JP6798734B1 - Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber - Google Patents

Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber Download PDF

Info

Publication number
JP6798734B1
JP6798734B1 JP2020021416A JP2020021416A JP6798734B1 JP 6798734 B1 JP6798734 B1 JP 6798734B1 JP 2020021416 A JP2020021416 A JP 2020021416A JP 2020021416 A JP2020021416 A JP 2020021416A JP 6798734 B1 JP6798734 B1 JP 6798734B1
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment agent
fiber precursor
flame
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021416A
Other languages
Japanese (ja)
Other versions
JP2021127533A (en
Inventor
旬 伊藤
旬 伊藤
啓一郎 大島
啓一郎 大島
鈴木 洋平
洋平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73646822&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6798734(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2020021416A priority Critical patent/JP6798734B1/en
Application granted granted Critical
Publication of JP6798734B1 publication Critical patent/JP6798734B1/en
Priority to CN202110168089.2A priority patent/CN112962317A/en
Publication of JP2021127533A publication Critical patent/JP2021127533A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Abstract

【課題】耐炎化炉の汚染及び耐炎化繊維の毛羽を抑制できる炭素繊維前駆体用処理剤、炭素繊維前駆体、及び耐炎化繊維の製造方法を提供する。【解決手段】本発明は、シリコーンを含有する炭素繊維前駆体用処理剤であって、前記炭素繊維前駆体用処理剤の1質量%水希釈液の25℃におけるpHが4.0以上且つ10.0以下のものであり、ガスクロマトグラフィー質量分析法により求められる前記炭素繊維前駆体用処理剤中の低分子量シロキサンの濃度が6.9質量%以下であることを特徴とする。【選択図】なしPROBLEM TO BE SOLVED: To provide a treatment agent for a carbon fiber precursor, a carbon fiber precursor, and a method for producing a flame resistant fiber, which can suppress contamination of a flame resistant furnace and fluff of the flame resistant fiber. The present invention is a treatment agent for a carbon fiber precursor containing silicone, wherein a 1% by mass aqueous diluted solution of the treatment agent for a carbon fiber precursor has a pH of 4.0 or more and 10 at 25 ° C. The concentration is 0.0 or less, and the concentration of the low molecular weight siloxane in the treatment agent for the carbon fiber precursor determined by the gas chromatography mass analysis method is 6.9% by mass or less. [Selection diagram] None

Description

本発明は、炭素繊維前駆体用処理剤、炭素繊維前駆体、及び耐炎化繊維の製造方法に関する。 The present invention relates to a treatment agent for a carbon fiber precursor, a carbon fiber precursor, and a method for producing a flame-resistant fiber.

一般に、炭素繊維又は耐炎化繊維は、例えばエポキシ樹脂等のマトリクス樹脂と組み合わせた炭素繊維複合材料又は難燃・防炎素材として、建材、輸送機器等の各分野において広く利用されている。例えば、炭素繊維は、炭素繊維前駆体として、例えばアクリル繊維を紡糸する工程、繊維を延伸する工程、耐炎化工程、及び炭素化工程を経て製造される。炭素繊維前駆体には、炭素繊維の製造工程において生ずる繊維間の膠着又は融着を抑制するために、炭素繊維前駆体用処理剤が用いられることがある。 In general, carbon fibers or flame-resistant fibers are widely used in various fields such as building materials and transportation equipment as carbon fiber composite materials or flame-retardant / flame-retardant materials combined with a matrix resin such as an epoxy resin. For example, carbon fiber is produced as a carbon fiber precursor through, for example, a step of spinning acrylic fiber, a step of stretching the fiber, a flame resistance step, and a carbonization step. As the carbon fiber precursor, a treatment agent for a carbon fiber precursor may be used in order to suppress the adhesion or fusion between the fibers that occurs in the carbon fiber manufacturing process.

従来、特許文献1に開示される炭素繊維前駆体用処理剤が知られている。特許文献1は、所定のアミノ変性ポリシロキサンを含有するシリコーン油剤と所定の低級脂肪族モノカルボン酸からなる油剤、及び所定のノニオン系乳化剤との混合物100重量部に対して、アミノカルボン酸物質を0.2〜10重量部含有する炭素繊維前駆体用処理剤について開示する。 Conventionally, a treatment agent for a carbon fiber precursor disclosed in Patent Document 1 is known. Patent Document 1 describes an aminocarboxylic acid substance with respect to 100 parts by weight of a mixture of a silicone oil containing a predetermined amino-modified polysiloxane, an oil composed of a predetermined lower aliphatic monocarboxylic acid, and a predetermined nonionic emulsifier. A treatment agent for a carbon fiber precursor containing 0.2 to 10 parts by weight is disclosed.

特開平6−220722号公報Japanese Unexamined Patent Publication No. 6-220722

ところが、従来の炭素繊維前駆体用処理剤は、耐炎化工程において炉の汚染及び得られた耐炎化繊維に毛羽が生ずるという問題があった。
本発明が解決しようとする課題は、耐炎化炉の汚染及び耐炎化繊維の毛羽を抑制できる炭素繊維前駆体用処理剤、炭素繊維前駆体、及び耐炎化繊維の製造方法を提供する処にある。
However, the conventional treatment agent for a carbon fiber precursor has a problem that the furnace is contaminated in the flame resistance step and the obtained flame resistant fiber is fluffed.
An object to be solved by the present invention is to provide a treatment agent for a carbon fiber precursor, a carbon fiber precursor, and a method for producing a flame resistant fiber, which can suppress contamination of a flame resistant furnace and fluff of the flame resistant fiber. ..

本発明者らは、前記の課題を解決するべく研究した結果、所定の範囲にpHを規定するとともに、低分子量シロキサンの濃度を所定値以下に規定した炭素繊維前駆体用処理剤がまさしく好適であることを見出した。 As a result of research to solve the above-mentioned problems, the present inventors have specified a pH within a predetermined range, and a treatment agent for a carbon fiber precursor in which the concentration of low molecular weight siloxane is specified to be a predetermined value or less is very suitable. I found that there is.

上記課題を解決するために、本発明の一態様の炭素繊維前駆体用処理剤では、シリコーンを30〜60質量%含有する炭素繊維前駆体用処理剤であって、前記炭素繊維前駆体用処理剤の1質量%水希釈液の25℃におけるpHが4.0以上且つ10.0以下のものであり、ガスクロマトグラフィー質量分析法により求められる前記炭素繊維前駆体用処理剤中の低分子量シロキサンの濃度が6.9質量%以下であることを特徴とする。 In order to solve the above problems, the treatment agent for carbon fiber precursor according to one aspect of the present invention is a treatment agent for carbon fiber precursor containing 30 to 60 % by mass of silicone, and the treatment for carbon fiber precursor. The pH of the 1 mass% aqueous diluted solution of the agent at 25 ° C. is 4.0 or more and 10.0 or less, and the low molecular weight siloxane in the treatment agent for carbon fiber precursor determined by the gas chromatography mass analysis method. The concentration of the above is 6.9% by mass or less.

前記炭素繊維前駆体用処理剤は、下記の耐炎化処理前ケイ素強度(K1)及び下記の耐炎化処理後ケイ素強度(K2)より求められるケイ素強度比K2/K1が0.4超のものであることが好ましい。 The treatment agent for a carbon fiber precursor has a silicon strength ratio K2 / K1 of more than 0.4, which is obtained from the following silicon strength before flame resistance treatment (K1) and the following silicon strength after flame resistance treatment (K2). It is preferable to have.

耐炎化処理前ケイ素強度(K1)は、前記炭素繊維前駆体用処理剤が付着している炭素繊維前駆体から蛍光X線元素分析により測定されるケイ素の強度を示す。
耐炎化処理後ケイ素強度(K2)は、前記炭素繊維前駆体用処理剤が付着している前記炭素繊維前駆体を耐炎化処理して得られる耐炎化糸から蛍光X線元素分析により測定されるケイ素の強度を示す。
The pre-flame resistance treatment silicon strength (K1) indicates the strength of silicon measured by fluorescent X-ray elemental analysis from the carbon fiber precursor to which the treatment agent for carbon fiber precursor is attached.
The silicon strength (K2) after the flame-resistant treatment is measured by fluorescent X-ray element analysis from the flame-resistant yarn obtained by performing the flame-resistant treatment on the carbon fiber precursor to which the treatment agent for the carbon fiber precursor is attached. Shows the strength of silicon.

前記炭素繊維前駆体用処理剤において、前記ケイ素強度比K2/K1が、0.5〜0.95を満たすものであることが好ましい。
前記炭素繊維前駆体用処理剤において、更に、非イオン界面活性剤を含むことが好ましい。
In the treatment agent for carbon fiber precursor, the silicon strength ratio K2 / K1 preferably satisfies 0.5 to 0.95.
It is preferable that the treatment agent for carbon fiber precursor further contains a nonionic surfactant.

前記炭素繊維前駆体用処理剤において、前記非イオン界面活性剤が、分岐アルコールのアルキレンオキサイド付加物を含むものであることが好ましい。
前記炭素繊維前駆体用処理剤において、前記シリコーンが、アミノ変性シリコーンを含むものであることが好ましい。
In the treatment agent for carbon fiber precursors, it is preferable that the nonionic surfactant contains an alkylene oxide adduct of a branched alcohol.
In the treatment agent for carbon fiber precursor, it is preferable that the silicone contains an amino-modified silicone.

上記課題を解決するために、本発明の別の態様の炭素繊維前駆体は、前記炭素繊維前駆体用処理剤が付着していることを特徴とする。
上記課題を解決するために、本発明の別の態様の耐炎化繊維の製造方法は、前記炭素繊維前駆体を耐炎化処理することを特徴とする。
In order to solve the above problems, the carbon fiber precursor of another aspect of the present invention is characterized in that the treatment agent for the carbon fiber precursor is attached.
In order to solve the above problems, another method of producing a flame-resistant fiber of the present invention is characterized by subjecting the carbon fiber precursor to a flame-resistant treatment.

本発明によれば、耐炎化炉の汚染及び耐炎化繊維の毛羽を抑制できる。 According to the present invention, contamination of the flame-resistant furnace and fluffing of flame-resistant fibers can be suppressed.

(第1実施形態)
以下、本発明の炭素繊維前駆体用処理剤(以下、単に処理剤ともいう)を具体化した第1実施形態を説明する。本実施形態の処理剤は、シリコーンを30〜60質量%含有し、処理剤の1質量%水希釈液の25℃におけるpHが4.0以上且つ10.0以下のものであり、ガスクロマトグラフィー質量分析法により求められる処理剤中の低分子量シロキサンの濃度が6.9質量%以下である。
(First Embodiment)
Hereinafter, a first embodiment in which the treatment agent for a carbon fiber precursor of the present invention (hereinafter, also simply referred to as a treatment agent) is embodied will be described. The treatment agent of the present embodiment contains 30 to 60 % by mass of silicone and has a pH of 4.0 or more and 10.0 or less at 25 ° C. of a 1% by mass aqueous diluted solution of the treatment agent, and is used for gas chromatography. The concentration of low molecular weight siloxane in the treatment agent determined by mass spectrometry is 6.9% by mass or less.

シリコーンを配合することにより、本発明の効果、特に耐炎化繊維の毛羽を抑制する。シリコーンの具体例としては、例えばジメチルシリコーン、フェニル変性シリコーン、アミノ変性シリコーン、アミド変性シリコーン、ポリエーテル変性シリコーン、アミノポリエーテル変性シリコーン、アルキル変性シリコーン、アルキルアラルキル変性シリコーン、アルキルポリエーテル変性シリコーン、エステル変性シリコーン、エポキシ変性シリコーン、カルビノール変性シリコーン、メルカプト変性シリコーン、ポリオキシアルキレン変性シリコーン等が挙げられる。シリコーンは、1種類のシリコーンを単独で使用してもよいし、又は2種以上のシリコーンを適宜組み合わせて使用してもよい。これらの中で、アミノ変性シリコーンが好ましい。アミノ変性シリコーンを適用することにより、耐炎化工程後にさらに炭素化工程を行う場合に、炭素化炉の汚染を抑制できる。 By blending silicone, the effect of the present invention, particularly the fluffing of flame-resistant fibers is suppressed. Specific examples of silicone include, for example, dimethyl silicone, phenyl-modified silicone, amino-modified silicone, amide-modified silicone, polyether-modified silicone, aminopolyether-modified silicone, alkyl-modified silicone, alkyl aralkyl-modified silicone, alkyl polyether-modified silicone, and ester. Examples thereof include modified silicone, epoxy-modified silicone, carbinol-modified silicone, mercapto-modified silicone, and polyoxyalkylene-modified silicone. As the silicone, one kind of silicone may be used alone, or two or more kinds of silicones may be used in combination as appropriate. Of these, amino-modified silicone is preferable. By applying the amino-modified silicone, contamination of the carbonization furnace can be suppressed when the carbonization step is further performed after the flame resistance step.

シリコーンの25℃の動粘度は、特に制限はないが、好ましくは200mm/s〜12000mm/sである。また、シリコーンとしてアミノ変性シリコーンが用いられる場合、アミノ当量は、特に制限はないが、好ましくは1000〜10000g/molである。 Kinematic viscosity at 25 ° C. of the silicone is not particularly limited, but is preferably 200mm 2 / s~12000mm 2 / s. When amino-modified silicone is used as the silicone, the amino equivalent is not particularly limited, but is preferably 1000 to 10000 g / mol.

本実施形態の処理剤は、更に非イオン界面活性剤を含有することが好ましい。この非イオン界面活性剤を配合することにより、処理剤を乳化させ、取り扱い性、付着性を向上させる。本実施形態の処理剤に供される非イオン界面活性剤としては、公知のものを適宜採用できる。非イオン界面活性剤の種類は、例えばアルコール類又はカルボン酸類にアルキレンオキサイドを付加させ化合物、カルボン酸類と多価アルコールとのエステル化合物、カルボン酸類と多価アルコールとのエステル化合物にアルキレンオキサイドを付加させたエーテル・エステル化合物等が挙げられる。 The treatment agent of the present embodiment preferably further contains a nonionic surfactant. By blending this nonionic surfactant, the treatment agent is emulsified to improve handleability and adhesiveness. As the nonionic surfactant used in the treatment agent of the present embodiment, known ones can be appropriately adopted. Types of nonionic surfactants include, for example, compounds obtained by adding alkylene oxide to alcohols or carboxylic acids, ester compounds of carboxylic acids and polyhydric alcohols, and ester compounds of carboxylic acids and polyhydric alcohols added alkylene oxide. Examples include ether ester compounds.

非イオン界面活性剤の原料として用いられるアルコール類の具体例としては、例えば(1)メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール、トリコサノール、テトラコサノール、ペンタコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、ノナコサノール、トリアコンタノール等の直鎖アルキルアルコール、(2)イソプロパノール、イソブタノール、イソヘキサノール、2−エチルヘキサノール、イソノナノール、イソデカノール、イソドデカノール、イソトリデカノール、イソテトラデカノール、イソトリアコンタノール、イソヘキサデカノール、イソヘプタデカノール、イソオクタデカノール、イソノナデカノール、イソエイコサノール、イソヘンエイコサノール、イソドコサノール、イソトリコサノール、イソテトラコサノール、イソペンタコサノール、イソヘキサコサノール、イソヘプタコサノール、イソオクタコサノール、イソノナコサノール、イソペンタデカノール等の分岐アルキルアルコール、(3)テトラデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール等の直鎖アルケニルアルコール、(4)イソヘキサデセノール、イソオクタデセノール等の分岐アルケニルアルコール、(5)シクロペンタノール、シクロヘキサノール等の環状アルキルアルコール、(6)フェノール、ベンジルアルコール、モノスチレン化フェノール、ジスチレン化フェノール、トリスチレン化フェノール等の芳香族系アルコール等が挙げられる。 Specific examples of alcohols used as raw materials for nonionic surfactants include (1) methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and tetradecanol. , Pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eikosanol, heneicosanol, docosanol, tricosanol, tetracosanol, pentacosanol, hexacosanol, heptacosanol, octacosanol, nonacosanol, triacon Linear alkyl alcohols such as tanol, (2) Isopropanol, Isobutanol, Isohexanol, 2-Ethylhexanol, Isononanol, Isodecanol, Isoddecanol, Isotridecanol, Isotetradecanol, Isotriacontanol, Isohexadeca Noll, isoheptadecanol, isooctadecanol, isononadecanol, isoeicosanol, isoheneicosanol, isodocosanol, isotricosanol, isotetracosanol, isopentacosanol, isohexacosa Branched alkyl alcohols such as ol, isoheptacosanol, isooctacosanol, isononacosanol, isopentadecanol, (3) linear alkenyl alcohols such as tetradecenol, hexadecenol, heptadecenol, octadecenol, nonadecenool, (4) isohexadecene. Branched alkenyl alcohols such as ol and isooctadecenols, (5) cyclic alkyl alcohols such as cyclopentanol and cyclohexanol, (6) phenols, benzyl alcohols, monostyrene phenols, distyrene phenols, tristyrene phenols and the like. Aromatic alcohols and the like can be mentioned.

非イオン界面活性剤の原料として用いられるカルボン酸類の具体例としては、例えば(1)オクチル酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ヘンエイコサン酸、ドコサン酸等の直鎖アルキルカルボン酸、(2)2−エチルヘキサン酸、イソドデカン酸、イソトリデカン酸、イソテトラデカン酸、イソヘキサデカン酸、イソオクタデカン酸等の分岐アルキルカルボン酸、(3)オクタデセン酸、オクタデカジエン酸、オクタデカトリエン酸等の直鎖アルケニルカルボン酸、(4)安息香酸等の芳香族系カルボン酸等が挙げられる。 Specific examples of carboxylic acids used as raw materials for nonionic surfactants include (1) octyl acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, and heptadecane. Linear alkylcarboxylic acids such as acids, octadecanoic acid, nonadecanic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid, (2) 2-ethylhexanoic acid, isododecanoic acid, isotoridecanic acid, isotetradecanoic acid, isohexadecanoic acid, isooctadecanic acid Examples thereof include branched alkylcarboxylic acids such as (3) octadecenoic acid, octadecadienoic acid, linear alkenylcarboxylic acids such as octadecatrienoic acid, and (4) aromatic carboxylic acids such as benzoic acid.

非イオン界面活性剤の原料として用いられるアルキレンオキサイドの具体例としては、例えばエチレンオキサイド、プロピレンオキサイド等が挙げられる。アルキレンオキサイドの付加モル数は、適宜設定されるが、好ましくは0.1〜60モル、より好ましくは1〜40モル、さらに好ましくは2〜30モルである。なお、アルキレンオキサイドの付加モル数は、仕込み原料中におけるアルコール類又はカルボン酸類1モルに対するアルキレンオキサイドのモル数を示す。 Specific examples of the alkylene oxide used as a raw material for the nonionic surfactant include ethylene oxide and propylene oxide. The number of moles of alkylene oxide added is appropriately set, but is preferably 0.1 to 60 mol, more preferably 1 to 40 mol, and even more preferably 2 to 30 mol. The number of moles of alkylene oxide added indicates the number of moles of alkylene oxide with respect to 1 mole of alcohols or carboxylic acids in the charged raw material.

非イオン界面活性剤の原料として用いられる多価アルコールの具体例としては、例えばエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,4−ブタンジオール、2−メチル−1,2−プロパンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,5−ヘキサンジオール、2−メチル−2,4−ペンタンジオール、2,3−ジメチル−2,3−ブタンジオール、グリセリン、2−メチル−2−ヒドロキシメチル−1,3−プロパンジオール、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、トリメチロールプロパン、ソルビタン、ペンタエリスリトール、ソルビトール等が挙げられる。 Specific examples of polyhydric alcohols used as raw materials for nonionic surfactants include ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4. -Butandiol, 1,4-butanediol, 2-methyl-1,2-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2,5-hexanediol, 2-methyl-2,4 -Pentanediol, 2,3-dimethyl-2,3-butanediol, glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2-ethyl-2-hydroxymethyl-1,3-propanediol , Trimethylolpropane, sorbitane, pentaerythritol, sorbitol and the like.

上述した非イオン界面活性剤は、一種の非イオン界面活性剤を使用してもよく、また二種以上の非イオン界面活性剤を組み合わせて使用してもよい。
これらの中で、分岐アルコールのアルキレンオキサイド付加物が好ましい。かかる非イオン界面活性剤を使用した場合、耐炎化繊維の毛羽をより抑制できる。
As the above-mentioned nonionic surfactant, one kind of nonionic surfactant may be used, or two or more kinds of nonionic surfactants may be used in combination.
Of these, alkylene oxide adducts of branched alcohols are preferred. When such a nonionic surfactant is used, the fluff of the flame-resistant fiber can be further suppressed.

本実施形態の処理剤は、処理剤を水に溶解して1質量%水希釈液として調整した際の25℃におけるpHの下限は、4.0以上、好ましくは4.5以上である。かかるpHが4.0以上の場合、本発明の効果を向上させる。また、かかるpHが4.5以上の場合、特に耐炎化繊維の毛羽をより抑制する。 In the treatment agent of the present embodiment, the lower limit of pH at 25 ° C. when the treatment agent is dissolved in water and adjusted as a 1% by mass aqueous diluent is 4.0 or more, preferably 4.5 or more. When the pH is 4.0 or more, the effect of the present invention is improved. Further, when the pH is 4.5 or more, the fluff of the flame-resistant fiber is particularly suppressed.

また、処理剤を水に溶解して1質量%水希釈液として調整した際の25℃におけるpHの上限は、10.0以下、好ましくは9.5以下である。かかるpHが10.0以下の場合、本発明の効果を向上させる。 Further, the upper limit of pH at 25 ° C. when the treatment agent is dissolved in water and adjusted as a 1% by mass aqueous diluent is 10.0 or less, preferably 9.5 or less. When the pH is 10.0 or less, the effect of the present invention is improved.

処理剤のpHの調整は、公知のpH調整剤を適宜採用できる。pH調整剤としては、例えば、オクタン酸、オレイン酸、酢酸、クエン酸、酒石酸等の有機酸類、それらの誘導体、又はそれらの塩、塩酸等の無機酸類、水酸化ナトリウム、水酸化カリウム等のアルカリ類、アルカノールアミン、アルキルアミン及びアルキルアミンのアルキレンオキサイド付加物等のアミン類等が挙げられる。 A known pH adjuster can be appropriately used to adjust the pH of the treatment agent. Examples of the pH adjuster include organic acids such as octanoic acid, oleic acid, acetic acid, citric acid and tartaric acid, derivatives thereof, salts thereof, inorganic acids such as hydrochloric acid, and alkalis such as sodium hydroxide and potassium hydroxide. Examples include amines such as alkanolamines, alkylamines and alkylene oxide adducts of alkylamines.

本実施形態の処理剤は、ガスクロマトグラフィー質量分析法により求められる処理剤中の低分子量シロキサンの濃度が、6.9質量%以下、好ましくは6質量%以下、より好ましくは5.0質量%以下である。かかる濃度が6.9質量%以下の場合、本発明の効果を向上させる。なお、低分子量シロキサンの濃度は、分子中のケイ素元素数が6以下の低分子量の(ポリ)シロキサン(環状シロキサン含む)の含有量の合計を示す。各低分子量のシロキサンについて、それぞれ検量線を作成することで定量分析できる。低分子量シロキサンの濃度の調整は、公知の方法、例えば原料の蒸留等の方法を用いて実施できる。 The treatment agent of the present embodiment has a concentration of low molecular weight siloxane in the treatment agent determined by gas chromatography-mass spectrometry of 6.9% by mass or less, preferably 6% by mass or less, more preferably 5.0% by mass. It is as follows. When such a concentration is 6.9% by mass or less, the effect of the present invention is improved. The concentration of the low molecular weight siloxane indicates the total content of the low molecular weight (poly) siloxane (including cyclic siloxane) having 6 or less silicon elements in the molecule. Quantitative analysis can be performed for each low molecular weight siloxane by creating a calibration curve for each. The concentration of the low molecular weight siloxane can be adjusted by using a known method, for example, a method such as distillation of a raw material.

本実施形態の処理剤は、下記の耐炎化処理前ケイ素強度(K1)及び下記の耐炎化処理後ケイ素強度(K2)より求められるケイ素強度比K2/K1の下限が、0.4超のものであることが好ましく、0.5以上のものであることがより好ましい。ケイ素強度比K2/K1が0.4超を満たす場合、シリコーン由来の成分が耐炎化処理後においても繊維上に残りやすいため、耐炎化炉の汚染及び耐炎化繊維の毛羽をより抑制できる。 The treatment agent of the present embodiment has a lower limit of the silicon strength ratio K2 / K1 obtained from the following pre-flame resistance silicon strength (K1) and the following post-flame resistance silicon strength (K2) of more than 0.4. It is preferably 0.5 or more, and more preferably 0.5 or more. When the silicon strength ratio K2 / K1 satisfies more than 0.4, the silicone-derived component tends to remain on the fiber even after the flame-resistant treatment, so that contamination of the flame-resistant furnace and fluffing of the flame-resistant fiber can be further suppressed.

上述したケイ素強度比K2/K1の上限は、0.95以下のものであることが好ましい。ケイ素強度比K2/K1が0.95以下の場合、耐炎化工程後にさらに炭素化工程を行う場合に、炭素化炉の汚染を抑制できる。 The upper limit of the silicon strength ratio K2 / K1 described above is preferably 0.95 or less. When the silicon strength ratio K2 / K1 is 0.95 or less, contamination of the carbonization furnace can be suppressed when the carbonization step is further performed after the flame resistance step.

耐炎化処理前ケイ素強度(K1)は、炭素繊維前駆体用処理剤が付着している炭素繊維前駆体から蛍光X線元素分析により測定されるケイ素の強度を示す。
耐炎化処理後ケイ素強度(K2)は、炭素繊維前駆体用処理剤が付着している炭素繊維前駆体を耐炎化処理して得られる耐炎化糸から蛍光X線元素分析により測定されるケイ素の強度を示す。なお、蛍光X線元素分析により測定されるケイ素の強度は、ケイ素に由来する信号の検出ピーク強度によって求められる。
The pre-flame resistance treatment silicon strength (K1) indicates the strength of silicon measured by fluorescent X-ray elemental analysis from the carbon fiber precursor to which the treatment agent for the carbon fiber precursor is attached.
The silicon strength (K2) after the flame-resistant treatment is measured by fluorescent X-ray element analysis from the flame-resistant yarn obtained by performing the flame-resistant treatment on the carbon fiber precursor to which the treatment agent for the carbon fiber precursor is attached. Indicates strength. The intensity of silicon measured by fluorescent X-ray elemental analysis is determined by the detection peak intensity of a signal derived from silicon.

耐炎化処理前ケイ素強度(K1)及び耐炎化処理後ケイ素強度(K2)を求める際に使用する処理剤が付着した炭素繊維前駆体について、処理剤の付着量は、一般的な使用時における付着量、例えば1質量%のものが適用される。 Regarding the carbon fiber precursor to which the treatment agent used for determining the silicon strength before the flame resistance treatment (K1) and the silicon strength after the flame resistance treatment (K2) is attached, the amount of the treatment agent attached is the adhesion during general use. Amounts, such as 1% by weight, are applied.

また、耐炎化処理後ケイ素強度(K2)を求める際の耐炎化処理は、例えば150℃から240℃まで昇温速度5℃/minで加熱してから240℃で1時間保持する条件で行われる。 Further, the flame resistance treatment for determining the silicon strength (K2) after the flame resistance treatment is performed under the condition that the silicon strength (K2) is heated from 150 ° C. to 240 ° C. at a heating rate of 5 ° C./min and then held at 240 ° C. for 1 hour. ..

(第2実施形態)
次に、本発明に係る炭素繊維前駆体を具体化した第2実施形態について説明する。本実施形態の炭素繊維前駆体は、炭素繊維前駆体の原料繊維に第1実施形態の処理剤が付着している。
(Second Embodiment)
Next, a second embodiment embodying the carbon fiber precursor according to the present invention will be described. In the carbon fiber precursor of the present embodiment, the treatment agent of the first embodiment is attached to the raw material fiber of the carbon fiber precursor.

さらに、本実施形態の炭素繊維前駆体を用いた耐炎化繊維又は炭素繊維の製造方法は、まず炭素繊維前駆体の原料繊維に上記の処理剤を付着させて炭素繊維前駆体を得た後、製糸する製糸工程が行われる。次に、その製糸工程で製造された炭素繊維前駆体を200〜300℃、好ましくは230〜270℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程が行われる。さらに炭素繊維を得る場合は、前記耐炎化繊維をさらに300〜2000℃、好ましくは300〜1300℃の不活性雰囲気中で炭化させる炭素化処理工程が行われる。炭素化処理工程は、耐炎化処理工程に続けて行ってもよい。 Further, in the method for producing flame-resistant fiber or carbon fiber using the carbon fiber precursor of the present embodiment, first, the above-mentioned treatment agent is attached to the raw material fiber of the carbon fiber precursor to obtain the carbon fiber precursor, and then the carbon fiber precursor is obtained. A yarn-making process for spinning is performed. Next, a flame-resistant treatment step is performed in which the carbon fiber precursor produced in the silk-reeling step is converted into flame-resistant fibers in an oxidizing atmosphere at 200 to 300 ° C., preferably 230 to 270 ° C. Further, when carbon fibers are obtained, a carbonization treatment step of carbonizing the flame-resistant fibers in an inert atmosphere at 300 to 2000 ° C., preferably 300 to 1300 ° C. is performed. The carbonization treatment step may be performed following the flame resistance treatment step.

製糸工程は、炭素繊維前駆体の原料繊維に第1実施形態の処理剤を付着させて得られた炭素繊維前駆体を製糸する工程であり、付着処理工程と延伸工程とを含む。
付着処理工程は、炭素繊維前駆体の原料繊維を紡糸した後、処理剤を付着させる工程である。つまり、付着処理工程で炭素繊維前駆体の原料繊維に処理剤を付着させる。またこの炭素繊維前駆体の原料繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気を用いた湿熱延伸法でもよいし、熱ローラーを用いた乾熱延伸法でもよい。
The yarn-making step is a step of spinning a carbon fiber precursor obtained by adhering the treatment agent of the first embodiment to the raw material fibers of the carbon fiber precursor, and includes an adhering treatment step and a drawing step.
The adhesion treatment step is a step of spinning the raw material fiber of the carbon fiber precursor and then attaching the treatment agent. That is, the treatment agent is adhered to the raw material fiber of the carbon fiber precursor in the adhesion treatment step. Further, the raw material fiber of this carbon fiber precursor is stretched immediately after spinning, and the high-magnification stretching after the adhesion treatment step is particularly called a "stretching step". The stretching step may be a moist heat stretching method using high-temperature steam, or a dry heat stretching method using a hot roller.

炭素繊維前駆体の原料繊維は、例えばアクリル繊維等が挙げられる。アクリル繊維としては、少なくとも90モル%以上のアクリロニトリルと、10モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とする繊維から構成されることが好ましい。耐炎化促進成分としては、例えばアクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。炭素繊維前駆体の単繊維繊度については、特に限定はないが、性能及び製造コストのバランスの観点から、好ましくは0.1〜2.0dTexである。また、炭素繊維前駆体の繊維束を構成する単繊維の本数についても特に限定はないが、性能及び製造コストのバランスの観点から、好ましくは1,000〜96,000本である。 Examples of the raw material fiber of the carbon fiber precursor include acrylic fiber and the like. The acrylic fiber is preferably composed of a fiber containing polyacrylonitrile as a main component, which is obtained by copolymerizing at least 90 mol% or more of acrylonitrile and 10 mol% or less of a flame resistance promoting component. As the flame resistance promoting component, for example, a vinyl group-containing compound having copolymerizability with acrylonitrile can be preferably used. The single fiber fineness of the carbon fiber precursor is not particularly limited, but is preferably 0.1 to 2.0 dTex from the viewpoint of the balance between performance and manufacturing cost. The number of single fibers constituting the fiber bundle of the carbon fiber precursor is also not particularly limited, but is preferably 1,000 to 96,000 from the viewpoint of the balance between performance and manufacturing cost.

処理剤は、製糸工程のどの段階で炭素繊維前駆体の原料繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。また、延伸工程前の段階であればどの段階でも付着させてもよい。例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよい。例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化処理工程の直前に再度付着させてもよい。製糸工程中、付着させる回数は特に限定されない。 The treatment agent may be attached to the raw material fibers of the carbon fiber precursor at any stage of the silk reeling step, but it is preferable to attach the treatment agent once before the drawing step. Further, it may be attached at any stage as long as it is a stage before the stretching step. For example, it may be attached immediately after spinning. Further, it may be reattached at any stage after the stretching step. For example, it may be reattached immediately after the stretching step, may be reattached at the winding step, or may be reattached immediately before the flame resistance treatment step. During the silk reeling process, the number of times of adhesion is not particularly limited.

第1実施形態の処理剤を炭素繊維前駆体に付着させる割合に特に制限はないが、処理剤(溶媒を含まない)を炭素繊維前駆体に対し0.1〜2質量%となるように付着させることが好ましく、0.3〜1.2質量%となるように付着させることがより好ましい。かかる構成により、本発明の効果をより向上させる。第1実施形態の処理剤の付着方法としては公知の方法が適用でき、これには例えば、スプレー給油法、浸漬給油法、ローラー給油法、計量ポンプを用いたガイド給油法等が挙げられる。第1実施形態の処理剤を繊維に付着させる際の形態としては、例えば有機溶媒溶液、水性液等が挙げられる。 The ratio of the treatment agent of the first embodiment to the carbon fiber precursor is not particularly limited, but the treatment agent (without solvent) is attached so as to be 0.1 to 2% by mass with respect to the carbon fiber precursor. It is preferable to allow it to adhere, and it is more preferable to attach it so that the content is 0.3 to 1.2% by mass. With such a configuration, the effect of the present invention is further improved. As a method for adhering the treatment agent of the first embodiment, a known method can be applied, and examples thereof include a spray refueling method, an immersion refueling method, a roller refueling method, a guide refueling method using a measuring pump, and the like. Examples of the form for adhering the treatment agent of the first embodiment to the fiber include an organic solvent solution and an aqueous solution.

本実施形態の処理剤及び炭素繊維前駆体の作用及び効果について説明する。
(1)本実施形態では、耐炎化炉の汚染及び耐炎化繊維の毛羽を抑制できる。また、耐炎化工程後に炭素化工程を行う場合に、炭素化炉の汚染を抑制できる。
The actions and effects of the treatment agent and the carbon fiber precursor of the present embodiment will be described.
(1) In the present embodiment, contamination of the flame-resistant furnace and fluffing of the flame-resistant fiber can be suppressed. Further, when the carbonization step is performed after the flame resistance step, contamination of the carbonization furnace can be suppressed.

なお、上記実施形態は以下のように変更してもよい。
・本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤として、アニオン界面活性剤等の上記以外の界面活性剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤に用いられる成分をさらに配合してもよい。アニオン界面活性剤としては、アルキルリン酸エステル、N−アシルアミノ酸塩、エーテルカルボン酸系界面活性剤等が挙げられる。
The above embodiment may be changed as follows.
-The treatment agent of the present embodiment includes surfactants other than the above, such as anionic surfactants, as stabilizers and antistatic agents for maintaining the quality of the treatment agent, as long as the effects of the present invention are not impaired. , Antistatic agents, binders, antioxidants, UV absorbers and other components commonly used in treatment agents may be further added. Examples of the anionic surfactant include alkyl phosphoric acid esters, N-acylamino acid salts, ether carboxylic acid-based surfactants and the like.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例及び比較例において、部は質量部を、また%は質量%を意味する。 Hereinafter, examples and the like will be given in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, parts mean parts by mass and% means% by mass.

試験区分1(炭素繊維前駆体用処理剤の調製)
参考例1の炭素繊維前駆体用処理剤は、まずジアミン型のアミノ変性シリコーン(粘度が250mm/s、当量7600g/mol)(A−1)を80g、イソテトラデシルアルコールのエチレンオキサイド10モル及びプロピレンオキサイド6モル付加物(B−1)を15g、イソドデシルアルコールのエチレンオキサイド10モル付加物(B−2)を4g、1−エチル−2−(ヘプタデセニル)−4,5−ジハイドロ−3−(2−ハイドロキシエチル)−1H−イミダゾリニウムのエチル硫酸塩(C−1)1gをビーカーに加えてよく混合した。撹拌を続けながら固形分濃度が30%となるようにイオン交換水を徐々に添加することで参考例1の炭素繊維前駆体用処理剤の30%水性液を調製した。
Test Category 1 (Preparation of treatment agent for carbon fiber precursor)
As the treatment agent for the carbon fiber precursor of Reference Example 1, first, 80 g of diamine-type amino-modified silicone (viscosity 250 mm 2 / s, equivalent 7600 g / mol) (A-1) and 10 mol of ethylene oxide of isotetradecyl alcohol were used. And 15 g of propylene oxide 6 mol addition (B-1), 4 g of ethylene oxide 10 mol addition (B-2) of isododecyl alcohol, 1-ethyl-2- (heptadecenyl) -4,5-dihydro-3. 1 g of ethyl sulfate (C-1) of − (2-hydroxyethyl) -1H-imidazolinium was added to the beaker and mixed well. A 30% aqueous solution of the treatment agent for the carbon fiber precursor of Reference Example 1 was prepared by gradually adding ion-exchanged water so that the solid content concentration became 30% while continuing stirring.

実施例3〜7,12〜15、参考例1,2,8〜11及び比較例1〜4の各炭素繊維前駆体用処理剤は、表1に示される各成分を使用し、参考例1と同様の方法にて調整した。
各例の炭素繊維前駆体用処理剤中におけるシリコーンの種類と含有量、非イオン界面活性剤の種類と含有量、その他成分の種類と含有量は、表1の「シリコーン」欄、「非イオン界面活性剤」欄、「その他成分」欄に示すとおりである。
Each of the carbon fiber precursor treatment agents of Examples 3 to 7, 12 to 15, Reference Examples 1, 2, 8 to 11 and Comparative Examples 1 to 4 uses each component shown in Table 1, and Reference Example 1 It was adjusted in the same way as above.
The types and contents of silicone, the types and contents of nonionic surfactants, and the types and contents of other components in the treatment agents for carbon fiber precursors of each example are shown in the "Silicone" column and "Nonionic" in Table 1. As shown in the "Surfactant" column and the "Other ingredients" column.

また、炭素繊維前駆体用処理剤の30%水性液から、1%水希釈液を調製し、常法に従い25℃におけるpHを測定した。測定したpHの値を表1の「1%水希釈液のpH」欄に示す。 Further, a 1% aqueous diluted solution was prepared from a 30% aqueous solution of the treatment agent for carbon fiber precursor, and the pH at 25 ° C. was measured according to a conventional method. The measured pH values are shown in the "pH of 1% aqueous diluent" column of Table 1.

また、各例の炭素繊維前駆体用処理剤中における低分子量シロキサン濃度を測定した。低分子量シロキサンは、分子中のケイ素元素の数が6以下の低分子量の(ポリ)シロキサン(環状シロキサン含む)の濃度を、下記の条件に従いガスクロマトグラフィー質量分析法を用いて測定した。測定条件は、インジェクション温度300℃、カラム温度条件100℃から300℃まで10℃/minで昇温後300℃で40分ホールドとした。処理剤中における低分子量の(ポリ)シロキサンの濃度を「低分子量シロキサン濃度」欄に示す。 In addition, the concentration of low molecular weight siloxane in the treatment agent for carbon fiber precursor of each example was measured. For the low molecular weight siloxane, the concentration of the low molecular weight (poly) siloxane (including cyclic siloxane) having 6 or less silicon elements in the molecule was measured by gas chromatography-mass spectrometry according to the following conditions. The measurement conditions were an injection temperature of 300 ° C. and a column temperature condition of 100 ° C. to 300 ° C. at 10 ° C./min, and then held at 300 ° C. for 40 minutes. The concentration of low molecular weight (poly) siloxane in the treatment agent is shown in the "Low molecular weight siloxane concentration" column.

表1において、
A−1:粘度:250mm/s、当量7600g/mol、ジアミン型のアミノ変性シリコーン
A−2:粘度:1300mm/s、当量1700g/mol、ジアミン型のアミノ変性シリコーン
A−3:粘度:1700mm/s、当量3800g/mol、モノアミン型のアミノ変性シリコーン
A−4:粘度:5000mm/s、当量7000g/mol、ジアミン型のアミノ変性シリコーン
A−5:粘度:10000mm/s、当量2000g/mol、ジアミン型のアミノ変性シリコーン
A−6:粘度:600mm/s、当量3000g/mol、ジアミン型のアミノ変性シリコーン
A−7:粘度:10000mm/sのジメチルシリコーン
A−8:粘度:500mm/s、エチレンオキサイド/プロピレンオキサイド=80/20、シリコーン/ポリエーテルの質量比=50/50のポリエーテル変性シリコーン
B−1:イソテトラデシルアルコールのエチレンオキサイド10モル及びプロピレンオキサイド6モル付加物
B−2:イソドデシルアルコールのエチレンオキサイド10モル付加物
B−3:イソノニルアルコールのエチレンオキサイド8モル付加物
B−4:ドデシルアルコールのエチレンオキサイド20モル付加物
B−5:トリデシルアルコールのエチレンオキサイド3モル付加物
C−1:1−エチル−2−(ヘプタデセニル)−4,5−ジハイドロ−3−(2−ハイドロキシエチル)−1H−イミダゾリニウムのエチル硫酸塩
C−2:イソドデシルホスフェート
C−3:ラウリルエーテル(エチレンオキサイド平均10モル)酢酸
C−4:酢酸
C−5:ジエタノールアミン
C−6:ラウロイルサルコシネート
C−7:オレオイルサルコシネートを示す。
In Table 1,
A-1: Viscosity: 250 mm 2 / s, equivalent 7600 g / mol, diamine-type amino-modified silicone A-2: Viscosity: 1300 mm 2 / s, equivalent 1700 g / mol, diamine-type amino-modified silicone A-3: Viscosity: 1700 mm 2 / s, equivalent 3800 g / mol, monoamine type amino-modified silicone A-4: viscosity: 5000 mm 2 / s, equivalent 7000 g / mol, diamine-type amino-modified silicone A-5: viscosity: 10000 mm 2 / s, equivalent 2000 g / mol, diamine-type amino-modified silicone A-6: viscosity: 600 mm 2 / s, equivalent 3000 g / mol, diamine-type amino-modified silicone A-7: viscosity: 10000 mm 2 / s dimethyl silicone A-8: viscosity : 500 mm 2 / s, ethylene oxide / propylene oxide = 80/20, silicone / polyether mass ratio = 50/50 polyether-modified silicone B-1: 10 mol of ethylene oxide and 6 mol of propylene oxide of isotetradecyl alcohol Additive B-2: 10 mol addition of ethylene oxide of isododecyl alcohol B-3: 8 mol addition of ethylene oxide of isononyl alcohol B-4: 20 mol addition of ethylene oxide of dodecyl alcohol B-5: Tridecyl alcohol C-1: 1-ethyl-2- (heptadecenyl) -4,5-dihydro-3- (2-hydroxyethyl) -1H-ethyl sulfate of imidazolinium C-2: iso Dodecyl phosphate C-3: Lauryl ether (average of 10 mol of ethylene oxide) Acetic acid C-4: Acetic acid C-5: Diethanolamine C-6: Lauroyl sarcosinate C-7: Oleoil sarcosinate.

試験区分2(炭素繊維前駆体、耐炎化繊維、及び炭素繊維の製造)
試験区分1で調製した炭素繊維前駆体用処理剤を用いて、炭素繊維前駆体、耐炎化繊維、及び炭素繊維を製造した。
Test Category 2 (Manufacture of carbon fiber precursors, flame resistant fibers, and carbon fibers)
The carbon fiber precursor, the flame-resistant fiber, and the carbon fiber were produced using the treatment agent for the carbon fiber precursor prepared in Test Category 1.

アクリロニトリル95質量%、アクリル酸メチル3.5質量%、メタクリル酸1.5質量%からなる極限粘度1.80の共重合体を、ジメチルアセトアミド(DMAC)に溶解してポリマー濃度が21.0質量%、60℃における粘度が500ポイズの紡糸原液を作成した。紡糸原液は、紡浴温度35℃に保たれたDMACの70質量%水溶液の凝固浴中に孔径(内径)0.075mm、ホール数12,000の紡糸口金よりドラフト比0.8で吐出した。 A copolymer having an ultimate viscosity of 1.80 consisting of 95% by mass of acrylonitrile, 3.5% by mass of methyl acrylate, and 1.5% by mass of methacrylic acid is dissolved in dimethylacetamide (DMAC) to have a polymer concentration of 21.0% by mass. %, A spinning stock solution having a viscosity at 60 ° C. of 500 poise was prepared. The spinning stock solution was discharged into a coagulation bath of a 70% by mass aqueous solution of DMAC maintained at a spinning bath temperature of 35 ° C. from a spinning cap having a pore diameter (inner diameter) of 0.075 mm and a hole number of 12,000 at a draft ratio of 0.8.

凝固糸を水洗槽の中で脱溶媒と同時に5倍に延伸して水膨潤状態のアクリル繊維ストランドを作成した。これを試験区分1で調製した炭素繊維前駆体用処理剤の4%イオン交換水溶液を浸漬法にて炭素繊維前駆体用処理剤の付着量が1質量%(溶媒を含まない)となるように給油した。その後、このアクリル繊維ストランドを130℃の加熱ローラーで乾燥緻密化処理を行い、さらに170℃の加熱ローラー間で1.7倍の延伸を施した後に糸管に巻き取ることで炭素繊維前駆体を得た。この炭素繊維前駆体から糸を解舒し、200℃〜300℃の空気雰囲気下で耐炎化処理することにより耐炎化繊維を得た。その後、窒素雰囲気下で300〜1,300℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換後、糸管に巻き取った。 The coagulated yarn was stretched 5 times in a water washing tank at the same time as desolvation to prepare a water-swelled acrylic fiber strand. By dipping the 4% ion exchange aqueous solution of the carbon fiber precursor treatment agent prepared in Test Category 1, the adhesion amount of the carbon fiber precursor treatment agent is 1% by mass (solvent-free). I refueled. After that, the acrylic fiber strands are dried and densified with a heating roller at 130 ° C., further stretched 1.7 times between the heating rollers at 170 ° C., and then wound around a thread tube to form a carbon fiber precursor. Obtained. A yarn was unwound from this carbon fiber precursor and treated for flame resistance in an air atmosphere of 200 ° C. to 300 ° C. to obtain a flame resistant fiber. Then, it was calcined in a carbonization furnace having a temperature gradient of 300 to 1,300 ° C. in a nitrogen atmosphere to convert it into carbon fibers, and then wound on a thread tube.

ケイ素強度比(K2/K1)、耐炎化炉の汚染、耐炎化時の毛羽、炭素化炉の汚染を以下に示されるように評価した。結果を表1の「ケイ素強度比K2/K1」欄、「耐炎化炉の汚染」欄、「耐炎化時の毛羽」欄、「炭素化炉の汚染」欄に示す。 The silicon strength ratio (K2 / K1), contamination of the flame-resistant furnace, fluff during flame resistance, and contamination of the carbonization furnace were evaluated as shown below. The results are shown in the "Silicon strength ratio K2 / K1" column, the "Flame resistance furnace contamination" column, the "Fluff during flame resistance" column, and the "Carbonization furnace contamination" column in Table 1.

試験区分3(評価)
・ケイ素強度比(K2/K1)の測定条件
試験区分2において得られた炭素繊維前駆体、及び試験区分2において得られた炭素繊維前駆体を150〜240℃の間、昇温速度5℃/minの温度勾配で昇温させ、耐炎化炉で空気雰囲気下、240℃1時間耐炎化処理して得られた耐炎化繊維を使用した。それぞれ1.5cmにカットしたものを走査型蛍光X線元素分析装置(リガク社製:ZSX Primus)を用いて蛍光X線にてケイ素元素強度K1及びK2を測定した。得られたケイ素に由来する信号の検出ピーク強度の値よりケイ素強度比(K2/K1)を求めた。
Test category 3 (evaluation)
-Measurement conditions for silicon strength ratio (K2 / K1) The carbon fiber precursor obtained in Test Category 2 and the carbon fiber precursor obtained in Test Category 2 were heated at a heating rate of 5 ° C./40 ° C. between 150 and 240 ° C. The flame-resistant fiber obtained by raising the temperature with a temperature gradient of min and performing a flame-resistant treatment at 240 ° C. for 1 hour in an air atmosphere in a flame-resistant furnace was used. The silicon element intensities K1 and K2 were measured by fluorescent X-rays using a scanning fluorescent X-ray elemental analyzer (manufactured by Rigaku Corporation: ZSX Primus), which was cut to 1.5 cm each. The silicon intensity ratio (K2 / K1) was determined from the value of the detected peak intensity of the signal derived from the obtained silicon.

・耐炎化炉の汚染
シリカ付着による耐炎化炉の清掃周期について次の基準で評価した。清掃周期が長いものが、耐炎化炉内のシリカの付着が少ないことを示す。
・ Contamination of flame-resistant furnace The cleaning cycle of the flame-resistant furnace due to silica adhesion was evaluated according to the following criteria. A longer cleaning cycle indicates less silica adhesion in the flameproof furnace.

◎:3週間以上4週間未満で清掃
○:2週間以上3週間未満で清掃
×:2週間未満で清掃
・耐炎化時の毛羽
耐炎化工程通過後の毛羽立ちを以下の基準で目視で確認評価した。
⊚: Cleaning in 3 weeks or more and less than 4 weeks ○: Cleaning in 2 weeks or more and less than 3 weeks ×: Cleaning in less than 2 weeks ・ Fluffing during flameproofing The fluffing after passing through the flameproofing process was visually confirmed and evaluated according to the following criteria. ..

◎:毛羽立ちがほとんど見られず操業性も良好なもの
○:わずかな毛羽立ちが見られるが操業性に影響はないもの
×:毛羽が目立ち糸の巻きつきが発生して操業性に影響したもの
・炭素化炉の汚染
シリカ付着による炭素化炉の清掃周期について次の基準で評価した。清掃周期が長いものが、炭素化炉内のシリカの付着が少ないことを示す。
◎: Almost no fluffing and good operability ○: Slight fluffing but no effect on operability ×: Fluff is conspicuous and wrapping of yarn occurs to affect operability ・Contamination of carbonization furnace The cleaning cycle of carbonization furnace due to silica adhesion was evaluated according to the following criteria. A longer cleaning cycle indicates less silica adhesion in the carbonization furnace.

◎:2か月以上で清掃なしで操業可能
○:1か月以上2か月未満で清掃
×:1か月未満で清掃
表1の各比較例に対する各実施例の評価結果からも明らかなように、本発明の処理剤によると、耐炎化炉の汚染及び耐炎化繊維の毛羽を抑制できる。また、炭素化炉の汚染を抑制できる。
⊚: Can be operated without cleaning in 2 months or more ○: Cleaning in 1 month or more and less than 2 months ×: Cleaning in less than 1 month As is clear from the evaluation results of each example for each comparative example in Table 1. In addition, according to the treatment agent of the present invention, contamination of the flame-resistant furnace and fluffing of the flame-resistant fiber can be suppressed. In addition, pollution of the carbonization furnace can be suppressed.

Claims (8)

シリコーンを30〜60質量%含有する炭素繊維前駆体用処理剤であって、
前記炭素繊維前駆体用処理剤の1質量%水希釈液の25℃におけるpHが4.0以上且つ10.0以下のものであり、
ガスクロマトグラフィー質量分析法により求められる前記炭素繊維前駆体用処理剤中の低分子量シロキサンの濃度が6.9質量%以下であることを特徴とする炭素繊維前駆体用処理剤。
A treatment agent for carbon fiber precursors containing 30 to 60 % by mass of silicone.
The pH of the 1% by mass aqueous diluted solution of the carbon fiber precursor treatment agent at 25 ° C. is 4.0 or more and 10.0 or less.
A treatment agent for carbon fiber precursors, wherein the concentration of low molecular weight siloxane in the treatment agent for carbon fiber precursors determined by gas chromatography-mass spectrometry is 6.9% by mass or less.
前記炭素繊維前駆体用処理剤は、下記の耐炎化処理前ケイ素強度(K1)及び下記の耐炎化処理後ケイ素強度(K2)より求められるケイ素強度比K2/K1が0.4超のものである請求項1に記載の炭素繊維前駆体用処理剤。
耐炎化処理前ケイ素強度(K1)は、前記炭素繊維前駆体用処理剤が付着している炭素繊維前駆体から蛍光X線元素分析により測定されるケイ素の強度を示す。
耐炎化処理後ケイ素強度(K2)は、前記炭素繊維前駆体用処理剤が付着している前記炭素繊維前駆体を耐炎化処理して得られる耐炎化糸から蛍光X線元素分析により測定されるケイ素の強度を示す。
The treatment agent for carbon fiber precursor has a silicon strength ratio K2 / K1 of more than 0.4, which is obtained from the following silicon strength before flame resistance treatment (K1) and the following silicon strength after flame resistance treatment (K2). The treatment agent for a carbon fiber precursor according to claim 1.
The pre-flame resistance treatment silicon strength (K1) indicates the strength of silicon measured by fluorescent X-ray elemental analysis from the carbon fiber precursor to which the treatment agent for carbon fiber precursor is attached.
The silicon strength (K2) after the flame-resistant treatment is measured by fluorescent X-ray element analysis from the flame-resistant yarn obtained by performing the flame-resistant treatment on the carbon fiber precursor to which the treatment agent for the carbon fiber precursor is attached. Shows the strength of silicon.
前記ケイ素強度比K2/K1が、0.5〜0.95を満たすものである請求項2に記載の炭素繊維前駆体用処理剤。 The treatment agent for a carbon fiber precursor according to claim 2, wherein the silicon strength ratio K2 / K1 satisfies 0.5 to 0.95. 更に、非イオン界面活性剤を含む請求項1〜3のいずれか一項に記載の炭素繊維前駆体用処理剤。 The treatment agent for a carbon fiber precursor according to any one of claims 1 to 3, further comprising a nonionic surfactant. 前記非イオン界面活性剤が、分岐アルコールのアルキレンオキサイド付加物を含むものである請求項4に記載の炭素繊維前駆体用処理剤。 The treatment agent for a carbon fiber precursor according to claim 4, wherein the nonionic surfactant contains an alkylene oxide adduct of a branched alcohol. 前記シリコーンが、アミノ変性シリコーンを含むものである請求項1〜5のいずれか一項に記載の炭素繊維前駆体用処理剤。 The treatment agent for a carbon fiber precursor according to any one of claims 1 to 5, wherein the silicone contains an amino-modified silicone. 請求項1〜6のいずれか一項に記載の炭素繊維前駆体用処理剤が付着していることを特徴とする炭素繊維前駆体。 A carbon fiber precursor to which the treatment agent for a carbon fiber precursor according to any one of claims 1 to 6 is attached. 請求項7に記載の炭素繊維前駆体を耐炎化処理することを特徴とする耐炎化繊維の製造方法。 A method for producing a flame-resistant fiber, which comprises treating the carbon fiber precursor according to claim 7 with a flame-resistant treatment.
JP2020021416A 2020-02-12 2020-02-12 Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber Active JP6798734B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020021416A JP6798734B1 (en) 2020-02-12 2020-02-12 Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber
CN202110168089.2A CN112962317A (en) 2020-02-12 2021-02-07 Treating agent for carbon fiber precursor, and method for producing refractory fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021416A JP6798734B1 (en) 2020-02-12 2020-02-12 Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber

Publications (2)

Publication Number Publication Date
JP6798734B1 true JP6798734B1 (en) 2020-12-09
JP2021127533A JP2021127533A (en) 2021-09-02

Family

ID=73646822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021416A Active JP6798734B1 (en) 2020-02-12 2020-02-12 Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber

Country Status (2)

Country Link
JP (1) JP6798734B1 (en)
CN (1) CN112962317A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411296B1 (en) 2023-07-27 2024-01-11 竹本油脂株式会社 Treatment agent for carbon fiber precursor and carbon fiber precursor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876096B (en) * 2009-11-26 2012-05-09 中复神鹰碳纤维有限责任公司 Production method of proto-filament oiling agent in carbon fiber production process
JP2012102429A (en) * 2010-11-10 2012-05-31 Matsumoto Yushi Seiyaku Co Ltd Oil agent for acrylic fiber for producing carbon fiber, acrylic fiber for producing carbon fiber and method for producing carbon fiber
EP2821544B1 (en) * 2012-03-02 2018-05-16 Matsumoto Yushi-Seiyaku Co., Ltd. Acrylic-fiber finish for carbon-fiber production, acrylic fiber for carbon-fiber production, and carbon-fiber production method
CN103806131A (en) * 2012-11-06 2014-05-21 中国科学院化学研究所 Organosilicon spinning oil agent for preparing polyacrylonitrile-based carbon fibers
JP6510299B2 (en) * 2015-04-10 2019-05-08 帝人株式会社 Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
JP2015221957A (en) * 2015-06-30 2015-12-10 三菱レイヨン株式会社 Carbon fiber precursor acrylic fiber bundle and manufacturing method therefor
CN105297427B (en) * 2015-10-23 2017-07-04 威海新元化工有限公司 A kind of compound for improving amino-modified silicone oil based carbon fiber finish heat resistance and its preparation and application
WO2017169632A1 (en) * 2016-03-30 2017-10-05 松本油脂製薬株式会社 Acrylic fiber treatment agent and use thereof

Also Published As

Publication number Publication date
JP2021127533A (en) 2021-09-02
CN112962317A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
CN111676700B (en) Treatment agent for carbon fiber precursor and carbon fiber precursor
CN113677847B (en) Aqueous liquid of treating agent for carbon fiber precursor, and carbon fiber precursor
JP6798734B1 (en) Treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing flame-resistant fiber
JP2023164559A (en) Treatment agent for carbon fiber precursor and carbon fiber precursor
US11447634B2 (en) Treatment agent for carbon fiber precursor and carbon fiber precursor
JP6587272B1 (en) Carbon fiber precursor treatment agent and carbon fiber precursor
KR102606808B1 (en) Treatment agents for synthetic fibers and synthetic fibers
JP6877797B1 (en) Acrylic resin fiber treatment agent and acrylic resin fiber
JP6984930B1 (en) Treatment agents for carbon fiber precursors and carbon fiber precursors
JP6587273B1 (en) Carbon fiber precursor treatment agent and carbon fiber precursor
WO2021251236A1 (en) Treatment agent for carbon fiber precursor, aqueous solution of treatment agent for carbon fiber precursor, carbon fiber precursor, and method for producing carbon fibers
CN114269983A (en) Treating agent, flame-retardant fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for producing same
JP2004143644A (en) Method for producing acrylic fiber for carbon fiber precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200915

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6798734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250