JP6799282B2 - Silver reflector and its manufacturing method and inspection method - Google Patents

Silver reflector and its manufacturing method and inspection method Download PDF

Info

Publication number
JP6799282B2
JP6799282B2 JP2017530867A JP2017530867A JP6799282B2 JP 6799282 B2 JP6799282 B2 JP 6799282B2 JP 2017530867 A JP2017530867 A JP 2017530867A JP 2017530867 A JP2017530867 A JP 2017530867A JP 6799282 B2 JP6799282 B2 JP 6799282B2
Authority
JP
Japan
Prior art keywords
layer
film
silver
mpa
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017530867A
Other languages
Japanese (ja)
Other versions
JPWO2017018393A1 (en
Inventor
宗矩 川路
宗矩 川路
中村 新吾
新吾 中村
智一 田口
智一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017018393A1 publication Critical patent/JPWO2017018393A1/en
Application granted granted Critical
Publication of JP6799282B2 publication Critical patent/JP6799282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)
  • Endoscopes (AREA)

Description

本発明は、高温多湿の環境下での使用に際して耐久性を有するとともに膜応力による光学面の変形を抑えることができる銀反射鏡、並びに、その製造方法及び検査方法に関する。 The present invention relates to a silver reflector that is durable when used in a hot and humid environment and can suppress deformation of the optical surface due to film stress, and a method for manufacturing and an inspection method thereof.

反射鏡として、基材上に銀を含む反射膜を形成したものが存在する(例えば特許文献1〜3)。このような反射鏡において、光学面形状の変化抑制、反射膜の密着性向上、反射膜の耐腐食性向上等が課題となっている。特に車載製品のような過酷な使用環境におかれる反射鏡については、非常に高い耐環境性能を求められる。 As a reflecting mirror, there is one in which a reflective film containing silver is formed on a base material (for example, Patent Documents 1 to 3). In such a reflecting mirror, it is an issue to suppress a change in the shape of an optical surface, improve the adhesion of the reflecting film, and improve the corrosion resistance of the reflecting film. In particular, reflectors that are placed in harsh usage environments such as in-vehicle products are required to have extremely high environmental resistance.

上記特許文献1には、プラスチック基材の表面に、銀を含む反射膜を形成した光反射鏡であって、プラスチック基材が熱硬化性樹脂成形品であり、密着性向上膜がCr、Al、LaTiOその他で形成され、反射増加層がY、Alその他の複数層からなるものが記載されている。ここで、反射膜を構成する各膜は、プラズマを利用した蒸着によって形成される。In Patent Document 1, a light reflecting mirror in which a reflective film containing silver is formed on the surface of a plastic base material, the plastic base material is a thermosetting resin molded product, and the adhesion improving film is Cr, Al. It is described that the reflection increasing layer is composed of two layers such as Y 2 O 3 , Al 2 O 3 and others, and is formed of 2 O 3 , LaTiO 3 and others. Here, each film constituting the reflective film is formed by thin-film deposition using plasma.

上記特許文献2には、銀膜の両面側に直接酸化アルミニウムを主体とする膜が形成された構造を有する反射鏡であって、両面の酸化アルミニウム主体の膜がいずれも酸化アルミニウム又は酸窒化アルミニウムからなるものが、記載されている。ここで、酸化アルミニウム主体の膜は、いずれもスパッタリング法、イオンビームアシスト蒸着法等によって成膜される。 Patent Document 2 describes a reflecting mirror having a structure in which a film mainly composed of aluminum oxide is directly formed on both sides of a silver film, and both aluminum oxide-based films on both sides are aluminum oxide or aluminum nitride. Those consisting of are described. Here, the aluminum oxide-based film is formed by a sputtering method, an ion beam assisted vapor deposition method, or the like.

上記特許文献3には、基材層と、基材層の上に形成され基材層を凸面形状に変形させる応力調整膜と、この応力調整膜の上に形成された反射膜とを有するレーザー光用光学ミラーであって、応力調整膜が、硫化亜鉛、酸化セリウム、又は酸化珪素のいずれかを含むものが記載されている。ここで、応力調整膜は、イオンもしくはプラズマを含む物理的なアシストにより形成される。 Patent Document 3 describes a laser having a base material layer, a stress adjusting film formed on the base material layer and deforming the base material layer into a convex shape, and a reflection film formed on the stress adjusting film. An optical optical mirror having a stress adjusting film containing either zinc sulfide, cerium oxide, or silicon oxide is described. Here, the stress adjusting film is formed by physical assist including ions or plasma.

上記特許文献1については、反射膜の環境に対する耐性について触れているが、具体的にどのような構成によってどの程度の高耐久性を達成できるかといった具体的な手法又は定量的な説明がなされていない。 The above-mentioned Patent Document 1 mentions the resistance of the reflective film to the environment, but a specific method or quantitative explanation is given as to what kind of configuration can achieve how much high durability. Absent.

上記特許文献2については、50℃〜200℃の熱処理によって反射率を向上させているが、耐湿性を含めた条件については、温度70℃、湿度90%で反射率の変化を測定するのみであり、耐湿性を向上させる具体的な手法についての開示がない。 Regarding Patent Document 2, the reflectance is improved by heat treatment at 50 ° C. to 200 ° C., but for conditions including moisture resistance, only the change in reflectance is measured at a temperature of 70 ° C. and a humidity of 90%. Yes, there is no disclosure of specific methods for improving moisture resistance.

上記特許文献3については、Ag膜の引張応力を相殺するような引張応力を有する応力調整膜によって凸面の変形を抑制する構造としているが、高温環境や高温高湿環境での耐久性についての開示がない。 Patent Document 3 has a structure in which deformation of a convex surface is suppressed by a stress adjusting film having a tensile stress that cancels the tensile stress of the Ag film, but disclosure of durability in a high temperature environment or a high temperature and high humidity environment. There is no.

特開2006−133331号公報Japanese Unexamined Patent Publication No. 2006-133331 国際公開WO2005/029142号International release WO2005 / 029142 特開2009−116263号公報JP-A-2009-116263

本発明は、上記背景技術に鑑みてなされたものであり、銀を用いて達成した高い反射特性を高温多湿の環境下でも維持できるとともに、膜応力を小さく抑えて光学面の面変形を小さく抑えることができる銀反射鏡を提供することを目的とする。 The present invention has been made in view of the above background technology, and can maintain the high reflection characteristics achieved by using silver even in a high temperature and high humidity environment, and suppress the film stress to a small value to suppress the surface deformation of the optical surface. It is intended to provide a silver reflector that can.

また、本発明は、高い耐久性及び性能を有する銀反射鏡の製造方法及びその検査方法を提供することを目的とする。 Another object of the present invention is to provide a method for manufacturing a silver reflector having high durability and performance and a method for inspecting the silver reflector.

上記目的を達成するため、本発明に係る銀反射鏡は、下地の密着層と、密着層上に形成される主銀層と、主銀層上に形成される増反射層とを反射膜として備える銀反射鏡であって、主銀層は、銀及び銀を主とする合金のいずれかで形成され、反射膜の成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあり、反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあり、110℃の高温乾燥環境に投入後の反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあり、かつ、110℃の高温乾燥環境に24時間投入後の膜応力値と、85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が、40MPa以下である。ここで、高温乾燥環境における乾燥とは、20%RH以下を意味する。 In order to achieve the above object, in the silver reflector according to the present invention, the underlying adhesive layer, the main silver layer formed on the adhesive layer, and the hyperreflecting layer formed on the main silver layer are used as a reflective film. In the silver reflecting mirror provided, the main silver layer is formed of either silver or an alloy mainly composed of silver, and the film stress after the film formation of the reflective film is in the range of +100 MPa to -100 MPa and reflects. The film stress after the film is put into a high temperature drying environment of 110 ° C. for 24 hours is in the range of +100 MPa to -100 MPa, and the reflective film after being put into a high temperature drying environment of 110 ° C. is hot and humid at 85 ° C. and 85% RH. The film stress after being put into the environment for 24 hours is in the range of +100 MPa to -100 MPa, and the film stress value after being put into a high temperature drying environment at 110 ° C for 24 hours and the high temperature and high humidity environment at 85 ° C and 85% RH. The absolute value of the amount of change from the film stress value after being charged for 24 hours is 40 MPa or less. Here, drying in a high-temperature drying environment means 20% RH or less.

上記銀反射鏡によれば、成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあるだけでなく、反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力と、110℃の高温乾燥環境に投入後の反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力とが、+100MPaから−100MPaまでの範囲にあるので、基材等に付与される応力を低減して光学面の面変形を小さく抑えることができる。さらに、110℃の高温乾燥環境に24時間投入後の膜応力値と、85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が40MPa以下であるので、変動環境の変化に伴う水分の出入り等による膜状態の変動が抑えられ反射膜と下地との界面にせん断的な応力が生じにくくなると考えられ、反射膜の剥離等の劣化を防止して高い反射特性を高温多湿の環境下でも維持できる。具体的には、例えば85℃85%RHの環境下に1000時間保持する耐久性試験を経ても、反射率の実質的な低下が認められず、クラック、膜浮き等の外観不良も殆ど生じない。 According to the silver reflector, not only the film stress after film formation is in the range of +100 MPa to -100 MPa, but also the film stress after the reflective film is put into a high temperature drying environment at 110 ° C. for 24 hours, and 110 Since the film stress after the reflective film after being put into a high temperature and dry environment at ° C. is put into a high temperature and high humidity environment at 85 ° C. and 85% RH for 24 hours is in the range of +100 MPa to -100 MPa, it is applied to the substrate or the like. Stress can be reduced to reduce surface deformation of the optical surface. Further, the absolute value of the amount of change between the film stress value after being put into a high temperature and dry environment of 110 ° C. for 24 hours and the film stress value after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa or less. Therefore, it is considered that fluctuations in the film state due to the inflow and outflow of moisture due to changes in the fluctuating environment are suppressed, and shear stress is less likely to occur at the interface between the reflective film and the substrate, preventing deterioration such as peeling of the reflective film. Therefore, high reflection characteristics can be maintained even in a hot and humid environment. Specifically, for example, even after undergoing a durability test of holding in an environment of 85 ° C. and 85% RH for 1000 hours, no substantial decrease in reflectance is observed, and appearance defects such as cracks and film floating hardly occur. ..

上記目的を達成するため、本発明に係る銀反射鏡の検査方法は、下地の密着層と、密着層上に形成される主銀層と、主銀層上に形成される増反射層とを反射膜として備える銀反射鏡の検査方法であって、主銀層は、銀及び銀を主とする合金のいずれかで形成され、反射膜の成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かを判定するとともに、反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力値と、反射膜を110℃の高温乾燥環境に24時間投入した後に反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が、40MPa以下であるか否かを判定する。 In order to achieve the above object, the method for inspecting a silver reflector according to the present invention includes a base adhesion layer, a main silver layer formed on the adhesion layer, and a hyperreflecting layer formed on the main silver layer. This is an inspection method for a silver reflector provided as a reflective film. The main silver layer is formed of either silver or an alloy mainly composed of silver, and the film stress after the film formation of the reflective film is from +100 MPa to -100 MPa. The film stress value after the reflective film was put into a high temperature drying environment at 110 ° C. for 24 hours, and the reflective film after the reflective film was put into a high temperature drying environment at 110 ° C. for 24 hours. Is determined whether or not the absolute value of the amount of change from the film stress value after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa or less.

上記検査方法によれば、成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かを判定しており、基材等に付与される応力を低減して光学面の面変形を小さく抑えることができる銀反射鏡であるか否かを確認することができる。さらに、110℃の高温乾燥環境に24時間投入後の膜応力値と、85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が40MPa以下であるか否かを判定するので、変動環境の変化に伴う水分の出入り等による反射膜の剥離等の劣化を防止して高い反射特性を高温多湿の環境下でも維持できる銀反射鏡であるか否かを確認することができる。 According to the above inspection method, it is determined whether or not the film stress after film formation is in the range of +100 MPa to -100 MPa, and the stress applied to the base material or the like is reduced to cause surface deformation of the optical surface. It is possible to confirm whether or not it is a silver reflector that can keep the amount small. Further, the absolute value of the amount of change between the film stress value after being put into a high temperature and dry environment of 110 ° C. for 24 hours and the film stress value after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa or less. Is it a silver reflector that can maintain high reflection characteristics even in a hot and humid environment by preventing deterioration such as peeling of the reflective film due to the inflow and outflow of moisture due to changes in the fluctuating environment? You can check if it is not.

上記目的を達成するため、本発明に係る銀反射鏡の製造方法は、下地の密着層と、密着層上に形成される主銀層と、主銀層上に形成される増反射層とを反射膜として備える銀反射鏡の製造方法であって、主銀層は、銀及び銀を主とする合金のいずれかで形成され、反射膜の成膜後の膜応力を、+100MPaから−100MPaまでの範囲にするとともに、反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力値と、反射膜を110℃の高温乾燥環境に24時間投入した後に反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値を、40MPa以下する。 In order to achieve the above object, the method for manufacturing a silver reflector according to the present invention includes a base adhesion layer, a main silver layer formed on the adhesion layer, and a hyperreflecting layer formed on the main silver layer. A method for manufacturing a silver reflector provided as a reflective film. The main silver layer is formed of either silver or an alloy mainly composed of silver, and the film stress after the film formation of the reflective film is increased from +100 MPa to -100 MPa. The film stress value after the reflective film was put into a high temperature dry environment of 110 ° C. for 24 hours, and the reflective film was put into a high temperature dry environment of 110 ° C. for 24 hours and then the reflective film was 85 ° C. 85% RH. The absolute value of the amount of change between the film stress value and the film stress value after being put into the high temperature and high humidity environment for 24 hours is 40 MPa or less.

上記製造方法によれば、成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあり、基材等に付与される応力を低減して光学面の面変形を小さく抑えることができる。さらに、110℃の高温乾燥環境に24時間投入後の膜応力値と、85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が40MPa以下であるので、変動環境の変化に伴う水分の出入り等による膜状態の変動が抑えられ反射膜と下地との界面にせん断的な応力が生じにくくなると考えられ、反射膜の剥離等の劣化を防止して高い反射特性を高温多湿の環境下でも維持できる。 According to the above manufacturing method, the film stress after film formation is in the range of +100 MPa to -100 MPa, and the stress applied to the substrate or the like can be reduced to reduce the surface deformation of the optical surface. Further, the absolute value of the amount of change between the film stress value after being put into a high temperature and dry environment of 110 ° C. for 24 hours and the film stress value after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa or less. Therefore, it is considered that fluctuations in the film state due to the inflow and outflow of moisture due to changes in the fluctuating environment are suppressed, and shear stress is less likely to occur at the interface between the reflective film and the substrate, preventing deterioration such as peeling of the reflective film. Therefore, high reflection characteristics can be maintained even in a hot and humid environment.

実施形態の銀反射鏡の構造の一例を説明する拡大断面図である。It is an enlarged cross-sectional view explaining an example of the structure of the silver reflector of an embodiment. 図1に示す銀反射鏡の製造に用いる成膜装置の一例を説明する概念的な断面図である。FIG. 5 is a conceptual cross-sectional view illustrating an example of a film forming apparatus used for manufacturing the silver reflector shown in FIG. 1. 図1の銀反射鏡の検査又は評価に用いる環境試験装置を説明する概念的な断面図である。It is a conceptual sectional view explaining the environmental test apparatus used for inspection or evaluation of the silver reflector of FIG. 図1の銀反射鏡の評価に用いる膜応力の計測装置を説明する概念的な断面図である。It is a conceptual cross-sectional view explaining the film stress measuring apparatus used for the evaluation of the silver reflector of FIG.

〔実施形態〕
図面を参照して、本発明の一実施形態に係る銀反射鏡及びその製造方法等について説明する。
[Embodiment]
A silver reflector according to an embodiment of the present invention, a method for manufacturing the same, and the like will be described with reference to the drawings.

図1に示すように、本実施形態の銀反射鏡10は、平板状の基板20と、基板20上に形成された薄膜である反射膜30とを備える。 As shown in FIG. 1, the silver reflector 10 of the present embodiment includes a flat plate-shaped substrate 20 and a reflective film 30 which is a thin film formed on the substrate 20.

基板20は、例えば板状の部材であり、反射膜30によって被覆される平坦な又は湾曲した光学面21を有する。基板20は、光透過性を有する必要はない。基板20は、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、アクリル樹脂(PMMA)、ポリエチレンテレフタラート(PET)等の樹脂材料で形成されているが、樹脂材料に限らず、石英、ガラス、セラミックスその他の無機材料で形成されてもよい。 The substrate 20 is, for example, a plate-shaped member and has a flat or curved optical surface 21 covered with a reflective film 30. The substrate 20 does not have to have light transmission. The substrate 20 is made of a resin material such as polycarbonate (PC), cycloolefin polymer (COP), acrylic resin (PMMA), polyethylene terephthalate (PET), but is not limited to the resin material, but quartz, glass, and ceramics. It may be formed of other inorganic materials.

反射膜30は、基板20の光学面21上に下地として形成される密着層31と、密着層31上に形成される主銀層32と、主銀層32上に形成される増反射層33とを備える。つまり、主銀層32は、密着層31と増反射層33との間に挟まれている。 The reflective film 30 includes an adhesion layer 31 formed as a base on the optical surface 21 of the substrate 20, a main silver layer 32 formed on the adhesion layer 31, and a hyperreflection layer 33 formed on the main silver layer 32. And. That is, the main silver layer 32 is sandwiched between the adhesion layer 31 and the reflective layer 33.

密着層31は、2層以上で構成することが望ましい。密着層31を2層以上とすることで、基板20からの水を遮断する効果を高めることができる。ここで、2層以上とは、上側の主銀層32に対して密着が良い材料の層と、下側の基板20に対して密着が良い材料の層とを意味する。密着層31が1層構成である場合、主銀層32と基板20との双方に密着が良い材料を選択する必要があるが、この場合、膜質や応力のコントロールが容易でなくなる。さらに、主銀層32の耐環境性を高めるためには、基板20からの水分の影響を加味しなければならない。高温高湿環境及び高温乾燥環境から起こる各膜へのストレスに伴う膜浮き、クラック等を抑制する意味で、各膜の膜応力を調整して、それらのバランスが取れた状態とする必要がある。以上において、密着性の観点で選ばれた2層の材料同士の密着が悪い場合、もしくは、水分遮断効果を高めたい場合は、3層又はそれ以上にすることもできる。密着層31において、水分を遮断する媒質としてはいくつかあげられるが、一つは酸化アルミニウムを主とする層が好ましいことが分かった。酸化アルミニウムを主とする層とは、純粋な酸化アルミニウムのほか、酸化アルミニウムにLaが5〜10%程度混合されているメルク社製の「Substance M2」や、「Substance M3」を用いる場合を含む。密着層31で使用する酸化アルミニウムを主とする層についてイオンアシストを行わないで成膜する場合、水分遮断効果は認められるが、材料そのものの引っ張り応力が強く、高温高湿環境での耐久性を持たせるには比較的不向きであることが分かった。そこで、本願発明者は、イオンアシストを用いて膜を緻密化させ、水分遮断の効果と応力調整の効果との両立を狙うことにした。様々な実験の結果、イオンアシストの出力や成膜レートといった成膜条件を層全体の膜応力との相互関係を加味しながら調整することで、高温高湿の耐性を向上させ得ることが分かった。つまり、密着層31の下側を構成する層として、イオンアシスト法を用いて形成された酸化アルミニウムを主とする層が好ましいことが分かった。また、密着層31の上側を構成する層については、銀との密着性が良い材料として、LaTiO3、CeO、Y3、SnOを用いることが好ましいことが分かった。これらの材料を用いることで、密着を促すとともに応力調整が容易になる。It is desirable that the adhesion layer 31 is composed of two or more layers. By forming the adhesion layer 31 to two or more layers, the effect of blocking water from the substrate 20 can be enhanced. Here, the two or more layers mean a layer of a material having good adhesion to the upper main silver layer 32 and a layer of a material having good adhesion to the lower substrate 20. When the adhesion layer 31 has a one-layer structure, it is necessary to select a material having good adhesion to both the main silver layer 32 and the substrate 20, but in this case, it becomes difficult to control the film quality and stress. Further, in order to enhance the environmental resistance of the main silver layer 32, the influence of water from the substrate 20 must be taken into consideration. It is necessary to adjust the film stress of each film so that the film is in a balanced state in order to suppress the film floating, cracks, etc. caused by the stress on each film caused by the high temperature and high humidity environment and the high temperature and dry environment. .. In the above, when the adhesion between the two layers of materials selected from the viewpoint of adhesion is poor, or when it is desired to enhance the moisture blocking effect, three layers or more may be used. In the adhesion layer 31, there are several media that block water, but one is found to be preferably a layer mainly composed of aluminum oxide. As the layer mainly composed of aluminum oxide, in addition to pure aluminum oxide, "Substance M2" or "Substance M3" manufactured by Merck & Co., which contains about 5 to 10% of La 2 O 3 mixed with aluminum oxide, is used. Including cases. When the layer mainly made of aluminum oxide used in the adhesion layer 31 is formed without ion assist, the moisture blocking effect is recognized, but the tensile stress of the material itself is strong, and the durability in a high temperature and high humidity environment is improved. It turned out to be relatively unsuitable for holding. Therefore, the inventor of the present application has decided to use ion assist to densify the film and aim to achieve both the effect of blocking water and the effect of stress adjustment. As a result of various experiments, it was found that the resistance to high temperature and high humidity can be improved by adjusting the film formation conditions such as the output of ion assist and the film formation rate while taking into consideration the mutual relationship with the film stress of the entire layer. .. That is, it was found that a layer mainly composed of aluminum oxide formed by the ion assist method is preferable as the layer constituting the lower side of the adhesion layer 31. Further, it was found that it is preferable to use LaTIO 3, CeO 2 , Y 2 O 3, and SnO 2 as a material having good adhesion to silver for the layer constituting the upper side of the adhesion layer 31. By using these materials, adhesion is promoted and stress adjustment becomes easy.

密着層31は、酸化アルミニウムを主とする層を少なくとも1層含み、当該酸化アルミニウムを主とする層は、イオンアシスト法を用いて成膜されている。当該酸化アルミニウムを主とする層の膜応力は、圧縮応力である。これにより、酸化アルミニウム層において若干の水分の通過を可能にして高温多湿の環境に対する耐性を高めることができるとともに、圧縮応力とすることである程度の緻密性と強度とを確保することができる。 The adhesion layer 31 includes at least one layer mainly composed of aluminum oxide, and the layer mainly composed of aluminum oxide is formed by using an ion assist method. The film stress of the layer mainly composed of aluminum oxide is a compressive stress. As a result, it is possible to allow the passage of a small amount of water in the aluminum oxide layer to enhance the resistance to a high temperature and high humidity environment, and it is possible to secure a certain degree of compactness and strength by applying a compressive stress.

具体的な密着層31は、基板20側の第1層31aと、主銀層32側の第2層31bとを含む。両層31a,31bは、10nm〜200nm程度、より好ましくは20nm〜100nmの厚みを有する。ここで、第1層31aは、基板20に直接密着するとともに水分を遮断しつつも幾分透過させる緩衝層的な役割を有する薄膜層であり、第2層31bは、主銀層32と直接密着するとともに水分を確実に遮断する役割を有する薄膜層である。基板20側の第1層31aは、上記のように酸化アルミニウムを主とする層であり、イオンアシスト法を用いて成膜されている。主銀層32と直接密着する第2層31bは、上記のようにLaTiO、CeO、Y及びSnOのうち少なくとも一種から選ばれる材料から形成される層であり、イオンアシスト法を用いて成膜されている。The specific adhesion layer 31 includes a first layer 31a on the substrate 20 side and a second layer 31b on the main silver layer 32 side. Both layers 31a and 31b have a thickness of about 10 nm to 200 nm, more preferably 20 nm to 100 nm. Here, the first layer 31a is a thin film layer that has a role of a buffer layer that directly adheres to the substrate 20 and also has a function of a buffer layer that allows moisture to permeate while blocking water, and the second layer 31b is directly attached to the main silver layer 32. It is a thin film layer that has a role of adhering and reliably blocking water. The first layer 31a on the substrate 20 side is a layer mainly composed of aluminum oxide as described above, and is formed by using an ion assist method. The second layer 31b for direct contact with the main silver layer 32 is a layer formed from a material selected from at least one of the LaTiO 3, CeO 2, Y 2 O 3 and SnO 2 as described above, ion-assisted method Is formed using.

なお、両層31a,31bについては、全体で膜厚20nm以下であっても密着を向上させる効果はあるが、膜厚20nm以下では薄膜の成長途中であり、膜の連続性からなる十分な水分遮断効果を発揮させるためには膜厚20nm以上とすることが好ましい。一方、膜厚100nm以上の場合も密着や水分遮断効果は十分あるが、一方で厚み増加にともなって基板20の表面粗さを増大させたり膜応力の影響を増加させたりするといった副作用があり、密着層という観点では、膜厚100nm以下で制御されていることが好ましい。 Regarding both layers 31a and 31b, even if the film thickness is 20 nm or less as a whole, there is an effect of improving the adhesion, but when the film thickness is 20 nm or less, the thin film is in the process of growth, and sufficient water content consisting of film continuity. The film thickness is preferably 20 nm or more in order to exert the blocking effect. On the other hand, when the film thickness is 100 nm or more, the adhesion and moisture blocking effects are sufficient, but on the other hand, there are side effects such as increasing the surface roughness of the substrate 20 and increasing the influence of film stress as the thickness increases. From the viewpoint of the adhesion layer, it is preferable that the film thickness is controlled to 100 nm or less.

密着層31は、少なくとも1層の膜応力に関する調整層を含み、2層以上を含む場合、一方の調整層(詳細は後述するが、第1及び第2層31a,31bのうち一方に対応)は、単層の状態において、110℃の高温乾燥環境に24時間投入後の膜応力に対して、85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、より圧縮力を受け負方向に変化する。この場合、一方の調整層は、膜応力が負方向に変化する密度が比較的低い材料(例えばイオンアシスト法を適用するとともに、その際の成膜やイオン供給に関する各種条件をバランスさせることによって実現した酸化アルミニウム)によって、若干の水抜けを可能にする状態を確保し、高温多湿な環境に対する耐性を高めることができる。また、他方の調整層(第1及び第2層31a,31bのうち他方に対応)は、単層の状態において、110℃の高温乾燥環境に24時間投入後の膜応力に対して、85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、正方向に変化する。この場合、他方の調整層は、密度が高くなって、水分を確実に遮断することができ、調整層自体の強度が高まっていると判断される。ただし、他方の調整層は、過度に密度が高くなって膜応力が増加することを防止すべく、膜応力が負方向に変化するものと組み合わせることが望ましい。 The adhesion layer 31 includes at least one adjustment layer for film stress, and when two or more layers are included, one adjustment layer (details will be described later, but corresponds to one of the first and second layers 31a and 31b). In the single layer state, the film stress after being put into a high temperature and high humidity environment of 85 ° C. 85% RH for 24 hours is more compressive than the film stress after being put into a high temperature and dry environment of 110 ° C. for 24 hours. It changes in the negative direction. In this case, one of the adjusting layers is realized by applying a material having a relatively low density in which the film stress changes in the negative direction (for example, the ion assist method and balancing various conditions related to film formation and ion supply at that time). (Aluminum oxide) can ensure a state that allows some drainage and enhance resistance to a hot and humid environment. Further, the other adjusting layer (corresponding to the other of the first and second layers 31a and 31b) is 85 ° C. with respect to the film stress after being put into a high temperature drying environment of 110 ° C. for 24 hours in a single layer state. The film stress after being put into a hot and humid environment of 85% RH for 24 hours changes in the positive direction. In this case, it is judged that the other adjusting layer has a high density, can reliably block water, and the strength of the adjusting layer itself is increased. However, it is desirable to combine the other adjusting layer with a layer in which the film stress changes in the negative direction in order to prevent the film stress from increasing due to excessive density.

密着層31を構成する一対の層31a,31bの機能についてより詳しく説明する。まず、第1層31aは、第2層31bと比較して密度が低い材料で形成されることによって水分を遮断しつつも幾分透過させる。つまり、第1層31aは、第2層31bと比較して水抜けが良好な状態を確保しており、水分に対する緩衝材として剥離を防止する機能を有し、高温多湿な環境に対する反射膜30の耐性を高めることができる。また、第1層31aは、膜応力のバランスをとるための調整層となっており、比較的弱い負の膜応力を有するものとなっている。ここで、負の膜応力とは、圧縮応力を受けている状態を意味し、膜の延びる方向に関して伸びようとするものであり、基材に対して相対的に密度の高い状態に相当する。さらに、第1層31aとしては、単層の状態において、雰囲気温度110℃で相対湿度20%RH以下(具体的には湿度略ゼロ)の高温乾燥環境に24時間投入後の膜応力に対して、雰囲気温度85℃で相対湿度85%RHの高温多湿環境に24時間投入した後の膜応力が、負方向に変化するようなものを選択する。第1層31aは、上記のような湿度増加型の環境試験によって圧縮応力が増すものであり、適度の水抜け又は水分浸透が確保されたものであると判断される。なお、第1層31aは、膜応力の調整その他の観点で、膜応力が正方向に変化する第2層31bと組み合わせることが望ましい。 The functions of the pair of layers 31a and 31b constituting the close contact layer 31 will be described in more detail. First, the first layer 31a is made of a material having a lower density than the second layer 31b, so that moisture is blocked and somewhat permeated. That is, the first layer 31a secures a state in which water drains better than the second layer 31b, has a function of preventing peeling as a cushioning material for moisture, and is a reflective film 30 for a hot and humid environment. Can increase resistance to. Further, the first layer 31a is an adjusting layer for balancing the film stress, and has a relatively weak negative film stress. Here, the negative film stress means a state in which a compressive stress is applied, and is intended to stretch in the extending direction of the film, and corresponds to a state in which the density is relatively high with respect to the base material. Further, as the first layer 31a, in the state of a single layer, with respect to the film stress after being put into a high temperature drying environment at an ambient temperature of 110 ° C. and a relative humidity of 20% RH or less (specifically, the humidity is substantially zero) for 24 hours. Select a film in which the film stress changes in the negative direction after being put into a high temperature and high humidity environment having an ambient temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours. The compressive stress of the first layer 31a is increased by the above-mentioned humidity-increasing environmental test, and it is determined that appropriate water drainage or moisture permeation is ensured. It is desirable that the first layer 31a is combined with the second layer 31b in which the film stress changes in the positive direction from the viewpoint of adjusting the film stress and other viewpoints.

一方、第2層31bは、第1層31aと比較して密度が高い材料で形成されることによって、第2層31bと比較して水抜けがよくない状態を確保しており、主銀層32を保護して、高温多湿な環境に対する反射膜30の耐性を高めることができる。また、第2層31bは、膜応力のバランスをとるための調整層となっており、一定以上の負の膜応力を有するものとなっている。さらに、第2層31bとしては、単層の状態において、雰囲気温度110℃で相対湿度20%RH以下(具体的には湿度略ゼロ)の高温乾燥環境に24時間投入後の膜応力に対して、雰囲気温度85℃で相対湿度85%RHの高温多湿環境に24時間投入した後の膜応力が、正方向に変化するようなものを選択する。第2層31bは、上記のような湿度増加型の環境試験によって圧縮応力が若干減るものであり、水分の遮断効果が高いものであると判断される。 On the other hand, the second layer 31b is formed of a material having a higher density than the first layer 31a, thereby ensuring a state in which water drainage is not as good as that of the second layer 31b, and the main silver layer. 32 can be protected to increase the resistance of the reflective film 30 to a hot and humid environment. Further, the second layer 31b is an adjusting layer for balancing the film stress, and has a negative film stress of a certain level or more. Further, as the second layer 31b, in the state of a single layer, with respect to the film stress after being put into a high temperature drying environment at an ambient temperature of 110 ° C. and a relative humidity of 20% RH or less (specifically, the humidity is substantially zero) for 24 hours. Select a film that changes the film stress in the positive direction after being put into a high-temperature and high-humidity environment with an ambient temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours. The second layer 31b has a slightly reduced compressive stress by the above-mentioned humidity-increasing environmental test, and is judged to have a high moisture blocking effect.

本実施形態において、主銀層32は、銀のみで形成された薄膜である。主銀層32は、数10nm〜100nm程度、より好ましくは50nm〜100nm程度の厚みを有する。なお、主銀層32は、金属腐食耐性をさらに強化したい場合には、反射率が低下しない程度の範囲内で銀を主とする合金で形成してもよい。銀合金の添加材料としては、例えばBi、Pd、Cu、Au、Ge、Nd、Al等が挙げられる。 In the present embodiment, the main silver layer 32 is a thin film formed only of silver. The main silver layer 32 has a thickness of about several tens of nm to 100 nm, more preferably about 50 nm to 100 nm. If it is desired to further enhance the metal corrosion resistance, the main silver layer 32 may be formed of an alloy mainly composed of silver within a range that does not reduce the reflectance. Examples of the additive material for the silver alloy include Bi, Pd, Cu, Au, Ge, Nd, Al and the like.

増反射層33において、主銀層32に直接接触する第1層33fの材料は、酸化アルミニウムを主とする材料とする。主銀層32の反射率を高めるための多層膜設計において、屈折率が高い層が第1層目にあると反射性能の低下を招くおそれがあったためである。酸化アルミニウムは、比較的低屈折の材料(広義の低屈折率材料)で光学設計的に望ましく、かつ主銀層32との密着性も比較的良好である。密着層31で用いるLaTiO、CeO2、3、SnOといった材料は、屈折率が1.8以上と高く、1層目としては薄膜設計上不適切であり、密着性や応力調整の観点で検討した結果、酸化アルミニウムを含む層によって諸要件が満足されることが分かった。また、第1層33f上に積層される層は、増反射を目的とした設計上、高屈折率材料と低屈折率材料とを用いた2層以上であれば、品質上問題ないことが分かった。In the reflective layer 33, the material of the first layer 33f that comes into direct contact with the main silver layer 32 is mainly aluminum oxide. This is because in the multilayer film design for increasing the reflectance of the main silver layer 32, if a layer having a high refractive index is present in the first layer, the reflection performance may be deteriorated. Aluminum oxide is a material having a relatively low refractive index (a material having a low refractive index in a broad sense), which is desirable in terms of optical design, and has relatively good adhesion to the main silver layer 32. Materials such as LaTIO 3 , CeO 2, Y 2 O 3, and SnO 2 used in the adhesion layer 31 have a high refractive index of 1.8 or more, which is inappropriate for thin film design as the first layer, and adhesion and stress adjustment. As a result of examination from the above viewpoint, it was found that various requirements are satisfied by the layer containing aluminum oxide. Further, it was found that there is no quality problem if the layer laminated on the first layer 33f is two or more layers using a high refractive index material and a low refractive index material in the design for the purpose of increased reflection. It was.

増反射層33は、少なくとも3層以上を含む。具体的な増反射層33は、最下の第1層33f上に高屈折率材料層33aと低屈折率材料層33bとを交互に積層した誘電体多層膜であり、最上層は、低屈折率材料層33bで形成される。なお、主銀層32に接する第1層33fは、最上の低屈折率材料層33bに比較して屈折率が高い点で中屈折率材料層と見ることもできるが、広義には高屈折率材料層33aとの関係で低屈折率材料層と呼ぶものとする。高屈折率材料層33aは、1.8以上の屈折率を有し、低屈折率材料層33bは、1.55以下の屈折率を有し、第1層33fは、1.55以上であって1.80未満の屈折率を有する。低屈折率材料層33bの材料は、SiO及びSiOに酸化アルミニウムを混ぜた混合材料のうち少なくとも一種から選ばれる。高屈折率材料層33aの材料は、TiO、Nb、Ta、LaTiO、ZrO、及びこれらの材料の混合材料のうち少なくとも一種から選ばれる。なお、第1層33fは、上記のように酸化アルミニウムを主とする材料で形成される。The polyreflection layer 33 includes at least three or more layers. The specific hyperrefractive layer 33 is a dielectric multilayer film in which a high refractive index material layer 33a and a low refractive index material layer 33b are alternately laminated on the lowermost first layer 33f, and the uppermost layer is a low refractive index material layer 33b. It is formed of a material layer 33b. The first layer 33f in contact with the main silver layer 32 can be regarded as a medium refractive index material layer in that it has a higher refractive index than the highest low refractive index material layer 33b, but in a broad sense, it has a high refractive index. In relation to the material layer 33a, it is referred to as a low refractive index material layer. The high refractive index material layer 33a has a refractive index of 1.8 or more, the low refractive index material layer 33b has a refractive index of 1.55 or less, and the first layer 33f has a refractive index of 1.55 or more. It has a refractive index of less than 1.80. The material of the low refractive index material layer 33b is selected from at least one of SiO 2 and a mixed material in which SiO 2 is mixed with aluminum oxide. The material of the high refractive index material layer 33a is selected from at least one of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , La TiO 3 , ZrO 2 , and a mixed material of these materials. The first layer 33f is formed of a material mainly composed of aluminum oxide as described above.

高屈折率材料層33a及び低屈折率材料層33bは、光学設計によって各層毎に屈折率に応じた膜厚が設定され、同じ屈折率材料層33a,33bであっても厚みが異なる場合がある。また、増反射層33が複数の高屈折率材料層33aや複数の低屈折率材料層33bで構成される場合、例えば複数の高屈折率材料層33aを互いに異なる屈折率を有する異なる材料で形成することができる。さらに、単一の低屈折率材料層33bを複数種類の低屈折率材料層で構成することができ、同様に単一の高屈折率材料層33aを複数種類の高屈折率材料層で構成することもできる。 The high-refractive index material layer 33a and the low-refractive index material layer 33b have a thickness set according to the refractive index for each layer according to the optical design, and the thicknesses of the same refractive index material layers 33a and 33b may differ. .. When the high-refractive index material layer 33 is composed of a plurality of high-refractive index material layers 33a and a plurality of low-refractive index material layers 33b, for example, the plurality of high-refractive index material layers 33a are formed of different materials having different refractive indexes. can do. Further, the single low refractive index material layer 33b can be composed of a plurality of types of low refractive index material layers, and similarly, the single high refractive index material layer 33a is composed of a plurality of types of high refractive index material layers. You can also do it.

なお、増反射層33は、密着層31と同様に、少なくとも1層の調整層を含んでもよい。つまり、増反射層33を構成する第1層33fやその上の高屈折率材料層33aは、膜応力のバランスをとるための調整層とすることもできる。例えば主銀層32に隣接する第1層33fは、密着層31の第1層31aと同様に、比較的弱い負の膜応力を有する調整層とできる。また、第1層33fは、単層の状態において、雰囲気温度110℃で相対湿度20%RH以下(具体的には湿度略ゼロ)の高温乾燥環境に24時間投入後の膜応力に対して、雰囲気温度85℃で相対湿度85%RHの高温多湿環境に24時間投入した後の膜応力が、負方向に変化するようなものとできる。また、第1層33f上の高屈折率材料層33aは、密着層31の第2層31bと同様に、一定以上の負の膜応力を有する調整層とできる。高屈折率材料層33aは、単層の状態において、雰囲気温度110℃で相対湿度20%RH以下(具体的には湿度略ゼロ)の高温乾燥環境に24時間投入後の膜応力に対して、雰囲気温度85℃で相対湿度85%RHの高温多湿環境に24時間投入した後の膜応力が、正方向に変化するようなものを選択する。 The reflective layer 33 may include at least one adjusting layer, similarly to the close contact layer 31. That is, the first layer 33f constituting the reflective layer 33 and the high refractive index material layer 33a above the first layer 33f can also be used as an adjusting layer for balancing the film stress. For example, the first layer 33f adjacent to the main silver layer 32 can be an adjusting layer having a relatively weak negative film stress, similarly to the first layer 31a of the adhesion layer 31. Further, the first layer 33f is subjected to a film stress after being put into a high-temperature drying environment having a relative humidity of 20% RH or less (specifically, substantially zero humidity) at an ambient temperature of 110 ° C. for 24 hours in a single layer state. The film stress after being put into a high-temperature and high-humidity environment with an ambient temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours can be changed in the negative direction. Further, the high refractive index material layer 33a on the first layer 33f can be an adjusting layer having a negative film stress of a certain level or more, similarly to the second layer 31b of the adhesion layer 31. The high refractive index material layer 33a is subjected to film stress after being put into a high-temperature drying environment at an ambient temperature of 110 ° C. and a relative humidity of 20% RH or less (specifically, substantially zero humidity) for 24 hours in a single layer state. Select a film in which the film stress changes in the positive direction after being put into a high-temperature and high-humidity environment with an ambient temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours.

その他、増反射層33全体の膜応力は、高温環境でのクラック防止等の観点で、−50MPaよりも負に大きい状態であることが好ましい。この場合、基板20の伸縮に対する増反射層33の許容性が増し、高温乾燥環境に長時間おかれてクラックが発生しやすくなるのを防止できる。 In addition, the film stress of the entire reflective layer 33 is preferably in a state negatively larger than −50 MPa from the viewpoint of preventing cracks in a high temperature environment. In this case, the tolerance of the reflective layer 33 to the expansion and contraction of the substrate 20 is increased, and it is possible to prevent the substrate 20 from being left in a high-temperature drying environment for a long time and easily cracking.

以下、図2を参照して、図1に示す基板20等に相当するワークW表面上に反射膜30を構成する要素膜を作製するための成膜装置について説明する。 Hereinafter, a film forming apparatus for forming an element film constituting the reflective film 30 on the surface of the work W corresponding to the substrate 20 and the like shown in FIG. 1 will be described with reference to FIG.

図示の成膜装置100は、真空容器59内に、成膜材料源としての蒸着源51と、複数のワークWを支持して回転させる蒸着ホルダー52と、蒸着ホルダー52の経線方向に関して膜厚を調節する膜厚補正板54と、成膜時にワークWにイオンビームを照射するイオンガン56と、イオンを中和させる中和ガン57とを備える。また、成膜装置100は、真空容器59外に、蒸着源51の動作を制御する蒸着源駆動部61と、蒸着ホルダー52を回転駆動するホルダー駆動部62と、膜厚補正板54の姿勢等を調整する補正板駆動部64と、イオンガン56等を動作させるイオンガン駆動部65と、イオンガン56等にガスを供給するガス供給部66と、真空容器59内を減圧するガス排出部67と、成膜装置100を構成する各部の動作を制御する制御部69とを備える。 The illustrated film forming apparatus 100 has a vapor deposition source 51 as a film forming material source, a vapor deposition holder 52 that supports and rotates a plurality of workpieces W, and a film thickness in the vacuum vessel 59 in the meridian direction of the vapor deposition holder 52. A film thickness correction plate 54 for adjusting, an ion gun 56 for irradiating the work W with an ion beam at the time of film formation, and a neutralization gun 57 for neutralizing the ions are provided. Further, in the film forming apparatus 100, outside the vacuum vessel 59, the vapor deposition source driving unit 61 that controls the operation of the vapor deposition source 51, the holder drive unit 62 that rotationally drives the vapor deposition holder 52, the posture of the film thickness correction plate 54, etc. A correction plate drive unit 64 for adjusting the pressure, an ion gun drive unit 65 for operating the ion gun 56 and the like, a gas supply unit 66 for supplying gas to the ion gun 56 and the like, and a gas discharge unit 67 for reducing the pressure inside the vacuum vessel 59. A control unit 69 for controlling the operation of each unit constituting the film device 100 is provided.

蒸着源51は、各種成膜材料の真空蒸着を可能にするものであり、真空容器59の底部においてステージ上に固定されている。蒸着源51は、蒸発物質を保持する容器(不図示)を有し、容器内の蒸発物質51aは、電子銃や抵抗加熱によって加熱される。蒸着源51からは、蒸発物質の蒸気EMを上方に射出させることができる。蒸着源51は、蒸着源駆動部61によって動作する。蒸着源51には、シャッター51dが付随しており、蒸気EMの射出タイミングを任意に設定することができる。なお、合金を用いた主銀層32の成膜のように蒸発物質51aの主材料を銀とした場合、蒸発温度の違いから成膜後の薄膜内に存在する添加物の割合は、加熱の温度やシャッター51dの開閉のタイミングで調整することができる。 The thin-film deposition source 51 enables vacuum-depositing of various film-forming materials, and is fixed on the stage at the bottom of the vacuum vessel 59. The vapor deposition source 51 has a container (not shown) for holding the evaporative substance, and the evaporative substance 51a in the container is heated by an electron gun or resistance heating. The vaporized material vapor EM can be injected upward from the vapor deposition source 51. The thin-film deposition source 51 is operated by the thin-film deposition source driving unit 61. A shutter 51d is attached to the vapor deposition source 51, and the injection timing of the steam EM can be arbitrarily set. When the main material of the evaporative substance 51a is silver as in the case of film formation of the main silver layer 32 using an alloy, the proportion of additives present in the thin film after film formation is determined by heating due to the difference in evaporation temperature. It can be adjusted by the temperature and the timing of opening and closing the shutter 51d.

蒸着ホルダー52は、真空容器59内で蒸着源51に対向して上方に配置されている。蒸着ホルダー52は、全体としてドーム状又は円錐状であり、多数の支持治具52aを介して多数のワークWを保持する。蒸着ホルダー52は、ホルダー駆動部62によって軸Zのまわりに自転し、各ワークWが蒸着源51に対して周期的に対向配置されるようにする。蒸着ホルダー52は、ワークWの表面Waを蒸着源51に対して所定角度α(具体的には45°)だけ傾斜させる。これは、銀反射鏡10が組み込まれる製品において反射膜30への光線の入射角が角度αであることを考慮したものである。 The vapor deposition holder 52 is arranged above the vapor deposition source 51 in the vacuum vessel 59. The vapor deposition holder 52 has a dome shape or a conical shape as a whole, and holds a large number of work Ws via a large number of support jigs 52a. The vapor deposition holder 52 is rotated around the shaft Z by the holder drive unit 62 so that each work W is periodically opposed to the vapor deposition source 51. The vapor deposition holder 52 tilts the surface Wa of the work W with respect to the vapor deposition source 51 by a predetermined angle α (specifically, 45 °). This is in consideration of the fact that the angle of incidence of the light beam on the reflecting film 30 is the angle α in the product in which the silver reflecting mirror 10 is incorporated.

膜厚補正板54は、蒸着源51と蒸着ホルダー52との間に配置されている。膜厚補正板54は、補正板駆動部64によって、真空容器59内の姿勢が制御されている。膜厚補正板54は、機械機構54aにより外部から操作可能になっており、その軸Xの傾きが増減するように適宜上げ下ろしすることができ、必要であればさらに軸Xのまわりに回転させることもできる。膜厚補正板54を上げて蒸着源51の上方に配置した場合、支持治具52aにおいて膜厚補正板54の陰になる部分は、蒸着がされず、蒸着ホルダー52の経方向に関して膜厚差を調整することができる。 The film thickness correction plate 54 is arranged between the vapor deposition source 51 and the vapor deposition holder 52. The posture of the film thickness correction plate 54 in the vacuum container 59 is controlled by the correction plate drive unit 64. The film thickness correction plate 54 can be operated from the outside by the mechanical mechanism 54a, can be raised and lowered as appropriate so that the inclination of the axis X increases or decreases, and is further rotated around the axis X if necessary. You can also. When the film thickness correction plate 54 is raised and placed above the vapor deposition source 51, the portion behind the film thickness correction plate 54 in the support jig 52a is not vapor-deposited, and the film thickness difference with respect to the warp direction of the vapor deposition holder 52. Can be adjusted.

イオンガン56は、プラズマ中のイオンを電圧印加等によって抽出し、イオンガン56の外部に放出する。具体的には、イオンガン56は、ガス供給部66から供給されたガスをイオン化し、イオンガン56の陽極56aと陰極56bとの間にビーム電圧を印加する。イオンガン56は、イオン化したガス(例えば、正イオン)を陰極56b側に接近、通過させ、イオンビームIBとして真空容器59内に放出する。放出されたイオンビームIBは、蒸着ホルダー52に支持されたワークWの表面Waに照射される。これにより、ワークWの表面Waが活性化し或いはワークWの表面Waの薄膜が再配列し、ワークWの表面Waの薄膜をより密着させつつ緻密にすることができる。 The ion gun 56 extracts ions in the plasma by applying a voltage or the like and emits them to the outside of the ion gun 56. Specifically, the ion gun 56 ionizes the gas supplied from the gas supply unit 66, and applies a beam voltage between the anode 56a and the cathode 56b of the ion gun 56. The ion gun 56 approaches and passes an ionized gas (for example, positive ions) toward the cathode 56b side and discharges it into the vacuum vessel 59 as an ion beam IB. The emitted ion beam IB irradiates the surface Wa of the work W supported by the vapor deposition holder 52. As a result, the surface Wa of the work W is activated or the thin film of the surface Wa of the work W is rearranged, so that the thin film of the surface Wa of the work W can be made denser while being more closely adhered.

イオンビームIBを照射するため、ガス供給部66からイオンガン56に供給されるガスは、不活性ガスに反応性ガスを添加したものとすることができる。不活性ガスとして、例えばアルゴン(Ar)、窒素(N)、ヘリウム(He)等の各種ガス及びこれらの混合ガスを用いることができる。また、反応性ガスとして、例えば酸素(O)等を用いることができる。Since the ion beam IB is irradiated, the gas supplied from the gas supply unit 66 to the ion gun 56 can be an inert gas to which a reactive gas is added. As the inert gas, for example, various gases such as argon (Ar), nitrogen (N 2 ), and helium (He), and a mixed gas thereof can be used. Further, as the reactive gas, for example, oxygen (O 2 ) or the like can be used.

中和ガン57は、イオンビームIB中のイオンを中和させて電界分布の影響を抑えるためのものである。中和ガン57には、ガス供給部66から電離用のガスが導入されており、導入されたガスが電離される。電離によって生成された電子を真空容器59に放出させると、イオンガン56によってイオン化され蒸着ホルダー52側に放出されたガス分子が電子によって中和される。なお、中和ガン57の代わりに中和グリッドを用いてもよい。 The neutralization gun 57 is for neutralizing the ions in the ion beam IB and suppressing the influence of the electric field distribution. A gas for ionization is introduced into the neutralization gun 57 from the gas supply unit 66, and the introduced gas is ionized. When the electrons generated by ionization are released into the vacuum vessel 59, the gas molecules ionized by the ion gun 56 and released to the vapor deposition holder 52 side are neutralized by the electrons. A neutralization grid may be used instead of the neutralization gun 57.

その他、ガス排出部67は、真空容器59内を減圧し、真空容器59の底部に設けられた酸素導入口58は、真空容器59内に酸素ガス等を供給する。酸素導入口58とガス排出部67との間には、オートプレッシャーコントローラー(不図示)が設けられており、成膜に際して真空容器59内の酸素圧等を略一定にすることができる。 In addition, the gas discharge unit 67 decompresses the inside of the vacuum container 59, and the oxygen introduction port 58 provided at the bottom of the vacuum container 59 supplies oxygen gas or the like into the vacuum container 59. An auto pressure controller (not shown) is provided between the oxygen inlet 58 and the gas discharge unit 67, so that the oxygen pressure in the vacuum vessel 59 and the like can be made substantially constant during film formation.

蒸着源駆動部61は、蒸着源51を動作させて蒸発物質の蒸気EMを上方に射出させる。ホルダー駆動部62は、蒸着源51による蒸気EMの形成中、蒸着ホルダー52を中央の軸Zのまわりに回転させる。補正板駆動部64は、蒸着源51による蒸着中、膜厚補正板54の回転その他の姿勢を調整する。イオンガン駆動部65は、蒸着源51による蒸気EMの形成中、イオンガン56を動作させてイオンビームIBをワークWの表面Waに照射するとともに中和ガン57を動作させてワークW周辺の中和を行う。制御部69は、ホルダー駆動部62によって蒸着ホルダー52を回転させつつ蒸着源駆動部61を介して蒸着源51を動作させて、ワークWの表面Waに蒸発物質の薄膜を形成する。この際、制御部69は、イオンガン駆動部65を介してイオンガン56等を動作させて、ワークWの表面Waに形成される蒸発物質の薄膜をワークWに対して密着性の高いものとするとともに、かかる蒸発物質の薄膜を緻密なものとする。 The thin-film deposition source driving unit 61 operates the thin-film deposition source 51 to inject the vapor EM of the evaporated substance upward. The holder drive unit 62 rotates the vapor deposition holder 52 around the central axis Z during the formation of the vapor EM by the vapor deposition source 51. The correction plate driving unit 64 adjusts the rotation and other postures of the film thickness correction plate 54 during the vapor deposition by the vapor deposition source 51. During the formation of the steam EM by the vapor deposition source 51, the ion gun drive unit 65 operates the ion gun 56 to irradiate the surface Wa of the work W with the ion beam IB and operates the neutralization gun 57 to neutralize the periphery of the work W. Do. The control unit 69 operates the vapor deposition source 51 via the vapor deposition source drive unit 61 while rotating the vapor deposition holder 52 by the holder drive unit 62 to form a thin film of the evaporative substance on the surface Wa of the work W. At this time, the control unit 69 operates the ion gun 56 and the like via the ion gun driving unit 65 to make the thin film of the evaporative substance formed on the surface Wa of the work W have high adhesion to the work W. , Make the thin film of such evaporative material dense.

以上で説明した成膜装置100は、イオンアシスト法による蒸着(つまりイオンビームアシスト蒸着)を可能にするものであり、主に密着層31を構成する第1層31a及び第2層31bの成膜に用いられる。イオンビームIBを照射する程度を調整することで、第1及び第2層31a,31bの緻密性又は密度を調整することができる。その他、増反射層33を構成する要素膜や主銀層32も、成膜装置100を用いて形成することができる。特に、増反射層33の低屈折率材料層33bや主銀層32については、イオンガン56等を用いない通常の蒸着装置を用いて簡易に形成することができる。なお、反射膜30を構成する複数種類の要素膜を積層する場合、蒸着物質を異ならせた複数の成膜装置100で順次成膜を行うことができるが、同一の成膜装置100において蒸着物質を切り換えながら順次成膜を行うこともできる。 The film forming apparatus 100 described above enables vapor deposition by an ion assist method (that is, ion beam assisted vapor deposition), and forms a film of the first layer 31a and the second layer 31b mainly constituting the adhesion layer 31. Used for. By adjusting the degree of irradiation of the ion beam IB, the density or density of the first and second layers 31a and 31b can be adjusted. In addition, the element film and the main silver layer 32 constituting the brightening reflection layer 33 can also be formed by using the film forming apparatus 100. In particular, the low refractive index material layer 33b and the main silver layer 32 of the reflective layer 33 can be easily formed by using a normal thin-film deposition apparatus that does not use an ion gun 56 or the like. When laminating a plurality of types of element films constituting the reflective film 30, the film can be sequentially formed by a plurality of film forming devices 100 having different vapor deposition substances, but the vapor deposition substances are formed in the same film forming device 100. It is also possible to sequentially perform film formation while switching between.

以下、図3を参照して、図1に示す銀反射鏡10を検査するための環境試験装置について説明する。 Hereinafter, an environmental test apparatus for inspecting the silver reflector 10 shown in FIG. 1 will be described with reference to FIG.

図示の環境試験装置200は、断熱壁を有するとともに密閉空間を形成する調湿室71と、空気循環ファン73と、補助的な温調を行う補助温調部74と、室内の温度及び湿度を測定する温湿度センサー75と、調湿室71の室内の温度及び湿度を一定に保つための空気調整部77と、これらを制御する制御装置79とを備える。なお、環境試験装置200で試験されるワークW2は、完成品である銀反射鏡10の場合もあるが、基板20上に密着層31を構成する第1層31a、第2層31b等を単独で成膜したものとする場合もある。 The illustrated environmental test device 200 has a humidity control chamber 71 having a heat insulating wall and forming a closed space, an air circulation fan 73, an auxiliary temperature control unit 74 for performing auxiliary temperature control, and indoor temperature and humidity. It includes a temperature / humidity sensor 75 for measurement, an air adjusting unit 77 for keeping the temperature and humidity in the humidity control chamber 71 constant, and a control device 79 for controlling them. The work W2 tested by the environmental test apparatus 200 may be a finished silver reflector 10, but the first layer 31a, the second layer 31b, and the like constituting the adhesion layer 31 are independently formed on the substrate 20. In some cases, the film is formed in.

調湿室71は、複数のワークW2を棚71aに支持された状態で収納する。その際、空気循環ファン73によって調湿室71内の雰囲気の循環を図りつつ、温湿度センサー75によって調湿室71内の温度及び湿度を監視する。補助温調部74は、温湿度センサー75の検出結果に基づいてワークW2の周辺の空気を補助的に加熱又は冷却する。 The humidity control chamber 71 stores a plurality of work W2 in a state of being supported by the shelf 71a. At that time, the temperature and humidity in the humidity control chamber 71 are monitored by the temperature / humidity sensor 75 while the air circulation fan 73 circulates the atmosphere in the humidity control chamber 71. The auxiliary temperature control unit 74 auxiliary heats or cools the air around the work W2 based on the detection result of the temperature / humidity sensor 75.

空気調整部77は、調湿室71内の空気を一旦取り込んで目標とする温度及び湿度の空気として調湿室71内に送り出す。空気調整部77により、銀反射鏡10等の高温又は高温及び高湿環境下での特性変化を監視可能になる。具体的には、空気調整部77によって達成される環境には、第1に、雰囲気温度110℃で湿度略ゼロの高温乾燥環境が含まれ、第2に、雰囲気温度85℃で相対湿度85%RHの高温多湿環境が含まれ、その他に、雰囲気温度85℃で湿度略ゼロの高温乾燥環境も含まれる。空気調整部77によって形成された高温乾燥の雰囲気又は高温高湿の雰囲気は、空気循環ファン73によって均一化されワークW2の周辺に送り込まれる。 The air adjusting unit 77 once takes in the air in the humidity control chamber 71 and sends it out into the humidity control chamber 71 as air having a target temperature and humidity. The air adjusting unit 77 makes it possible to monitor changes in the characteristics of the silver reflector 10 or the like in a high temperature or high temperature and high humidity environment. Specifically, the environment achieved by the air adjusting unit 77 includes, firstly, a high-temperature drying environment having an ambient temperature of 110 ° C. and a humidity of substantially zero, and secondly, a relative humidity of 85% at an ambient temperature of 85 ° C. A high temperature and high humidity environment of RH is included, and a high temperature and dry environment with an ambient temperature of 85 ° C. and almost zero humidity is also included. The high-temperature drying atmosphere or the high-temperature and high-humidity atmosphere formed by the air adjusting unit 77 is homogenized by the air circulation fan 73 and sent to the periphery of the work W2.

制御装置79は、空気調整部77等を適宜動作させて、例えばワークW2を第1の環境下(つまり雰囲気温度110℃で湿度略ゼロの高温乾燥環境下)に24時間保持した後、このワークW2を第2の環境下(つまり雰囲気温度85℃で相対湿度85%RHの高温多湿環境下)に24時間保持する。このように、ワークW2を第1の環境で24時間保持し、その後第2の環境に切り換えて24時間保持する操作を、湿度増加型の環境試験とも呼ぶ。制御装置79は、空気調整部77を動作させることにより、ワークW2を高温乾燥環境や高温多湿環境に例えば1000時間といった長期間に亘って安定した状態で保持することもできる。 The control device 79 appropriately operates the air adjusting unit 77 and the like to hold the work W2 in a first environment (that is, in a high-temperature drying environment where the ambient temperature is 110 ° C. and the humidity is substantially zero) for 24 hours, and then the work. W2 is held in a second environment (that is, in a high temperature and high humidity environment with an atmospheric temperature of 85 ° C. and a relative humidity of 85% RH) for 24 hours. The operation of holding the work W2 in the first environment for 24 hours and then switching to the second environment and holding it for 24 hours is also called a humidity increasing type environmental test. By operating the air adjusting unit 77, the control device 79 can also hold the work W2 in a high temperature drying environment or a high temperature and high humidity environment in a stable state for a long period of time such as 1000 hours.

なお、第1の環境の開始時や第2の環境の終了時には、ワークW2の温度を徐々に変化させることができる。また、第1の環境から後第2の環境に切り換える際には、環境試験装置200自体を変更することができる。また、第1の環境から後第2の環境に切り換える際には、一旦常温に戻して状態を安定させるといった操作を行うこともできる。 The temperature of the work W2 can be gradually changed at the start of the first environment and at the end of the second environment. Further, when switching from the first environment to the second environment, the environment test apparatus 200 itself can be changed. Further, when switching from the first environment to the second environment, it is possible to perform an operation such as temporarily returning to room temperature to stabilize the state.

また、図示の環境試験装置200によって試験されるワークW2は、製品の銀反射鏡10に限らず、基板20上に反射膜30を構成する特定の反射層又は構成層を単独で形成したものとすることもできる。 Further, the work W2 tested by the illustrated environmental test apparatus 200 is not limited to the silver reflecting mirror 10 of the product, and a specific reflective layer or a constituent layer constituting the reflective film 30 is independently formed on the substrate 20. You can also do it.

以下、図4を参照して、図1に示す銀反射鏡10を構成する反射膜30の膜応力等を計測するための計測装置について説明する。 Hereinafter, a measuring device for measuring the film stress and the like of the reflective film 30 constituting the silver reflecting mirror 10 shown in FIG. 1 will be described with reference to FIG.

図示の応力計測装置300は、短冊状のワークW2の両端を下方から支持する一対の支持部材81と、ワークW2の表面Wa上に鉛直上方からレーザー光P1を照射するレーザー光源82と、ワークW2の表面Waで反射されたレーザー光P2を検出する反射光センサー83と、反射光センサー83等の動作を制御する制御装置85とを備える。 The illustrated stress measuring device 300 includes a pair of support members 81 that support both ends of the strip-shaped work W2 from below, a laser light source 82 that irradiates the surface Wa of the work W2 with laser light P1 from vertically above, and the work W2. It is provided with a reflected light sensor 83 that detects the laser light P2 reflected by the surface Wa of the above, and a control device 85 that controls the operation of the reflected light sensor 83 and the like.

一対の支持部材81は、ワークW2を長さLだけ離間した2点で支持する。ここで、両支持部材81の頂部は、同じ高さとなっており、ワークW2は、撓みを無視した場合、水平方向に延びている。レーザー光源82は、一方の支持部材81の鉛直上方に配置されており、当該支持部材81に向けてレーザー光P1を射出し、ワークW2の表面Wa上に光スポットを形成する。反射光センサー83は、ワークW2の表面Wa上の光スポットからの正反射光であるレーザー光P2を検出する。反射光センサー83は、不図示の支持部等を有しており、レーザー光P2を最も強く検出できる高さ位置に移動させることができ、その高さHを計測できる。なお、ワークW2が円弧状に微小に撓んでいる場合、撓んだワークW2の曲率半径Rは、近似的に2Hで与えられ、ワークW2の曲率の原点Oから見たレーザー光P1の入射点の開き角θは、弦の長さLを用いて近似的にL/4Hで与えられる。制御装置85は、ワークW2の開き角θに基づいてワークW2の表面Waに形成された薄膜の膜応力を計算する。 The pair of support members 81 support the work W2 at two points separated by a length L. Here, the tops of both support members 81 have the same height, and the work W2 extends in the horizontal direction when bending is ignored. The laser light source 82 is arranged vertically above one of the support members 81, emits laser light P1 toward the support member 81, and forms a light spot on the surface Wa of the work W2. The reflected light sensor 83 detects the laser light P2 which is the specularly reflected light from the light spot on the surface Wa of the work W2. The reflected light sensor 83 has a support portion (not shown) and the like, and can move the laser beam P2 to a height position where it can be detected most strongly, and can measure the height H. When the work W2 is slightly bent in an arc shape, the radius of curvature R of the bent work W2 is approximately given by 2H, and the incident point of the laser beam P1 seen from the origin O of the curvature of the work W2. The opening angle θ of is approximately given by L / 4H using the length L of the chord. The control device 85 calculates the film stress of the thin film formed on the surface Wa of the work W2 based on the opening angle θ of the work W2.

制御装置85で行われる膜応力の計算には、Stoneyの式を用いた。すなわち、短冊状のワークW2において、ワークW2の基板20の厚みをDとし、ワークW2の反射膜Fの膜厚をdとしたとき、膜厚dが極めて薄く、D>>dであるとする。このとき、反射膜Fの応力σは、ワークW2の曲率半径Rを用いて、以下の式で表される。
σ=(Es×D)/[6d(1−v)R]
ただし、Esは、基板20のヤング率であり、vは、基板20のポアソン比である。
Stoney's equation was used for the calculation of the film stress performed by the control device 85. That is, in the strip-shaped work W2, when the thickness of the substrate 20 of the work W2 is D and the film thickness of the reflective film F of the work W2 is d, the film thickness d is extremely thin and D >> d. .. At this time, the stress σ of the reflective film F is expressed by the following equation using the radius of curvature R of the work W2.
σ = (Es × D 2 ) / [6d (1-v) R]
However, Es is the Young's modulus of the substrate 20, and v is the Poisson's ratio of the substrate 20.

ここで、弦の長さLと曲率半径Rとの関係は、R=L/2θであり、開き角θが極小さいとき2θ≒2sinθの近似が許されることから、応力σは、
σ≒(Es×D)/[6d(1−v)L/(2sinθ)]
と近似することができる。
Here, the relationship between the length L of the chord and the radius of curvature R is R = L / 2θ, and when the opening angle θ is extremely small, an approximation of 2θ≈2sinθ is allowed, so that the stress σ is
σ ≒ (Es × D 2 ) / [6d (1-v) L / (2sinθ)]
Can be approximated to.

ただし、開き角θは、ワークW2が円弧状に撓んでいるとみなす限り、反射されたレーザー光P2の振れ角として得られるが、計算の便宜上、反射膜Fの成膜前後の応力の変化分が膜応力と考えられ、コート前後の開き角の差Δθを用いて、膜応力は、以下の式で表すことができる。
σ≒(Es×D)/[6d(1−v)L/(2sinΔθ)]
However, the opening angle θ is obtained as the deflection angle of the reflected laser beam P2 as long as the work W2 is considered to be bent in an arc shape, but for convenience of calculation, the change in stress before and after the film formation of the reflective film F is obtained. Is considered to be the film stress, and the film stress can be expressed by the following equation using the difference Δθ between the opening angles before and after the coating.
σ ≒ (Es × D 2 ) / [6d (1-v) L / (2sinΔθ)]

なお、図示の応力計測装置300によって計測されるワークW2は、製品の銀反射鏡10における反射膜30又はその構成要素の膜応力を計測するものであり、製品の銀反射鏡10と同一形状である必要はなく、基板20の材料も製品の銀反射鏡10の基板材料と異なるものとすることができる。ただし、反射膜30又はその構成要素の膜応力の計測は、製品の銀反射鏡10に近い状況で行われた方が比較的精度が高い傾向があると言える。 The work W2 measured by the stress measuring device 300 shown in the figure measures the film stress of the reflecting film 30 or its constituent elements in the silver reflecting mirror 10 of the product, and has the same shape as the silver reflecting mirror 10 of the product. It does not have to be, and the material of the substrate 20 can also be different from the substrate material of the silver reflector 10 of the product. However, it can be said that the measurement of the film stress of the reflective film 30 or its constituent elements tends to be relatively accurate when it is performed in a situation close to that of the silver reflector 10 of the product.

以下、図1に示す銀反射鏡10の製造方法及び検査方法について説明する。まず、光学面21を有する基板20を準備し、図2に示す成膜装置100を用いて光学面21上に第1層31a及び第2層31bを順次形成し、密着層31を完成する。次に、同様の成膜装置100を用いて密着層31上に主銀層32を形成する。その後、同様の成膜装置100を用いて主銀層32上に増反射層33を形成する。これにより、基板20上に反射膜30を設けた銀反射鏡10が完成する。なお、環境試験用のテストピース(ワークW2)も準備する。このテストピースは、例えば短冊状の基板20上に同様の条件で反射膜30を形成したものである。また、短冊状の基板20上に密着層31の一方である第1層31aのみを成膜したもの、短冊状の基板20上に密着層31の他方である第2層31bのみを成膜したものも、テストピースとして準備する。さらに、短冊状の基板20上に増反射層33のみを成膜したものも、テストピースとして準備する。 Hereinafter, a method for manufacturing and an inspection method for the silver reflector 10 shown in FIG. 1 will be described. First, the substrate 20 having the optical surface 21 is prepared, and the first layer 31a and the second layer 31b are sequentially formed on the optical surface 21 by using the film forming apparatus 100 shown in FIG. 2 to complete the adhesion layer 31. Next, the main silver layer 32 is formed on the adhesion layer 31 by using the same film forming apparatus 100. Then, the reflective layer 33 is formed on the main silver layer 32 by using the same film forming apparatus 100. As a result, the silver reflecting mirror 10 having the reflecting film 30 provided on the substrate 20 is completed. A test piece (work W2) for environmental test is also prepared. In this test piece, for example, a reflective film 30 is formed on a strip-shaped substrate 20 under the same conditions. Further, only the first layer 31a, which is one of the adhesion layers 31, is formed on the strip-shaped substrate 20, and only the second layer 31b, which is the other of the adhesion layers 31, is formed on the strip-shaped substrate 20. Also prepare things as test pieces. Further, a strip-shaped substrate 20 on which only the reflective layer 33 is formed is also prepared as a test piece.

次に、完成した銀反射鏡10又はテストピース(ワークW2)を環境試験装置200にセットし、雰囲気温度110℃で湿度略ゼロの高温乾燥環境(第1の環境)下に24時間保持した後、雰囲気温度85℃で相対湿度85%RHの高温多湿環境(第2の環境)下に24時間保持する。つまり、テストピース(ワークW2)に対して湿度増加型の環境試験を行う。 Next, the completed silver reflector 10 or test piece (work W2) is set in the environmental test apparatus 200 and held in a high-temperature drying environment (first environment) at an ambient temperature of 110 ° C. and a humidity of substantially zero for 24 hours. It is kept in a hot and humid environment (second environment) with an ambient temperature of 85 ° C. and a relative humidity of 85% RH for 24 hours. That is, a humidity increasing type environmental test is performed on the test piece (work W2).

その後、湿度増加型の環境試験を経てないテストピース(ワークW2)と、湿度増加型の環境試験を経たテストピース(ワークW2)とに対して膜応力の計測を行う。つまり、テストピース(ワークW2)を応力計測装置300にセットし、テストピース表面の薄膜の応力を計測する。テストピース表面の薄膜の応力が所定の条件を満たす場合、テストピースと同様の条件で完成した銀反射鏡10は、高温、高湿度等の環境に対して十分な耐性を有するものであると判断される。具体的には、完成した銀反射鏡10と同一の構造を有するテストピース(ワークW2)について、成膜後の反射膜30の膜応力が、+100MPaから−100MPaまでの範囲にあり、上記第1の環境下に24時間保持した後の反射膜30の膜応力が、+100MPaから−100MPaまでの範囲にあることが、銀反射鏡10の品質を確保する前提として重要である。また、テストピース(ワークW2)について、上記第2の環境下に投入後、85℃85%RHの高温多湿環境に24時間投入した後の反射膜30の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かも判定する。また、完成した銀反射鏡10と同一の構造を有するテストピース(ワークW2)について、上記第1の環境下に24時間保持した後、上記第2の環境下に24時間保持した結果、膜応力値の絶対値としての変化差分が、40MPa以下である場合、反射膜30の剥離等の劣化を防止して高い反射特性を高温多湿の環境下でも維持できると判定する。 After that, the film stress is measured for the test piece (work W2) that has not undergone the humidity increase type environmental test and the test piece (work W2) that has undergone the humidity increase type environmental test. That is, the test piece (work W2) is set in the stress measuring device 300, and the stress of the thin film on the surface of the test piece is measured. When the stress of the thin film on the surface of the test piece satisfies a predetermined condition, it is judged that the silver reflector 10 completed under the same conditions as the test piece has sufficient resistance to an environment such as high temperature and high humidity. Will be done. Specifically, for the test piece (work W2) having the same structure as the completed silver reflector 10, the film stress of the reflective film 30 after film formation is in the range of +100 MPa to -100 MPa, and the first It is important that the film stress of the reflective film 30 after being held in the above environment for 24 hours is in the range of +100 MPa to -100 MPa as a premise for ensuring the quality of the silver reflector 10. Further, the film stress of the reflective film 30 after the test piece (work W2) was put into the second environment and then put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours was increased from +100 MPa to -100 MPa. It also determines whether it is within the range. Further, as a result of holding the test piece (work W2) having the same structure as the completed silver reflector 10 in the first environment for 24 hours and then in the second environment for 24 hours, the film stress When the change difference as an absolute value of the value is 40 MPa or less, it is determined that deterioration such as peeling of the reflective film 30 can be prevented and high reflection characteristics can be maintained even in a high temperature and high humidity environment.

さらに、テストピース(ワークW2)のうち、密着層31の第1層31aを単層で形成したテストピースと、密着層31の第2層31bを単層で形成したテストピースとについても、上記第1の環境下に24時間保持した後に上記第2の環境下に24時間保持する湿度増加型の環境試験の前後において、テストピース表面の薄膜の応力を計測する。下側の第1層31aについては、上記第1の環境下に24時間保持した後に上記第2の環境下に24時間保持した結果、膜応力値の絶対値としての変化差分が負(圧縮応力の向き)である場合、高温多湿の環境下でも反射膜30の剥離等の劣化を防止して高い反射特性を維持できると判定する。また、上側の第2層31bについては、上記第1の環境下に24時間保持した後に上記第2の環境下に24時間保持した結果、膜応力値の絶対値としての変化差分が正(引っ張り応力の向き)である場合、高温多湿の環境下でも反射膜30の剥離等の劣化を防止して高い反射特性を維持できると判定する。 Further, among the test pieces (work W2), the test piece in which the first layer 31a of the adhesion layer 31 is formed of a single layer and the test piece in which the second layer 31b of the adhesion layer 31 is formed of a single layer are also described above. The stress of the thin film on the surface of the test piece is measured before and after the humidity increasing type environmental test in which the test piece is held in the first environment for 24 hours and then held in the second environment for 24 hours. As a result of holding the lower first layer 31a in the first environment for 24 hours and then holding it in the second environment for 24 hours, the difference in change as the absolute value of the film stress value is negative (compressive stress). In the case of (direction), it is determined that high reflection characteristics can be maintained by preventing deterioration such as peeling of the reflective film 30 even in a hot and humid environment. Further, as a result of holding the upper second layer 31b in the first environment for 24 hours and then holding it in the second environment for 24 hours, the difference in change as the absolute value of the film stress value is positive (pull). In the case of (stress direction), it is determined that high reflection characteristics can be maintained by preventing deterioration such as peeling of the reflection film 30 even in a hot and humid environment.

その他、環境試験装置200を利用して、完成した銀反射鏡10又はテストピース(ワークW2)を、(1)雰囲気温度110℃で湿度略ゼロの高温乾燥環境(第1の環境)下に1000時間保持する試験、(2)雰囲気温度85℃で相対湿度85%RHの高温多湿環境(第2の環境)に1000時間保持する試験、(3)雰囲気温度85℃で湿度略ゼロの高温乾燥環境(第3の環境)下に1000時間保持する試験を行う。これらの試験は、銀反射鏡10の外観や光学性能に関する耐久性を直接的に判断する材料となる。 In addition, using the environmental test apparatus 200, the completed silver reflector 10 or the test piece (work W2) is placed in (1) a high-temperature drying environment (first environment) at an ambient temperature of 110 ° C. and a humidity of almost zero. Test to hold for 1000 hours, (2) Test to hold for 1000 hours in a high temperature and humidity environment (second environment) with relative humidity of 85% RH at ambient temperature 85 ° C, (3) High temperature and dry environment with ambient temperature of 85 ° C and almost zero humidity Perform a test of holding under (third environment) for 1000 hours. These tests are materials for directly judging the durability of the silver reflector 10 in terms of appearance and optical performance.

〔実施例〕
以下、本発明に係る銀反射鏡の具体的な実施例について説明する。
〔Example〕
Hereinafter, specific examples of the silver reflector according to the present invention will be described.

成膜装置100として、イオンガン等を備えるオプトラン社製の型式GENER−1300を用いた。 As the film forming apparatus 100, a model GENER-1300 manufactured by OPTORUN Co., Ltd. equipped with an ion gun and the like was used.

基板20の材料として、三菱エンジニアリングプラスチックス社製のポリカーボネートH−3000Rを用い、φ30mmで厚み3mmに成形したものを成膜の対象すなわちワークWとした。 As the material of the substrate 20, polycarbonate H-3000R manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used, and a material formed to a thickness of 3 mm with a diameter of 30 mm was used as a film forming target, that is, a work W.

基板20は、想定される実際の製品の被成膜面が蒸着入射角度45度に位置するため、蒸着源51に直交する面又は蒸着ホルダー52の支持面に対して45度傾けた状態で設置された。 Since the surface to be deposited of the expected actual product is located at a vapor deposition incident angle of 45 degrees, the substrate 20 is installed in a state of being tilted 45 degrees with respect to the surface orthogonal to the vapor deposition source 51 or the support surface of the vapor deposition holder 52. Was done.

反射膜のうち密着層については、基板との密着が良く、水分遮断効果が高い酸化アルミニウム層について、さらに水分遮断効果を高めること及び全体の応力調整を行うことの目的で、イオンアシスト法を用いて成膜を行った。次に、主銀層との密着性が良いLaTiO(Substance H4)の成膜を行った。LaTiO(Substance H4)は、それ自体で水分を遮断する機能を有するが、さらに遮断効果を高めること及び全体の応力調整を行うことの目的で、イオンアシスト法を用いた。酸化アルミニウム及びLaTiO(Substance H4)は、応力調整の観点から、膜厚40nm〜60nmを狙い成膜したが、10nm〜200nmの範囲であれば全体応力の調整のために厚みを変更しても、耐環境性に大きな影響がないことが分かっている。Among the reflective films, the adhesion layer uses the ion assist method for the purpose of further enhancing the moisture blocking effect and adjusting the overall stress for the aluminum oxide layer, which has good adhesion to the substrate and has a high moisture blocking effect. The film was formed. Next, a film of LaTIO 3 (Substance H4) having good adhesion to the main silver layer was formed. LaTIO 3 (Substance H4) has a function of blocking water by itself, but the ion assist method was used for the purpose of further enhancing the blocking effect and adjusting the overall stress. Aluminum oxide and LaTIO 3 (Substance H4) were formed with a film thickness of 40 nm to 60 nm from the viewpoint of stress adjustment, but if the film thickness is in the range of 10 nm to 200 nm, even if the thickness is changed to adjust the total stress. , It is known that there is no significant effect on environmental resistance.

次に、LaTiO(Substance H4)膜上に主銀層の成膜を行った。実験例1〜8では、純銀の成膜を行った。また、実施例9では、銀(Ag)にビスマス(Bi)が1%含有された合金材料(具体的には、Ag−Bi材料(コベルコ科研社製))を用いた成膜を行った。また、実施例10では、銀にビスマスが0.25%含有された合金材料(具体的には、Ag−Bi材料(コベルコ科研社製))を用いた成膜を行った。主銀層の膜厚は、60nmとしたが、反射率が確保できる膜厚であれば薄くても厚くても問題ない。また、主銀層の成膜には、抵抗加熱法を用いたが、電子銃による蒸着を行ってもよい。Next, a main silver layer was formed on the LaTIO 3 (Substance H4) film. In Experimental Examples 1 to 8, sterling silver was formed. Further, in Example 9, a film was formed using an alloy material containing 1% of bismuth (Bi) in silver (Ag) (specifically, an Ag-Bi material (manufactured by Kobelco Research Institute)). Further, in Example 10, a film was formed using an alloy material containing 0.25% bismuth in silver (specifically, an Ag-Bi material (manufactured by Kobelco Research Institute)). The film thickness of the main silver layer is 60 nm, but there is no problem whether it is thin or thick as long as the reflectance can be secured. Further, although the resistance heating method was used for the film formation of the main silver layer, vapor deposition with an electron gun may be performed.

次に、主銀層の上に増反射層の成膜を行った。実施例では、応力調整のために、多層膜の設計として2種類を実施している。第1種の設計では、下側の低屈折率材層として、屈折率が1.55〜1.65の酸化アルミニウム層を120nm成膜し、次に高屈折率層として、屈折率が1.8〜2.2のLaTiO(Substance H4)層を80nm成膜し、最後に対擦傷性を主な目的として、屈折率が1.42〜1.5のSiO層を30nm成膜し、全体で3層構成とした。第2種の設計では、屈折率が1.55〜1.65の酸化アルミニウム層を35nm成膜し、次に高屈折率層として、屈折率が1.8〜2.2のLaTiO(Substance H4)層を75nm成膜し、次に屈折率が1.42〜1.5のSiO層を20nm成膜し、次にLaTiO(Substance H4)層を80nm成膜し、最後に対擦傷性を主な目的として、屈折率が1.42〜1.5のSiO層を30nm成膜し、全体で5層構成とした。第1種の設計及び第2種の設計ともに、増反射の効果がみとめられ、波長870nmの45度入射のP偏光に対する反射率が95%以上を満足するものとなった。Next, a reflective layer was formed on the main silver layer. In the embodiment, two types of multilayer film designs are implemented for stress adjustment. In the first type of design, an aluminum oxide layer having a refractive index of 1.55 to 1.65 is formed as a lower low refractive index material layer at 120 nm, and then a high refractive index layer having a refractive index of 1. A LaTIO 3 (Substance H4) layer of 8 to 2.2 was formed to a thickness of 80 nm, and finally, a SiO 2 layer having a refractive index of 1.42 to 1.5 was formed to a thickness of 30 nm mainly for the purpose of scratch resistance. It has a three-layer structure as a whole. In the second type of design, an aluminum oxide layer having a refractive index of 1.55 to 1.65 is formed to form a film at 35 nm, and then as a high refractive index layer, LaTIO 3 (Substance) having a refractive index of 1.8 to 2.2 is formed. The H4) layer was formed at 75 nm, then the SiO 2 layer with a refractive index of 1.42 to 1.5 was formed at 20 nm, then the LaTIO 3 (Substance H4) layer was formed at 80 nm, and finally the scratch resistance was formed. For the main purpose of property, two layers of SiO having a refractive index of 1.42 to 1.5 were formed at 30 nm, and a total of five layers was formed. The effect of increased reflection was observed in both the first type design and the second type design, and the reflectance with respect to P-polarized light incident at 45 degrees at a wavelength of 870 nm satisfied 95% or more.

製造される銀反射鏡10の膜応力の評価のため、φ30mmで厚み3mmの基板20だけでなく、膜応力測定用の測定基板(テストピース)を準備した。測定基板として、ショット社製の硝材D263を用い、50mm×10mmで厚み0.1mmの薄板短冊状のガラス基板に加工したものを成膜の対象すなわちワークWとした。なお、膜応力の測定には、計算上基板の安定した物性値が必要なため、吸水その他の外的影響を受けにくい安定したガラス硝材を用いた。膜応力の測定基板も、銀反射鏡10の基板20と同様に、蒸着源51に直交する面又は蒸着ホルダー52の支持面に対して45度傾けた状態で設置され成膜が行われた。 In order to evaluate the film stress of the manufactured silver reflector 10, not only the substrate 20 having a diameter of 30 mm and a thickness of 3 mm but also a measurement substrate (test piece) for measuring the film stress was prepared. A glass material D263 manufactured by Schott AG was used as the measurement substrate, and a thin strip-shaped glass substrate having a thickness of 0.1 mm and a thickness of 50 mm × 10 mm was processed into a film forming target, that is, a work W. Since a stable physical property value of the substrate is required for the measurement of the film stress, a stable glass glass material that is not easily affected by water absorption or other external influences was used. Similar to the substrate 20 of the silver reflector 10, the film stress measuring substrate was also installed in a state of being tilted 45 degrees with respect to the surface orthogonal to the vapor deposition source 51 or the support surface of the vapor deposition holder 52, and the film was formed.

以下の表1は、成膜条件をまとめたものである。
[表1]

Figure 0006799282
上記表1において、「材料条件」欄は、反射膜を構成する膜材料を意味し、「Al2O3−A」〜「Al2O3−F」は、成膜条件が異なる酸化アルミニウム膜を意味する。「H4」は、Merck社製のLaTiO(Substance H4)を意味し、「SiO2」は、酸化シリコン膜又はシリカ膜を意味し、「Ag」は、主銀層を意味する。「Method」欄において、「EB」は電子ビーム蒸着による成膜を意味し、「EB+IAD」は、イオンアシストタイプの電子ビーム蒸着を意味し、「RH」は、抵抗加熱による成膜を意味する。「O2−APC(Pa)」欄は、成膜中における酸素分圧の調整値を意味し、例えばAl2O3−Aの場合、酸素分圧が2.00×10−2Paに設定されたことが示されている。「rate(オングストローム/sec)」欄は、成膜速度を意味する。なお、表1には記載していないが、成膜開始時の真空度は2.0×10−3Paであり、成膜に際して基板の加熱は行わなかった。Table 1 below summarizes the film formation conditions.
[Table 1]
Figure 0006799282
In Table 1 above, the "material condition" column means the film material constituting the reflective film, and "Al2O3-A" to "Al2O3-F" mean aluminum oxide films having different film forming conditions. "H4" means LaTIO 3 (Substance H4) manufactured by Merck & Co., "SiO2" means a silicon oxide film or a silica film, and "Ag" means a main silver layer. In the "Method" column, "EB" means film formation by electron beam deposition, "EB + IAD" means ion-assisted electron beam deposition, and "RH" means film formation by resistance heating. The "O2-APC (Pa)" column means the adjustment value of the oxygen partial pressure during film formation. For example, in the case of Al2O3-A, the oxygen partial pressure was set to 2.00 × 10-2 Pa. It is shown. The "rate (angstrom / sec)" column means the film formation rate. Although not shown in Table 1, the degree of vacuum at the start of film formation was 2.0 × 10 -3 Pa, and the substrate was not heated during film formation.

「IAD」欄は、イオンアシストの条件を示したものであり、「Voltage(V)」は、イオンガン56のビーム電圧を意味し、「Current(mA)」は、イオンガン56のビーム電流を意味し、「Acc(V)」は、加速電圧を意味する。「O2(GAS1)(SCCM)」、「Ar(GAS2)(SCCM)」、及び「Ar(GAS3)(SCCM)」は、酸素やアルゴンの供給流量を示す。ここで、Ar(GAS2)は、イオンガン56へのアルゴンガス成分の供給量を示し、Ar(GAS3)は、中和ガン57へのアルゴンガスの供給量を示す。なお、材料「Al2O3−A」、「Al2O3−B」、「SiO2」、及び「Ag」については、イオンアシストの成膜を行っていないので、「IAD」欄の値がブランクとなっている。 The "IAD" column indicates the conditions for ion assist, "Voltage (V)" means the beam voltage of the ion gun 56, and "Current (mA)" means the beam current of the ion gun 56. , "Acc (V)" means an accelerating voltage. “O2 (GAS1) (SCCM)”, “Ar (GAS2) (SCCM)”, and “Ar (GAS3) (SCCM)” indicate the supply flow rate of oxygen or argon. Here, Ar (GAS2) indicates the amount of the argon gas component supplied to the ion gun 56, and Ar (GAS3) indicates the amount of the argon gas supplied to the neutralization gun 57. As for the materials "Al2O3-A", "Al2O3-B", "SiO2", and "Ag", the value in the "IAD" column is blank because the ion-assisted film is not formed.

以上の「Al2O3−A」〜「Al2O3−F」から得た膜の屈折率は、それぞれ1.5768、1.5763、1.588、1.576、1.5897、及び1.6102となった。つまり、イオンアシスト法を用いた酸化アルミニウム層の屈折率は、イオンアシスト法を用いないで成膜した場合の屈折率に対して1倍から1.025倍までの範囲内となっている。 The refractive indexes of the films obtained from the above "Al2O3-A" to "Al2O3-F" were 1.5768, 1.5763, 1.588, 1.576, 1.5897, and 1.6102, respectively. .. That is, the refractive index of the aluminum oxide layer using the ion assist method is in the range of 1 to 1.025 times the refractive index when the film is formed without using the ion assist method.

以下の表2は、実施例1〜10及び比較例の1〜4の反射膜における膜構造を説明するものであり、以下の表3は、実施例及び比較例の反射膜を構成する膜要素の膜厚をまとめたものである。
[表2]

Figure 0006799282
[表3]
Figure 0006799282
表2及び表3において、層番号は、基板からの層の順番を意味する。なお、基板は、基本的にポリカーボネート(PC)製であるが、膜応力測定用の測定基板(テストピース)の場合、硝材D263製となる場合もある。Table 2 below describes the film structures of the reflective films of Examples 1 to 10 and Comparative Examples 1 to 4, and Table 3 below shows the film elements constituting the reflective films of Examples and Comparative Examples. It is a summary of the film thickness of.
[Table 2]
Figure 0006799282
[Table 3]
Figure 0006799282
In Tables 2 and 3, layer numbers mean the order of layers from the substrate. The substrate is basically made of polycarbonate (PC), but in the case of a measuring substrate (test piece) for measuring film stress, it may be made of glass material D263.

以下の表4は、実施例1〜10及び比較例の1〜4の銀反射鏡について環境耐性試験の結果をまとめたものである。
[表4]

Figure 0006799282
表4において、「85℃DRY−1000H」は、雰囲気温度85℃で湿度略ゼロの高温乾燥環境に1000時間保持されたことを意味し、「110℃DRY−1000H」は、雰囲気温度110℃で湿度略ゼロの高温乾燥環境に1000時間保持されたことを意味し、「85度85%−1000H」は、雰囲気温度85℃で相対湿度85%RHの高温多湿環境に1000時間保持されたことを意味する。Table 4 below summarizes the results of environmental resistance tests for the silver reflectors of Examples 1 to 10 and Comparative Examples 1 to 4.
[Table 4]
Figure 0006799282
In Table 4, "85 ° C. DRY-1000H" means that the product was kept in a high-temperature drying environment at an ambient temperature of 85 ° C. and a humidity of substantially zero for 1000 hours, and "110 ° C. DRY-1000H" means that the ambient temperature was 110 ° C. It means that it was held for 1000 hours in a high temperature and dry environment with almost zero humidity, and "85 degrees 85% -1000H" means that it was held for 1000 hours in a high temperature and high humidity environment with an ambient temperature of 85 ° C and a relative humidity of 85% RH. means.

「外観判定」は、外観測定の結果であり、蛍光灯下での目視観察、通常の実体顕微鏡観察、及びキーエンス社製のVHX2000による1000倍の顕微鏡観察を行った。外観不良の種類としては、クラック、膜浮き、くもり、及び変色が主な評価項目として存在するが、くもり及び変色に関しては反射率によって差異が表れるため対象から除外し、クラック及び膜浮きを評価項目とした。つまり、以上のクラック及び膜浮きに関して、いずれも合格であるものを○印、数mm以下で比較的浅いクラックが発生したものを△印、いずれか一方でも不合格であるものを×印とする評価を行った。なお、クラックに関しては、蛍光灯下の目視でクラックが発生していないものを合格とした。膜浮きに関しては、直径100μm程度の円形の浮きが、φ30mmの銀反射鏡において30個以下である場合に合格としている。膜浮きの形態として、円形の膜浮き以外には、通常の蒸着膜で観測されるような、ひも状の膜浮きがあるが、これも不合格としている。これら外観に関する合格の判定基準は、銀反射鏡を組み込んだ製品に対して実測評価を行い、光学性能として問題が生じない範囲としているが、一般的な反射光学系に用いられている基準としても十分許容又は適用の範囲内であると考えられる。 The "appearance determination" is the result of the appearance measurement, and visual observation under a fluorescent lamp, normal stereomicroscopic observation, and 1000 times microscopic observation with VHX2000 manufactured by KEYENCE Corporation were performed. The main types of appearance defects are cracks, film floating, cloudiness, and discoloration. However, cloudiness and discoloration are excluded from the target because differences appear depending on the reflectance, and cracks and film floating are evaluated items. And said. In other words, regarding the above cracks and film floating, those that pass are marked with ○, those with relatively shallow cracks of several mm or less are marked with △, and those that fail with either one are marked with ×. Evaluation was performed. As for cracks, those in which no cracks were visually observed under a fluorescent lamp were accepted. Regarding the film float, it is accepted when the number of circular floats having a diameter of about 100 μm is 30 or less in a silver reflector having a diameter of 30 mm. As a form of film floating, in addition to the circular film floating, there is a string-shaped film floating as observed in a normal vapor-deposited film, but this is also rejected. The criteria for passing these appearances are those that do not cause any problems in optical performance by actually measuring and evaluating products incorporating a silver reflector, but they can also be used as criteria used in general catadioptric systems. It is considered to be well within the permissible or applicable range.

「反射率」は、反射率測定の結果であり、大塚電子社製の分光光度計MCPD3000を用いて、波長870nm±30nm帯域において45度で反射されるP偏光の測定を行った。これは、銀反射鏡が製品に組み込まれる形態に合わせた形となっている。反射率測定において、帯域内で全体として95%以上の反射率を示すものを○印、95%未満であったものを×印とする評価を行った。95%という数値は、製品への組み込み形態として反射光学系を想定しており、対象とする製品群の光学性能として十分許容できる値となっている。また、一般的にも銀を用いた反射鏡は非常に反射率が高く、95%は申し分ない数値といえる。 “Reflectance” is the result of reflectance measurement, and the P-polarized light reflected at 45 degrees in the wavelength band of 870 nm ± 30 nm was measured using a spectrophotometer MCPD3000 manufactured by Otsuka Electronics Co., Ltd. This is a shape that matches the form in which the silver reflector is incorporated into the product. In the reflectance measurement, those showing a reflectance of 95% or more as a whole in the band were evaluated as ◯, and those showing a reflectance of less than 95% were evaluated as x. The value of 95% assumes a catadioptric system as a form of incorporation into the product, and is a sufficiently acceptable value for the optical performance of the target product group. Also, in general, a reflector using silver has a very high reflectance, and 95% can be said to be a satisfactory value.

「テープテスト」は、粘着面を設けたテープを反射膜に一旦貼り付けた後に剥がす実験であり、反射膜が剥離しないで維持されるものを○印、反射膜が剥離するものを×印とする評価を行った。 The "tape test" is an experiment in which a tape with an adhesive surface is once attached to a reflective film and then peeled off. The one in which the reflective film is maintained without peeling is marked with a circle, and the one in which the reflective film is peeled off is marked with a cross. Evaluation was performed.

「85度DRY1000H」の高温乾燥試験後の外観及び反射率の判定については、実施例1〜10のみならず、比較例の1〜4のすべてが合格(○印)であった。 Regarding the determination of the appearance and reflectance of "85 degree DRY1000H" after the high temperature drying test, not only Examples 1 to 10 but also all of Comparative Examples 1 to 4 passed (marked with ◯).

また、「110℃DRY−1000H」の高温乾燥試験後の外観及び反射率の判定については、実施例6〜10は、問題なく合格(○印)であり、実施例1〜5は、数mm以下で浅いクラックが認められたが、実用上問題ないレベル(△印)であった。なお、比較例の1〜4も、合格(○印)又は実用上問題ないレベル(△印)であった。 Further, regarding the determination of the appearance and the reflectance of "110 ° C. DRY-1000H" after the high temperature drying test, Examples 6 to 10 passed without any problem (marked with a circle), and Examples 1 to 5 were several mm. Shallow cracks were observed below, but the level was at a level (△ mark) that was not a problem in practical use. In addition, 1 to 4 of the comparative example were also passed (○ mark) or a level at which there was no problem in practical use (Δ mark).

「85度85%−1000H」の高温高湿試験後の外観判定、反射率、及びテープテストの判定については、実施例1〜10のすべてが合格(○印)であった。一方、比較例1では、外観判定及び反射率の結果に問題(×印)があり、比較例2、3では、外観判定の結果に問題(×印)があり、比較例4では、テープテストの結果に問題(×印)があった。 Regarding the appearance judgment, the reflectance, and the judgment of the tape test after the high temperature and high humidity test of "85 degrees 85% -1000H", all of Examples 1 to 10 passed (marked with ◯). On the other hand, in Comparative Example 1, there is a problem (x mark) in the result of appearance judgment and reflectance, in Comparative Examples 2 and 3, there is a problem (x mark) in the result of appearance judgment, and in Comparative Example 4, there is a tape test. There was a problem (x mark) in the result of.

以下の表5は、実施例1〜10及び比較例の1〜4の銀反射鏡について膜応力試験の結果をまとめたものである。
[表5]

Figure 0006799282
Table 5 below summarizes the results of the film stress test for the silver reflectors of Examples 1 to 10 and Comparative Examples 1 to 4.
[Table 5]
Figure 0006799282

参考のため、表6に、反射膜30の実施例を構成する各層(表1参照)について、膜応力試験の結果をまとめた。例えば酸化アルミニウム膜「Al2O3−A」〜「Al2O3−F」は、実施例や比較例において、密着層31の第1層31aや増反射層33の第1層33fを構成する。
[表6]

Figure 0006799282
表5において、第1欄は、密着層を構成する第1層のAlを基板上に単層で作製した場合について、膜応力(単位「MPa」)の環境変化を試験した結果を示す。まず、第1工程(「一週間」)では、テストピースを室温で一週間放置して膜状態を安定させた。次に、第2工程(「110℃24H」)では、テストピースを雰囲気温度110℃で湿度略ゼロの高温乾燥環境に24時間保持して反射膜を一旦乾燥させた。最後に、第3工程(「85℃85%24H」)では、テストピースを雰囲気温度85℃で湿度85%の高温高湿環境に24時間保持して反射膜に加湿を行った。「差分」欄は、「110℃24H」の処理後の膜応力から「85℃85%24H」の処理後の膜応力を引いた値である。この差分は、膜応力の変化量の符号を反転させたものとなっている。つまり、実施例1の場合、24時間の高温乾燥環境から24時間の高温高湿環境への切り替えによって、密着層第1層の膜応力が137MPaだけ減少し、膜応力の変化量は、負(圧縮応力)方向に相当するものとなっている。For reference, Table 6 summarizes the results of the film stress test for each layer (see Table 1) constituting the example of the reflective film 30. For example, the aluminum oxide films "Al2O3-A" to "Al2O3-F" constitute the first layer 31a of the adhesion layer 31 and the first layer 33f of the reflective layer 33 in Examples and Comparative Examples.
[Table 6]
Figure 0006799282
In Table 5, the first column shows the results of testing the environmental change of the film stress (unit: "MPa") when the first layer Al 2 O 3 constituting the adhesion layer was prepared as a single layer on the substrate. Shown. First, in the first step (“one week”), the test piece was left at room temperature for one week to stabilize the film state. Next, in the second step (“110 ° C. 24H”), the test piece was held in a high-temperature drying environment at an ambient temperature of 110 ° C. and a humidity of substantially zero for 24 hours to temporarily dry the reflective film. Finally, in the third step (“85 ° C. 85% 24H”), the test piece was kept in a high temperature and high humidity environment with an ambient temperature of 85 ° C. and a humidity of 85% for 24 hours to humidify the reflective film. The "difference" column is a value obtained by subtracting the film stress after the treatment of "85 ° C. 85% 24H" from the film stress after the treatment of "110 ° C. 24H". This difference is obtained by reversing the sign of the amount of change in film stress. That is, in the case of Example 1, the film stress of the first layer of the adhesion layer is reduced by 137 MPa by switching from the high temperature drying environment for 24 hours to the high temperature and high humidity environment for 24 hours, and the amount of change in the film stress is negative ( It corresponds to the compressive stress) direction.

表5において、第2欄は、密着層を構成する第2層のLaTiO(H4)を基板上に単層で作製した場合について、膜応力(単位「MPa」)の環境変化を試験した結果を示す。「一週間」(第1工程)、「110℃24H」(第2工程)、「85℃85%24H」(第3工程)、及び「差分」の意味は、第1欄と同様である。なお、実施例1の場合、24時間の高温乾燥環境から24時間の高温高湿環境への切り替えによって、密着層第2層の膜応力が29MPaだけ増加し、膜応力の変化量は、正(引っ張り応力)方向に相当するものとなっている。なお、表中の矢印は、左欄と同じ値であることを意味する。In Table 5, the second column shows the results of testing the environmental change of the film stress (unit "MPa") in the case where the second layer LaTIO 3 (H4) constituting the adhesion layer is prepared as a single layer on the substrate. Is shown. The meanings of "one week" (first step), "110 ° C. 24H" (second step), "85 ° C. 85% 24H" (third step), and "difference" are the same as in the first column. In the case of Example 1, the film stress of the second layer of the adhesion layer increased by 29 MPa by switching from the high temperature drying environment for 24 hours to the high temperature and high humidity environment for 24 hours, and the amount of change in the film stress was positive ( It corresponds to the tensile stress) direction. The arrows in the table mean that they have the same values as in the left column.

第3欄は、増反射層(Al、LaTiO(H4)、SiOで構成)のみを基板上に多層膜として作製した場合について、膜応力(単位「MPa」)の環境変化を試験した結果を示す。「一週間」(第1工程)、「110℃24H」(第2工程)、「85℃85%24H」(第3工程)、及び「差分」の意味は、第1欄と同様である。なお、実施例1の場合、24時間の高温乾燥環境から24時間の高温高湿環境への切り替えによって、増反射層の膜応力が116MPaだけ減少し、膜応力の変化量は、負(圧縮応力)方向に相当するものとなっている。The third column shows the environmental change in film stress (unit "MPa") when only the reflective layer (consisting of Al 2 O 3 , LaTIO 3 (H4), and SiO 2 ) is produced as a multilayer film on the substrate. The results of the test are shown. The meanings of "one week" (first step), "110 ° C. 24H" (second step), "85 ° C. 85% 24H" (third step), and "difference" are the same as in the first column. In the case of Example 1, the film stress of the reflective layer is reduced by 116 MPa by switching from the high temperature drying environment for 24 hours to the high temperature and high humidity environment for 24 hours, and the amount of change in the film stress is negative (compressive stress). ) It corresponds to the direction.

第4欄は、反射膜全体を基板上に多層膜として作製した場合について、膜応力(単位「MPa」)の環境変化を試験した結果を示す。「一週間」(第1工程)、「110℃24H」(第2工程)、「85℃85%24H」(第3工程)、及び「差分」の意味は、第1欄と同様である。なお、実施例1の場合、24時間の高温乾燥環境から24時間の高温高湿環境への切り替えによって、全膜応力が18MPaだけ減少し、膜応力の変化量は、負(圧縮応力)方向に相当するものとなっている。 The fourth column shows the result of testing the environmental change of the film stress (unit "MPa") in the case where the entire reflective film is formed as a multilayer film on the substrate. The meanings of "one week" (first step), "110 ° C. 24H" (second step), "85 ° C. 85% 24H" (third step), and "difference" are the same as in the first column. In the case of Example 1, by switching from the high temperature drying environment for 24 hours to the high temperature and high humidity environment for 24 hours, the total film stress is reduced by 18 MPa, and the amount of change in the film stress is in the negative (compressive stress) direction. It is equivalent.

以上の応力測定の結果については、「一週間」(第1工程)、「110℃24H」(第2工程)、及び「85℃85%24H」(第3工程)において、膜応力が100MPa以下であることが合格の基準とする。これは、例えば想定される製品に対して100MPaを超えた場合には、光学面のPV値が光学性能の許容範囲を超えるためである。たとえば、実施例のようにφ40mmで肉厚3mmのポリカーボネートの片面に成膜した場合、100MPaの膜応力による変形量はおおよそ1μm程度となる。この変形量は、肉厚や基材の材質などによって変化するため、許容できる範囲は製品によるものではあるが、一般的な光学系として、膜応力は限りなく小さい方がよいことは当然であり、少なくとも、精密な反射光学系に用いるミラーについては、膜応力が100MPa以下に調整されることが望ましいと考える。 Regarding the results of the above stress measurements, the film stress was 100 MPa or less in "one week" (first step), "110 ° C. 24H" (second step), and "85 ° C. 85% 24H" (third step). Is the criterion for passing. This is because, for example, when it exceeds 100 MPa with respect to the assumed product, the PV value of the optical surface exceeds the allowable range of optical performance. For example, when a film is formed on one side of a polycarbonate having a diameter of 40 mm and a wall thickness of 3 mm as in the embodiment, the amount of deformation due to a film stress of 100 MPa is about 1 μm. Since this amount of deformation changes depending on the wall thickness, the material of the base material, etc., the allowable range depends on the product, but as a general optical system, it is natural that the film stress should be as small as possible. At least, for mirrors used in precision catadioptric systems, it is desirable that the film stress be adjusted to 100 MPa or less.

なお、第4欄のように反射膜全体が成膜されている場合に限らず、第1〜第3欄のように反射膜の一部が成膜されている場合にも、膜応力が比較的低いことが望ましい。 The film stress is compared not only when the entire reflective film is formed as in the fourth column but also when a part of the reflective film is formed as in the first to third columns. It is desirable that the target is low.

膜応力試験の結果についてまとめると、成膜後1週間の状態に関して、実施例1〜10と比較例1〜3とは、反射膜全体の応力値が0に近く、面変形を小さくできる膜となっていた。一方で、比較例4については、膜応力が非常に大きく、面変形が懸念される応力値となっていた。これは、比較例4の増反射のAlの成膜条件が、強いイオンアシストを用いていたことに起因すると考えられる。Summarizing the results of the film stress test, with respect to the state one week after the film formation, Examples 1 to 10 and Comparative Examples 1 to 3 are films in which the stress value of the entire reflective film is close to 0 and the surface deformation can be reduced. It was. On the other hand, in Comparative Example 4, the film stress was very large, and the stress value was such that surface deformation was a concern. It is considered that this is because the film forming condition of Al 2 O 3 with increased reflection in Comparative Example 4 was due to the use of strong ion assist.

「110℃24H」(第2工程)に投入した後の変化としては、成膜後1週間の状態と比較して、実施例1〜5は、膜応力が正の方向へ、実施例6〜10は、膜応力が負の方向へ変化することが分かった。この結果は、増反射層による影響が顕著に生じていると考えられ、特に実施例6〜10では、増反射層で用いているAlの膜厚が薄いために、LaTiO(H4)から膜応力の影響を多分に受けたものと判断できる。As for the changes after the film was put into "110 ° C. 24H" (second step), in Examples 1 to 5, the film stress was in the positive direction, as compared with the state one week after the film formation, in Examples 6 to 6. No. 10 was found to change the film stress in the negative direction. This result is considered to be significantly affected by the reflective layer, and in particular, in Examples 6 to 10, the film thickness of Al 2 O 3 used in the reflective layer is thin, so that LaTiO 3 (H4) ), It can be judged that it was probably affected by the film stress.

「85℃85%24H」(第3工程)に投入した後の変化としては、「110℃24H」(第2工程)と比較して、実施例1、3、4、6〜10は、膜応力が負の方向へ、実施例2、5は、膜応力が正の方向へ変化することが分かった。これは、密着層の第1層であるAlの成膜条件が影響していると考えられる。ここで、実施例2、5と密着層に関して同じ条件である実施例8〜10が、正の方向へ変化しなかった要因としては、実施例2、5に対して、実施例8〜10で用いている増反射膜の層構成が異なることが影響していると考えられる。As for the changes after being charged into "85 ° C. 85% 24H" (third step), in Examples 1, 3, 4, 6 to 10 as compared with "110 ° C. 24H" (second step), the films It was found that the stress changed in the negative direction, and in Examples 2 and 5, the film stress changed in the positive direction. It is considered that this is influenced by the film forming conditions of Al 2 O 3 , which is the first layer of the adhesion layer. Here, as a factor that the conditions 8 to 10 which are the same conditions for the adhesion layer as those of Examples 2 and 5 did not change in the positive direction, in Examples 8 to 10 as opposed to Examples 2 and 5. It is considered that the difference in the layer structure of the hyperreflective film used has an effect.

以上の「110℃24H」(第2工程)と、「85℃85%24H」(第3工程)との差分についてみると、実施例1〜10は、絶対値として40MPa以下であることが分かった。一方で、比較例1〜3については、40MPa以上となっていた。なお、実施例1〜10において、膜応力の差分の絶対値が40MPaであるとは、膜応力の変化が負方向(圧縮応力側)である場合、その変化量の絶対値が40MPa以下であり、かつ、膜応力の変化が正方向(引っ張り応力側)である場合、その変化量の絶対値が40MPa以下である。なお、比較例4は、膜応力の差分の絶対値が40MPa以下となっているが、元々の膜応力が非常に大きく、面変形が懸念される。 Looking at the difference between the above "110 ° C. 24H" (second step) and "85 ° C. 85% 24H" (third step), it was found that the absolute values of Examples 1 to 10 were 40 MPa or less. It was. On the other hand, in Comparative Examples 1 to 3, it was 40 MPa or more. In Examples 1 to 10, the absolute value of the difference in film stress is 40 MPa, which means that when the change in film stress is in the negative direction (compressive stress side), the absolute value of the amount of change is 40 MPa or less. In addition, when the change in film stress is in the positive direction (tensile stress side), the absolute value of the amount of change is 40 MPa or less. In Comparative Example 4, the absolute value of the difference in film stress is 40 MPa or less, but the original film stress is very large, and there is a concern about surface deformation.

以上の結果から考察すると、高温乾燥状態に一日保持する110℃24H処理後の膜応力と、高温湿潤状態に一日保持する85℃85%24H処理後の膜応力とは、多層レベルで複雑な関連性をもって変化しており、その変動が、小さいような層構成の状態を実現することにより、環境変化による膜劣化を防ぐことができることが分かった。 Considering the above results, the film stress after 110 ° C. 24H treatment held in a high temperature dry state for one day and the film stress after 85 ° C. 85% 24H treatment held in a high temperature wet state for one day are complicated at the multi-layer level. It was found that the film deterioration due to the environmental change can be prevented by realizing the state of the layer structure in which the fluctuation is small.

先行技術では、層の緻密さや、材料組成について言及されていたが、同一の材料を用いたとしても、環境変動に対してストレスを小さくすることが良好な反射膜を得る上で重要な条件であると分かった。一方で、比較例4のように、一部強いイオンアシストをもってすれば膜応力の変化量は小さくなり耐環境性は向上するが、膜応力が強くなりすぎ、面変形が起こってしまうということも分かった。つまり、面変形を抑えつつ、剥離や反射率低下が少ない反射膜を得るには、(1)反射膜の成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあること、(2)110℃の高温乾燥環境に24時間投入後の膜応力値と、85度85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が、40MPa以下であることの各条件が満たされることが重要であると判明した。さらに、(3)反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあること、(4)110℃の高温乾燥環境に投入後の反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあることも重要である。 In the prior art, the density of the layer and the material composition were mentioned, but even if the same material is used, reducing the stress against environmental changes is an important condition for obtaining a good reflective film. I found out that there is. On the other hand, as in Comparative Example 4, if some strong ion assist is used, the amount of change in the film stress becomes small and the environmental resistance is improved, but the film stress becomes too strong and surface deformation may occur. Do you get it. That is, in order to obtain a reflective film with less peeling and a decrease in reflectance while suppressing surface deformation, (1) the film stress after film formation of the reflective film is in the range of +100 MPa to -100 MPa, (2). The absolute value of the amount of change between the film stress value after being put into a high temperature and dry environment of 110 ° C. for 24 hours and the film stress value after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa or less. It turns out that it is important that each condition of being met is met. Further, (3) the film stress after the reflective film is put into a high temperature drying environment at 110 ° C. for 24 hours is in the range of +100 MPa to -100 MPa, and (4) the reflection after being put into a high temperature drying environment at 110 ° C. It is also important that the membrane stress after the membrane is placed in a hot and humid environment at 85 ° C. and 85% RH for 24 hours is in the range of +100 MPa to -100 MPa.

ここで、本願発明の要点について説明する。例えば上記特許文献2では、銀膜に対して緻密性の高い酸化アルミニウムを両側からサンドイッチをすることで、耐環境性を上げる効果と、その層上に形成されるTiOやSiOといった上層に対して応力バランスを保ち密着性を確保するとしていた。しかしながら、さらに信頼性の高い銀ミラーを求めた場合、これだけでは不十分であることが、本願発明者による検討の結果、明らかになった。Here, the main points of the present invention will be described. For example, in Patent Document 2, by sandwiching aluminum oxide having high density with respect to the silver film from both sides, the effect of improving the environmental resistance and the upper layer such as TiO 2 and SiO 2 formed on the layer are formed. On the other hand, it was said that the stress balance would be maintained and the adhesion would be ensured. However, as a result of examination by the inventor of the present application, it has become clear that this alone is not sufficient when a more reliable silver mirror is sought.

本願発明者は、環境変化に対する膜応力の挙動という観点で種々の試作品について解析を行い、単層及び多層状態での状態変化の考察から、極めて信頼性が高い銀ミラーとは、組成、膜厚、膜密度等の一般的な層構成もさることながら、高温乾燥及び高温湿度での膜応力変化が小さいものであることを突き止めた。すなわち、本願発明者は、高温乾燥及び高温湿度での膜応力変化が小さくなる層構成のバランスを見極め、かかる変化量の定量値を割り出すことで、極めて信頼性が高い銀ミラーの選定方法を確立することができた。 The inventor of the present application has analyzed various prototypes from the viewpoint of the behavior of film stress with respect to environmental changes, and from the consideration of state changes in single-layer and multi-layer states, silver mirrors with extremely high reliability are the composition and film. In addition to the general layer structure such as thickness and film density, it was found that the change in film stress due to high temperature drying and high temperature humidity is small. That is, the inventor of the present application has determined a balance of the layer structure in which the change in film stress at high temperature drying and high temperature humidity is small, and by determining the quantitative value of the amount of change, a method for selecting a silver mirror with extremely high reliability can be obtained. I was able to establish it.

以上、本発明に係る銀反射鏡又はその製造方法及び検査方法を実施形態又は実施例に即して説明したが、本発明に係る銀反射鏡等は、上記した具体例に限定されるものではない。 The silver reflector according to the present invention, its manufacturing method, and the inspection method have been described above in accordance with the embodiments or examples, but the silver reflector and the like according to the present invention are not limited to the above-mentioned specific examples. Absent.

例えば密着層31等を構成する酸化アルミニウムを主体とする膜は、上記したイオンアシスト法による蒸着に限らず、他の成膜方法によって形成することができる。具体的には、スパッタリング法、RF蒸着法、イオンプレーティング法、クラスターイオンビーム(Ionized Cluster Beam)蒸着法、プラズマイオンビーム蒸着法等によって形成することができる。 For example, the film mainly composed of aluminum oxide constituting the adhesion layer 31 and the like can be formed not only by the above-mentioned ion assist method but also by another film forming method. Specifically, it can be formed by a sputtering method, an RF vapor deposition method, an ion plating method, a cluster ion beam (Ionized Cluster Beam) vapor deposition method, a plasma ion beam vapor deposition method, or the like.

Claims (15)

下地の密着層と、前記密着層上に形成される主銀層と、前記主銀層上に形成される増反射層とを反射膜として備える銀反射鏡であって、
前記主銀層は、銀及び銀を主とする合金のいずれかで形成され、
前記反射膜の成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあり、
前記反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあり、
前記110℃の高温乾燥環境に投入後の前記反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあり、かつ、
前記110℃の高温乾燥環境に24時間投入後の膜応力値と、前記85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が、40MPa以下である銀反射鏡。
A silver reflecting mirror including a base adhesion layer, a main silver layer formed on the adhesion layer, and a hyperreflecting layer formed on the main silver layer as a reflection film.
The main silver layer is formed of either silver or an alloy mainly composed of silver.
The film stress after the film formation of the reflective film is in the range of +100 MPa to -100 MPa.
The film stress after the reflective film was put into a high temperature drying environment at 110 ° C. for 24 hours was in the range of +100 MPa to -100 MPa.
The film stress after the reflective film after being put into the high temperature and high temperature drying environment of 110 ° C. for 24 hours in the high temperature and high humidity environment of 85 ° C. and 85% RH is in the range of +100 MPa to -100 MPa, and
The absolute value of the amount of change between the film stress value after being put into the high temperature and dry environment of 110 ° C. for 24 hours and the film stress value after being put into the high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours is 40 MPa. The silver reflector below.
前記密着層は、酸化アルミニウムを主とする層を少なくとも1層含み、当該酸化アルミニウムを主とする層は、イオンアシスト法を用いて成膜されており、当該酸化アルミニウムを主とする層の膜応力は、圧縮応力である、請求項1に記載の銀反射鏡。 The adhesion layer contains at least one layer mainly composed of aluminum oxide, and the layer mainly composed of aluminum oxide is formed by using an ion assist method, and is a film of the layer mainly composed of aluminum oxide. The silver reflector according to claim 1, wherein the stress is compressive stress. 前記密着層及び前記密着層及び前記増反射層のいずれかは、少なくとも2層以上の調整層を含み、一方の調整層は、単層の状態において、110℃の高温乾燥環境に24時間投入後の膜応力に対して、85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、負方向に変化し、他方の調整層は、単層の状態において、110℃の高温乾燥環境に24時間投入後の膜応力に対して、85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、正方向に変化する、請求項1及び2のいずれか一項に記載の銀反射鏡。 The adhesion layer and any one of the adhesion layer and the hyperreflection layer include at least two or more adjustment layers, and one adjustment layer is put into a high temperature drying environment at 110 ° C. for 24 hours in a single layer state. The film stress after being put into a high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours changes in the negative direction, and the other adjusting layer is dried at a high temperature of 110 ° C. in a single layer state. According to any one of claims 1 and 2, the film stress after being put into a hot and humid environment at 85 ° C. and 85% RH for 24 hours changes in the positive direction with respect to the film stress after being put into the environment for 24 hours. The silver reflector described. 前記銀を主とする合金の添加材料は、Bi、Pd、Cu、Au、Ge、Nd、及びAlのいずれかである、請求項1〜のいずれか一項に記載の銀反射鏡。 The silver reflector according to any one of claims 1 to 3 , wherein the additive material of the silver-based alloy is any one of Bi, Pd, Cu, Au, Ge, Nd, and Al. 前記密着層は、少なくとも2層以上を含み、前記密着層を構成する各層の材料は、酸化アルミニウムを主とする材料、LaTiO、CeO、Y及びSnOのうち少なくとも一種から選ばれる、請求項1〜のいずれか一項に記載の銀反射鏡。 The adhesion layer includes at least two or more layers, and the material of each layer constituting the adhesion layer is selected from at least one of a material mainly composed of aluminum oxide, LaTIO 3 , CeO 2 , Y 2 O 3 and SnO 2. The silver reflector according to any one of claims 1 to 4 . 前記密着層のうち、前記主銀層と直接密着する層の材料が、LaTiO、CeO、Y及びSnOのうち少なくとも一種から選ばれる、請求項に記載の銀反射鏡。 The silver reflector according to claim 5 , wherein the material of the layer that directly adheres to the main silver layer among the adhesion layers is selected from at least one of LaTIO 3 , CeO 2 , Y 2 O 3, and SnO 2 . 前記増反射層は、少なくとも3層以上を含み、前記増反射層のうち、前記主銀層と直接密着する層が、酸化アルミニウムを主とする材料で形成されている、請求項1〜のいずれか一項に記載の銀反射鏡。 The brightening reflection layer includes at least three or more layers, and among the brightening reflection layers, the layer in direct contact with the main silver layer is formed of a material mainly made of aluminum oxide, claim 1 to 6 . The silver reflector according to any one item. 前記増反射層の膜応力が、−50MPaよりも負に大きい、請求項1〜のいずれか一項に記載の銀反射鏡。 The silver reflector according to any one of claims 1 to 7 , wherein the film stress of the reflective layer is negatively larger than −50 MPa. 前記酸化アルミニウムを主とする層の屈折率が、1.55〜1.65である、請求項2に記載の銀反射鏡。 The silver reflector according to claim 2, wherein the refractive index of the layer mainly composed of aluminum oxide is 1.55 to 1.65. 前記増反射層は、3層以上を含み、酸化アルミニウムを主とする材料で形成され前記主銀層と密着する層の上に、高屈折率材料の層と低屈折率材料の層とを交互に積層した構造を有し、前記高屈折率材料は、TiO、Nb、Ta、LaTiO、ZrO、及びこれらの材料の混合材料のうち少なくとも一種から選ばれ、前記低屈折率材料は、SiO及びSiOに酸化アルミニウムを混ぜた混合材料のうち少なくとも一種から選ばれる、請求項1〜のいずれか一項に記載の銀反射鏡。 The hyperrefractive layer includes three or more layers, is formed of a material mainly composed of aluminum oxide, and alternately has a layer of a high refractive index material and a layer of a low refractive index material on a layer in close contact with the main silver layer. The high-refractive index material is selected from at least one of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , LaTIO 3 , ZrO 2 , and a mixed material of these materials. The silver reflector according to any one of claims 1 to 9 , wherein the low refractive index material is selected from at least one of SiO 2 and a mixed material in which SiO 2 is mixed with aluminum oxide. 下地の密着層と、前記密着層上に形成される主銀層と、前記主銀層上に形成される増反射層とを反射膜として備える銀反射鏡の検査方法であって、
前記主銀層は、銀及び銀を主とする合金のいずれかで形成され、
前記反射膜の成膜後の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かを判定するとともに、
前記反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力値と、前記反射膜を110℃の高温乾燥環境に24時間投入した後に前記反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値が、40MPa以下であるか否かを判定する銀反射鏡の検査方法。
A method for inspecting a silver reflecting mirror, which includes an underlying adhesive layer, a main silver layer formed on the adhesive layer, and a hyperreflective layer formed on the main silver layer as a reflective film.
The main silver layer is formed of either silver or an alloy mainly composed of silver.
While determining whether or not the film stress after the film formation of the reflective film is in the range of +100 MPa to -100 MPa,
The film stress value after the reflective film was put into a high temperature drying environment of 110 ° C. for 24 hours, and the high temperature and humidity of 85 ° C. and 85% RH after the reflective film was put into a high temperature drying environment of 110 ° C. for 24 hours. A method for inspecting a silver reflector for determining whether or not the absolute value of the amount of change between the film stress value and the film stress value after being put into the environment for 24 hours is 40 MPa or less.
前記反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かを判定し、
前記110℃の高温乾燥環境に投入後の前記反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力が、+100MPaから−100MPaまでの範囲にあるか否かを判定する、請求項11に記載の銀反射鏡の検査方法。
It was determined whether or not the film stress after the reflective film was put into a high temperature drying environment at 110 ° C. for 24 hours was in the range of +100 MPa to -100 MPa.
It is determined whether or not the film stress after being put into the high temperature and high humidity environment of 85 ° C. and 85% RH for 24 hours after being put into the high temperature and dry environment of 110 ° C. is in the range of +100 MPa to -100 MPa. The method for inspecting a silver reflector according to claim 11 .
前記密着層がイオンアシスト法を用いて成膜された酸化アルミニウムを主とする層を含む場合に、当該酸化アルミニウムを主とする層の膜応力が圧縮応力であるか否かを判定する、請求項12に記載の銀反射鏡の検査方法。 When the adhesive layer contains a layer mainly composed of aluminum oxide formed by the ion assist method, it is determined whether or not the film stress of the layer mainly composed of aluminum oxide is a compressive stress. Item 12. The method for inspecting a silver reflector according to Item 12 . 下地の密着層と、前記密着層上に形成される主銀層と、前記主銀層上に形成される増反射層とを反射膜として備える銀反射鏡の製造方法であって、
前記主銀層は、銀及び銀を主とする合金のいずれかで形成され、
前記反射膜の成膜後の膜応力を、+100MPaから−100MPaまでの範囲にするとともに、
前記反射膜を110℃の高温乾燥環境に24時間投入した後の膜応力値と、前記反射膜を110℃の高温乾燥環境に24時間投入した後に前記反射膜を85℃85%RHの高温多湿環境に24時間投入した後の膜応力値との間の変化量の絶対値を、40MPa以下する銀反射鏡の製造方法。
A method for manufacturing a silver reflecting mirror, which comprises a base adhesion layer, a main silver layer formed on the adhesion layer, and a hyperreflection layer formed on the main silver layer as a reflection film.
The main silver layer is formed of either silver or an alloy mainly composed of silver.
The film stress after the film formation of the reflective film is set in the range of +100 MPa to -100 MPa, and
The film stress value after the reflective film was put into a high temperature drying environment of 110 ° C. for 24 hours, and the high temperature and humidity of 85 ° C. and 85% RH after the reflective film was put into a high temperature drying environment of 110 ° C. for 24 hours. the absolute value of the change amount between the film stress value after turning 24 hours environment, manufacturing method of the silver reflecting mirror for below 40 MPa.
前記銀反射鏡と同一の構造を有するテストピースを作製して、膜応力の計測を行う、請求項14に記載の銀反射鏡の製造方法。 The method for manufacturing a silver reflector according to claim 14 , wherein a test piece having the same structure as the silver reflector is produced and the film stress is measured.
JP2017530867A 2015-07-27 2016-07-25 Silver reflector and its manufacturing method and inspection method Active JP6799282B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015148151 2015-07-27
JP2015148151 2015-07-27
PCT/JP2016/071784 WO2017018393A1 (en) 2015-07-27 2016-07-25 Silver mirror, and production method and examination method therefor

Publications (2)

Publication Number Publication Date
JPWO2017018393A1 JPWO2017018393A1 (en) 2018-05-17
JP6799282B2 true JP6799282B2 (en) 2020-12-16

Family

ID=57884343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530867A Active JP6799282B2 (en) 2015-07-27 2016-07-25 Silver reflector and its manufacturing method and inspection method

Country Status (5)

Country Link
US (1) US10444414B2 (en)
EP (1) EP3330749B1 (en)
JP (1) JP6799282B2 (en)
CN (1) CN107850705B (en)
WO (1) WO2017018393A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231533B2 (en) * 2018-07-12 2022-01-25 Visera Technologies Company Limited Optical element having dielectric layers formed by ion-assisted deposition and method for fabricating the same
CN109738978B (en) * 2018-12-26 2021-10-08 河南机电职业学院 High-reflection film layer for high-temperature-resistant and waste gas-resistant strong acid corrosion-resistant laser device and preparation method thereof
JP2020112592A (en) * 2019-01-08 2020-07-27 ソニーセミコンダクタソリューションズ株式会社 Light reflection element and spatial light modulator
CN109852930B (en) * 2019-03-29 2021-06-15 中国科学院上海技术物理研究所 Method for compensating film coating deformation of medium-caliber dielectric film plane reflector
CN111559151B (en) * 2020-04-01 2022-05-17 维达力实业(赤壁)有限公司 3D composite board and preparation method thereof
CN112379472B (en) * 2020-11-13 2022-08-16 上海卫星装备研究所 Optical solar reflecting mirror with low radiation absorption ratio and preparation method thereof
WO2022270475A1 (en) * 2021-06-25 2022-12-29 Agc株式会社 Mirror and method for manufacturing same
CN114355492B (en) * 2021-12-23 2024-02-27 苏州伽蓝致远电子科技股份有限公司 Concave mirror manufacturing method, concave mirror and multiplexer/demultiplexer
JP2023148567A (en) * 2022-03-30 2023-10-13 日東電工株式会社 multilayer structure

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261079B (en) * 1991-10-31 1995-06-14 Asahi Optical Co Ltd Surface reflecting mirror
JP2002055213A (en) * 2000-06-02 2002-02-20 Canon Inc High reflectance mirror
SE518395C2 (en) * 2001-03-15 2002-10-01 Electrolux Ab Proximity sensing system for an autonomous device and ultrasonic sensor
JP4320970B2 (en) * 2001-04-11 2009-08-26 株式会社ニコン Manufacturing method of multilayer mirror
KR100492872B1 (en) * 2001-04-24 2005-06-03 미쯔이카가쿠 가부시기가이샤 Lamp reflector and reflector
JP2003329818A (en) * 2002-05-15 2003-11-19 Sendai Nikon:Kk Reflection mirror
JP4351678B2 (en) * 2003-09-22 2009-10-28 株式会社村上開明堂 Silver mirror and manufacturing method thereof
JP4466648B2 (en) * 2004-02-24 2010-05-26 パナソニック電工株式会社 Light reflector and lighting apparatus having the light reflector
JP2006133331A (en) 2004-11-02 2006-05-25 Kyocera Chemical Corp Light reflection mirror, its manufacturing method, and projector
CN1834701A (en) * 2005-03-16 2006-09-20 亚洲光学股份有限公司 Reflector and its mfg. method
CN101151557A (en) * 2005-03-31 2008-03-26 旭硝子株式会社 High reflection mirror and process for producing the same
JP2007241017A (en) * 2006-03-10 2007-09-20 Epson Toyocom Corp Half mirror
JP2008257037A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Reflection mirror for laser
JP4974855B2 (en) * 2007-11-09 2012-07-11 三菱電機株式会社 Optical mirror for laser light
JP5640380B2 (en) * 2008-02-01 2014-12-17 東レ株式会社 Laminated film, molded body, reflector
JP5424091B2 (en) * 2009-03-31 2014-02-26 コニカミノルタ株式会社 Film mirror having an ultraviolet reflecting film
KR101055003B1 (en) * 2010-03-09 2011-08-05 엘지이노텍 주식회사 Light emitting device, light emitting device package, lighting system, and method for fabricating the light emitting device
JP5413281B2 (en) * 2010-04-08 2014-02-12 コニカミノルタ株式会社 Aluminum surface reflector
US9759844B2 (en) * 2012-01-06 2017-09-12 Konica Minolta, Inc. Film mirror, film mirror manufacturing method, film mirror for photovoltaic power generation, and reflection device for photovoltaic power generation
CN203037885U (en) * 2012-12-10 2013-07-03 台玻悦达太阳能镜板有限公司 Solar thermal power generation reflector plate with epoxy resin back paint
JP6026395B2 (en) * 2013-12-05 2016-11-16 富士フイルム株式会社 Substrate with organic functional layer and method for producing the same

Also Published As

Publication number Publication date
CN107850705A (en) 2018-03-27
EP3330749A4 (en) 2018-08-15
WO2017018393A1 (en) 2017-02-02
EP3330749B1 (en) 2022-09-21
JPWO2017018393A1 (en) 2018-05-17
US20180217303A1 (en) 2018-08-02
US10444414B2 (en) 2019-10-15
CN107850705B (en) 2020-02-14
EP3330749A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6799282B2 (en) Silver reflector and its manufacturing method and inspection method
US20060177638A1 (en) Optical component and method for manufacturing the same
JP2016508628A (en) Improved durable silver coating stack for high reflection mirrors
EP3609967B1 (en) Durable low emissivity window film constructions
KR20160145626A (en) Transparent conductive film
CN110488402B (en) Ultraviolet-visible infrared-high-efficiency reflection silver-based film structure and film coating method
WO2004102231A1 (en) Reflective body, use thereof, and method for producing reflective body
JP4793259B2 (en) Reflector
JP2020523642A (en) Expanding the reflection bandwidth of silver-coated laminates for high reflectors
JP4895902B2 (en) Method for forming reflective film
TWI554410B (en) Transparent conductive film
JP6884993B2 (en) Photoreflector manufacturing method and vapor deposition equipment
JP2007533856A (en) Vacuum deposition method
JP5413281B2 (en) Aluminum surface reflector
ES2691396T3 (en) Material comprising a functional layer based on crystallized silver on a layer of nickel dioxide
WO2017119335A1 (en) Method for manufacturing reflective film
US20060187551A1 (en) Reflector and method for producing the same
JPWO2008133136A1 (en) Reflector
JP6928309B2 (en) How to manufacture a reflector
JP4531381B2 (en) Gas barrier sheet and method for producing the same
JP4118008B2 (en) Multilayer reflection mirror
JP2015171815A (en) Multilayer laminate
JP6135043B2 (en) Optical lens, imaging unit, and optical lens manufacturing method
Kleiman Performance of Textured Metallized Teflon Coverings with High Diffuse Reflectance Coefficient in Low Earth Orbit on ISS
JP2006106242A (en) Antireflection film and optical article having same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201103

R150 Certificate of patent or registration of utility model

Ref document number: 6799282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150