 to 0.0030% and N: 0.0020 to 0.0060%
Including,
Cu: 0.8% or less,
Ni: 3.0% or less,
Cr: 1.5% or less,
Mo: 1.5% or less,
V: 0.3% or less and
Nb: Contains any two or more of 0.1% or less, the balance has the component composition of Fe and unavoidable impurities, the Di value shown in the following formula (1) is 140 to 280, and it is shown in the following formula (2). Mechanical threads with a Ceq value of 0.60 to 0.70%.
Di = 25.4 × DI0C × f ・ Si × f ・ Mn × f ・ Cu × f ・ Ni × f ・ Cr × f ・ Mo × f ・ V × 1.3… (1)
Here, DI0C = 0.3241 × √C (%)
f ・ Si = 0.75Si (%) +1
f ・ Mn = 3.33Mn (%) +1
f ・ Cu = 0.35Cu (%) +1
f ・ Ni = 0.36Ni (%) +1
f ・ Cr = 2.16Cr (%) +1
f ・ Mo = 3.00Mo (%) +1
f ・ V = 1.75V (%) + 1
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14… (2)
However, M (%) in the above formula (1) and M (M is an element symbol) in the above formula (2) mean the mass% of the element.

2.前記成分組成は、さらに質量%で、
Ca:0.010%以下、
REM:0.010%以下、
Mg:0.010%以下および
Zr:0.010%以下
のいずれか1種または2種以上を含む前記1に記載の機械式ねじ。
2. 2. The composition of the components is further increased by mass%.
Ca: 0.010% or less,
REM: 0.010% or less,
Mg: 0.010% or less and
Zr: The mechanical screw according to 1 above, which contains any one or more of 0.010% or less.

3.前記1または2の成分組成を有する円筒体に、Ac3+30℃〜Ac3+70℃の温度域に加熱後、少なくとも800〜400℃の温度域を2〜20℃/sの平均冷却速度で冷却する、焼入れ処理を施し、次いで焼戻し処理を行った後、該円筒体の内周面または外周面に多条ねじを形成する機械式ねじの製造方法。
なお、Ac3(℃)は次式の通りとする。
Ac3=937.2−436.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+124.8V+136.3Ti−19.1Nb+198.4Al+3315B+42
ここで、元素記号は当該元素の含有量(質量%)を示し、含まれていない元素はゼロとする。
3. 3. The one or a cylindrical body having a second component composition, Ac 3 + 30 ° C. to Ac After heating 3 + 70 to a temperature range of ° C., cooling the temperature range of at least 800-400 ° C. at an average cooling rate of 2 to 20 ° C. / s A method for manufacturing a mechanical screw, which forms a multi-threaded screw on an inner peripheral surface or an outer peripheral surface of the cylindrical body after being subjected to a quenching treatment and then a tempering treatment.
Ac 3 (° C) is as shown in the following equation.
Ac 3 = 937.2-436.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315B + 42
Here, the element symbol indicates the content (mass%) of the element, and the element not contained is set to zero.

4.前記焼戻し処理は、580〜650℃の温度域に加熱後550〜400℃の温度域の平均冷却速度を1℃/s以上とする前記3に記載の機械式ねじの製造方法。 4. The method for manufacturing a mechanical screw according to 3 above, wherein the tempering treatment is performed by heating in a temperature range of 580 to 650 ° C. and then setting the average cooling rate in the temperature range of 550 to 400 ° C. to 1 ° C./s or more.

本発明により、高強度かつ高靭性の機械式ねじを提供することができる。具体的には、0.2%耐力が680MPa以上、引張強さが780MPa以上、1/2t部の0℃シャルピー吸収エネルギーが47J以上で厚肉の機械式ねじを安価に提供することができる。この機械式ねじを用いて鋼管杭を連結すれば、強固な接合が実現されるため、例えば大深度地下空間の有効活用などの都市部のインフラ開発に大きく寄与することができる。 According to the present invention, it is possible to provide a mechanical screw having high strength and high toughness. Specifically, a thick mechanical screw having a 0.2% proof stress of 680 MPa or more, a tensile strength of 780 MPa or more, and a 1 / 2t portion of 0 ° C. Charpy absorption energy of 47 J or more can be provided at low cost. If steel pipe piles are connected using this mechanical screw, a strong joint can be realized, which can greatly contribute to the development of infrastructure in urban areas such as effective utilization of deep underground space.

鋼管杭の接合継手の構造を示す図である。It is a figure which shows the structure of the joint joint of a steel pipe pile. 機械式ねじの製造工程を示す図である。It is a figure which shows the manufacturing process of a mechanical screw. 機械式ねじの断面形状とリング鍛造後の素材形状とを示す図である。It is a figure which shows the cross-sectional shape of a mechanical screw and the material shape after ring forging. 図3の素材の周壁部分の拡大図である。It is an enlarged view of the peripheral wall part of the material of FIG.

まず、はじめに、成分組成における各元素含有量の限定理由について述べる。なお、成分における%表示は、特に断らない限り質量%を意味する。
C:0.05〜0.18%
Cは、機械式ねじに求められる強度をより低コストに得るために有用な元素であって、その効果を得るには、少なくとも0.05%の含有が必要である。一方、0.18%を超えての含有は、母材や溶接部の靭性を低下させるとともに、溶接性も悪化させる。そのため、上限は0.18%とした。好ましくは、0.08〜0.18%の範囲である。
First, the reasons for limiting the content of each element in the component composition will be described. In addition,% display in a component means mass% unless otherwise specified.
C: 0.05-0.18%
C is an element useful for obtaining the strength required for a mechanical screw at a lower cost, and the content of C must be at least 0.05% in order to obtain the effect. On the other hand, if the content exceeds 0.18%, the toughness of the base metal and the welded portion is lowered, and the weldability is also deteriorated. Therefore, the upper limit was set to 0.18%. It is preferably in the range of 0.08 to 0.18%.

Si:0.01〜1.00%
Siは、固溶強化元素として特に厚肉材の高強度化に有用である。また、一部は脱酸材としても作用する。このような効果を得るには、0.01%以上の含有が必要である。一方、1.00%を超えての含有は、溶接熱影響部の靭性を低下させることから、0.01〜1.00%の範囲とする。好ましくは、0.05〜0.60%である。
Si: 0.01-1.00%
Si is particularly useful as a solid solution strengthening element for increasing the strength of thick materials. In addition, a part also acts as a deoxidizing material. In order to obtain such an effect, a content of 0.01% or more is required. On the other hand, if the content exceeds 1.00%, the toughness of the weld heat-affected zone is reduced, so the content is in the range of 0.01 to 1.00%. Preferably, it is 0.05 to 0.60%.

Mn:0.6〜2.0%
Mnは、焼入れ性を向上させ、母材の高強度化のために含有させるが、0.6%未満ではその効果が小さい。一方、2.0%を超えての含有は素材のマクロ偏析を助長し、母材靭性を低下させることから、0.6〜2.0%の範囲とした。好ましくは、0.8〜1.8%である。
Mn: 0.6-2.0%
Mn is contained to improve hardenability and increase the strength of the base metal, but if it is less than 0.6%, the effect is small. On the other hand, if the content exceeds 2.0%, it promotes macrosegregation of the material and reduces the toughness of the base material, so the range was set to 0.6 to 2.0%. Preferably, it is 0.8 to 1.8%.

P:0.025%以下
Pは、不可避的不純物として鋼中に存在するが、0.025%を超えて存在すると、特に、偏析部において粒界割れを促進するため、0.025%以下とする。一方、量産化プロセスにおいてPを0.001%未満とするには、生産性の低下を招き非常に高価となることから下限は、0.001%であることが好ましい。好適範囲は、0.003〜0.020%である。
P: 0.025% or less P is present in steel as an unavoidable impurity, but if it is present in excess of 0.025%, it should be 0.025% or less in order to promote grain boundary cracking, especially in the segregated portion. On the other hand, in order to make P less than 0.001% in the mass production process, the lower limit is preferably 0.001% because it causes a decrease in productivity and becomes very expensive. The preferred range is 0.003 to 0.020%.

S:0.015%以下
Sは、Pと同様に鋼中に不可避的不純物として混入するが、0.015%を超えると母材や溶接熱影響部の靭性を低下させるため、上限を0.015%とした。一方、量産化プロセスにおいてSを0.001%未満とするには、生産性の低下を招いて製品が非常に高価となることから、下限は0.001%であることが好ましい。好適には、0.001〜0.010%の範囲である。
S: 0.015% or less S is mixed in steel as an unavoidable impurity like P, but if it exceeds 0.015%, the toughness of the base metal and weld heat affected zone is reduced, so the upper limit is set to 0.015%. On the other hand, in order to make S less than 0.001% in the mass production process, the lower limit is preferably 0.001% because the product becomes very expensive due to a decrease in productivity. It is preferably in the range of 0.001 to 0.010%.

Al:0.001〜0.050%
Alは、脱酸材として添加するが、0.001%未満ではその効果が小さいため、0.001%以上の含有とする。一方、0.050%を超えて含有させてもその効果は飽和するため、0.001〜0.050%の範囲とした。好ましくは、0.005〜0.040%である。
Al: 0.001 to 0.050%
Al is added as a deoxidizing material, but if it is less than 0.001%, its effect is small, so the content should be 0.001% or more. On the other hand, even if it is contained in excess of 0.050%, the effect is saturated, so the range is set to 0.001 to 0.050%. Preferably, it is 0.005 to 0.040%.

Ti:0.005〜0.025%
Tiは、NをTiNとして固定し、B添加による焼入れ性の向上を有効に機能させるために含有させる。そのためには、0.005%以上の含有が必要である。一方、0.025%を超えての含有は母材や溶接部の靭性を低下させることから、0.005〜0.025%の範囲とした。好ましくは、0.007〜0.020%である。
Ti: 0.005 to 0.025%
Ti is fixed as TiN and is contained in order to effectively function the improvement of hardenability by adding B. For that purpose, the content of 0.005% or more is required. On the other hand, if the content exceeds 0.025%, the toughness of the base metal and the welded portion is lowered, so the content is set in the range of 0.005 to 0.025%. Preferably, it is 0.007 to 0.020%.

B:0.0005〜0.0030%
Bは、焼入れ性を向上させるのに有効な元素であり、特に厚肉材の中心部の高強度化に対して有効である。そのためには、0.0005%以上で含有させる必要がある。一方、Bの含有量が0.0030%を超えると、ボライドを形成して靭性を低下させるため、0.0005〜0.0030%の範囲とした。好ましくは、0.0007〜0.0025%である。
B: 0.0005 to 0.0030%
B is an element effective for improving hardenability, and is particularly effective for increasing the strength of the central portion of thick-walled materials. For that purpose, it is necessary to contain it at 0.0005% or more. On the other hand, when the B content exceeds 0.0030%, boride is formed and the toughness is lowered, so the range is set to 0.0005 to 0.0030%. Preferably, it is 0.0007 to 0.0025%.

N:0.0020〜0.0060%
Nは、TiやAlと結合して窒化物を形成し、組織の細粒化に寄与する。これらの効果を得るためには、0.0020%以上が必要である。一方、N量が多くなると、NはBと結合してBNが形成されて焼入れ性を阻害することになるから、N量の上限は0.0060%とする。好適範囲は、0.0020〜0.0055%である。
N: 0.0020-0.0060%
N combines with Ti and Al to form a nitride and contributes to fine graining of the structure. To obtain these effects, 0.0020% or more is required. On the other hand, when the amount of N increases, N binds to B to form BN, which hinders hardenability. Therefore, the upper limit of the amount of N is set to 0.0060%. The preferred range is 0.0020 to 0.0055%.

さらに、Cu:0.8%以下、Ni:3.0%以下、Cr:1.5%以下、Mo:1.5%以下、V:0.3%以下およびNb:0.1%以下の群から選ばれる、いずれか2種以上を含有する必要がある。これらの群のうち、含有される元素が1種のみでは、焼入れ性(Di値)と焼戻し後の強度(Ceq値)について、表層と内部とでバランスさせることが困難であり、2種以上を含有することが必要である。好ましくは、3種以上である。
Cu:0.8%以下
Cuは、主に鋼中に固溶し、靭性を損なうことなく高強度化するのに有効であるが、0.8%を超えて添加する場合には、熱間での圧延、据込み鍛造、穿孔、リング鍛造時に割れが生じることから、上限を0.8%とした。好ましくは、0.05〜0.6%である。
Furthermore, it contains any two or more selected from the group of Cu: 0.8% or less, Ni: 3.0% or less, Cr: 1.5% or less, Mo: 1.5% or less, V: 0.3% or less and Nb: 0.1% or less. There is a need to. Of these groups, if only one element is contained, it is difficult to balance the hardenability (Di value) and the strength after tempering (Ceq value) between the surface layer and the inside, and two or more types are included. It is necessary to contain it. Preferably, there are three or more.
Cu: 0.8% or less
Cu is mainly dissolved in steel and is effective for increasing strength without impairing toughness, but when added in excess of 0.8%, hot rolling, set-in forging, and drilling are performed. The upper limit was set to 0.8% because cracks occur during ring forging. Preferably, it is 0.05 to 0.6%.

Ni:3.0%以下
Niは、鋼の強度と靭性を向上させる有効な元素である。しかしながら、非常に高価な元素でもあり、経済性を大きく低下させるため、その上限を3.0%とした。好ましくは、0.05〜2.0%である。
Ni: 3.0% or less
Ni is an effective element that improves the strength and toughness of steel. However, it is also a very expensive element, and since it greatly reduces economic efficiency, the upper limit is set to 3.0%. Preferably, it is 0.05 to 2.0%.

Cr:1.5%以下
Crは、焼入れ性を向上させることで高強度化に有効な元素である。しかしながら、1.5%を超えての添加は溶接性を低下させるため、上限を1.5%とした。好ましくは、0.05〜1.3%である。
Cr: 1.5% or less
Cr is an element that is effective in increasing strength by improving hardenability. However, since addition of more than 1.5% reduces weldability, the upper limit is set to 1.5%. Preferably, it is 0.05 to 1.3%.

Mo:1.5%以下
Moは、Crと同様に焼入れ性を向上させることで高強度化に有効な元素である。しかしながら、1.5%を超えての添加は溶接性を低下させるため、上限を1.5%とした。好ましくは、0.03〜1.2%である。
Mo: 1.5% or less
Like Cr, Mo is an element that is effective in increasing strength by improving hardenability. However, since addition of more than 1.5% reduces weldability, the upper limit is set to 1.5%. Preferably, it is 0.03 to 1.2%.

V:0.3%以下
Vは、VNを形成して焼戻し軟化抵抗を向上させ、強度と靭性の向上に有効な元素である。しかしながら、0.3%を超えての添加は、非常に高価な元素であり、経済性の低下を招くため、上限を0.3%とした。好ましくは、0.005〜0.2%である。
V: 0.3% or less V is an element that forms VN to improve temper softening resistance and is effective in improving strength and toughness. However, addition of more than 0.3% is a very expensive element and causes a decrease in economy, so the upper limit is set to 0.3%. Preferably, it is 0.005 to 0.2%.

Nb:0.1%以下
Nbは、Vと同様にNb(C,N) を形成して焼戻し軟化抵抗を向上させ、強度と靭性の向上に有効な元素である。しかしながら、0.1%を超えての添加は、非常に高価な元素であり、経済性の低下を招くため、上限を0.1%とした。好ましくは、0.003〜0.02%である。
Nb: 0.1% or less
Like V, Nb is an element that forms Nb (C, N) to improve temper softening resistance and improve strength and toughness. However, addition of more than 0.1% is a very expensive element and causes a decrease in economy, so the upper limit is set to 0.1%. Preferably, it is 0.003 to 0.02%.

上記した基本成分組成において、次式(1)に示すDi値が140〜280、および次式(2)に示すCeq値が0.60〜0.70%であることが肝要である。
Di=25.4×DI0C×f・Si×f・Mn×f・Cu×f・Ni×f・Cr×f・Mo×f・V×1.3 …(1)
ここで、DI0C=0.3241×√C(%)
f・Si=0.75Si(%)+1
f・Mn=3.33Mn(%)+1
f・Cu=0.35Cu(%)+1
f・Ni=0.36Ni(%)+1
f・Cr=2.16Cr(%)+1
f・Mo=3.00Mo(%)+1
f・V=1.75V(%)+1
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 …(2)
In the above-mentioned basic component composition, it is important that the Di value shown in the following formula (1) is 140 to 280 and the Ceq value shown in the following formula (2) is 0.60 to 0.70%.
Di = 25.4 × DI0C × f ・ Si × f ・ Mn × f ・ Cu × f ・ Ni × f ・ Cr × f ・ Mo × f ・ V × 1.3… (1)
Here, DI0C = 0.3241 × √C (%)
f ・ Si = 0.75Si (%) +1
f ・ Mn = 3.33Mn (%) +1
f ・ Cu = 0.35Cu (%) +1
f ・ Ni = 0.36Ni (%) +1
f ・ Cr = 2.16Cr (%) +1
f ・ Mo = 3.00Mo (%) +1
f ・ V = 1.75V (%) + 1
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14… (2)

上記のDi値は、鋼材の焼入れ性を示す指標であり、添加する合金元素によって上記した式(1)に従って求めることができる。上記のDi値が160未満の場合、焼入れ時に上記した機械式ねじ用素材(図3参照)の厚み中心部の焼きが甘くなり、厚み中心部の強度が下がるとともに、靭性も低下する。一方、Di値が280を超えると、機械式ねじ用素材の表層が過度に硬くなり、表面の靭性を低下させる。そのため、Di値は140〜280の範囲とする。好適には、150〜250の範囲である。 The above Di value is an index showing the hardenability of the steel material, and can be obtained according to the above formula (1) depending on the alloying element to be added. When the Di value is less than 160, the material for mechanical screws (see FIG. 3) described above is hardened at the center of the thickness at the time of quenching, the strength of the center of the thickness is lowered, and the toughness is also lowered. On the other hand, when the Di value exceeds 280, the surface layer of the mechanical screw material becomes excessively hard, and the toughness of the surface is lowered. Therefore, the Di value is in the range of 140 to 280. It is preferably in the range of 150-250.

次に、上記(2)式で定義されるCeq値は、強度および溶接性の指標であり、このCeq値が0.60%未満であると、高強度を得るために焼戻し温度を低くする必要があり、特に機械式ねじ用素材の厚み中心の靭性を低下させる。一方、Ceq値が0.70%を超えると、機械式ねじを例えば鋼管に溶接する際の予熱温度を高くする必要があり、溶接施工性を低下させる。そのため、Ceq値は0.60〜0.70%の範囲とした。好ましくは、0.60〜0.68%である。
以上の基本成分を含み、残部は不可避的不純物およびFeである。
Next, the Ceq value defined by the above equation (2) is an index of strength and weldability, and if this Ceq value is less than 0.60%, it is necessary to lower the tempering temperature in order to obtain high strength. In particular, it reduces the toughness of the material for mechanical screws at the center of thickness. On the other hand, when the Ceq value exceeds 0.70%, it is necessary to raise the preheating temperature when welding the mechanical screw to, for example, a steel pipe, which lowers the weldability. Therefore, the Ceq value was set in the range of 0.60 to 0.70%. Preferably, it is 0.60 to 0.68%.
It contains the above basic components, and the rest is unavoidable impurities and Fe.

上記した基本成分にさらに、必要に応じて、Ca:0.010%以下、REM:0.010%以下、Mg:0.010%以下およびZr:0.010%以下の1種または2種以上を添加することができる。これら元素は、硫化物や酸化物の形態を制御することによって、比較的入熱が高い溶接を行う場合の溶接熱影響部の靭性向上に寄与する。そのためには、Caは0.0005%以上、REM、MgおよびZrはそれぞれ0.003%以上で添加することが好ましい。しかしながら、いずれの元素も0.010%を超えて添加しても効果は飽和するため、上限を0.010%とする。より好ましくは、Caは0.001〜0.007%、REM、MgおよびZrはそれぞれ0.003〜0.008%である。 Further, if necessary, one or more of Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, and Zr: 0.010% or less can be added to the above-mentioned basic components. By controlling the morphology of sulfides and oxides, these elements contribute to the improvement of the toughness of the weld heat-affected zone when welding with relatively high heat input is performed. For that purpose, it is preferable to add Ca at 0.0005% or more, and REM, Mg and Zr at 0.003% or more, respectively. However, even if any element is added in excess of 0.010%, the effect is saturated, so the upper limit is set to 0.010%. More preferably, Ca is 0.001 to 0.007% and REM, Mg and Zr are 0.003 to 0.008%, respectively.

次に、本発明の製造条件について述べる。
すなわち、図2に示したように、前述した化学組成を有するブルームやインゴットを熱間圧延により大棒とし、その後、据込み鍛造、穿孔、穴広げ、リング鍛造を行い円筒形の機械式ねじ用素材(円筒体)としたのち、焼入れおよび焼戻し処理を行い、最後に機械加工により製造することを基本形とする。機械式ねじの径や厚みに応じて、熱間加工プロセスの一部は省略することができる。
Next, the production conditions of the present invention will be described.
That is, as shown in FIG. 2, blooms and ingots having the above-mentioned chemical composition are hot-rolled into large rods, and then stationary forging, drilling, hole expansion, and ring forging are performed for cylindrical mechanical screws. The basic form is to use the material (cylindrical body), then perform quenching and tempering, and finally manufacture by machining. Depending on the diameter and thickness of the mechanical screw, part of the hot working process can be omitted.

上記した製造における条件は機械式ねじの一般に従えばよいが、円筒形の機械式ねじ用の素材とした後の焼入れ処理は、高靭性確保の観点から以下の通りに規定する。なお、以下に示す熱処理における温度の規定は、機械式ねじ用素材の1/2t部における温度を基準にする。
[焼入れ処理:Ac3+30℃〜Ac3+70℃の温度域に加熱後、少なくとも800〜400℃の温度域を2〜20℃/sの平均冷却速度で冷却]
上記の機械式ねじ用素材の焼入れ性および靭性の向上を両立するために、熱間加工後の再加熱温度はAc3+30℃〜Ac3+70℃の範囲とする必要がある。すなわち、Ac3+30℃未満では、十分な焼入れ組織(ベイナイトやマルテンサイト)が得られず一部にフェライトが生成するために、強度が低下する。一方、Ac3+70℃を超えると、機械式ねじ用素材の厚み中心部において急激に靭性が低下する。これは、旧γ粒の粗大化による焼戻し後の脆化によるものである。そのため、高強度と高靭性の両立を図るためには、Ac3+30℃〜Ac3+70℃の温度域に加熱する必要がある。
The above-mentioned manufacturing conditions may be in accordance with the general requirements for mechanical screws, but the quenching treatment after making a material for cylindrical mechanical screws is specified as follows from the viewpoint of ensuring high toughness. The temperature specified in the heat treatment shown below is based on the temperature in the 1 / 2t portion of the mechanical screw material.
[Quenching: Ac 3 + 30 ℃ After heating to to Ac 3 + 70 ° C. temperature range of the cooling at an average cooling rate of the temperature range of at least 800~400 ℃ 2~20 ℃ / s]
In order to improve the hardenability and toughness of the above mechanical screw material, the reheating temperature after hot working must be in the range of Ac 3 + 30 ° C to Ac 3 + 70 ° C. That is, if the temperature is lower than Ac 3 + 30 ° C., a sufficient quenching structure (bainite or martensite) cannot be obtained and ferrite is partially formed, resulting in a decrease in strength. On the other hand, when Ac 3 + 70 ° C. is exceeded, the toughness sharply decreases at the center of the thickness of the mechanical screw material. This is due to embrittlement after tempering due to the coarsening of the old γ grains. Therefore, in order to achieve both high strength and high toughness, it is necessary to heat in the temperature range of Ac 3 + 30 ° C to Ac 3 + 70 ° C.

次いで、この温度域に加熱した機械式ねじ用素材を水中や油中など冷媒に浸漬することで焼入れを行う。その際、少なくとも800〜400℃の温度域での平均冷却速度を2℃〜20℃
/sとする。
上記した焼入れ時の規定は、靭性を確保するために重要である。すなわち、平均冷却速度が20℃/sよりも速くなると、過度に硬くなるために靭性が低下する。一方、平均冷却速度が2℃/s未満では、フェライトが析出することによる組織の粗大化と焼戻し温度が低くなることによる粒界脆化を伴うことから、やはり靭性が低下する。そのため、少なくとも800〜400℃の平均冷却速度は2℃〜20℃/sとする。
Next, quenching is performed by immersing the material for mechanical screws heated in this temperature range in a refrigerant such as in water or oil. At that time, the average cooling rate in the temperature range of at least 800 to 400 ° C is set to 2 ° C to 20 ° C.
Let / s.
The above-mentioned quenching regulations are important for ensuring toughness. That is, when the average cooling rate is faster than 20 ° C./s, the toughness decreases due to excessive hardness. On the other hand, if the average cooling rate is less than 2 ° C./s, the toughness is also lowered because the structure is coarsened due to the precipitation of ferrite and the grain boundary embrittlement is caused by the lowering of the tempering temperature. Therefore, the average cooling rate at least 800 to 400 ° C. is 2 ° C. to 20 ° C./s.

なお、上記焼入れ処理は、例えば、予め当該素材の予備品(板厚が同じもの)の1/2t部に熱電対を取り付け、冷却する予備実験を行うことで所望の冷却速度がどの程度の水量で冷却あるいはどの程度の油濃度の油槽に浸けることで得られるのかを把握しておくことにより制御できる。 In the quenching process, for example, a thermocouple is attached to 1 / 2t portion of a spare part (of the same plate thickness) of the material in advance, and a preliminary experiment for cooling is performed to obtain a desired cooling rate of water amount. It can be controlled by knowing what can be obtained by cooling or immersing in an oil tank with an oil concentration.

上記した条件での焼入れ処理を施したのち、機械式ねじの一般に従って焼戻し処理を行う。さらに、高強度化並びに高靭性化をはかるために、焼戻し処理を以下の条件で行うことが好ましい。
[焼戻し処理:580〜650℃の温度域に加熱後550〜400℃の温度域の平均冷却速度を1℃/s以上]
まず、焼戻し温度は580〜650℃とする。すなわち、580℃よりも低温で焼戻しを行うと、旧γ粒界にPが偏析して焼戻し脆性(粒界脆化)を生じるため、上記の機械式ねじ用素材の厚み中心部の靭性が低下する。一方、650℃を超えて焼戻し処理を行うと、目標の強度を十分に満足できなくなる。そのため、焼戻し温度は580〜650℃とすることが好ましい。より好ましくは、580〜630℃である。
580〜650℃の温度域に加熱後550〜400℃の温度域の平均冷却速度を1℃/s以上とする
After quenching under the above conditions, tempering is performed according to the general procedure for mechanical screws. Further, in order to increase the strength and toughness, it is preferable to perform the tempering treatment under the following conditions.
[Tempering: After heating to a temperature range of 580 to 650 ° C, the average cooling rate in the temperature range of 550 to 400 ° C is 1 ° C / s or more]
First, the tempering temperature is 580 to 650 ° C. That is, when tempering is performed at a temperature lower than 580 ° C., P segregates at the old γ grain boundaries and causes tempering brittleness (grain boundary embrittlement), so that the toughness at the center of the thickness of the above mechanical screw material decreases. To do. On the other hand, if the tempering process is performed above 650 ° C, the target strength cannot be sufficiently satisfied. Therefore, the tempering temperature is preferably 580 to 650 ° C. More preferably, it is 580 to 630 ° C.
After heating to a temperature range of 580 to 650 ° C, set the average cooling rate in the temperature range of 550 to 400 ° C to 1 ° C / s or higher.

また、焼戻し処理の上記加熱後の550〜400℃の温度域の平均冷却速度を1℃/s以上で行えば、より一層靭性を向上させることができる。この平均冷却速度が1℃/s以上になると、焼戻しの冷却過程で旧γ粒界にPが偏析する時間がなくなり、粒界脆化が抑制できる。その結果、徐冷(空冷)材よりも一層靭性を向上させることができ、0℃シャルピー吸収エネルギーが100J以上の靭性を確保できる。そのために平均冷却速度を1℃/s以上とする。この平均冷却速度を得るには、水中や油中などの冷媒に、焼戻し後の機械式ねじ用素材を浸漬することが適当である。 Further, if the average cooling rate of the tempering treatment in the temperature range of 550 to 400 ° C. after the heating is 1 ° C./s or more, the toughness can be further improved. When this average cooling rate is 1 ° C./s or more, there is no time for P to segregate at the old γ grain boundaries during the tempering cooling process, and grain boundary embrittlement can be suppressed. As a result, the toughness can be further improved as compared with the slow cooling (air cooling) material, and the toughness with 0 ° C. Charpy absorption energy of 100 J or more can be secured. Therefore, the average cooling rate is set to 1 ° C./s or more. In order to obtain this average cooling rate, it is appropriate to immerse the tempered mechanical screw material in a refrigerant such as in water or oil.

上記の通り、化学成分と焼入れ条件を厳密に適正化することにより、0.2%耐力が680MPa以上、引張強さが780MPa以上、1/2t部の0℃シャルピー吸収エネルギーが47J以上である、厚肉の機械式ねじを得ることができる。さらに、焼戻し条件を適正化することにより、0℃シャルピー吸収エネルギーを100J以上とすることができる。 As mentioned above, by strictly optimizing the chemical composition and quenching conditions, the 0.2% proof stress is 680MPa or more, the tensile strength is 780MPa or more, and the 0 ° C Charpy absorption energy of 1 / 2t part is 47J or more. Mechanical screws can be obtained. Further, by optimizing the tempering conditions, the 0 ° C. Charpy absorption energy can be 100 J or more.

表1に示す成分組成を有する鋼を溶製し、図2に示したところに従って、熱間圧延、据込み鍛造、穿孔、穴広げ、リング鍛造を行い円筒形の機械式ねじ用素材としたのち、表2に示す条件での焼入れ処理および焼戻し処理を行った。 Steels having the component compositions shown in Table 1 are melted and hot-rolled, stationary forged, drilled, drilled, and ring-forged according to those shown in FIG. 2 to obtain a cylindrical mechanical screw material. , The quenching treatment and the tempering treatment were carried out under the conditions shown in Table 2.

Figure 0006801727
Figure 0006801727

かくして得られた機械式ねじ用素材の表面から10mm深さと厚み中心部(1/2t部)より引張試験片、シャルピー衝撃試験片(2mmVノッチ)を採取し、機械的性質を調べた。その結果を表2に示す。
本発明鋼の化学成分範囲で、焼入れと焼戻し条件が適合した機械式ねじ素材では、表面10mmおよび1/2t部は共に、高強度で靭性も十分に高かった。一方、成分組成の範囲が本発明の規定から逸脱した場合、強度や靭性が目標を満足できなかった。また、化学成分が発明範囲であっても、焼入れ条件が逸脱した場合には、強度や靭性が低かった。
Tensile test pieces and Charpy impact test pieces (2 mm V notch) were collected from the surface of the mechanical screw material thus obtained at a depth of 10 mm and at the center of the thickness (1 / 2t part), and their mechanical properties were examined. The results are shown in Table 2.
In the mechanical screw material in which the quenching and tempering conditions were met within the chemical composition range of the steel of the present invention, both the surface 10 mm and 1 / 2t portions had high strength and sufficiently high toughness. On the other hand, when the range of the component composition deviates from the provisions of the present invention, the strength and toughness cannot satisfy the target. Moreover, even if the chemical composition was within the scope of the invention, the strength and toughness were low when the quenching conditions were deviated.

Figure 0006801727
Figure 0006801727

1 接合継手
2、3 鋼管杭
10 雄側筒体
11 内周座
12 先端傾斜部
20 雌側筒体
21 先端部
22 基端傾斜部
1 Joined joint 2, 3 Steel pipe pile 10 Male side cylinder 11 Inner peripheral seat 12 Tip inclined part 20 Female side cylinder 21 Tip part 22 Base end inclined part

Claims (4)

円筒体の内周面または外周面に多条ねじを有する機械式ねじであって、前記円筒体は、
質量%で、
C:0.05〜0.18%、
Si:0.01〜1.00%、
Mn:0.6〜2.0%、
P:0.025%以下、
S:0.015%以下、
Al:0.001〜0.050%、
Ti:0.005〜0.025%、
Ni:0.05〜3.0%、
B:0.0005〜0.0030%および
N:0.0020〜0.0060%
を含み、さらに、
Cu:0.8%以下、
Cr:1.5%以下、
Mo:1.5%以下、
V:0.3%以下および
Nb:0.1%以下
のいずれか2種以上を含み、残部がFeおよび不可避的不純物の成分組成を有し、次式(1)に示すDi値が140〜280、次式(2)式に示すCeq値が0.60〜0.70%であり、1/2t部の0.2%耐力が680MPa以上、1/2t部の引張強さが780MPa以上および1/2t部の0℃シャルピー吸収エネルギーが47J以上である、機械式ねじ。
Di=25.4×DI0C×f・Si×f・Mn×f・Cu×f・Ni×f・Cr×f・Mo×f・V×1.3 …(1)
ここで、DI0C=0.3241×√C(%)
f・Si=0.75Si(%)+1
f・Mn=3.33Mn(%)+1
f・Cu=0.35Cu(%)+1
f・Ni=0.36Ni(%)+1
f・Cr=2.16Cr(%)+1
f・Mo=3.00Mo(%)+1
f・V=1.75V(%)+1
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 …(2)
但し、上式(1)におけるM(%)および上式(2) におけるM(Mは元素記号)は、当該元素の質量%を意味する。
A mechanical screw having a multi-threaded screw on the inner peripheral surface or the outer peripheral surface of the cylindrical body, and the cylindrical body is
By mass%
C: 0.05-0.18%,
Si: 0.01-1.00%,
Mn: 0.6-2.0%,
P: 0.025% or less,
S: 0.015% or less,
Al: 0.001 to 0.050%,
Ti: 0.005 to 0.025%,
Ni: 0.05-3.0%,
B: 0.0005 to 0.0030% and N: 0.0020 to 0.0060%
Including,
Cu: 0.8% or less,
Cr: 1.5% or less,
Mo: 1.5% or less,
V: 0.3% or less and
Nb: Contains any two or more of 0.1% or less, the balance has the component composition of Fe and unavoidable impurities, the Di value shown in the following formula (1) is 140 to 280, and it is shown in the following formula (2). The Ceq value is 0.60 to 0.70%, the 0.2% proof stress of the 1 / 2t part is 680MPa or more, the tensile strength of the 1 / 2t part is 780MPa or more, and the 0 ° C Charpy absorption energy of the 1 / 2t part is 47J or more. Mechanical screw.
Di = 25.4 × DI0C × f ・ Si × f ・ Mn × f ・ Cu × f ・ Ni × f ・ Cr × f ・ Mo × f ・ V × 1.3… (1)
Here, DI0C = 0.3241 × √C (%)
f ・ Si = 0.75Si (%) +1
f ・ Mn = 3.33Mn (%) +1
f ・ Cu = 0.35Cu (%) +1
f ・ Ni = 0.36Ni (%) +1
f ・ Cr = 2.16Cr (%) +1
f ・ Mo = 3.00Mo (%) +1
f ・ V = 1.75V (%) + 1
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14… (2)
However, M (%) in the above formula (1) and M (M is an element symbol) in the above formula (2) mean the mass% of the element.
前記成分組成は、さらに質量%で、
Ca:0.010%以下、
REM:0.010%以下、
Mg:0.010%以下および
Zr:0.010%以下
のいずれか1種または2種以上を含む請求項1に記載の機械式ねじ。
The composition of the components is further increased by mass%.
Ca: 0.010% or less,
REM: 0.010% or less,
Mg: 0.010% or less and
Zr: The mechanical screw according to claim 1, which comprises any one or more of 0.010% or less.
請求項1または2の成分組成を有する円筒体に、Ac3+30℃〜Ac3+70℃の温度域に加熱後、少なくとも800〜400℃の温度域を2〜20℃/sの平均冷却速度で冷却する、焼入れ処理を施し、次いで焼戻し処理を行った後、該円筒体の内周面または外周面に多条ねじを形成する、1/2t部の0.2%耐力が680MPa以上、1/2t部の引張強さが780MPa以上、1/2t部の0℃シャルピー吸収エネルギーが47J以上である、機械式ねじの製造方法。 A cylindrical body having a component composition according to claim 1 or 2, after heating to a temperature range of Ac 3 + 30 ℃ ~Ac 3 + 70 ℃, at an average cooling rate of the temperature range of at least 800~400 ℃ 2~20 ℃ / s Upon cooling, the quenching treatment performed, then after the tempering process to form a multiple thread on an inner peripheral surface or an outer peripheral surface of the cylindrical body, 1 / 2t part 0.2% proof stress than 680MPa of, 1 / 2t part A method for manufacturing a mechanical screw, which has a tensile strength of 780 MPa or more and a 1 / 2t portion of 0 ° C. Charpy absorption energy of 47 J or more. 前記焼戻し処理は、580℃〜650℃の温度域に加熱後550〜400℃の温度域の平均冷却速度
を1℃/s以上とする請求項3に記載の機械式ねじの製造方法。
The method for manufacturing a mechanical screw according to claim 3, wherein the tempering treatment is performed by heating the machine in a temperature range of 580 ° C to 650 ° C and then setting the average cooling rate in the temperature range of 550 to 400 ° C to 1 ° C / s or more.
JP2019035647A 2018-02-28 2019-02-28 Mechanical screws and their manufacturing methods Active JP6801727B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035739 2018-02-28
JP2018035739 2018-02-28

Publications (2)

Publication Number Publication Date
JP2019163538A JP2019163538A (en) 2019-09-26
JP6801727B2 true JP6801727B2 (en) 2020-12-16

Family

ID=68065852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035647A Active JP6801727B2 (en) 2018-02-28 2019-02-28 Mechanical screws and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6801727B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249383B2 (en) * 1982-07-13 1990-10-30 Nippon Kokan Kk KOSHITSUJIBANUCHIKOMIPAIRUYOKOZAI
JPS62253730A (en) * 1986-04-25 1987-11-05 Nippon Steel Corp Production of steel pipe for thermal well having low relaxation
NL1008856C1 (en) * 1998-04-09 1999-10-12 Lambertus Roelof Toorenman Concrete support post and method for installing it in the ground.
JP4645268B2 (en) * 2005-03-31 2011-03-09 Jfeスチール株式会社 Joint structure of steel pipe pile for landslide prevention and steel pipe pile for landslide prevention provided with the same
JP6146336B2 (en) * 2014-02-21 2017-06-14 Jfeスチール株式会社 Steel pipe joints
JP6137115B2 (en) * 2014-10-27 2017-05-31 Jfeスチール株式会社 Steel pipe joints
KR101666646B1 (en) * 2015-12-30 2016-10-14 (주)서동 Ultra high strength steel pipe support manufacturing method using a boron steel and Ultra high sterngth steel pipe support assembly

Also Published As

Publication number Publication date
JP2019163538A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5871109B1 (en) Thick steel plate and manufacturing method thereof
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
KR101988144B1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
CN107208212A (en) Heavy wall high-tenacity high-strength steel plate and its manufacture method
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
US20200340073A1 (en) Steel section having a thickness of at least 100mm and method of manufacturing the same
KR102255821B1 (en) Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
JP4860786B2 (en) High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method
EP3209806A1 (en) An ultra-high strength thermo-mechanically processed steel
JP6256655B2 (en) Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe
JP7016345B2 (en) Microalloy steel and its steel production method
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6303628B2 (en) Hot rolled steel sheet for ERW steel pipe with a thickness of 15mm or more
WO2018115925A1 (en) Steel section having a thickness of at least 100mm and method of manufacturing the same
JP2012193404A (en) Seamless steel pipe and method for manufacturing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP2007131925A (en) STEEL SHEET FOR HIGH STRENGTH LINE PIPE HAVING LOW TEMPERATURE TOUGHNESS AND HAVING TENSILE STRENGTH IN CLASS OF >=900 MPa, LINE PIPE USING THE SAME AND METHOD FOR PRODUCING THEM
JP6801727B2 (en) Mechanical screws and their manufacturing methods
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP6028759B2 (en) High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250