JP6799970B2 - Parts supply device - Google Patents

Parts supply device Download PDF

Info

Publication number
JP6799970B2
JP6799970B2 JP2016171361A JP2016171361A JP6799970B2 JP 6799970 B2 JP6799970 B2 JP 6799970B2 JP 2016171361 A JP2016171361 A JP 2016171361A JP 2016171361 A JP2016171361 A JP 2016171361A JP 6799970 B2 JP6799970 B2 JP 6799970B2
Authority
JP
Japan
Prior art keywords
parts
component
scattered
lead
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171361A
Other languages
Japanese (ja)
Other versions
JP2018037593A (en
Inventor
達 松本
達 松本
範明 岩城
範明 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016171361A priority Critical patent/JP6799970B2/en
Publication of JP2018037593A publication Critical patent/JP2018037593A/en
Application granted granted Critical
Publication of JP6799970B2 publication Critical patent/JP6799970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、部品を装着作業機に供給する部品供給装置に関するものである。 The present invention relates to a parts supply device that supplies parts to a mounting work machine.

複数の部品を散在された状態で支持する部品支持部を有する部品供給装置では、部品収容器から部品支持部に部品が散在され、その部品支持部に支持されている部品のうちの部品保持具によって保持可能な姿勢の部品が保持される。次に、部品保持具に保持された部品が載置部に整列された状態で載置されることで、部品の供給が行われる。そして、供給された部品を用いて、装着作業機において、基板への装着作業が行われる。また、部品供給装置は、部品支持部から部品収容器に部品を戻す部品戻し装置を有している。このため、例えば、部品支持部に部品保持具によって保持可能な姿勢の部品が無くなった場合等に、部品支持部から部品収容器に部品が戻され、部品収容器に戻された部品が、再度、部品支持部に散在される。これにより、部品保持具によって保持可能な姿勢の部品が、再度、部品支持部に散在されることで、部品支持部から部品保持具によって部品が保持される。下記特許文献には、そのような構造の部品供給装置の一例が記載されている。 In a parts supply device having a part support part that supports a plurality of parts in a scattered state, parts are scattered from a part container to the part support part, and a part holder among the parts supported by the part support part. Holds parts in a holdable position. Next, the parts held by the parts holder are placed in a state of being aligned with the mounting portion, so that the parts are supplied. Then, using the supplied parts, mounting work on the substrate is performed in the mounting work machine. Further, the parts supply device has a parts return device for returning parts from the parts support portion to the parts container. Therefore, for example, when there are no more parts in the parts support portion that can be held by the parts holder, the parts are returned from the parts support part to the parts container, and the parts returned to the parts container are returned to the parts container. , Scattered in the component support. As a result, the parts in a posture that can be held by the part holder are scattered again in the part support portion, so that the part is held by the part holder from the part support portion. The following patent document describes an example of a component supply device having such a structure.

特開平10−202569号公報Japanese Unexamined Patent Publication No. 10-20259

上記特許文献に記載の部品供給装置によれば、部品収容器への部品の戻し作業および、部品収容器に戻された部品の部品支持部への散在作業が行われることで、部品供給装置から多くの数の部品を供給することが可能となる。しかしながら、部品収容器への部品の戻し作業および、部品支持部への部品の散在作業には、ある程度、時間を要するため、部品の供給が滞り、装着作業機での装着作業のサイクルタイムが低下する虞がある。本発明は、そのような実情に鑑みてなされたものであり、部品供給装置に供給された部品の装着作業のサイクルタイムの低下を防止することを課題とする。 According to the parts supply device described in the above patent document, the parts return work to the parts container and the scattered work of the parts returned to the parts container are performed from the parts supply device. It is possible to supply a large number of parts. However, since it takes some time to return the parts to the parts container and to scatter the parts to the parts support part, the supply of parts is delayed and the cycle time of the mounting work on the mounting machine is reduced. There is a risk of The present invention has been made in view of such circumstances, and an object of the present invention is to prevent a decrease in the cycle time of mounting work of parts supplied to a parts supply device.

上記課題を解決するために、本発明に記載の部品供給装置は、複数の部品を収納する部品収納器と、前記部品収納器から部品が散在され、その散在された状態の部品を支持する部品支持部と、前記部品支持部に散在された状態の部品を前記部品収納器に戻す部品戻し装置と、前記部品支持部に支持されている部品を保持する第1部品保持具と、前記部品支持部に支持されている部品を撮像する撮像装置と、前記第1部品保持具に保持された部品を整列させた状態で載置するための載置部と、制御装置とを有し、前記載置部に整列された状態の部品を装着作業機に供給する部品供給装置であって、前記制御装置が、前記装着作業機における装着作業時に必要な部品の数である必要部品数を取得する部品数取得部と、前記撮像装置により撮像された撮像データに基づいて、前記第1部品保持具によって前記部品支持部から保持可能な部品の数である保持可能部品数を演算する部品数演算部と、前記部品数取得部により取得された必要部品数が、前記部品数演算部により演算された保持可能部品数を超えているか否かを判断する第1判断部と、前記第1判断部により前記必要部品数が前記保持可能部品数を超えていると判断されたことを条件として、前記第1部品保持具によって前記部品支持部から部品を保持する前に、前記部品戻し装置の作動により、前記部品支持部に散在された状態の部品を前記部品収納器に戻した後に、再度、前記部品収納器から前記部品支持部に部品を散在させる部品散在部を有することを特徴とする。 In order to solve the above problems, the parts supply device according to the present invention includes a parts storage device that stores a plurality of parts, and parts that support the parts scattered from the parts storage device in the scattered state. A support portion, a component return device for returning parts scattered in the component support portion to the component container, a first component holder for holding the component supported by the component support portion, and the component support. The above description includes an imaging device for imaging a component supported by the unit, a mounting unit for mounting the component held by the first component holder in an aligned state, and a control device. A component supply device that supplies parts aligned in a mounting portion to a mounting work machine, and the control device acquires the required number of parts, which is the number of parts required for mounting work in the mounting work machine. A number acquisition unit and a component number calculation unit that calculates the number of receivable parts, which is the number of components that can be held from the component support unit by the first component holder, based on the imaging data captured by the imaging device. The first determination unit for determining whether or not the required number of required parts acquired by the number of parts acquisition unit exceeds the number of receivable parts calculated by the number of parts calculation unit, and the first determination unit. The operation of the component return device causes the component return device to operate before the component is held from the component support portion by the first component holder, provided that the required number of components exceeds the number of retainable components. After returning the parts scattered in the component support portion to the component accommodator, it is characterized by having the component interspersed portion in which the components are scattered from the component accommodator to the component support portion again.

本発明に記載の部品供給装置では、装着作業時に必要な部品の数である必要部品数が、部品保持具によって部品支持部から保持可能な部品の数である保持可能部品数を超えているか否かが判断される。そして、必要部品数が保持可能部品数を超えていると判断されたことを条件として、部品保持具によって部品支持部から部品を保持する前に、部品収容器への部品の戻し作業および、部品支持部への部品の散在作業が行われる。これにより、タイミングよく、部品収容器への部品の戻し作業および、部品支持部への部品の散在作業を行うことが可能となり、装着作業機による装着作業のサイクルタイムの低下を防止することが可能となる。 In the component supply device according to the present invention, whether or not the required number of components, which is the number of components required for mounting work, exceeds the number of retainable components, which is the number of components that can be held from the component support portion by the component holder. Is judged. Then, on condition that the required number of parts exceeds the number of receivable parts, the parts are returned to the parts container and the parts are returned to the parts container before the parts are held from the parts support by the parts holder. Parts are scattered on the support. As a result, it is possible to perform the work of returning the parts to the parts container and the work of scattering the parts to the parts support portion at the right time, and it is possible to prevent a decrease in the cycle time of the mounting work by the mounting work machine. It becomes.

部品実装機を示す斜視図である。It is a perspective view which shows the component mounting machine. 部品実装機の部品装着装置を示す斜視図である。It is a perspective view which shows the component mounting apparatus of a component mounting machine. ばら部品供給装置を示す斜視図である。It is a perspective view which shows the loose part supply apparatus. 部品供給ユニットを示す斜視図である。It is a perspective view which shows the component supply unit. 部品回収容器が上昇端位置に上昇した状態の部品供給ユニットを示す斜視図である。It is a perspective view which shows the parts supply unit in the state which the parts collection container is raised to the raised end position. 部品保持ヘッドを示す斜視図である。It is a perspective view which shows the component holding head. リード部品が収納された状態の部品受け部材を示す図である。It is a figure which shows the part receiving member in the state which the lead part is housed. 部品実装機の制御装置を示すブロック図である。It is a block diagram which shows the control device of a component mounting machine. 部品散在状態実現装置を示す斜視図である。It is a perspective view which shows the component scattered state realization apparatus. 複数のリード部品が散在された状態の部品支持部材を示す図である。It is a figure which shows the component support member in the state which a plurality of lead components are scattered. 部品散在状態実現装置および部品戻し装置を示す斜視図である。It is a perspective view which shows the component scattered state realization apparatus and component return apparatus. 制御プログラムのフローチャートを示す図である。It is a figure which shows the flowchart of the control program. 制御プログラムのフローチャートを示す図である。発明を実施するための最良の形態It is a figure which shows the flowchart of the control program. The best mode for carrying out the invention

以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail as embodiments for carrying out the present invention with reference to the drawings.

<部品実装機の構成>
図1に、部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、撮像装置26,28、部品供給装置30、ばら部品供給装置32、制御装置(図8参照)34を備えている。なお、回路基材12として、回路基板、三次元構造の基材等が挙げられ、回路基板として、プリント配線板、プリント回路板等が挙げられる。
<Configuration of component mounting machine>
FIG. 1 shows a component mounting machine 10. The component mounting machine 10 is a device for executing component mounting work on the circuit base material 12. The component mounting machine 10 includes an apparatus main body 20, a base material transfer holding device 22, a component mounting device 24, an imaging device 26, 28, a component supply device 30, a loose component supply device 32, and a control device (see FIG. 8) 34. There is. Examples of the circuit board 12 include a circuit board, a base material having a three-dimensional structure, and the like, and examples of the circuit board include a printed wiring board and a printed circuit board.

装置本体20は、フレーム部40と、そのフレーム部40に上架されたビーム部42とによって構成されている。基材搬送保持装置22は、フレーム部40の前後方向の中央に配設されており、搬送装置50とクランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置であり、クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の位置において、回路基材12を固定的に保持する。なお、以下の説明において、回路基材12の搬送方向をX方向と称し、その方向に直角な水平の方向をY方向と称し、鉛直方向をZ方向と称する。つまり、部品実装機10の幅方向は、X方向であり、前後方向は、Y方向である。 The apparatus main body 20 is composed of a frame portion 40 and a beam portion 42 mounted on the frame portion 40. The base material transfer holding device 22 is arranged at the center of the frame portion 40 in the front-rear direction, and has a transfer device 50 and a clamp device 52. The transport device 50 is a device that transports the circuit base material 12, and the clamp device 52 is a device that holds the circuit base material 12. As a result, the base material transport / holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position. In the following description, the transport direction of the circuit base material 12 is referred to as the X direction, the horizontal direction perpendicular to that direction is referred to as the Y direction, and the vertical direction is referred to as the Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.

部品装着装置24は、ビーム部42に配設されており、2台の作業ヘッド60,62と作業ヘッド移動装置64とを有している。各作業ヘッド60,62は、吸着ノズル(図2参照)66を有しており、吸着ノズル66によって部品を保持する。また、作業ヘッド移動装置64は、X方向移動装置68とY方向移動装置70とZ方向移動装置72とを有している。そして、X方向移動装置68とY方向移動装置70とによって、2台の作業ヘッド60,62は、一体的にフレーム部40上の任意の位置に移動させられる。また、各作業ヘッド60,62は、図2に示すように、スライダ74,76に着脱可能に装着されており、Z方向移動装置72は、スライダ74,76を個別に上下方向に移動させる。つまり、作業ヘッド60,62は、Z方向移動装置72によって、個別に上下方向に移動させられる。 The component mounting device 24 is arranged in the beam unit 42, and has two work heads 60 and 62 and a work head moving device 64. Each work head 60, 62 has a suction nozzle (see FIG. 2) 66, and the parts are held by the suction nozzle 66. Further, the work head moving device 64 has an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. Then, the two work heads 60 and 62 are integrally moved to an arbitrary position on the frame portion 40 by the X-direction moving device 68 and the Y-direction moving device 70. Further, as shown in FIG. 2, the work heads 60 and 62 are detachably attached to the sliders 74 and 76, and the Z-direction moving device 72 individually moves the sliders 74 and 76 in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving device 72.

撮像装置26は、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド60とともに、X方向,Y方向およびZ方向に移動させられる。これにより、撮像装置26は、フレーム部40上の任意の位置を撮像する。撮像装置28は、図1に示すように、フレーム部40上の基材搬送保持装置22と部品供給装置30との間に、上を向いた状態で配設されている。これにより、撮像装置28は、作業ヘッド60,62の吸着ノズル66に保持された部品を撮像する。 The image pickup apparatus 26 is attached to the slider 74 in a downward facing state, and is moved together with the work head 60 in the X direction, the Y direction, and the Z direction. As a result, the image pickup apparatus 26 images an arbitrary position on the frame portion 40. As shown in FIG. 1, the image pickup apparatus 28 is arranged between the substrate transport holding apparatus 22 on the frame portion 40 and the component supply apparatus 30 in a state of facing upward. As a result, the image pickup apparatus 28 images the parts held by the suction nozzles 66 of the work heads 60 and 62.

部品供給装置30は、フレーム部40の前後方向での一方側の端部に配設されている。部品供給装置30は、トレイ型部品供給装置78とフィーダ型部品供給装置(図示省略)とを有している。トレイ型部品供給装置78は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置は、テープフィーダ(図示省略)、スティックフィーダ(図示省略)によって部品を供給する装置である。 The component supply device 30 is arranged at one end of the frame portion 40 in the front-rear direction. The parts supply device 30 includes a tray-type parts supply device 78 and a feeder-type parts supply device (not shown). The tray-type component supply device 78 is a device that supplies components in a state of being placed on the tray. The feeder type parts supply device is a device that supplies parts by a tape feeder (not shown) and a stick feeder (not shown).

ばら部品供給装置32は、フレーム部40の前後方向での他方側の端部に配設されている。ばら部品供給装置32は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。以下に、部品供給装置32の構成について詳しく説明する。なお、部品供給装置30および、ばら部品供給装置32によって供給される部品として、電子回路部品,太陽電池の構成部品,パワーモジュールの構成部品等が挙げられる。また、電子回路部品には、リードを有する部品,リードを有さない部品等が有る。 The loose component supply device 32 is arranged at the other end of the frame portion 40 in the front-rear direction. The loose parts supply device 32 is a device that aligns a plurality of parts that are scattered apart and supplies the parts in the aligned state. That is, it is a device that aligns a plurality of parts in an arbitrary posture in a predetermined posture and supplies the parts in the predetermined posture. The configuration of the component supply device 32 will be described in detail below. Examples of the parts supplied by the parts supply device 30 and the loose parts supply device 32 include electronic circuit parts, solar cell components, power module components, and the like. In addition, electronic circuit parts include parts having leads, parts having no leads, and the like.

ばら部品供給装置32は、図3に示すように、本体80と、部品供給ユニット82と、撮像装置84と、部品引渡し装置86とを有している。 As shown in FIG. 3, the loose parts supply device 32 includes a main body 80, a parts supply unit 82, an image pickup device 84, and a parts delivery device 86.

(a)部品供給ユニット部品供給ユニット82は、部品供給器88と部品散在状態実現装置90と部品戻し装置92とを含み、それら部品供給器88と部品散在状態実現装置90と部品戻し装置92とが一体的に構成されたものである。部品供給ユニット82は、本体80のベース96に着脱可能に組み付けられており、ばら部品供給装置32では、5台の部品供給ユニット82が、X方向に1列に並んで配設されている。 (A) Parts supply unit The parts supply unit 82 includes a parts supply device 88, a parts scattered state realizing device 90, and a parts returning device 92, and includes the parts supply device 88, the parts scattered state realizing device 90, and the parts returning device 92. Is integrally configured. The parts supply unit 82 is detachably assembled to the base 96 of the main body 80, and in the loose parts supply device 32, five parts supply units 82 are arranged in a row in the X direction.

(1)部品供給器部品供給器88は、図4に示すように、部品収納器100とハウジング102とグリップ104とを含む。部品収納器100は、概して直方体形状をなし、上面と前面とが開口している。その部品収納器100の底面は、傾斜面116となっており、部品収納器100の開口する前面に向かって傾斜している。 (1) Parts feeder The parts feeder 88 includes a parts storage device 100, a housing 102, and a grip 104, as shown in FIG. The component storage device 100 generally has a rectangular parallelepiped shape, and the upper surface and the front surface are open. The bottom surface of the parts storage device 100 has an inclined surface 116, and is inclined toward the front surface where the parts storage device 100 opens.

ハウジング102は、1対の側壁120を有しており、それら1対の側壁120の間において、部品収納器100が搖動可能に保持されている。また、1対の側壁120の間には、部品収納器100の前面の下端部の前方に位置するように、傾斜板152が固定的に配設されている。傾斜板152は、前方に向かうほど下降するように傾斜している。 The housing 102 has a pair of side walls 120, and a component accommodator 100 is oscillatedly held between the pair of side walls 120. Further, between the pair of side walls 120, the inclined plate 152 is fixedly arranged so as to be located in front of the lower end portion of the front surface of the component storage device 100. The inclined plate 152 is inclined so as to descend toward the front.

グリップ104は、ハウジング102の後方側の端部に配設されており、固定把持部材170と可動把持部材172とによって構成されている。可動把持部材172は、固定把持部材170に対して接近・離間可能とされている。そして、可動把持部材172が、連結アーム(図示省略)によって部品収納器100の後面に連結されている。これにより、グリップ104が把持されることで、可動把持部材172が、固定把持部材170に対して接近・離間し、部品収納器100が1対の側壁120の間で搖動する。 The grip 104 is arranged at the rear end of the housing 102, and is composed of a fixed grip member 170 and a movable grip member 172. The movable gripping member 172 is accessible and separated from the fixed gripping member 170. Then, the movable gripping member 172 is connected to the rear surface of the component storage device 100 by a connecting arm (not shown). As a result, when the grip 104 is gripped, the movable grip member 172 approaches and separates from the fixed grip member 170, and the component accommodator 100 swings between the pair of side walls 120.

また、部品供給器88は、ベース96に組み付けられている1対のサイドフレーム部190の間に配設されており、ベース96に着脱可能とされている。なお、グリップ104の可動把持部材172の下端部には、ロック機構(図示省略)が設けられており、グリップ104が把持されることで、そのロック機構が解除される。つまり、作業者が部品供給器88のグリップ104を把持した状態で、部品供給器88を持ち上げることで、部品供給器88が1対のサイドフレーム部190の間から取り外される。 Further, the component feeder 88 is arranged between a pair of side frame portions 190 assembled to the base 96, and is detachable from the base 96. A lock mechanism (not shown) is provided at the lower end of the movable grip member 172 of the grip 104, and the lock mechanism is released when the grip 104 is gripped. That is, the component supply device 88 is removed from between the pair of side frame portions 190 by lifting the component supply device 88 while the operator holds the grip 104 of the component supply device 88.

(2)部品散在状態実現装置部品散在状態実現装置90は、部品支持部材220と部品支持部材移動装置222と供給器振動装置224とを含む。部品支持部材220は、概して長手形状の板形状をなし、部品供給器88の傾斜板152の下方から前方に延び出すように、配設されている。また、部品支持部材220の長手方向の両側縁には、側壁部228が形成されている。 (2) Parts Scattered State Realizing Device The parts scattered state realizing device 90 includes a component support member 220, a component support member moving device 222, and a feeder vibration device 224. The component support member 220 generally has a longitudinal plate shape, and is arranged so as to extend forward from below the inclined plate 152 of the component feeder 88. Further, side wall portions 228 are formed on both side edges of the component support member 220 in the longitudinal direction.

部品支持部材移動装置222は、部品支持部材220を前後方向に電磁モータ(図8参照)223の駆動により移動させる装置である。これにより、部品支持部材220は、部品供給器88の傾斜板152の下端から僅かに下方において、部品支持部材220の上面が水平な状態で、前後方向に移動する。 The component support member moving device 222 is a device that moves the component support member 220 in the front-rear direction by driving an electromagnetic motor (see FIG. 8) 223. As a result, the component support member 220 moves in the front-rear direction with the upper surface of the component support member 220 horizontal, slightly below the lower end of the inclined plate 152 of the component feeder 88.

供給器振動装置224は、カム部材240とカムフォロワ242とストッパ244とを含む。カム部材240は、板状をなし、側壁部228の外側の側面に、前後方向に延びるように固定されている。カム部材240の上端部には、複数の歯245が前後方向に等間隔で形成されている。カムフォロワ242は、レバー252とローラ254とを含む。レバー252は、部品供給器88の側壁120の下端部に配設されており、上端部を中心に揺動可能とされている。ローラ254は、レバー252の下端部において、回転可能に保持されている。なお、レバー252は、コイルばね(図示省略)の弾性力によって前方に向かう方向に付勢されている。また、ストッパ244は、側壁120に突状に設けられており、コイルばねの弾性力により付勢されたレバー252が、ストッパ244に接触している。 The feeder vibrating device 224 includes a cam member 240, a cam follower 242, and a stopper 244. The cam member 240 has a plate shape and is fixed to the outer side surface of the side wall portion 228 so as to extend in the front-rear direction. A plurality of teeth 245 are formed at the upper end portion of the cam member 240 at equal intervals in the front-rear direction. The cam follower 242 includes a lever 252 and a roller 254. The lever 252 is arranged at the lower end of the side wall 120 of the component feeder 88, and can swing around the upper end. The roller 254 is rotatably held at the lower end of the lever 252. The lever 252 is urged in the forward direction by the elastic force of the coil spring (not shown). Further, the stopper 244 is provided on the side wall 120 in a protruding shape, and the lever 252 urged by the elastic force of the coil spring is in contact with the stopper 244.

(3)部品戻し装置部品戻し装置92は、図5に示すように、容器昇降装置260と部品回収容器262とを含む。容器昇降装置260は、エアシリンダ266と昇降部材268とを含み、昇降部材268は、エアシリンダ266の作動により、昇降する。また、エアシリンダ266は、部品支持部材220の前方側の端部に固定されている。これにより、エアシリンダ266は、部品支持部材移動装置222の作動により、部品支持部材220と共に前後方向に移動する。 (3) Parts Returning Device The parts returning device 92 includes a container lifting device 260 and a parts collecting container 262, as shown in FIG. The container elevating device 260 includes an air cylinder 266 and an elevating member 268, and the elevating member 268 moves up and down by the operation of the air cylinder 266. Further, the air cylinder 266 is fixed to the front end portion of the component support member 220. As a result, the air cylinder 266 moves in the front-rear direction together with the component support member 220 by the operation of the component support member moving device 222.

部品回収容器262は、昇降部材268の上面に配設されており、エアシリンダ266の作動により、上下方向に移動する。部品回収容器262は、上面が開口する箱状をなし、昇降部材268の上面において、回動可能に保持されている。その部品回収容器262の後方側の端部には、図4に示すように、突出ピン272が配設されている。突出ピン272は、部品回収容器262の側方での外側に向かって突出している。また、サイドフレーム部190の前方側の上端部の内側には、係合ブロック274が固定されている。そして、図5に示すように、部品回収容器262が、エアシリンダ266の作動により上昇端位置まで上昇する際に、突出ピン272が係合ブロック274に係合する。これにより、部品回収容器262は、回動する。 The parts collection container 262 is arranged on the upper surface of the elevating member 268, and moves in the vertical direction by the operation of the air cylinder 266. The parts collection container 262 has a box shape with an open upper surface, and is rotatably held on the upper surface of the elevating member 268. As shown in FIG. 4, a protruding pin 272 is arranged at the rear end of the parts collection container 262. The projecting pin 272 projects outward on the side of the parts collection container 262. Further, the engagement block 274 is fixed inside the upper end portion on the front side of the side frame portion 190. Then, as shown in FIG. 5, when the parts collection container 262 is raised to the rising end position by the operation of the air cylinder 266, the protruding pin 272 engages with the engaging block 274. As a result, the parts collection container 262 rotates.

(b)撮像装置撮像装置84は、図3に示すように、カメラ290とカメラ移動装置292とを含む。カメラ移動装置292は、ガイドレール296とスライダ298とを含む。ガイドレール296は、部品供給器88の上方において、ばら部品供給装置32の幅方向に延びるように、本体80に固定されている。スライダ298は、ガイドレール296にスライド可能に取り付けられており、電磁モータ(図8参照)299の作動により、任意の位置にスライドする。また、カメラ290は、下方を向いた状態でスライダ298に装着されている。 (B) Imaging device The imaging device 84 includes a camera 290 and a camera moving device 292, as shown in FIG. The camera moving device 292 includes a guide rail 296 and a slider 298. The guide rail 296 is fixed to the main body 80 above the component feeder 88 so as to extend in the width direction of the loose component supply device 32. The slider 298 is slidably attached to the guide rail 296 and slides to an arbitrary position by the operation of the electromagnetic motor (see FIG. 8) 299. Further, the camera 290 is attached to the slider 298 in a state of facing downward.

(c)部品引渡し装置部品引渡し装置86は、図3に示すように、部品保持ヘッド移動装置300と部品保持ヘッド302と2台のシャトル装置304とを含む。 (C) Parts delivery device As shown in FIG. 3, the parts delivery device 86 includes a parts holding head moving device 300, a parts holding head 302, and two shuttle devices 304.

部品保持ヘッド移動装置300は、X方向移動装置310とY方向移動装置312とZ方向移動装置314とを含む。Y方向移動装置312は、X方向に延びるように、部品供給ユニット82の上方に配設されたYスライダ316を有しており、Yスライダ316は、電磁モータ(図8参照)319の駆動により、Y方向の任意の位置に移動する。X方向移動装置310は、Yスライダ316の側面に配設されたXスライダ320を有しており、Xスライダ320は、電磁モータ(図8参照)321の駆動により、X方向の任意の位置に移動する。Z方向移動装置314は、Xスライダ320の側面に配設されたZスライダ322を有しており、Zスライダ322は、電磁モータ(図8参照)323の駆動により、Z方向の任意の位置に移動する。 The component holding head moving device 300 includes an X-direction moving device 310, a Y-direction moving device 312, and a Z-direction moving device 314. The Y-direction moving device 312 has a Y slider 316 arranged above the component supply unit 82 so as to extend in the X direction, and the Y slider 316 is driven by an electromagnetic motor (see FIG. 8) 319. , Move to any position in the Y direction. The X direction moving device 310 has an X slider 320 arranged on the side surface of the Y slider 316, and the X slider 320 is moved to an arbitrary position in the X direction by driving an electromagnetic motor (see FIG. 8) 321. Moving. The Z direction moving device 314 has a Z slider 322 arranged on the side surface of the X slider 320, and the Z slider 322 is moved to an arbitrary position in the Z direction by driving an electromagnetic motor (see FIG. 8) 323. Moving.

部品保持ヘッド302は、図6に示すように、ヘッド本体330と吸着ノズル332とノズル旋回装置334とノズル回転装置335とを含む。ヘッド本体330は、Zスライダ322と一体的に形成されている。吸着ノズル332は、部品を保持するものであり、ホルダ340の下端部に着脱可能に装着されている。ホルダ340は、支持軸344において屈曲可能とされており、ノズル旋回装置334の作動により、ホルダ340が上方向に90度屈曲する。これにより、ホルダ340の下端部に装着されている吸着ノズル332は、90度旋回し、旋回位置に位置する。つまり、吸着ノズル332は、ノズル旋回装置334の作動により、非旋回位置と旋回位置との間で旋回する。また、ノズル回転装置335は、吸着ノズル332をそれの軸心周りに回転させる。 As shown in FIG. 6, the component holding head 302 includes a head main body 330, a suction nozzle 332, a nozzle swivel device 334, and a nozzle rotation device 335. The head body 330 is integrally formed with the Z slider 322. The suction nozzle 332 holds a component and is detachably attached to the lower end portion of the holder 340. The holder 340 is bendable on the support shaft 344, and the holder 340 is bent 90 degrees upward by the operation of the nozzle swivel device 334. As a result, the suction nozzle 332 mounted on the lower end of the holder 340 turns 90 degrees and is located at the turning position. That is, the suction nozzle 332 is swiveled between the non-swivel position and the swivel position by the operation of the nozzle swivel device 334. The nozzle rotation device 335 also rotates the suction nozzle 332 around its axis.

また、2台のシャトル装置304の各々は、図3に示すように、部品キャリヤ388と部品キャリヤ移動装置390とを含み、部品供給ユニット82の前方側に横方向に並んで、本体80に固定されている。部品キャリヤ388には、5個の部品受け部材392が、横方向に一列に並んだ状態で装着されており、各部品受け部材392に、部品が載置される。 Further, as shown in FIG. 3, each of the two shuttle devices 304 includes the component carrier 388 and the component carrier moving device 390, is arranged laterally on the front side of the component supply unit 82, and is fixed to the main body 80. Has been done. Five component receiving members 392 are mounted on the component carrier 388 in a line in the horizontal direction, and the components are placed on the component receiving members 392.

詳しくは、ばら部品供給装置32で供給される部品は、図7に示すように、リードを有する電子回路部品(以下、「リード部品」と略す場合がある)410であり、リード部品410は、ブロック状の部品本体412と、部品本体412の底面から突出する2本のリード414とから構成されている。また、部品受け部材392には、部品受容凹部416が形成されている。部品受容凹部416は、段付き形状の凹部であり、部品受け部材392の上面に開口する本体部受容凹部418と、その本体部受容凹部418の底面に開口するリード受容凹部420とから構成されている。そして、リード部品410は、リード414が下方を向く姿勢で、部品受容凹部416の内部に挿入される。これにより、リード414がリード受容凹部420に挿入されるとともに、部品本体412が本体部受容凹部418に挿入された状態で、リード部品410が部品受容凹部416の内部に載置される。 Specifically, as shown in FIG. 7, the component supplied by the loose component supply device 32 is an electronic circuit component having a lead (hereinafter, may be abbreviated as “lead component”) 410, and the lead component 410 is a lead component 410. It is composed of a block-shaped component body 412 and two leads 414 protruding from the bottom surface of the component body 412. Further, the component receiving recess 416 is formed in the component receiving member 392. The component receiving recess 416 is a stepped recess, and is composed of a main body receiving recess 418 opening on the upper surface of the component receiving member 392 and a lead receiving recess 420 opening on the bottom surface of the main body receiving recess 418. There is. Then, the lead component 410 is inserted into the component receiving recess 416 with the lead 414 facing downward. As a result, the lead component 410 is placed inside the component receiving recess 416 in a state where the lead 414 is inserted into the lead receiving recess 420 and the component main body 412 is inserted into the main body receiving recess 418.

また、部品キャリヤ移動装置390は、図3に示すように、板状の長手部材であり、前後方向に延びるように、部品供給ユニット82の前方側に配設されている。部品キャリヤ移動装置390の上面には、部品キャリヤ388が前後方向にスライド可能に配設されており、電磁モータ(図8参照)430の駆動により、前後方向の任意の位置にスライドする。なお、部品キャリヤ388が、部品供給ユニット82に接近する方向にスライドした際には、部品保持ヘッド移動装置300による部品保持ヘッド302の移動範囲内に位置する部品受取位置までスライドする。一方、部品キャリヤ388が、部品供給ユニット82から離れる方向にスライドした際には、作業ヘッド移動装置64による作業ヘッド60,62の移動範囲内に位置する部品供給位置までスライドする。 Further, as shown in FIG. 3, the component carrier moving device 390 is a plate-shaped longitudinal member, and is arranged on the front side of the component supply unit 82 so as to extend in the front-rear direction. A component carrier 388 is slidably arranged on the upper surface of the component carrier moving device 390 in the front-rear direction, and is slid to an arbitrary position in the front-rear direction by driving an electromagnetic motor (see FIG. 8) 430. When the component carrier 388 slides in the direction approaching the component supply unit 82, it slides to the component receiving position located within the moving range of the component holding head 302 by the component holding head moving device 300. On the other hand, when the component carrier 388 slides away from the component supply unit 82, it slides to the component supply position located within the movement range of the work heads 60 and 62 by the work head moving device 64.

また、制御装置34は、図8に示すように、統括制御装置450と、複数の個別制御装置(図では1つのみ図示されている)452と、画像処理装置454と、記憶装置456とを含む。統括制御装置450は、コンピュータを主体として構成されたものであり、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,部品供給装置30,ばら部品供給装置32に接続されている。これにより、統括制御装置450は、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,部品供給装置30,ばら部品供給装置32を統括して制御する。複数の個別制御装置452は、コンピュータを主体として構成されたものであり、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,部品供給装置30,ばら部品供給装置32に対応して設けられている(図では、ばら部品供給装置32に対応する個別制御装置452のみが図示されている)。ばら部品供給装置32の個別制御装置452は、部品散在状態実現装置90,部品戻し装置92,カメラ移動装置292,部品保持ヘッド移動装置300,部品保持ヘッド302,シャトル装置304に接続されている。これにより、ばら部品供給装置32の個別制御装置452は、部品散在状態実現装置90,部品戻し装置92,カメラ移動装置292,部品保持ヘッド移動装置300,部品保持ヘッド302,シャトル装置304を制御する。また、画像処理装置454は、撮像装置84に接続されており、撮像装置84により撮像された撮像データを処理する。その画像処理装置454は、ばら部品供給装置32の個別制御装置452に接続されている。これにより、ばら部品供給装置32の個別制御装置452は、撮像装置84により撮像された撮像データを取得する。また、記憶装置456は、各種データを記憶しており、個別制御装置452に接続されている。これにより、個別制御装置452は、記憶装置456から各種データを取得する。 Further, as shown in FIG. 8, the control device 34 includes a central control device 450, a plurality of individual control devices (only one is shown in the figure) 452, an image processing device 454, and a storage device 456. Including. The integrated control device 450 is mainly composed of a computer, and is connected to a base material transfer holding device 22, a component mounting device 24, an image pickup device 26, an image pickup device 28, a component supply device 30, and a loose component supply device 32. ing. As a result, the integrated control device 450 collectively controls the base material transfer holding device 22, the component mounting device 24, the image pickup device 26, the image pickup device 28, the component supply device 30, and the loose component supply device 32. The plurality of individual control devices 452 are configured mainly by a computer, and are included in the base material transport holding device 22, the component mounting device 24, the imaging device 26, the imaging device 28, the component supply device 30, and the loose component supply device 32. Correspondingly provided (in the figure, only the individual control device 452 corresponding to the loose component supply device 32 is shown). The individual control device 452 of the loose parts supply device 32 is connected to the parts scattered state realization device 90, the parts return device 92, the camera moving device 292, the parts holding head moving device 300, the parts holding head 302, and the shuttle device 304. As a result, the individual control device 452 of the loose parts supply device 32 controls the parts scattered state realization device 90, the parts return device 92, the camera moving device 292, the parts holding head moving device 300, the parts holding head 302, and the shuttle device 304. .. Further, the image processing device 454 is connected to the image pickup device 84 and processes the image pickup data captured by the image pickup device 84. The image processing device 454 is connected to the individual control device 452 of the loose component supply device 32. As a result, the individual control device 452 of the loose component supply device 32 acquires the image pickup data captured by the image pickup device 84. Further, the storage device 456 stores various data and is connected to the individual control device 452. As a result, the individual control device 452 acquires various data from the storage device 456.

<部品実装機の作動>
部品実装機10は、上述した構成によって、基材搬送保持装置22に保持された回路基材12に対して部品の装着作業が行われる。具体的には、回路基材12が、作業位置まで搬送され、その位置において、クランプ装置52によって固定的に保持される。次に、撮像装置26が、回路基材12の上方に移動し、回路基材12を撮像する。これにより、回路基材12の保持位置の誤差に関する情報が得られる。また、部品供給装置30若しくは、ばら部品供給装置32は、所定の供給位置において、部品を供給する。なお、ばら部品供給装置32による部品の供給に関しては、後で詳しく説明する。そして、作業ヘッド60,62の何れかが、部品の供給位置の上方に移動し、吸着ノズル66によって部品を保持する。続いて、部品を保持した作業ヘッド60,62が、撮像装置28の上方に移動し、撮像装置28によって、吸着ノズル66に保持された部品が撮像される。これにより、部品の保持位置の誤差に関する情報が得られる。そして、部品を保持した作業ヘッド60,62が、回路基材12の上方に移動し、保持している部品を、回路基材12の保持位置の誤差,部品の保持位置の誤差等を補正し、回路基材12上に装着する。
<Operation of component mounting machine>
With the above-described configuration, the component mounting machine 10 performs component mounting work on the circuit base material 12 held by the base material transfer holding device 22. Specifically, the circuit base material 12 is conveyed to a working position, and is fixedly held by the clamp device 52 at that position. Next, the image pickup apparatus 26 moves above the circuit base material 12 and images the circuit base material 12. As a result, information regarding an error in the holding position of the circuit base material 12 can be obtained. Further, the parts supply device 30 or the loose parts supply device 32 supplies parts at a predetermined supply position. The supply of parts by the loose parts supply device 32 will be described in detail later. Then, one of the work heads 60 and 62 moves above the supply position of the component and holds the component by the suction nozzle 66. Subsequently, the work heads 60 and 62 holding the parts move above the image pickup device 28, and the image pickup device 28 images the parts held by the suction nozzle 66. This provides information about the error in the holding position of the component. Then, the work heads 60 and 62 holding the parts move above the circuit base material 12, and correct the holding position error of the circuit base material 12, the holding position error of the parts, and the like. , Mounted on the circuit substrate 12.

<ばら部品供給装置の作動>
(a)ばら部品供給装置によるリード部品の供給ばら部品供給装置32では、リード部品410が、作業者によって部品供給器88の部品収納器100に投入され、その投入されたリード部品410が、部品供給ユニット82,部品引渡し装置86の作動により、部品キャリヤ388の部品受け部材392に載置された状態で供給される。詳しくは、作業者は、部品供給器88の部品収納器100の上面の開口から、リード部品410を投入する。この際、部品支持部材220は、部品支持部材移動装置222の作動により、部品供給器88の下方に移動しており、部品供給器88の前方には、部品回収容器262が位置している。
<Operation of loose parts supply device>
(A) Supply of lead parts by the loose parts supply device In the loose parts supply device 32, the lead parts 410 are thrown into the parts storage device 100 of the parts feeder 88 by an operator, and the thrown lead parts 410 are the parts. By operating the supply unit 82 and the component delivery device 86, the components are supplied in a state of being mounted on the component receiving member 392 of the component carrier 388. Specifically, the operator inserts the lead component 410 through the opening on the upper surface of the component storage device 100 of the component feeder 88. At this time, the component support member 220 is moved below the component supply device 88 by the operation of the component support member moving device 222, and the component collection container 262 is located in front of the component supply device 88.

部品収納器100の上面の開口から投入されたリード部品410は、部品収納器100の傾斜面116の上に落下し、傾斜面116上に広がる。この際、傾斜面116に落下したリード部品410が、傾斜板152を超えて転がり落ちた場合には、部品供給器88の前方に位置する部品回収容器262に収容される。 The lead component 410 inserted through the opening on the upper surface of the component storage device 100 falls onto the inclined surface 116 of the component storage device 100 and spreads on the inclined surface 116. At this time, when the lead component 410 that has fallen on the inclined surface 116 rolls down beyond the inclined plate 152, it is housed in the component collection container 262 located in front of the component feeder 88.

部品収納器100へのリード部品410の投入後に、部品支持部材220が、部品支持部材移動装置222の作動により、部品供給器88の下方から前方に向かって移動させられる。この際、カム部材240がカムフォロワ242に至れば、図9に示すように、カムフォロワ242のローラ254が、カム部材240の歯245を乗り越える。カムフォロワ242のレバー252は、コイルばねの弾性力によって前方に向かう方向に付勢されており、レバー252の前方への付勢は、ストッパ244によって規制されている。このため、部品支持部材220が前方に向かって移動する際には、ローラ254と歯245とが噛み合った状態に維持され、レバー252は前方に向かって回動せず、ローラ254は、歯245を乗り越える。この際、部品供給器88は、ローラ254の歯245の乗り越えにより、昇降する。つまり、ローラ254が歯245に噛み合った状態で、部品支持部材220が前方に向かって移動することで、ローラ254が複数の歯245を乗り越え、部品供給器88が上下方向に連続して振動する。 After the lead component 410 is put into the component storage device 100, the component support member 220 is moved from below to the front of the component feeder 88 by the operation of the component support member moving device 222. At this time, when the cam member 240 reaches the cam follower 242, as shown in FIG. 9, the roller 254 of the cam follower 242 gets over the teeth 245 of the cam member 240. The lever 252 of the cam follower 242 is urged in the forward direction by the elastic force of the coil spring, and the forward urging of the lever 252 is regulated by the stopper 244. Therefore, when the component support member 220 moves forward, the roller 254 and the teeth 245 are maintained in a meshed state, the lever 252 does not rotate forward, and the roller 254 has the teeth 245. Overcome. At this time, the parts feeder 88 moves up and down by getting over the teeth 245 of the roller 254. That is, with the roller 254 meshing with the teeth 245, the component support member 220 moves forward, so that the roller 254 gets over the plurality of teeth 245 and the component feeder 88 vibrates continuously in the vertical direction. ..

部品収納器100の傾斜面116上に広がっているリード部品410は、部品供給器88の振動と傾斜面116の傾斜により、前方に移動し、傾斜板152を介して、部品支持部材220の上面に排出される。この際、部品支持部材220の側壁部228によって、部品支持部材220からのリード部品410の落下が防止される。そして、部品支持部材220が前方に向かって移動することで、部品支持部材220の上面に、リード部品410が散在される。 The lead component 410 extending on the inclined surface 116 of the component accommodator 100 moves forward due to the vibration of the component feeder 88 and the inclination of the inclined surface 116, and moves forward through the inclined plate 152 to the upper surface of the component support member 220. Is discharged to. At this time, the side wall portion 228 of the component support member 220 prevents the lead component 410 from falling from the component support member 220. Then, as the component support member 220 moves forward, the lead components 410 are scattered on the upper surface of the component support member 220.

なお、部品収納器100の内部から部品支持部材220の上にリード部品410が散在されると、図10に示すように、リード部品410は、様々な姿勢で部品支持部材220の上に散在される。具体的には、リード部品410の部品本体412は、概して直方体形状をしており、6つの面を有している。それら6つの面は、リード414が延び出す底面500と、その底面500の裏側の上面502と、4つの側面504,506,508,510である。そして、それら4つの側面504,506,508,510は、表面積が大きく、凹凸が多く存在する第1側面504と、第1側面504の裏側であり、凹凸が存在しない第2側面506と、第1側面504と第2側面506との横側の第3側面508、第4側面510である。 When the lead parts 410 are scattered on the part support member 220 from the inside of the part container 100, the lead parts 410 are scattered on the part support member 220 in various postures as shown in FIG. To. Specifically, the component body 412 of the lead component 410 has a generally rectangular parallelepiped shape and has six surfaces. The six surfaces are a bottom surface 500 on which the lead 414 extends, a top surface 502 on the back side of the bottom surface 500, and four side surfaces 504,506,508,510. The four side surfaces 504, 506, 508, and 510 are the first side surface 504 having a large surface area and many irregularities, and the second side surface 506 which is the back side of the first side surface 504 and has no irregularities. The third side surface 508 and the fourth side surface 510 on the lateral side of the first side surface 504 and the second side surface 506.

このようなリード部品410が部品支持部材220の上に散在されると、リード部品410は、概ね5つの姿勢で部品支持部材220の上において支持される。詳しくは、第1側面504を真上に向けた姿勢(以下、「第1姿勢」と記載する場合がある)と、第2側面506を真上に向けた姿勢(以下、「第2姿勢」と記載する場合がある)と、第3側面508若しくは、第4側面510を真上に向けた姿勢(以下、「第3姿勢」と記載する場合がある)と、底面500を真上に向けた姿勢(以下、「第4姿勢」と記載する場合がある)と、第1側面504若しくは第2側面506を斜め上方に向けた姿勢(以下、「第5姿勢」と記載する場合がある)との6つの姿勢のうちの何れかの姿勢で、リード部品410は部品支持部材220の上において支持される。なお、第5姿勢のリード部品410は、リード部品410の先端が部品支持部材220に接触することで、第1側面504若しくは第2側面506が斜め上方を向いている。 When such lead parts 410 are scattered on the part support member 220, the lead parts 410 are supported on the part support member 220 in approximately five postures. Specifically, a posture in which the first side surface 504 is directed directly upward (hereinafter, may be referred to as "first posture") and a posture in which the second side surface 506 is directed directly upward (hereinafter, "second posture"). (May be described as), a posture in which the third side surface 508 or the fourth side surface 510 is directed directly upward (hereinafter, may be described as "third posture"), and the bottom surface 500 is directed directly upward. Posture (hereinafter, may be referred to as "fourth posture") and posture in which the first side surface 504 or the second side surface 506 is directed diagonally upward (hereinafter, may be referred to as "fifth posture"). The lead component 410 is supported on the component support member 220 in any of the six postures. In the lead component 410 in the fifth posture, the tip of the lead component 410 comes into contact with the component support member 220, so that the first side surface 504 or the second side surface 506 faces diagonally upward.

上述したように、リード部品410が、様々な姿勢で部品支持部材220の上に散在されると、撮像装置84のカメラ290が、カメラ移動装置292の作動により、部品支持部材220の上方に移動し、リード部品410を撮像する。そして、カメラ290により撮像された撮像データに基づいて、ピックアップの対象となるリード部品(以下、「ピックアップ対象部品」と略す場合がある)が、部品保持ヘッド302の吸着ノズル332により保持される。 As described above, when the lead components 410 are scattered on the component support members 220 in various postures, the camera 290 of the image pickup apparatus 84 moves above the component support members 220 by the operation of the camera moving device 292. Then, the lead component 410 is imaged. Then, based on the imaging data captured by the camera 290, the lead component to be picked up (hereinafter, may be abbreviated as “pickup target component”) is held by the suction nozzle 332 of the component holding head 302.

具体的には、カメラ290の撮像データに基づいて、部品支持部材220上に散在されている複数の部品毎に、部品の姿勢と、部品の位置が演算される。そして、演算された部品の姿勢が第2姿勢および、第3姿勢であるリード部品410のみが、ピックアップ対象部品として特定される。これは、第1姿勢のリード部品410では、凹凸が多く存在する第1側面504が上方を向いており、その第1側面504を吸着ノズル332により保持することができないためである。また、第4姿勢のリード部品410では、リード414が配設された底面500が上方を向いており、その底面500を吸着ノズル332により保持することができないためである。また、第5姿勢のリード部品410では、部品本体412が傾いた状態となっており、その姿勢のリード部品410を吸着ノズル332により保持することができないためである。 Specifically, the posture of the component and the position of the component are calculated for each of the plurality of components scattered on the component support member 220 based on the imaging data of the camera 290. Then, only the lead component 410 whose calculated postures are the second posture and the third posture is specified as the pickup target component. This is because, in the lead component 410 of the first posture, the first side surface 504 having many irregularities faces upward, and the first side surface 504 cannot be held by the suction nozzle 332. Further, in the lead component 410 in the fourth posture, the bottom surface 500 on which the lead 414 is arranged faces upward, and the bottom surface 500 cannot be held by the suction nozzle 332. Further, in the lead component 410 in the fifth posture, the component main body 412 is in an inclined state, and the lead component 410 in that posture cannot be held by the suction nozzle 332.

このため、図10に示される部品支持部材220では、部品支持部材220の上に散在された11個のリード部品410のうちの4個のリード部品410が、ピックアップ対象部品として特定される。具体的には、2個の第2姿勢のリード部品410と、2個の第3姿勢のリード部品410とが、ピックアップ対象部品として特定される。なお、部品支持部材220の上にリード部品410が散在された際には、部品支持部材220の上に散在されたリード部品410のうちの、ピックアップ対象部品として特定されるリード部品410が存在する確率、つまり、吸着ノズル332により保持可能な確率(以下、「保持可能確率」と記載する場合がある)が演算される。 Therefore, in the component support member 220 shown in FIG. 10, four lead components 410 out of the 11 lead components 410 scattered on the component support member 220 are specified as pickup target components. Specifically, the two lead parts 410 in the second posture and the two lead parts 410 in the third posture are specified as pickup target parts. When the lead parts 410 are scattered on the part support member 220, the lead parts 410 specified as the pickup target parts are present among the lead parts 410 scattered on the part support member 220. The probability, that is, the probability that the suction nozzle 332 can hold (hereinafter, may be referred to as “holdable probability”) is calculated.

具体的には、カメラ290による部品支持部材220の撮像データに基づいて、部品支持部材220の上に散在されているリード部品410の総数(11個)が演算される。そして、そのリード部品410の数(11個)に対するピックアップ対象部品の数(4個)の比率が、保持可能確率として演算される。その演算された保持可能確率は、ばら部品供給装置32により供給される部品毎に、記憶装置456に記憶される。なお、保持可能確率は、後に詳しく説明する部品の戻し作業時に用いられる。 Specifically, the total number (11) of the lead components 410 scattered on the component support member 220 is calculated based on the imaging data of the component support member 220 by the camera 290. Then, the ratio of the number of pickup target parts (4 pieces) to the number of lead parts 410 (11 pieces) is calculated as the holdability probability. The calculated holdability probability is stored in the storage device 456 for each component supplied by the loose component supply device 32. The holdability probability is used at the time of returning the parts, which will be described in detail later.

そして、ピックアップ対象部品が特定されると、そのピックアップ対象部品が、部品保持ヘッド302の吸着ノズル332により保持される。なお、吸着ノズル332によってピックアップ対象部品が吸着保持される際には、吸着ノズル332は、非旋回位置に位置している。そして、リード部品410が吸着ノズル332によって保持された後に、部品保持ヘッド302が部品キャリヤ388の上方に移動させられる。この際、部品キャリヤ388は、部品キャリヤ移動装置390の作動により、部品受取位置に移動する。また、部品保持ヘッド302が部品キャリヤ388の上方に移動する際に、吸着ノズル332は、旋回位置に旋回される。なお、旋回位置の吸着ノズル332に保持されたリード部品410のリード414が、鉛直方向での下方を向くように、吸着ノズル332は、ノズル回転装置335の作動により、回転される。 Then, when the pickup target component is specified, the pickup target component is held by the suction nozzle 332 of the component holding head 302. When the pickup target component is sucked and held by the suction nozzle 332, the suction nozzle 332 is located at a non-swinging position. Then, after the lead component 410 is held by the suction nozzle 332, the component holding head 302 is moved above the component carrier 388. At this time, the component carrier 388 moves to the component receiving position by the operation of the component carrier moving device 390. Further, when the component holding head 302 moves above the component carrier 388, the suction nozzle 332 is swiveled to the swivel position. The suction nozzle 332 is rotated by the operation of the nozzle rotating device 335 so that the lead 414 of the lead component 410 held by the suction nozzle 332 in the turning position faces downward in the vertical direction.

部品保持ヘッド302が部品キャリヤ388の上方に移動すると、リード414が鉛直方向での下方を向いた状態のリード部品410が、部品受け部材392の部品受容凹部416内に挿入される。これにより、リード部品410は、図7に示すように、リード414を鉛直方向での下方に向けた状態で、部品受け部材392に載置される。 When the component holding head 302 moves above the component carrier 388, the lead component 410 with the lead 414 facing downward in the vertical direction is inserted into the component receiving recess 416 of the component receiving member 392. As a result, as shown in FIG. 7, the lead component 410 is placed on the component receiving member 392 with the lead 414 facing downward in the vertical direction.

そして、リード部品410が部品受け部材392に載置されると、部品キャリヤ388は、部品キャリヤ移動装置390の作動により、部品供給位置に移動する。部品供給位置に移動した部品キャリヤ388は、作業ヘッド60,62の移動範囲に位置しているため、ばら部品供給装置32では、この位置においてリード部品410が供給される。このように、ばら部品供給装置32では、リード414が下方を向き、リード414が接続された底面500と対向する上面502が上方を向いた状態で、リード部品410が供給される。このため、作業ヘッド60,62の吸着ノズル66は、適切にリード部品410を保持することが可能となる。 Then, when the lead component 410 is placed on the component receiving member 392, the component carrier 388 moves to the component supply position by the operation of the component carrier moving device 390. Since the component carrier 388 that has moved to the component supply position is located in the movement range of the work heads 60 and 62, the loose component supply device 32 supplies the lead component 410 at this position. As described above, in the loose component supply device 32, the lead component 410 is supplied with the lead 414 facing downward and the upper surface 502 facing the bottom surface 500 to which the lead 414 is connected facing upward. Therefore, the suction nozzles 66 of the work heads 60 and 62 can appropriately hold the lead component 410.

(b)リード部品の回収また、ばら部品供給装置32では、部品支持部材220の上に散在するリード部品410を回収することが可能である。詳しくは、部品支持部材220が、部品支持部材移動装置222の作動により、部品供給器88の下方に向かって移動させられる。この際、図11に示すように、部品支持部材220上のリード部品410は、部品供給器88の傾斜板152によって堰き止められ、部品支持部材220上のリード部品410が、部品回収容器262の内部に掻き落とされる。 (B) Recovery of Lead Parts Further, in the loose parts supply device 32, it is possible to collect the lead parts 410 scattered on the part support member 220. Specifically, the component support member 220 is moved downward of the component feeder 88 by the operation of the component support member moving device 222. At this time, as shown in FIG. 11, the lead component 410 on the component support member 220 is blocked by the inclined plate 152 of the component feeder 88, and the lead component 410 on the component support member 220 is the component recovery container 262. It is scraped off inside.

次に、部品回収容器262が、容器昇降装置260の作動により、上昇する。この際、図5に示すように、部品回収容器262に配設された突出ピン272が、サイドフレーム部190の内側に配設された係合ブロック274に係合する。これにより、部品回収容器262は回動し、部品回収容器262内のリード部品410が、部品収納器100の内部に戻される。 Next, the parts collection container 262 is raised by the operation of the container elevating device 260. At this time, as shown in FIG. 5, the protruding pin 272 arranged in the parts collection container 262 engages with the engaging block 274 arranged inside the side frame portion 190. As a result, the parts collection container 262 rotates, and the lead parts 410 in the parts collection container 262 are returned to the inside of the parts storage container 100.

そして、作業者が、部品供給器88のグリップ104を把持することで、上述したように、部品供給器88のロックが解除され、部品供給器88を持ち上げることで、部品供給器88が1対のサイドフレーム部190の間から取り外される。これにより、ばら部品供給装置32の外部において、部品供給器88からリード部品410が回収される。 Then, when the operator grips the grip 104 of the parts feeder 88, the lock of the parts feeder 88 is released as described above, and when the parts feeder 88 is lifted, the parts feeder 88 becomes a pair. It is removed from between the side frame portions 190 of the. As a result, the lead component 410 is collected from the component feeder 88 outside the loose component supply device 32.

(c)リード部品の再供給また、ばら部品供給装置32では、部品支持部材220から部品収納器100に戻されたリード部品410を、部品収納器100から回収することなく、再度、部品支持部材220の上に散在し、上述した手順に従って、部品受け部材392に載置することで、リード部品410が再供給される場合がある。 (C) Resupply of lead parts In the loose parts supply device 32, the lead parts 410 returned from the parts support member 220 to the parts storage device 100 are not collected from the parts storage device 100, but are again the parts support member. The lead component 410 may be resupplied by being scattered on the 220 and placed on the component receiving member 392 according to the procedure described above.

具体的には、上述したように、部品支持部材220の上に散在されたリード部品410のうちの第2姿勢および、第3姿勢のリード部品410のみが部品受け部材392に移載され、他の姿勢のリード部品410は部品支持部材220の上に残される。このため、部品支持部材220から全ての第2姿勢および、第3姿勢のリード部品410が部品受け部材392に移載されると、移載不可能な姿勢のリード部品410のみが部品支持部材220に残存し、ばら部品供給装置32はリード部品410を供給できなくなる。このように、部品支持部材220の上に移載不可能な姿勢のリード部品410のみが残存した場合には、その残存したリード部品410が、部品支持部材220から部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在される。この際、部品支持部材220の上には、第1〜第5姿勢の様々な姿勢でリード部品410が散在される。これにより、部品支持部材220から、再度、第2姿勢および、第3姿勢のリード部品410を部品受け部材392に移載することが可能となる。 Specifically, as described above, only the lead parts 410 in the second posture and the lead parts 410 in the third posture scattered on the part support member 220 are transferred to the part receiving member 392, and the like. The lead component 410 in the posture of is left on the component support member 220. Therefore, when all the lead parts 410 in the second posture and the third posture are transferred from the component support member 220 to the component receiving member 392, only the lead component 410 in the non-transferable posture is the component support member 220. The loose component supply device 32 cannot supply the lead component 410. In this way, when only the lead component 410 in a posture that cannot be transferred remains on the component support member 220, the remaining lead component 410 is returned from the component support member 220 to the component storage device 100. Again, it is scattered from the component storage device 100 onto the component support member 220. At this time, the lead parts 410 are scattered on the part support member 220 in various postures of the first to fifth postures. As a result, the lead component 410 in the second posture and the third posture can be transferred from the component support member 220 to the component receiving member 392 again.

また、部品支持部材220の上に移載不可能な姿勢のリード部品410のみが残存した場合だけでなく、部品支持部材220の上に移載可能な姿勢のリード部品410が残存している際にも、その残存したリード部品410が、部品支持部材220から部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在される場合がある。 Further, not only when only the lead component 410 having a posture that cannot be transferred remains on the component support member 220, but also when the lead component 410 having a posture that cannot be transferred remains on the component support member 220. Further, the remaining lead component 410 may be returned from the component support member 220 to the component storage device 100, and may be scattered again from the component storage device 100 onto the component support member 220.

詳しくは、部品実装機10での装着作業時に、その装着作業において必要なリード部品410の個数(以下、「必要部品数」と記載する場合がある)が、統括制御装置450からばら部品供給装置32の個別制御装置452に伝達される。そして、必要部品数が伝達された個別制御装置452では、供給可能なリード部品410の数が演算される。つまり、カメラ290によりリード部品410が散在された部品支持部材220が撮像され、その撮像データに基づいて、吸着ノズル332により保持可能なリード部品410の個数(以下、「保持可能部品数」と記載する場合がある)、つまり、第2姿勢、及び第3姿勢のリード部品410の個数が演算される。 Specifically, at the time of mounting work on the component mounting machine 10, the number of lead parts 410 required for the mounting work (hereinafter, may be referred to as “required number of parts”) is different from the integrated control device 450. It is transmitted to the individual control device 452 of 32. Then, in the individual control device 452 to which the required number of parts is transmitted, the number of lead parts 410 that can be supplied is calculated. That is, the camera 290 images the component support member 220 in which the lead components 410 are scattered, and based on the imaged data, the number of lead components 410 that can be held by the suction nozzle 332 (hereinafter, referred to as "the number of retainable components"). That is, the number of lead parts 410 in the second posture and the third posture is calculated.

そして、必要部品数が保持可能部品数を超えているか否が、個別制御装置452において判断される。つまり、必要部品数のリード部品410を部品支持部材220から供給できるか否かが判断される。この際、必要部品数が保持可能部品数を超えていない、つまり、必要部品数のリード部品410を部品支持部材220から供給できると判断された場合には、上述した手順に従って、必要部品数のリード部品410が、部品支持部材220から部品受け部材392に移載され、供給される。具体的には、例えば、図10に示すように、保持可能部品数が4個である場合に、必要部品数が3個であれば、上述した手順に従って、3個のリード部品410が順次、部品受け部材392に移載され、供給される。 Then, whether or not the required number of parts exceeds the number of receivable parts is determined by the individual control device 452. That is, it is determined whether or not the required number of lead parts 410 can be supplied from the part support member 220. At this time, if it is determined that the required number of parts does not exceed the number of receivable parts, that is, the required number of lead parts 410 can be supplied from the part support member 220, the required number of parts is increased according to the above procedure. The lead component 410 is transferred from the component support member 220 to the component receiving member 392 and supplied. Specifically, for example, as shown in FIG. 10, when the number of receivable parts is 4, and the required number of parts is 3, the three lead parts 410 are sequentially arranged according to the above procedure. It is transferred to the component receiving member 392 and supplied.

一方、必要部品数が保持可能部品数を超えている、つまり、必要部品数のリード部品410を部品支持部材220から供給できないと判断された場合には、部品支持部材220から部品を部品収納器100に戻し、部品収納器100から部品支持部材220の上に散在する必要があるが、部品収納器100への戻し作業および、部品支持部材220への散在作業には、ある程度時間が必要である。このため、部品実装機10による装着作業の進捗状況、部品キャリヤ388の作動状況等に応じて、部品収納器100への戻し作業および、部品支持部材220への散在作業の実行タイミングが決定される。 On the other hand, when it is determined that the required number of parts exceeds the number of receivable parts, that is, the required number of lead parts 410 cannot be supplied from the parts support member 220, the parts are stored from the parts support member 220. It is necessary to return to 100 and scatter from the parts storage device 100 onto the parts support member 220, but some time is required for the work of returning to the parts storage device 100 and the work of scattering to the parts support member 220. .. Therefore, the execution timing of the return work to the parts storage 100 and the scattered work to the parts support member 220 is determined according to the progress of the mounting work by the parts mounting machine 10 and the operation status of the parts carrier 388. ..

詳しくは、部品実装機10による装着作業の進捗状況は、統括制御装置450において管理されている。このため、ばら部品供給装置32の個別制御装置452において、必要部品数が保持可能部品数を超えていると判断されると、個別制御装置452は、統括制御装置450に、部品実装機10による装着作業の進捗状況の問合せを行って、ばら部品供給装置32から供給される部品の装着作業が実行されるまでに残存している時間(以下、「残存時間」と記載する場合がある)を統括制御装置450から取得する。つまり、個別制御装置452から統括制御装置450への問合せの時刻から、ばら部品供給装置32から供給される部品を用いた装着作業の開始予定時刻までの時間が、残存時間として、個別制御装置452は統括制御装置450から取得する。 Specifically, the progress of the mounting work by the component mounting machine 10 is managed by the integrated control device 450. Therefore, when it is determined that the required number of parts exceeds the number of receivable parts in the individual control device 452 of the loose parts supply device 32, the individual control device 452 is attached to the integrated control device 450 by the parts mounting machine 10. The time remaining until the mounting work of the parts supplied from the loose parts supply device 32 is executed by inquiring about the progress status of the mounting work (hereinafter, may be referred to as "remaining time"). Obtained from the integrated control device 450. That is, the time from the time of inquiry from the individual control device 452 to the integrated control device 450 to the scheduled start time of the mounting work using the parts supplied from the loose parts supply device 32 is the remaining time of the individual control device 452. Is obtained from the integrated control device 450.

また、個別制御装置452は、部品キャリヤ388が部品受取位置に位置していない場合には、部品キャリヤ388が部品受取位置に移動するまでに必要な時間(以下、「必要時間」と記載する場合がある)を取得する。これは、例えば、部品キャリヤ388が部品供給位置において、部品を供給している際には、部品キャリヤ388は部品供給位置から移動することができないため、その部品キャリヤ388が部品受取位置まで移動する時間として、ある程度の時間が必要なためである。なお、部品キャリヤ388の作動は、個別制御装置452により管理されているため、必要時間は個別制御装置452により演算される。 Further, in the individual control device 452, when the component carrier 388 is not located at the component receiving position, the time required for the component carrier 388 to move to the component receiving position (hereinafter, referred to as “necessary time”). There is) to get. This is because, for example, when the component carrier 388 is supplying parts at the component supply position, the component carrier 388 cannot move from the component supply position, so that the component carrier 388 moves to the component receiving position. This is because a certain amount of time is required. Since the operation of the component carrier 388 is managed by the individual control device 452, the required time is calculated by the individual control device 452.

個別制御装置452は、残存時間および、必要時間を取得すると、その残存時間および、必要時間が閾時間を超えているか否かを判断する。なお、閾時間は、部品収納器100への戻し作業および、部品支持部材220への散在作業に要する時間程度に設定されている。そして、個別制御装置452は、残存時間および、必要時間が閾時間を超えていないと判断された場合には、部品支持部材220から移載可能なリード部品410が全て部品受け部材392に移載された後に、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行される。そして、部品支持部材220に再散在された部品が、部品受け部材392に移載される。 When the individual control device 452 acquires the remaining time and the required time, the individual control device 452 determines whether or not the remaining time and the required time exceed the threshold time. The threshold time is set to about the time required for the return work to the parts storage device 100 and the scattered work to the parts support member 220. Then, when it is determined that the remaining time and the required time do not exceed the threshold time, the individual control device 452 transfers all the lead parts 410 that can be transferred from the part support member 220 to the part receiving member 392. After that, the work of returning to the parts storage device 100 and the work of scattering the parts to the parts support member 220 are executed. Then, the parts re-scattered on the part support member 220 are transferred to the part receiving member 392.

具体的には、例えば、図10に示すように、保持可能部品数が4個である場合に、必要部品数が6個であれば、まず、4個のリード部品410が、部品支持部材220に順次、移載され、供給される。次に、部品支持部材220からリード部品410が部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在される。そして、部品支持部材220から2個のリード部品410が、部品支持部材220に順次、移載され、供給される。これにより、必要部品数のリード部品410が、ばら部品供給装置32により供給される。 Specifically, for example, as shown in FIG. 10, when the number of receivable parts is 4, and the required number of parts is 6, first, the four lead parts 410 are the part support members 220. Will be sequentially transferred to and supplied to. Next, the lead component 410 is returned from the component support member 220 to the component storage device 100, and is scattered again from the component storage device 100 onto the component support member 220. Then, the two lead parts 410 from the part support member 220 are sequentially transferred to the part support member 220 and supplied. As a result, the required number of lead parts 410 are supplied by the loose parts supply device 32.

一方、個別制御装置452は、残存時間と必要時間との少なくとも一方が閾時間を超えていると判断された場合には、部品支持部材220からのリード部品410の移載作業を行うことなく、部品支持部材220からリード部品410が部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在される。そして、部品支持部材220の上に再散在された部品から、必要部品数のリード部品410が部品受け部材392に移載される。 On the other hand, when it is determined that at least one of the remaining time and the required time exceeds the threshold time, the individual control device 452 does not transfer the lead component 410 from the component support member 220 without performing the transfer work. The lead component 410 is returned from the component support member 220 to the component storage device 100, and is scattered again from the component storage device 100 onto the component support member 220. Then, the required number of lead parts 410 are transferred to the part receiving member 392 from the parts re-scattered on the part supporting member 220.

具体的には、例えば、図10に示すように、保持可能部品数が4個である場合に、必要部品数が6個であれば、部品支持部材220からリード部品410が移載されることなく、部品支持部材220からリード部品410が部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在される。この間に、例えば、部品供給位置に移動していた部品キャリヤ388が、部品受取位置に移動する。そして、部品支持部材220の上に再散在された部品から、6個のリード部品410が、部品支持部材220に順次、移載され、供給される。この間に、部品実装機10は、別の装着作業を実行しており、その装着作業の時間を利用して、リード部品410が供給される。 Specifically, for example, as shown in FIG. 10, when the number of receivable parts is 4, and the required number of parts is 6, the lead part 410 is transferred from the part support member 220. Instead, the lead component 410 is returned from the component support member 220 to the component storage device 100, and is scattered again from the component storage device 100 onto the component support member 220. During this time, for example, the component carrier 388 that has moved to the component supply position moves to the component receiving position. Then, six lead parts 410 are sequentially transferred to and supplied to the part support member 220 from the parts re-scattered on the part support member 220. During this time, the component mounting machine 10 is executing another mounting operation, and the lead component 410 is supplied by utilizing the time of the mounting operation.

このように、ばら部品供給装置32では、ばら部品供給装置32により供給される部品を用いた装着作業までの空き時間、部品キャリヤ388が部品受取位置に移動するまでの空き時間を利用して、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行される。これにより、部品実装機10による装着作業を停止させることなく、必要部品数のリード部品410を供給することが可能となり、サイクルタイムを向上させることが可能となる。 As described above, in the loose parts supply device 32, the free time until the mounting work using the parts supplied by the loose parts supply device 32 and the free time until the part carrier 388 moves to the parts receiving position are used. The work of returning to the parts storage device 100 and the work of scattering the parts to the parts support member 220 are executed. As a result, it is possible to supply the required number of lead components 410 without stopping the mounting work by the component mounting machine 10, and it is possible to improve the cycle time.

ただし、部品実装機10による装着作業の空き時間、部品キャリヤ388が部品受取位置に移動するまでの空き時間等を利用して、部品収納器100への戻し作業および、部品支持部材220への散在作業を実行しても、サイクルタイムを悪化させる虞がある。つまり、リード部品410の形状によって、保持可能確率が相当低い場合があり、このような場合には、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行されても、部品支持部材220から保持可能なリード部品410の数が、必要部品数以上とならない虞があるためである。 However, by utilizing the free time of the mounting work by the component mounting machine 10, the free time until the component carrier 388 moves to the component receiving position, and the like, the return work to the component storage device 100 and the scattered work to the component support member 220 are performed. Even if the work is executed, the cycle time may be deteriorated. That is, depending on the shape of the lead component 410, the holdability probability may be considerably low. In such a case, even if the return operation to the component container 100 and the scattered operation to the component support member 220 are executed, This is because the number of lead parts 410 that can be held from the part support member 220 may not exceed the required number of parts.

具体的には、例えば、図10に示すように、保持可能部品数が4個である場合に、必要部品数が6個であり、残存時間と必要時間との少なくとも一方が閾時間を超えていると判断されると、部品支持部材220からリード部品410が移載されることなく、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行される。この際、リード部品410の保持可能確率が20%程度であれば、部品支持部材220からリード部品410が部品収納器100に戻され、再度、部品収納器100から部品支持部材220の上に散在されても、保持可能部品数は、2〜3個(11個(部品支持部材220上のリード部品410の総数)×20%)となる可能性が高く、6個のリード部品410を供給できない。このような場合には、再度、部品収納器100への戻し作業および、部品支持部材220への散在作業を行う必要があり、サイクルタイムが悪化する虞がある。 Specifically, for example, as shown in FIG. 10, when the number of receivable parts is 4, the required number of parts is 6, and at least one of the remaining time and the required time exceeds the threshold time. If it is determined that the lead component 410 is not transferred from the component support member 220, the return operation to the component storage device 100 and the scattered operation to the component support member 220 are executed. At this time, if the holdability probability of the lead component 410 is about 20%, the lead component 410 is returned from the component support member 220 to the component storage device 100, and is scattered again from the component storage device 100 onto the component support member 220. Even if this is done, the number of receivable parts is likely to be 2 to 3 (11 (total number of lead parts 410 on the part support member 220) x 20%), and 6 lead parts 410 cannot be supplied. .. In such a case, it is necessary to perform the work of returning to the parts storage device 100 and the work of scattering the parts support member 220 again, which may deteriorate the cycle time.

このため、ばら部品供給装置32では、残存時間と必要時間との少なくとも一方が閾時間を超えていると判断された場合には、保持可能確率が閾値を超えているか否かが判断される。そして、保持可能確率が閾値を超えていないと判断された場合には、残存時間および必要時間が閾時間を超えていないと判断された場合と同様に、部品支持部材220から移載可能なリード部品410が全て部品受け部材392に移載された後に、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行される。そして、部品支持部材220に再散在された部品が、部品受け部材392に移載される。 Therefore, in the loose component supply device 32, when it is determined that at least one of the remaining time and the required time exceeds the threshold time, it is determined whether or not the holdability probability exceeds the threshold time. Then, when it is determined that the holdability probability does not exceed the threshold value, the lead that can be transferred from the component support member 220 is the same as when it is determined that the remaining time and the required time do not exceed the threshold time. After all the parts 410 have been transferred to the parts receiving member 392, the work of returning to the parts storage 100 and the work of scattering the parts to the parts supporting member 220 are executed. Then, the parts re-scattered on the part support member 220 are transferred to the part receiving member 392.

一方、保持可能確率が閾値を超えていると判断された場合に、上述したように、部品支持部材220からのリード部品410の移載作業を行うことなく、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行され、その再散在された部品から、必要部品数のリード部品410が供給される。つまり、必要部品数が保持可能部品数を超えていること、必要時間と残存時間との少なくとも一方が閾時間を超えていること、保持可能確率が閾値を超えていることの3つの条件が満たされた場合に、空き時間を利用して、部品収納器100への戻し作業および、部品支持部材220への散在作業が実行される。これにより、確実にサイクルタイムを向上させることが可能となる。 On the other hand, when it is determined that the holdability probability exceeds the threshold value, as described above, the work of returning the lead component 410 from the component support member 220 and the operation of returning the lead component 410 to the component storage device 100 are performed. , The scattered work on the component support member 220 is executed, and the required number of lead components 410 are supplied from the scattered components. That is, three conditions are satisfied: the required number of parts exceeds the number of receivable parts, at least one of the required time and the remaining time exceeds the threshold time, and the retentable probability exceeds the threshold time. If this is the case, the work of returning to the parts storage device 100 and the work of scattering the parts to the parts support member 220 are executed by utilizing the free time. This makes it possible to surely improve the cycle time.

なお、保持可能確率は、上述したように、部品が部品支持部材220の上に散在される毎に演算され、部品毎に記憶装置456に記憶される。このため、保持可能確率は、部品が部品支持部材220の上に散在される毎に刷新されるため、実際の確率に近い値となる。また、保持可能確率の閾値は、必要部品数,保持可能確率等によって変動する。 As described above, the holdability probability is calculated every time the parts are scattered on the part support member 220, and is stored in the storage device 456 for each part. Therefore, the holdability probability is a value close to the actual probability because it is renewed every time the component is scattered on the component support member 220. In addition, the threshold value of the holdable probability varies depending on the number of required parts, the holdable probability, and the like.

<制御プログラム>
上述したばら部品供給装置32の部品供給作業は、個別制御装置452において、制御プログラムが実行されることによって行われる。以下に、その制御プログラムが実行される際のフローを、図12及び図13を用いて説明する。
<Control program>
The component supply operation of the loose component supply device 32 described above is performed by executing a control program in the individual control device 452. The flow when the control program is executed will be described below with reference to FIGS. 12 and 13.

制御プログラムでは、まず、個別制御装置452が、必要部品数を統括制御装置450から取得する(S100)。次に、個別制御装置452は、保持可能部品数を演算する(S102)。そして、個別制御装置452が、必要部品数が保持可能部品数を超えているか否かを判断する(S104)。必要部品数が保持可能部品数を超えていると判断された場合(S104のYES)には、個別制御装置452が、残存時間および、必要時間を取得する(S106)。 In the control program, first, the individual control device 452 acquires the required number of parts from the integrated control device 450 (S100). Next, the individual control device 452 calculates the number of receivable parts (S102). Then, the individual control device 452 determines whether or not the required number of parts exceeds the number of receivable parts (S104). When it is determined that the required number of parts exceeds the number of receivable parts (YES in S104), the individual control device 452 acquires the remaining time and the required time (S106).

続いて、個別制御装置452は、取得した残存時間と必要時間との少なくとも一方が閾時間を超えているか否かを判断する(S108)。残存時間と必要時間との少なくとも一方が閾時間を超えていると判断された場合(S108のYES)には、個別制御装置452が、保持可能確率が閾値を超えているか否かを判断する(S110)。保持可能確率が閾値を超えていると判断された場合(S110のYES)には、部品収納器100への戻し作業、および、部品支持部材220への散在作業が実行される(S112)。 Subsequently, the individual control device 452 determines whether or not at least one of the acquired remaining time and the required time exceeds the threshold time (S108). When it is determined that at least one of the remaining time and the required time exceeds the threshold time (YES in S108), the individual control device 452 determines whether or not the holdability probability exceeds the threshold value (YES in S108). S110). When it is determined that the holdability probability exceeds the threshold value (YES in S110), the return operation to the component storage device 100 and the scattered operation to the component support member 220 are executed (S112).

次に、部品の散在された部品支持部材220がカメラ290により撮像され、その撮像データに基づいて、個別制御装置452が、保持可能確率を演算する(S114)。そして、演算された保持可能確率が、部品毎に記憶装置456に記憶される(S116)。続いて、部品支持部材220からピックアップ対象部品が吸着ノズル332により保持され、部品受け部材392に移載されることで、リード部品410が供給される(S118)。これにより、制御プログラムの実行が終了する。 Next, the component support member 220 in which the components are scattered is imaged by the camera 290, and the individual control device 452 calculates the holdability probability based on the imaged data (S114). Then, the calculated holdability probability is stored in the storage device 456 for each component (S116). Subsequently, the component to be picked up from the component support member 220 is held by the suction nozzle 332 and transferred to the component receiving member 392 to supply the lead component 410 (S118). As a result, the execution of the control program ends.

また、S104で必要部品数が保持可能部品数を超えていないと判断された場合(S104のNO)、S108で残存時間と必要時間との少なくとも一方が閾時間を超えていないと判断された場合(S108のNO)、S110で保持可能確率が閾値を超えていないと判断された場合(S110のNO)には、S118の処理が実行され、制御プログラムが終了する。 Further, when it is determined in S104 that the required number of parts does not exceed the number of retainable parts (NO in S104), and when it is determined in S108 that at least one of the remaining time and the required time does not exceed the threshold time. (NO in S108), if it is determined in S110 that the holdability probability does not exceed the threshold value (NO in S110), the process of S118 is executed and the control program ends.

なお、個別制御装置452は、上記制御プログラムを実行するべく、図8に示すように、部品数取得部520、部品数演算部522、第1判断部524、確率演算部526、第2判断部528、時間取得部530、第3判断部532、部品散在部534を有している。部品数取得部520は、上記制御プログラムのS100の処理、つまり、必要部品数を統括制御装置450から取得する処理を実行するための機能部である。部品数演算部522は、上記制御プログラムのS102の処理、つまり、保持可能部品数を演算する処理を実行するための機能部である。第1判断部524は、上記制御プログラムのS104の処理、つまり、必要部品数が保持可能部品数を超えているか否かを判断する処理を実行するための機能部である。確率演算部526は、上記制御プログラムのS114の処理、つまり、保持可能確率を演算する処理を実行するための機能部である。第2判断部528は、上記制御プログラムのS110の処理、つまり、保持可能確率が閾値を超えているか否かを判断する処理を実行するための機能部である。時間取得部530は、上記制御プログラムのS106の処理、つまり、残存時間と必要時間とを取得する処理を実行するための機能部である。第3判断部532は、上記制御プログラムのS108の処理、つまり、残存時間と必要時間との少なくとも一方が閾時間を超えているか否かを判断する処理を実行するための機能部である。部品散在部534は、上記制御プログラムのS112の処理、つまり、部品収納器100への戻し作業、および、部品支持部材220への散在作業を実行するための機能部である。 As shown in FIG. 8, the individual control device 452 has a component number acquisition unit 520, a component number calculation unit 522, a first determination unit 524, a probability calculation unit 526, and a second determination unit in order to execute the control program. It has 528, a time acquisition unit 530, a third determination unit 532, and a component scattering unit 534. The component number acquisition unit 520 is a functional unit for executing the process of S100 of the control program, that is, the process of acquiring the required number of components from the integrated control device 450. The number of parts calculation unit 522 is a functional unit for executing the process of S102 of the control program, that is, the process of calculating the number of receivable parts. The first determination unit 524 is a functional unit for executing the process of S104 of the control program, that is, the process of determining whether or not the required number of parts exceeds the number of receivable parts. The probability calculation unit 526 is a functional unit for executing the process of S114 of the control program, that is, the process of calculating the holdability probability. The second determination unit 528 is a functional unit for executing the process of S110 of the control program, that is, the process of determining whether or not the holdability probability exceeds the threshold value. The time acquisition unit 530 is a functional unit for executing the process of S106 of the control program, that is, the process of acquiring the remaining time and the required time. The third determination unit 532 is a functional unit for executing the process of S108 of the control program, that is, the process of determining whether or not at least one of the remaining time and the required time exceeds the threshold time. The component scattering unit 534 is a functional unit for executing the process of S112 of the control program, that is, the return operation to the component storage device 100 and the component scattering operation to the component support member 220.

また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、必要部品数が保持可能部品数を超えていること、必要時間と残存時間との少なくとも一方が閾時間を超えていること、保持可能確率が閾値を超えていることの3つの条件が満たされた場合に、空き時間を利用した部品収納器100への戻し作業等が実行されるが、少なくとも、必要部品数が保持可能部品数を超えていることの条件を満たした場合に、空き時間を利用した部品収納器100への戻し作業等を実行することが可能である。つまり、必要時間と残存時間との少なくとも一方が閾時間を超えていること、保持可能確率が閾値を超えていることとの2つの条件は、任意に設定することが可能である。 Further, the present invention is not limited to the above examples, and can be carried out in various embodiments with various modifications and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, the required number of parts exceeds the number of receivable parts, at least one of the required time and the remaining time exceeds the threshold time, and the receivable probability sets the threshold value. When the three conditions of exceeding are satisfied, the work of returning to the parts storage device 100 using the free time is executed, but at least the required number of parts exceeds the number of retainable parts. When the above condition is satisfied, it is possible to execute the work of returning to the parts storage device 100 using the free time. That is, two conditions that at least one of the required time and the remaining time exceeds the threshold time and that the holdability probability exceeds the threshold value can be arbitrarily set.

また、上記実施例では、リード414を有するリード部品410に本発明が適用されているが、種々の種類の部品に本発明を適用することが可能である。具体的には、例えば、太陽電池の構成部品,パワーモジュールの構成部品,リードを有さない電子回路部品等に、本発明を適用することが可能である。 Further, in the above embodiment, the present invention is applied to the lead component 410 having the lead 414, but the present invention can be applied to various types of components. Specifically, the present invention can be applied to, for example, a component of a solar cell, a component of a power module, an electronic circuit component having no lead, and the like.

10:部品実装機(装着作業機)、24:部品装着装置、66:吸着ノズル(第2部品保持具)、32:ばら部品供給装置(部品供給装置)、84:撮像装置、92:部品戻し装置、100:部品収納器、220:部品支持部材(部品支持部)、332:吸着ノズル(第1部品保持具)、392:部品受け部材(載置部)、452:個別制御装置(制御装置)、456:記憶装置、520:部品数取得部、522:部品数演算部、524:第1判断部、526:確率演算部、528:第2判断部、530:時間取得部、532:第3判断部、534:部品散在部
10: Parts mounting machine (mounting work machine), 24: Parts mounting device, 66: Suction nozzle (second component holder), 32: Loose parts supply device (parts supply device), 84: Imaging device, 92: Parts return Device, 100: Parts storage, 220: Parts support member (part support part), 332: Suction nozzle (first part holder), 392: Parts receiving member (mounting part), 452: Individual control device (control device) ), 456: Storage device, 520: Number of parts acquisition unit, 522: Number of parts calculation unit, 524: First judgment unit, 526: Probability calculation unit, 528: Second judgment unit, 530: Time acquisition unit, 532: First 3 Judgment part 534: Parts scattered part

Claims (3)

複数の部品を収納する部品収納器と、前記部品収納器から部品が散在され、その散在された状態の部品を支持する部品支持部と、前記部品支持部に散在された状態の部品を前記部品収納器に戻す部品戻し装置と、前記部品支持部に支持されている部品を保持する第1部品保持具と、前記部品支持部に支持されている部品を撮像する撮像装置と、前記第1部品保持具に保持された部品を整列させた状態で載置するための載置部と、制御装置とを有し、前記載置部に整列された状態の部品を装着作業機に供給する部品供給装置であって、
前記制御装置が、
前記装着作業機における装着作業時に必要な部品の数である必要部品数を取得する部品数取得部と、
前記撮像装置により撮像された撮像データに基づいて、前記第1部品保持具によって前記部品支持部から保持可能な部品の数である保持可能部品数を演算する部品数演算部と、
前記部品数取得部により取得された必要部品数が、前記部品数演算部により演算された保持可能部品数を超えているか否かを判断する第1判断部と、
前記第1判断部により前記必要部品数が前記保持可能部品数を超えていると判断されたことを条件として、前記第1部品保持具によって前記部品支持部から部品を保持する前に、前記部品戻し装置の作動により、前記部品支持部に散在された状態の部品を前記部品収納器に戻した後に、再度、前記部品収納器から前記部品支持部に部品を散在させる部品散在部と
を有する部品供給装置において、
前記制御部が、
前記部品収納器から前記部品支持部に散在された部品の数に対する、前記第1部品保持具により前記部品支持部から保持可能な部品の数の比率である保持可能確率が、閾値を超えているか否かを判断する第2判断部を有し、
前記部品散在部は、
前記第1判断部により前記必要部品数が前記保持可能部品数を超えていると判断されるとともに、前記第2判断部により前記保持可能確率が閾値を超えていると判断されたことを条件として、前記第1部品保持具によって前記部品支持部から部品を保持する前に、前記部品戻し装置の作動により、前記部品支持部に散在された状態の部品を前記部品収納器に戻した後に、再度、前記部品収納器から前記部品支持部に部品を散在させることを特徴とする部品供給装置。
The parts storage device for storing a plurality of parts, the parts support portion for supporting the parts scattered from the parts storage device, and the parts scattered in the parts support portion are the parts. A component return device for returning to the storage device, a first component holder for holding the component supported by the component support portion, an imaging device for imaging the component supported by the component support portion, and the first component. Parts supply that has a mounting unit for mounting the parts held by the holder in an aligned state and a control device, and supplies the parts aligned with the above-described mounting unit to the mounting work machine. It ’s a device,
The control device
The number of parts acquisition unit for acquiring the required number of parts, which is the number of parts required for the mounting work in the mounting work machine,
Based on the imaging data captured by the imaging device, the component number calculation unit that calculates the number of retainable components, which is the number of components that can be held from the component support unit by the first component holder,
A first determination unit for determining whether or not the required number of parts acquired by the component number acquisition unit exceeds the number of receivable parts calculated by the component number calculation unit.
On condition that the number of required parts exceeds the number of holdable parts by the first determination unit, the parts are held before being held from the part support by the first part holder. By operating the return device, the parts scattered in the component support portion are returned to the component accommodator, and then the component having the component scattered portion in which the components are scattered from the component accommodator to the component support portion again. in supplying device,
The control unit
Whether the holdability probability, which is the ratio of the number of parts that can be held from the part support by the first part holder to the number of parts scattered from the part container to the part support, exceeds the threshold value. It has a second judgment part to judge whether or not
The parts scattered portion
On condition that the first determination unit determines that the required number of parts exceeds the number of receivable parts, and the second determination unit determines that the receivable probability exceeds the threshold value. Before holding the component from the component support portion by the first component holder, the component returning device is operated to return the components scattered in the component support portion to the component container, and then again. , A component supply device characterized in that components are scattered from the component container to the component support portion.
前記部品供給装置が、前記保持可能確率を記憶する記憶装置を有し、
前記制御部が、
前記部品収納器から前記部品支持部に部品が散在された際に、前記撮像装置により前記部品支持部に散在された部品を撮像し、その撮像による撮像データに基づいて、前記保持可能確率を演算する確率演算部を有し、
前記記憶装置が、
前記確率演算部により演算された前記保持可能確率を記憶することを特徴とする請求項に記載の部品供給装置。
The component supply device has a storage device that stores the holdability probability.
The control unit
When the parts are scattered from the parts storage device to the parts support portion, the parts scattered on the parts support portion are imaged by the imaging device, and the holding probability is calculated based on the imaging data obtained by the imaging. Has a probability calculation unit
The storage device
The component supply device according to claim 1 , wherein the holdable probability calculated by the probability calculation unit is stored.
前記制御部が、
前記部品供給装置により供給される部品の装着作業が実行されるまで残存している残存時間、若しくは、前記載置部に部品を載置可能な状態となるまでに必要な必要時間を取得する時間取得部と、
前記時間取得部により取得された前記残存時間、若しくは、前記必要時間が閾時間を超えているか否かを判断する第3判断部を有し、
前記部品散在部は、
前記第1判断部により前記必要部品数が前記保持可能部品数を超えていると判断されるとともに、前記第3判断部により前記残存時間、若しくは、前記必要時間が閾時間を超えていると判断されたことを条件として、前記第1部品保持具によって前記部品支持部から部品を保持する前に、前記部品戻し装置の作動により、前記部品支持部に散在された状態の部品を前記部品収納器に戻した後に、再度、前記部品収納器から前記部品支持部に部品を散在させることを特徴とする請求項1ないし請求項のいずれか1つに記載の部品供給装置。
The control unit
The remaining time remaining until the mounting work of the parts supplied by the parts supply device is executed, or the time required to acquire the required time until the parts can be placed on the above-described mounting portion. Acquisition department and
It has a third determination unit that determines whether or not the remaining time acquired by the time acquisition unit or the required time exceeds the threshold time.
The parts scattered portion
The first determination unit determines that the required number of parts exceeds the number of receivable parts, and the third determination unit determines that the remaining time or the required time exceeds the threshold time. On the condition that the parts are held, the parts in a state of being scattered in the parts support by the operation of the parts return device before the parts are held from the parts support by the first parts holder The component supply device according to any one of claims 1 to 2 , wherein the components are scattered from the component container to the component support portion again after returning to the above.
JP2016171361A 2016-09-02 2016-09-02 Parts supply device Active JP6799970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171361A JP6799970B2 (en) 2016-09-02 2016-09-02 Parts supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171361A JP6799970B2 (en) 2016-09-02 2016-09-02 Parts supply device

Publications (2)

Publication Number Publication Date
JP2018037593A JP2018037593A (en) 2018-03-08
JP6799970B2 true JP6799970B2 (en) 2020-12-16

Family

ID=61566013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171361A Active JP6799970B2 (en) 2016-09-02 2016-09-02 Parts supply device

Country Status (1)

Country Link
JP (1) JP6799970B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405045B2 (en) * 1995-03-28 2003-05-12 松下電工株式会社 Component supply method and device
JP4305161B2 (en) * 2003-12-18 2009-07-29 パナソニック株式会社 Electronic component mounting device
CN107432106B (en) * 2015-03-03 2019-09-06 株式会社富士 Installation exercise machine

Also Published As

Publication number Publication date
JP2018037593A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US11032958B2 (en) Mounting work machine
JP6434531B2 (en) Parts supply device
JP6542353B2 (en) Parts supply device
JP7265978B2 (en) Attached work machine
JP6577965B2 (en) Parts supply apparatus and holder determination method
JP6845938B2 (en) Parts supply system
JP6442039B2 (en) Parts supply device and mounting machine
JP2017191889A (en) Component supply device
WO2017051446A1 (en) Part supply system
JP6764985B2 (en) Parts holding device and suction nozzle determination method
JP6706709B2 (en) Parts holding device and holding tool determination method
JP6921234B2 (en) Parts supply device and parts supply method
JP2019021943A (en) Component holding device
JP6799970B2 (en) Parts supply device
JP6603778B2 (en) Parts supply unit
JP6916577B2 (en) Parts supply equipment
JP6875512B2 (en) Parts supply equipment
JP6857767B2 (en) How to replace the picking device for scattered parts and the part holder
JP6484707B2 (en) Parts supply device
JP7034122B2 (en) Parts supply equipment and parts mounting machine
JP7014854B2 (en) Picking device for scattered parts and picking method for scattered parts
JP6944572B2 (en) Parts holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6799970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250