JP6796685B2 - How to manufacture a tubular body - Google Patents

How to manufacture a tubular body Download PDF

Info

Publication number
JP6796685B2
JP6796685B2 JP2019110597A JP2019110597A JP6796685B2 JP 6796685 B2 JP6796685 B2 JP 6796685B2 JP 2019110597 A JP2019110597 A JP 2019110597A JP 2019110597 A JP2019110597 A JP 2019110597A JP 6796685 B2 JP6796685 B2 JP 6796685B2
Authority
JP
Japan
Prior art keywords
tubular body
conductive member
stent
anode conductive
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019110597A
Other languages
Japanese (ja)
Other versions
JP2019171125A (en
Inventor
亮吾 東
亮吾 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2019110597A priority Critical patent/JP6796685B2/en
Publication of JP2019171125A publication Critical patent/JP2019171125A/en
Application granted granted Critical
Publication of JP6796685B2 publication Critical patent/JP6796685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、管状体の製造方法に関する。 The present invention relates to a method for producing a tubular body.

管状体、特に医療用の管状体は、一般に、血管その他の生体内管腔が狭窄あるいは閉塞することにより生じる様々な疾患を治療するための医療用具である。特に、ステントは、狭窄または閉塞部位等の病変部を内側から拡張し、その管腔内径を維持するために、病変部に留置する医療用具である。 Tubular bodies, especially medical tubular bodies, are generally medical devices for treating various diseases caused by the narrowing or obstruction of blood vessels or other in vivo lumens. In particular, a stent is a medical device that is placed in a lesion to expand the lesion such as a stenosis or occlusion site from the inside and maintain the inner diameter of the lumen.

ステントに代表される医療用管状体の表面は、非常に平滑であることが求められる。表面が粗いと人体内への移植中、もしくは、移植後において組織を傷つけたり、あるいは過度に刺激することによって、炎症の原因となりうるため、一般的にはステント製造の後工程において、表面を平滑に仕上げる加工が施される。 The surface of a medical tubular body represented by a stent is required to be very smooth. If the surface is rough, it can cause inflammation by damaging or overstimulating the tissue during or after transplantation into the human body, so the surface is generally smoothed in the post-stent manufacturing process. It is processed to finish.

医療用管状体の表面を加工する方法としては、電解研磨方法が好適に用いられている。 As a method for processing the surface of a medical tubular body, an electrolytic polishing method is preferably used.

例えば、特許文献1では、複数のアノードをステントの外周を囲むように等間隔で配置して、ステントを回転させ、ステントの内側に中央カソードを配置し、更に、ステントの外周の周りで湾曲外側カソードを用いることにより、ステントの内側表面および外側表面を同時に電解研磨する方法が提案されている。 For example, in Patent Document 1, a plurality of anodes are arranged at equal intervals so as to surround the outer periphery of the stent, the stent is rotated, a central cathode is arranged inside the stent, and further, curved outer side around the outer periphery of the stent. A method has been proposed in which the inner and outer surfaces of a stent are electrolyzed at the same time by using a cathode.

また、特許文献2では、ステントがローラの回転とともに回転して、アノード・ワイヤとステントとの間の電気接触が連続的に変化する電解研磨方法が提案されている。 Further, Patent Document 2 proposes an electrolytic polishing method in which a stent rotates with the rotation of a roller and the electrical contact between the anode wire and the stent changes continuously.

特表2003−522841号公報Special Table 2003-522841 特表2007−533845号公報Special Table 2007-533845

特許文献1及び特許文献2の電解研磨方法は、作業者が電解研磨作業中に電解液や電極に触れないため、安全に作業できる方法を提供するものの、複雑な装置が必要であって、そのため均一な電解液の液流が得られにくいという課題があった。更に、ステントを回転させることによって、ステントとアノード導電性部材との電気接点を移動させるが、ステントとアノード導電性部材と電気的に接している実質的な面積は広くないため、電流密度の不均一を生じやすく、電解研磨された表面に研磨が不均一な部分が発生してしまうという課題があった。 The electrolytic polishing methods of Patent Document 1 and Patent Document 2 provide a method in which an operator can work safely because the operator does not touch the electrolytic solution or the electrode during the electrolytic polishing operation, but a complicated device is required for this purpose. There is a problem that it is difficult to obtain a uniform flow of the electrolytic solution. Furthermore, by rotating the stent, the electrical contact between the stent and the anode conductive member is moved, but the actual area of electrical contact between the stent and the anode conductive member is not large, so that the current density is not high. There is a problem that uniformity is likely to occur, and a portion having non-uniform polishing is generated on the electrolyzed surface.

本発明は、上記の課題を解決するために、管状体の電解研磨において、簡易な方法及び装置を用いて、ムラを少なく均一に電解研磨を達成できる管状体の製造方法を提供することにある。 In order to solve the above problems, it is an object of the present invention to provide a method for producing a tubular body, which can achieve uniform electrolytic polishing with less unevenness by using a simple method and an apparatus in electrolytic polishing of a tubular body. ..

本発明者は、上記の課題解決のために鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、下記[1]〜[8]の管状体の製造方法を提供する。
[1]下記(a)工程および(b)工程を少なくとも1回以上含むことを特徴とする管状体の製造方法。
(a)管状体と電気的に接触するアノード導電性部材によって、管状体の内面を内側から支持して、管状体の外面を電解研磨する工程
(b)管状体と電気的に接触するアノード導電性部材によって、管状体の外面を外側から支持して、管状体の内面を電解研磨する工程
[2]前記(a)工程において、管状体の少なくとも一部が、基準内径から0.1mm以上2.0mm以下拡径した状態で管状体の内面でアノード導電部材と接触していることを特徴とする[1]に記載の管状体の製造方法。
[3]前記(b)工程において、管状体の少なくとも一部が、基準外径から0.1mm以上2.0mm以下縮径した状態で管状体の外面でアノード導電部材と接触していることを特徴とする[1]に記載の管状体の製造方法。
[4]前記(b)工程の回数が前記(a)工程の回数より少ないことを特徴とする[1]〜[3]のいずれかに記載の管状体の製造方法。
[5]前記(a)工程と前記(b)工程を順次行うこと1回以上繰り返すことを特徴とする[1]〜[4]のいずれかに記載の管状体の製造方法。
[6](b)工程の1回の電解研磨時間が(a)工程の1回の電解研磨時間よりも短いことを特徴とする[5]に記載の管状体の製造方法。
[7]前記(a)工程において、10秒以上60秒以下の範囲で電圧を供給し電解研磨し、前記(b)工程において、3秒以上10秒以下の範囲で電圧を供給して電解研磨する工程を含むことを特徴とする[6]に記載の管状体の製造方法。
[8]前記管状体がステントである[1]〜[7]のいずれかに記載の医療用管状体の製造方法。
The present inventor has completed the present invention as a result of diligent studies for solving the above problems. That is, the present invention provides the following methods for producing tubular bodies [1] to [8].
[1] A method for producing a tubular body, which comprises the following steps (a) and (b) at least once.
(A) A step of electrolyzing the outer surface of the tubular body by supporting the inner surface of the tubular body from the inside by an anode conductive member that makes electrical contact with the tubular body (b) Anode conductivity that makes electrical contact with the tubular body. A process in which the outer surface of the tubular body is supported from the outside by a sex member and the inner surface of the tubular body is electrolyzed.
[2] In the step (a), at least a part of the tubular body is in contact with the anode conductive member on the inner surface of the tubular body in a state where the diameter is expanded by 0.1 mm or more and 2.0 mm or less from the reference inner diameter. The method for producing a tubular body according to [1].
[3] In the step (b), at least a part of the tubular body is in contact with the anode conductive member on the outer surface of the tubular body in a state where the diameter is reduced by 0.1 mm or more and 2.0 mm or less from the reference outer diameter. The method for producing a tubular body according to [1].
[4] The method for producing a tubular body according to any one of [1] to [3], wherein the number of steps (b) is less than the number of steps (a).
[5] The method for producing a tubular body according to any one of [1] to [4], wherein the step (a) and the step (b) are sequentially performed once or more.
[6] The method for producing a tubular body according to [5], wherein one electrolytic polishing time in step (b) is shorter than one electrolytic polishing time in step (a).
[7] In the step (a), a voltage is supplied in a range of 10 seconds or more and 60 seconds or less for electrolytic polishing, and in the step (b), a voltage is supplied in a range of 3 seconds or more and 10 seconds or less for electrolytic polishing. The method for producing a tubular body according to [6], which comprises a step of:
[8] The method for producing a medical tubular body according to any one of [1] to [7], wherein the tubular body is a stent.

本発明によれば、簡易な方法及び装置を用いて、ムラなく均一に電解研磨を施すことができるため、平滑性に優れる管状体を製造することができる。 According to the present invention, electropolishing can be performed evenly and uniformly using a simple method and apparatus, so that a tubular body having excellent smoothness can be produced.

従来の一般的な電解研磨方法を示す概略図である。It is a schematic diagram which shows the conventional general electrolytic polishing method. 本発明の実施の一形態である電解研磨方法を示す概略図である。It is a schematic diagram which shows the electrolytic polishing method which is one Embodiment of this invention. 図2の切断面A―A’における断面図である。It is sectional drawing in the cut surface AA'in FIG. 本発明の実施の一形態である電解研磨方法を示す概略図である。It is a schematic diagram which shows the electrolytic polishing method which is one Embodiment of this invention. 図4の切断面B−B’における断面図である。It is sectional drawing in the cut surface BB'in FIG.

本発明の管状体の製造方法は、アノード導電性部材を管状体の内面と接触させて管状体を支持しつつ外面を電解研磨する工程と、アノード導電性部材を管状体の外面と接触させて管状体を支持しつつ管状体の内面を電解研磨する工程を各々1回以上含んでいる製造方法である。 The method for producing a tubular body of the present invention includes a step of bringing the anode conductive member into contact with the inner surface of the tubular body to electropolish the outer surface while supporting the tubular body, and contacting the anode conductive member with the outer surface of the tubular body. It is a manufacturing method including one or more steps of electrolytically polishing the inner surface of the tubular body while supporting the tubular body.

このように、管状体の内面と外面を別々に研磨することによって、均一な電流密度分布下で研磨処理できるため、平滑性の優れた管状体を製造することができる。 By polishing the inner surface and the outer surface of the tubular body separately in this way, the polishing process can be performed under a uniform current density distribution, so that a tubular body having excellent smoothness can be manufactured.

尚、本発明では、内面を研磨する工程と外面を研磨する工程を各々1回以上含んでいれば良く、内面を先に研磨してもよいし、外面を先に研磨してもよい。また、外面あるいは内面のいずれかを複数回連続的に研磨した後に、他面を研磨してもよい。 In the present invention, the step of polishing the inner surface and the step of polishing the outer surface may be included at least once, and the inner surface may be polished first or the outer surface may be polished first. Further, either the outer surface or the inner surface may be continuously polished a plurality of times, and then the other surface may be polished.

以下に、本発明に係る管状体の製造方法として、管状体としてステントを例として実施の一形態について図を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, as a method for producing a tubular body according to the present invention, an embodiment using a stent as a tubular body as an example will be described in detail with reference to the drawings, but the present invention is not limited thereto.

<管状体>
管状体、特に医療用の管状体には、例えば、(イ)1本の線状の金属もしくは高分子材料からなるコイル状のタイプ、(ロ)金属チューブをレーザーなどによって切り抜き加工したタイプ、(ハ)線状の部材をレーザーなどで溶接して組み立てたタイプ、(ニ)複数の線状金属を織って作ったタイプ等がある。
本発明に係る医療用管状体(以下、管状体と称することがある。)としては、例えば、体内管腔構造に挿入される大きさである第1の径から、管状体の外表面の少なくとも一部が血管壁に接触する第2の径まで拡径する管状体が挙げられる。特に、血管、尿管、胆管等の体内管腔構造の形成術に用いられる医療用管状体としては、ステントを好ましく用いることが出来る。
<Tubular body>
For tubular bodies, especially medical tubular bodies, for example, (a) a coil-shaped type made of a single linear metal or polymer material, (b) a metal tube cut out by a laser or the like, ( C) There are types that are assembled by welding linear members with a laser or the like, and (d) types that are made by weaving multiple linear metals.
The medical tubular body (hereinafter, may be referred to as a tubular body) according to the present invention includes, for example, at least the outer surface of the tubular body from a first diameter which is a size inserted into the internal luminal structure. Examples include a tubular body that expands to a second diameter, part of which contacts the blood vessel wall. In particular, a stent can be preferably used as a medical tubular body used for plasty of an internal luminal structure such as a blood vessel, a ureter, and a bile duct.

ステントに用いられる材料としては、拡径、縮径などの変形時や留置時に耐えうる材料であれば特に限定されないが、医療用ステンレスである316Lステンレス、タンタル、Co−Cr(コバルトクロム)合金、Ni−Ti(ニッケルチタン)合金等を好ましく用いることができる。 The material used for the stent is not particularly limited as long as it can withstand deformation such as diameter expansion and diameter reduction and indwelling, but it is medical stainless steel such as 316L stainless steel, tantalum, and Co-Cr (cobalt chromium) alloy. A Ni—Ti (nickel titanium) alloy or the like can be preferably used.

金属製のステントを製造する方法としては、チューブ状材料をレーザーで網目状に切り抜き加工した後、電解研磨を行う方法を好ましく用いることができる。 As a method for producing a metal stent, a method in which a tubular material is cut out in a mesh shape by a laser and then electropolished can be preferably used.

電解研磨は、ステントの屈曲した線状部分であるストラット部分のレーザー加工、あるいはレーザー加工後の熱処理等により生成した表面酸化皮膜の除去や、ストラットの断面の鋭利なエッジの丸め(ラウンド形状)加工等を目的として行われる。電解研磨は、金属溶出の低減、疲労特性の向上、清潔性の向上等の様々な目的のために特に最終の仕上げの工程として施されることが好ましい。 Electropolishing involves laser machining of the strut part, which is the bent linear part of the stent, removal of the surface oxide film generated by heat treatment after laser machining, and rounding (round shape) of the sharp edges of the strut cross section. It is done for the purpose of. Electropolishing is preferably performed as a final finishing step for various purposes such as reducing metal elution, improving fatigue properties, and improving cleanliness.

<アノード導電性部材>
アノード導電性部材13の材料としては、十分な導電性を有していれば特に限定されないが、例えば、ステンレス鋼、チタン、銅、アルミニウム、白金、金等の金属あるいはそれらの合金を挙げることができる。
<Anode conductive member>
The material of the anode conductive member 13 is not particularly limited as long as it has sufficient conductivity, and examples thereof include metals such as stainless steel, titanium, copper, aluminum, platinum, and gold, or alloys thereof. it can.

アノード導電性部材13の形状は、ステント14の内面もしくは外面を支持可能であれば、例えば、板状、芯状、棒状、またはワイヤ状であってもよいし、図3及び図5で示したパイプ状の構造でもよい。電気接点18の面積を大きくとることができる点で、パイプ状のアノード導電性部材を好ましく用いることが出来る。 The shape of the anode conductive member 13 may be, for example, a plate shape, a core shape, a rod shape, or a wire shape as long as it can support the inner surface or the outer surface of the stent 14, and is shown in FIGS. 3 and 5. It may have a pipe-like structure. A pipe-shaped anode conductive member can be preferably used in that the area of the electrical contact 18 can be increased.

<カソード>
カソード16の材料としては、十分な導電性を有していれば特に限定されないが、例えば、ステンレス鋼、チタン、銅、アルミニウム、白金、金等の金属あるいはそれらの合金を挙げることができる。
<Cathode>
The material of the cathode 16 is not particularly limited as long as it has sufficient conductivity, and examples thereof include metals such as stainless steel, titanium, copper, aluminum, platinum, and gold, or alloys thereof.

カソード16の形状としては、ステント14が電解研磨可能であれば特に限定されないが、例えば、板状、芯状、棒状、ワイヤ状等を挙げる事ができ、カソード16の表面積を大きくとるために、また電解研磨時に発生した気泡、温度変化や液中イオンの濃度勾配を避ける目的で、カソード16にメッシュ形状やパンチング形状を形成させてもよい。 The shape of the cathode 16 is not particularly limited as long as the stent 14 can be electropolished, but examples thereof include a plate shape, a core shape, a rod shape, a wire shape, and the like, in order to increase the surface area of the cathode 16. Further, a mesh shape or a punching shape may be formed on the cathode 16 for the purpose of avoiding air bubbles, temperature changes and concentration gradients of ions in the liquid generated during electrolytic polishing.

<電解研磨方法>
図1には、ステントに電極を接触させて電解研磨する従来の一般的なステントの電解研磨方法を示している。
<Electropolishing method>
FIG. 1 shows a conventional general electrolytic polishing method for a stent in which an electrode is brought into contact with the stent for electrolytic polishing.

電解研磨は、電解液槽15に貯留された電解液17中において、導電性ワイヤ12aで電源11のプラス極と接続されたアノード導電性部材13が被研磨物であるステント14に接している。また、導電性ワイヤ12bで電源11のマイナス極と接続されたカソード16がステント14から乖離して設置される。このような配置状態において、アノード導電性部材13とカソード16との間に電圧が印加されると、アノードとして作用するステント14において表面の金属元素が電解液17中に溶解する。これにより、ステントは、電解研磨され、表面が平滑になりに光沢を生じさせることができる。 In the electrolytic polishing, in the electrolytic solution 17 stored in the electrolytic solution tank 15, the anode conductive member 13 connected to the positive electrode of the power supply 11 by the conductive wire 12a is in contact with the stent 14 to be polished. Further, the cathode 16 connected to the negative electrode of the power supply 11 by the conductive wire 12b is installed so as to be separated from the stent 14. When a voltage is applied between the anode conductive member 13 and the cathode 16 in such an arrangement state, the metal element on the surface of the stent 14 acting as the anode dissolves in the electrolytic solution 17. As a result, the stent can be electropolished to make the surface smooth and glossy.

しかしながら、従来の一般的な電解研磨方法では、ステント14とアノード導電性部材13との電気接点18の領域は研磨されず、また、液槽内において電気接点周辺領域は、他の領域と比べて電流密度が大きく増大するため、液槽内の電流密度が不均一となり、その結果、研磨不均一(研磨ムラ)が発生してしまう傾向があった。 However, in the conventional general electropolishing method, the region of the electrical contact 18 between the stent 14 and the anode conductive member 13 is not polished, and the region around the electrical contact in the liquid tank is compared with other regions. Since the current density is greatly increased, the current density in the liquid tank becomes non-uniform, and as a result, polishing non-uniformity (polishing unevenness) tends to occur.

図2〜図5は、本発明の実施の一形態の概略図及び断面図を示したものである。
図2、図3には、本発明の(a)工程であるステント14の内面にアノード導電性部材13を接触させた状態でステント14の外面を電解研磨する工程を示している。
2 to 5 show a schematic view and a cross-sectional view of an embodiment of the present invention.
2 and 3 show a step of electrolytic polishing the outer surface of the stent 14 in a state where the anode conductive member 13 is in contact with the inner surface of the stent 14, which is the step (a) of the present invention.

一方、図4、図5には、本発明の(b)工程であるステント14の外面にアノード導電性部材13を接触させた状態でステント14の内面を電解研磨する工程を示している。
前記(a)工程及び(b)工程を各々1回以上含むように電解研磨を実施することで、ステント14の外面及び内面ともにムラ無く均一に電解研磨を行うことが出来る。
On the other hand, FIGS. 4 and 5 show a step of electrolytically polishing the inner surface of the stent 14 in a state where the anode conductive member 13 is in contact with the outer surface of the stent 14, which is the step (b) of the present invention.
By performing electropolishing so as to include each of the steps (a) and (b) at least once, it is possible to perform electropolishing uniformly on both the outer and inner surfaces of the stent 14.

尚、(a)工程を先に行ってもよいし、(b)工程を先に行ってもよい。また、(a)工程あるいは(b)工程のいずれか一方を複数回連続的に行った後に、他方の工程を行うこともできる。 The step (a) may be performed first, or the step (b) may be performed first. Further, it is also possible to perform either the step (a) or the step (b) continuously a plurality of times and then perform the other step.

本発明の製造方法においては、表面の平滑性に優れる点や均一な寸法のステントが得られやすい点で、ステント14とアノード導電性部材13とが接する電気接点18の全面積は、ステント14の内面積もしくは外面積の少なくとも50%以上で接していることが好ましい。電気接点18の面積を十分に大きくとることで、ステント14周辺において均一な電解液の電流密度を得られやすい。 In the manufacturing method of the present invention, the total area of the electrical contact 18 in which the stent 14 and the anode conductive member 13 are in contact with each other is the total area of the stent 14 in that the surface smoothness is excellent and a stent having uniform dimensions can be easily obtained. It is preferable that they are in contact with each other at least 50% or more of the inner area or the outer area. By making the area of the electrical contact 18 sufficiently large, it is easy to obtain a uniform current density of the electrolytic solution around the stent 14.

電解研磨中にステント14を塑性変形や破断を生じさせることなく固定しやすく、電流密度の局所ムラも生じにくいという観点で、(a)工程においては、アノード導電性部材13とステント14を接触させる際に、ステント14の少なくとも一部を、基準内径から拡径した状態で接触させることが好ましく、同様に(b)工程においては、ステント14の少なくとも一部を、基準外径から縮径した状態で接触させることが好ましい。 In the step (a), the anode conductive member 13 and the stent 14 are brought into contact with each other from the viewpoint that the stent 14 can be easily fixed without causing plastic deformation or breakage during electrolytic polishing and local unevenness of the current density is unlikely to occur. At that time, it is preferable to bring at least a part of the stent 14 into contact with the diameter expanded from the reference inner diameter. Similarly, in the step (b), at least a part of the stent 14 is reduced from the reference outer diameter. It is preferable to make contact with.

特に、安定的にステントを固定させやすく、平滑な研磨面が得られやすい点で、0.1mm以上2.0mm以下拡径あるいは縮径した状態で接触していることが好まく、0.5mm以上1.0mm以下拡径あるいは縮径した状態で接触させることが特に好ましい。 In particular, in that it is easy to stably fix the stent and to obtain a smooth polished surface, it is preferable that the stent is in contact with the diameter expanded or reduced by 0.1 mm or more and 2.0 mm or less. It is particularly preferable to make contact in a state where the diameter is expanded or reduced by 1.0 mm or more.

ステント14をアノード導電性部材13で押圧することで、接触がより強固になり、電流がより流れやすくなることで、電気接点18周辺領域の電流密度が均一になりやすく、ステント14周辺の電解液の電流密度を均一にしやすいため、研磨ムラの少ない優れた平滑性を有する研磨面や、ムラの少ない均一な寸法のステントを得ることができる。 By pressing the stent 14 with the anode conductive member 13, the contact becomes stronger and the current flows more easily, so that the current density in the region around the electrical contact 18 tends to become uniform, and the electrolytic solution around the stent 14 becomes uniform. Since it is easy to make the current density uniform, it is possible to obtain a polished surface having excellent smoothness with less uneven polishing and a stent having uniform dimensions with less unevenness.

一般的な冠状動脈及び/又は血管内ステントは、長さ約7〜約200mm、直径約1〜約12mmの範囲で設計され得るが、前記範囲外のサイズのステント14であっても、本発明は拡径もしくは縮径された状態となる様にアノード導電性部材13に接触させることが好ましい。 General coronary artery and / or intravascular stents can be designed in the range of about 7 to about 200 mm in length and about 1 to about 12 mm in diameter, but the present invention even for stents 14 of sizes outside the above range. Is preferably brought into contact with the anode conductive member 13 so that the diameter is expanded or reduced.

尚、本発明における基準内径または基準外径とは、医療用管状体の製造における電解研磨前の管状体の内面の直径(以下、内径と称することがある。)、または、管状体の外面の直径(以下、外径と称することがある。)を示す。 The reference inner diameter or reference outer diameter in the present invention is the diameter of the inner surface of the tubular body (hereinafter, may be referred to as the inner diameter) before electrolytic polishing in the manufacture of the medical tubular body, or the outer surface of the tubular body. Indicates the diameter (hereinafter, may be referred to as the outer diameter).

カソード16は、電解研磨の際、ステント14とアノード導電性部材13との接触している面に対し、逆の面側にステント14から乖離して配置される。例えば、(a)工程において、カソード16はステント14の外周の周囲を囲むようにステント14から乖離して配置される。 During electropolishing, the cathode 16 is arranged on the opposite surface side of the surface in contact between the stent 14 and the anode conductive member 13 so as to be separated from the stent 14. For example, in step (a), the cathode 16 is arranged so as to surround the outer circumference of the stent 14 so as to be separated from the stent 14.

更に、ステント14に連続的に一定の電場を与えやすい点で、カソード16はステント14との距離(以下、電極間距離と称することがある。)が一定となるようにステント16の外周面の形状と同様に湾曲した形状を有していることが好ましい。 Further, the cathode 16 has a constant distance from the stent 14 (hereinafter, may be referred to as a distance between electrodes) on the outer peripheral surface of the stent 16 so that a constant electric field can be continuously applied to the stent 14. It is preferable to have a curved shape as well as the shape.

(a)工程において、ステント14とカソード16の電極間距離は、電解研磨時に発生した気泡、温度変化や液中イオンの濃度勾配等の影響を受けにくく平滑な処理表面が得られやすい点、電極同士の接触を防止する点、あるいは、単位時間当たりの電解研磨における研磨量をコントロールしやすい点などから、下限は10mm以上が好ましく、20mm以上がより好ましく、30mm以上が特に好ましく、上限は100mm以下が好ましく、90mm以下がより好ましく、80mm以下が特に好ましい。
(a)工程において、カソード16の個数は特に限定されないが、ステント14の全周を覆うように1つで構成されてもよいし、分割されて構成されていてもよい。
(a)工程において、カソード16の表面積は電子授受の観点から、ステント14の表面積に対して少なくとも2倍以上の表面積を有していることが好ましい。
In the step (a), the distance between the electrodes of the stent 14 and the cathode 16 is not easily affected by bubbles generated during electrolytic polishing, temperature changes, concentration gradients of ions in the liquid, etc., and a smooth treated surface can be easily obtained. The lower limit is preferably 10 mm or more, more preferably 20 mm or more, particularly preferably 30 mm or more, and the upper limit is 100 mm or less from the viewpoint of preventing contact between each other or easily controlling the amount of polishing in electrolytic polishing per unit time. Is preferable, 90 mm or less is more preferable, and 80 mm or less is particularly preferable.
In the step (a), the number of cathodes 16 is not particularly limited, but one may be configured so as to cover the entire circumference of the stent 14, or the stent 14 may be configured by being divided.
In the step (a), the surface area of the cathode 16 is preferably at least twice as large as the surface area of the stent 14 from the viewpoint of electron transfer.

(b)工程において、カソード16はステント14の内周の中央付近にステント14から乖離して配置されていることが好ましい。
更に、ステント14に連続的に一定の電場を与えやすい点で、カソード16は、ステント14との電極間距離が一定となるように湾曲した形状、もしくは、棒状やパイプ状の形状を有していることが好ましい。
In the step (b), it is preferable that the cathode 16 is arranged in the vicinity of the center of the inner circumference of the stent 14 so as to be separated from the stent 14.
Further, the cathode 16 has a curved shape so that the distance between the electrodes with the stent 14 is constant, or a rod-shaped or pipe-shaped shape in that it is easy to continuously apply a constant electric field to the stent 14. It is preferable to have.

尚、(b)工程において、ステント14とカソード16の電極間距離は、電極同士の接触を起こさない程度に長くしておくことが好ましい。
(b)工程において、カソード16の個数は特に限定されないが、ステント14の内面に取り囲まれるように1つで構成されてもよいし、分割されて構成されていてもよい。
In step (b), it is preferable that the distance between the electrodes of the stent 14 and the cathode 16 is long so as not to cause contact between the electrodes.
In the step (b), the number of cathodes 16 is not particularly limited, but one may be configured so as to be surrounded by the inner surface of the stent 14, or the number of cathodes 16 may be divided and configured.

液槽15は、電解液17を貯留する。電解液17は、特に限定されるものではなく、例えば、Ni−Ti(ニッケルチタン)合金の場合、公知のアルコール系または硫酸系の水溶液が挙げられる。なお、液槽15は、電解液17によって腐食等しない材料で形成されることが好ましい。また、電解研磨中は、電解研磨時に発生する気泡の分散や、温度変化や液中イオンの濃度勾配を抑制出来る点で、マグネチックスターラーや循環ポンプ等によって電解液17を撹拌することが好ましい。またそれとは別に、もしくは、共働させて、アノード導電性部材13自身に回転や揺動等の動作をさせることで、電解液17を撹拌してもよい。 The liquid tank 15 stores the electrolytic solution 17. The electrolytic solution 17 is not particularly limited, and examples thereof include known alcohol-based or sulfuric acid-based aqueous solutions in the case of Ni—Ti (nickel titanium) alloys. The liquid tank 15 is preferably made of a material that is not corroded by the electrolytic solution 17. Further, during electrolytic polishing, it is preferable to stir the electrolytic solution 17 with a magnetic stirrer, a circulation pump, or the like because it is possible to suppress the dispersion of bubbles generated during electrolytic polishing, the temperature change, and the concentration gradient of ions in the liquid. Alternatively, the electrolytic solution 17 may be agitated by causing the anode conductive member 13 itself to perform operations such as rotation and rocking separately or in cooperation with the anode conductive member 13.

電圧がアノードを構成するアノード導電性部材13とステント14及びカソード16に印可されて、ステント14を所望の滑らかさに電解研磨することができる。
尚、本発明における電解研磨時間とは、アノード導電性部材13をステント14に接触させて電圧を印可している時間である。
A voltage is applied to the anode conductive member 13, the stent 14 and the cathode 16 that make up the anode, allowing the stent 14 to be electropolished to the desired smoothness.
The electrolytic polishing time in the present invention is the time during which the anode conductive member 13 is brought into contact with the stent 14 and a voltage is applied.

電解研磨の好ましい電圧値は、平滑な表面が得られれば特に限定されないが、使用する金属材料、電解液に適した電圧値を選択すれば良いが、例えば、Ni−Ti(ニッケルチタン)合金の場合、10〜30Vの範囲が好ましい。 The preferable voltage value for electrolytic polishing is not particularly limited as long as a smooth surface can be obtained, but a voltage value suitable for the metal material to be used and the electrolytic solution may be selected. For example, Ni—Ti (nickel titanium) alloy In the case, the range of 10 to 30 V is preferable.

尚、電解研磨の回数は、平滑な表面が得られれば特に限定されないが、(a)工程および(b)工程を合計2〜30回繰り返すことが好ましい。 The number of times of electrolytic polishing is not particularly limited as long as a smooth surface can be obtained, but it is preferable to repeat the steps (a) and (b) a total of 2 to 30 times.

一般的な冠状動脈及び/又は血管内ステントは、直径約1〜約12mmの範囲で設計され得ることから、カソード16とステント14の電極間距離は、(a)工程よりも(b)工程において限定されるために実質的に小さくなることが多く、電解研磨時に発生した気泡を拡散させやすい、温度変化や液中イオンの濃度勾配を抑制させやすい点で、電解研磨回数は、(a)工程よりも(b)工程のほうが少ないことが好ましい。 Since a general coronary artery and / or an intravascular stent can be designed in the range of about 1 to about 12 mm in diameter, the distance between the electrodes of the cathode 16 and the stent 14 is set in the step (b) rather than the step (a). The number of times of electropolishing is the step (a) because it is often substantially smaller due to the limitation, it is easy to diffuse the bubbles generated during electropolishing, and it is easy to suppress the temperature change and the concentration gradient of ions in the liquid. It is preferable that the number of steps (b) is less than that of step (b).

また、ステント14の外面と内面の表面性ならびに寸法形状を保つ点で、(a)工程と(b)工程を順次経て行うことを1回以上繰り返すことが好ましい。 Further, in order to maintain the surface properties and the dimensional shape of the outer and inner surfaces of the stent 14, it is preferable to repeat the steps (a) and (b) sequentially one or more times.

(a)工程と(b)工程を順次行うことを1回以上繰り返す場合は、上述したように、カソード16とステント14の電極間距離は、(a)工程よりも(b)工程において限定されるために実質的に小さくなることが多いため、電解研磨時に発生した気泡を拡散させやすい、温度変化や液中イオンの濃度勾配を抑制させやすい点で、(a)工程の1回の電解研磨時間よりも(b)工程の1回の電解研磨時間ほうが短いことが好ましい。 When the steps (a) and (b) are sequentially repeated one or more times, the distance between the electrodes of the cathode 16 and the stent 14 is more limited in the step (b) than in the step (a), as described above. Therefore, since it is often substantially smaller, it is easy to diffuse bubbles generated during electrolytic polishing, and it is easy to suppress temperature changes and concentration gradients of ions in the liquid. Therefore, one-time electrolytic polishing in step (a) It is preferable that the time for one electrolytic polishing in step (b) is shorter than the time.

電圧を印可する時間、即ち、電解研磨時間としては、(a)工程においては、1回の電解研磨時間の下限が10秒以上であることが好ましく、20秒以上であることが特に好ましい、また上限は60秒以内が好ましく、40秒以内が特に好ましい。 As for the time for applying the voltage, that is, the electrolytic polishing time, in the step (a), the lower limit of one electrolytic polishing time is preferably 10 seconds or more, and particularly preferably 20 seconds or more. The upper limit is preferably 60 seconds or less, and particularly preferably 40 seconds or less.

(b)工程の1回の電解研磨時間としては、下限が3秒以上であることが好ましく、5秒以上であることが特に好ましい。また上限は10秒以下が好ましく、8秒以下が特に好ましい。 The lower limit of the electrolytic polishing time for one step (b) is preferably 3 seconds or more, and particularly preferably 5 seconds or more. The upper limit is preferably 10 seconds or less, and particularly preferably 8 seconds or less.

(a)工程あるいは(b)工程の工程ごとにステント14を電解液17から取り出し、アルコール、水、硝酸、またはそれらを組み合わせた溶液でステント14を洗浄することもできる。
電解研磨を数回繰り返し、最終的には、超音波浴中に室温で1〜30分間浸漬して洗浄するのが好ましい。
It is also possible to remove the stent 14 from the electrolytic solution 17 in each of the steps (a) or (b) and wash the stent 14 with alcohol, water, nitric acid, or a solution in which they are combined.
It is preferable to repeat electropolishing several times and finally to wash by immersing in an ultrasonic bath at room temperature for 1 to 30 minutes.

本発明の管状体の製造方法は、簡便に平滑な表面が得られやすいため、医療用の管状体に好ましく用いることが出来る。 The method for producing a tubular body of the present invention can be preferably used for a medical tubular body because a smooth surface can be easily obtained.

以上のように、本発明の実施の形態にかかるステントの製造方法について具体例を用いて説明したが、本発明は上記実施の形態によって制限を受けるものでなく、前・後記の主旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 As described above, the method for manufacturing a stent according to the embodiment of the present invention has been described using a specific example, but the present invention is not limited by the above-described embodiment and conforms to the gist of the above and the following. It is also possible to make changes to the extent that it is possible, and all of them are included in the technical scope of the present invention.

以下、実施例および比較例に基づいて本発明をより具体的に説明する。
(実施例1)
外径が8.0mmで内径が7.6mmのニッケルチタン合金製のステント14を用意した。
(a)工程
ステント14を外径が8.0mmのパイプ状のSUS304製のアノード導電性部材13に対してステント14が拡径(+0.4mmの拡径)するように挿通して、アノード導電性部材13の外面に対してステント14の内面の全面(ステントの内面積の100%)と接触させて固定した。
Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.
(Example 1)
A nickel titanium alloy stent 14 having an outer diameter of 8.0 mm and an inner diameter of 7.6 mm was prepared.
(A) Step The stent 14 is inserted through a pipe-shaped SUS304 anode conductive member 13 having an outer diameter of 8.0 mm so that the stent 14 has an enlarged diameter (+0.4 mm), and the anode is conductive. The outer surface of the sex member 13 was fixed in contact with the entire inner surface of the stent 14 (100% of the inner area of the stent).

電解液槽15内には、市販されているTi合金用の電解研磨溶液である電解液17を貯留し、ステント14との電極間距離が等距離(45mm〜55mm)になるように湾曲形状のSUS304製のカソード16を設置した。(なお、この電解液17の推奨電圧は20Vである。)
電圧20Vで30秒間、電解液17に対して電力供給し、この電解液17にステント14が浸されることで、ステント14の外表面の電解研磨が行われた。電力供給完了後、ステント14を水で洗浄して乾燥させ、ステント14とアノード導電性部材の電気接点18を変更する。
An electrolytic solution 17, which is a commercially available electrolytic polishing solution for Ti alloys, is stored in the electrolytic solution tank 15, and has a curved shape so that the distance between the electrodes of the stent 14 is equidistant (45 mm to 55 mm). A cathode 16 made of SUS304 was installed. (The recommended voltage of the electrolytic solution 17 is 20 V.)
Electric power was supplied to the electrolytic solution 17 at a voltage of 20 V for 30 seconds, and the stent 14 was immersed in the electrolytic solution 17 to perform electrolytic polishing of the outer surface of the stent 14. After the power supply is completed, the stent 14 is washed with water and dried to change the electrical contact 18 between the stent 14 and the anode conductive member.

(b)工程
ステント14を内径が7.6mmのパイプ状のSUS304製のアノード導電性部材13に対してステント14が縮径(−0.4mmの縮径)するように挿通して、アノード導電性部材13の内面に対してステント14の外面の全面(ステント外面積の100%)と接触させて固定した。
(B) Step The stent 14 is inserted through a pipe-shaped SUS304 anode conductive member 13 having an inner diameter of 7.6 mm so that the stent 14 has a reduced diameter (-0.4 mm diameter), and the anode is conductive. The inner surface of the sex member 13 was fixed in contact with the entire outer surface of the stent 14 (100% of the outer area of the stent).

電解液槽15内には、市販されているTi合金用の電解研磨溶液である電解液17を貯留し、ステント14との電極間距離が等距離(3mm〜4mm)になるように棒状のSUS304製のカソード16を設置した。(なお、この電解液17の推奨電圧は20Vである。)
電圧20Vで5秒間、電解液17に対して電力供給し、この電解液17にステント14が浸されることで、ステント14の内表面の電解研磨が行われた。電力供給完了後、ステント14を水で洗浄して乾燥させ、ステント14とアノード導電性部材の電気接点18を変更する。
In the electrolytic solution tank 15, an electrolytic solution 17, which is a commercially available electrolytic polishing solution for Ti alloys, is stored, and a rod-shaped SUS304 is provided so that the distance between the electrodes with the stent 14 is equidistant (3 mm to 4 mm). A cathode 16 made of titanium was installed. (The recommended voltage of the electrolytic solution 17 is 20 V.)
Electric power was supplied to the electrolytic solution 17 at a voltage of 20 V for 5 seconds, and the stent 14 was immersed in the electrolytic solution 17 to perform electrolytic polishing of the inner surface of the stent 14. After the power supply is completed, the stent 14 is washed with water and dried to change the electrical contact 18 between the stent 14 and the anode conductive member.

この後、(a)の工程を3回連続して実施した後、(b)の工程と(a)の工程を各々3回ずつ交互に実施した。 After that, the step (a) was carried out three times in succession, and then the steps (b) and (a) were alternately carried out three times each.

(比較例1)
外径が8.0mmで内径が7.6mmのニッケルチタン合金製のステント14を用意した。
(a)工程
ステント14をクリップ形状のSUS304製のアノード導電性部材13で固定した(ステントの内面の全面積の5%で接触)以外は、実施例1の(a)工程と同様の方法で、8回連続して繰り返し実施した。
(Comparative Example 1)
A nickel titanium alloy stent 14 having an outer diameter of 8.0 mm and an inner diameter of 7.6 mm was prepared.
(A) Step The same method as in step (a) of Example 1 except that the stent 14 was fixed with a clip-shaped SUS304 anode conductive member 13 (contact with 5% of the total area of the inner surface of the stent). , 8 times in a row.

(比較例2)
外径が8.0mmで内径が7.6mmのニッケルチタン合金製のステント14を用意した。
実施例1の(a)工程のみ、8回連続して繰り返し実施した。
(Comparative Example 2)
A nickel titanium alloy stent 14 having an outer diameter of 8.0 mm and an inner diameter of 7.6 mm was prepared.
Only the step (a) of Example 1 was repeated eight times in succession.

(比較例3)
外径が8.0mmで内径が7.6mmのニッケルチタン合金製のステント14を用意した。
実施例1の(b)工程のみ、8回連続して繰り返し実施した。
(Comparative Example 3)
A nickel titanium alloy stent 14 having an outer diameter of 8.0 mm and an inner diameter of 7.6 mm was prepared.
Only the step (b) of Example 1 was repeated eight times in succession.

(結果)
実施例1、ならびに、比較例1〜3の電解研磨方法の結果、いずれの例においても電解研磨は行えた。特に、実施例1では、外面も内面もステント14の表面が均一に光沢を示すまで研磨できた。
(result)
As a result of the electrolytic polishing methods of Example 1 and Comparative Examples 1 to 3, electrolytic polishing was possible in all of the examples. In particular, in Example 1, both the outer surface and the inner surface could be polished until the surface of the stent 14 was uniformly glossy.

一方、比較例1では、ステント14の外面も内面も表面は電解研磨を行えているものの、内面は外面に比べて研磨面にバリが残っており、ステント14の外面と内面に研磨ムラが見られた。 On the other hand, in Comparative Example 1, although the outer and inner surfaces of the stent 14 were electropolished, burrs remained on the polished surface of the inner surface as compared with the outer surface, and uneven polishing was observed on the outer and inner surfaces of the stent 14. Was done.

比較例2では、ステント14の外面の電解研磨は行えているものの、内面は外面に比べて研磨面にバリが残っており、ステント14の外面と内面に研磨ムラが見られた。 In Comparative Example 2, although the outer surface of the stent 14 was electropolished, burrs remained on the polished surface of the inner surface as compared with the outer surface, and uneven polishing was observed on the outer and inner surfaces of the stent 14.

比較例3では、ステント14の内面の電解研磨は行えているものの、外面は内面に比べて研磨面にバリが残っており、ステント14の外面と内面に研磨ムラが見られた。 In Comparative Example 3, although the inner surface of the stent 14 was electropolished, burrs remained on the polished surface of the outer surface as compared with the inner surface, and uneven polishing was observed on the outer and inner surfaces of the stent 14.

このことから、本発明の電解研磨方法は、簡易な方法により、ムラなく均一に電解研磨を達成できることがわかる。 From this, it can be seen that the electrolytic polishing method of the present invention can achieve uniform electrolytic polishing evenly by a simple method.

11 電源
12a、12b 導電性ワイヤ
13 アノード導電性部材
14 ステント
15 電解液槽
16 カソード
17 電解液
18 電気接点
11 Power supply 12a, 12b Conductive wire 13 Anode conductive member 14 Stent 15 Electrolyte tank 16 Cathode 17 Electrolyte 18 Electrical contact

Claims (17)

下記(a)工程および(b)工程を少なくとも1回以上含むことを特徴とする管状体の製造方法。
(a)管状体と電気的に接触するアノード導電性部材によって、管状体の内面の全周を内側から支持して、管状体の外面を電解研磨する工程
(b)管状体と電気的に接触するアノード導電性部材によって、管状体の外面を外側から支持して、管状体の内面を電解研磨する工
A method for producing a tubular body, which comprises the following steps (a) and (b) at least once.
(A) A step of electrolytically polishing the outer surface of the tubular body by supporting the entire inner surface of the tubular body from the inside by an anode conductive member that makes electrical contact with the tubular body (b) Electrical contact with the tubular body. the anode conductive member, the outer surface of the tubular body is supported from the outside, the inner surface of the tubular body as engineering for electropolishing
下記(a)工程および(b)工程を少なくとも1回以上含むことを特徴とする管状体の製造方法。A method for producing a tubular body, which comprises the following steps (a) and (b) at least once.
(a)管状体と電気的に接触するアノード導電性部材によって、管状体の内面を内側から支持して、管状体の外面を電解研磨する工程(A) A step of supporting the inner surface of the tubular body from the inside by an anode conductive member that electrically contacts the tubular body and electrolytically polishing the outer surface of the tubular body.
(b)管状体と電気的に接触するアノード導電性部材によって、管状体の外面の全周を外側から支持して、管状体の内面を電解研磨する工程(B) A step of electrolytically polishing the inner surface of the tubular body by supporting the entire outer surface of the tubular body from the outside by an anode conductive member that electrically contacts the tubular body.
下記(a)工程および(b)工程を少なくとも1回以上含むことを特徴とする管状体の製造方法。A method for producing a tubular body, which comprises the following steps (a) and (b) at least once.
(a)管状体と電気的に接触するアノード導電性部材によって、管状体の内面の全周を内側から支持して、管状体の外面を電解研磨する工程(A) A step of electrolytically polishing the outer surface of the tubular body by supporting the entire inner surface of the tubular body from the inside by an anode conductive member that electrically contacts the tubular body.
(b)管状体と電気的に接触するアノード導電性部材によって、管状体の外面の全周を外側から支持して、管状体の内面を電解研磨する工程(B) A step of electrolytically polishing the inner surface of the tubular body by supporting the entire outer surface of the tubular body from the outside by an anode conductive member that electrically contacts the tubular body.
前記(a)工程において、前記管状体の内面の全周を支持する前記アノード導電性部材が、単一のアノード導電性部材である請求項1または3に記載の管状体の製造方法。 Wherein (a) Engineering enough to Oite, the anode conductive member for supporting the entire circumference of the inner surface of the tubular body, the manufacturing method of the tubular body according to claim 1 or 3 which is a single anode conductive member .. 前記(b)工程において、前記管状体の外面の全周を支持する前記アノード導電性部材が、単一のアノード導電性部材である請求項2または3に記載の管状体の製造方法。The method for manufacturing a tubular body according to claim 2 or 3, wherein in the step (b), the anode conductive member that supports the entire outer surface of the tubular body is a single anode conductive member. 前記(a)工程で使用するアノード導電性部材と、前記(b)工程で使用するアノード導電性部材の少なくともいずれか一方がパイプ状である請求項1〜のいずれか一項に記載の管状体の製造方法。 The tubular according to any one of claims 1 to 5 , wherein at least one of the anode conductive member used in the step (a) and the anode conductive member used in the step (b) is pipe-shaped. How to make a body. 前記(a)工程において、前記管状体の少なくとも一部が基準内径から0.1mm以上2.0mm以下拡径した状態で、前記管状体の内面で前記アノード導電性部材と接触している請求項1〜のいずれか一項に記載の管状体の製造方法。 The claim that in step (a), at least a part of the tubular body is in contact with the anode conductive member on the inner surface of the tubular body in a state where the diameter is expanded by 0.1 mm or more and 2.0 mm or less from the reference inner diameter. The method for producing a tubular body according to any one of 1 to 6 . 前記(b)工程において、前記管状体の少なくとも一部が、基準外径から0.1mm以上2.0mm以下縮径した状態で前記管状体の外面で前記アノード導電性部材と接触している請求項1〜のいずれか一項に記載の管状体の製造方法。 Claim that at least a part of the tubular body is in contact with the anode conductive member on the outer surface of the tubular body in a state where the diameter is reduced by 0.1 mm or more and 2.0 mm or less from the reference outer diameter in the step (b). Item 8. The method for producing a tubular body according to any one of Items 1 to 7 . 前記(a)工程または前記(b)工程においてカソードを用いており、該カソードは、前記管状体の内面と外面のうち前記アノード導電性部材が接触している面とは逆の面側であって前記管状体から乖離して配置されている請求項1〜のいずれか一項に記載の管状体の製造方法。 A cathode is used in the step (a) or the step (b), and the cathode is on the inner surface and the outer surface of the tubular body opposite to the surface in contact with the anode conductive member. The method for manufacturing a tubular body according to any one of claims 1 to 8 , wherein the tubular body is arranged apart from the tubular body. 前記(a)工程において、前記カソードは前記管状体の外周面形状に沿って湾曲した形状である請求項に記載の管状体の製造方法。 The method for manufacturing a tubular body according to claim 9 , wherein in the step (a), the cathode has a shape curved along the outer peripheral surface shape of the tubular body. 前記(b)工程において、前記カソードは湾曲した形状、棒状、またはパイプ状である請求項または10に記載の管状体の製造方法。 The method for producing a tubular body according to claim 9 or 10 , wherein in the step (b), the cathode has a curved shape, a rod shape, or a pipe shape. 前記(a)工程または前記(b)工程において、前記カソードは、メッシュ形状またはパンチング形状を有している請求項11のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 9 to 11 , wherein the cathode has a mesh shape or a punching shape in the step (a) or the step (b). 前記(a)工程において、1の前記カソードによって前記管状体の外周全体を覆う請求項12のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 9 to 12 , wherein in the step (a), the entire outer circumference of the tubular body is covered with the cathode of 1. 前記(a)工程において、複数の前記カソードによって前記管状体の外周全体を覆う請求項12のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 9 to 12 , wherein in the step (a), the entire outer circumference of the tubular body is covered with the plurality of cathodes. 前記(b)工程において、1の前記カソードによって前記管状体の内周全体を覆う請求項14のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 9 to 14 , wherein in the step (b), the entire inner circumference of the tubular body is covered with the cathode of 1. 前記(b)工程において、複数の前記カソードによって前記管状体の内周全体を覆う請求項14のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 9 to 14 , wherein in the step (b), the entire inner circumference of the tubular body is covered with the plurality of cathodes. 前記管状体がステントである請求項1〜16のいずれか一項に記載の管状体の製造方法。 The method for producing a tubular body according to any one of claims 1 to 16 , wherein the tubular body is a stent.
JP2019110597A 2019-06-13 2019-06-13 How to manufacture a tubular body Active JP6796685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019110597A JP6796685B2 (en) 2019-06-13 2019-06-13 How to manufacture a tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019110597A JP6796685B2 (en) 2019-06-13 2019-06-13 How to manufacture a tubular body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015088714A Division JP6543076B2 (en) 2015-04-23 2015-04-23 Method of manufacturing tubular body

Publications (2)

Publication Number Publication Date
JP2019171125A JP2019171125A (en) 2019-10-10
JP6796685B2 true JP6796685B2 (en) 2020-12-09

Family

ID=68169141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019110597A Active JP6796685B2 (en) 2019-06-13 2019-06-13 How to manufacture a tubular body

Country Status (1)

Country Link
JP (1) JP6796685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990684B (en) * 2022-06-13 2023-09-26 深圳市金瑞凯利生物科技有限公司 Electrochemical polishing device and polishing method for tubular support

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186900A (en) * 1987-01-30 1988-08-02 Power Reactor & Nuclear Fuel Dev Corp Method and device for setting pipe to electrolytic polishing device for inside surface of pipe
JPH1018100A (en) * 1996-07-01 1998-01-20 Marui Mekki Kogyo Kk Electrolytic polishing equipment
US6375826B1 (en) * 2000-02-14 2002-04-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing stents and method
KR100849456B1 (en) * 2007-02-13 2008-07-30 인하대학교 산학협력단 Appratus for polishing a stent for medical
US8747649B2 (en) * 2011-05-13 2014-06-10 Abbott Cardiovascular Systems Inc. Electrochemical formation of foil-shaped stent struts
JP2012246513A (en) * 2011-05-25 2012-12-13 Kaneka Corp Stent polishing device
JP5796842B2 (en) * 2011-08-24 2015-10-21 株式会社カネカ Electropolishing apparatus and electropolishing method

Also Published As

Publication number Publication date
JP2019171125A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US6679980B1 (en) Apparatus for electropolishing a stent
US6375826B1 (en) Electro-polishing fixture and electrolyte solution for polishing stents and method
US7776189B2 (en) Method and apparatus for electropolishing metallic stents
JP6543076B2 (en) Method of manufacturing tubular body
US8323459B2 (en) Automated electropolishing process
US9255341B2 (en) Method, apparatus, and electrolytic solution for electropolishing metallic stents
JP6796685B2 (en) How to manufacture a tubular body
US7357854B1 (en) Process for electropolishing a device made from cobalt-chromium
JP6655609B2 (en) Electrolytic polishing apparatus for tubular body, anode conductive member for electrolytic polishing apparatus, and electrolytic polishing method for tubular body
JP5733216B2 (en) Method, apparatus and solution for electropolishing metal stents
JP5598481B2 (en) Method and solution for electropolishing stents made of high strength medical alloys
TW201215380A (en) Vascular stent manufacturing method
Kao et al. Surface processing technology for 316LVM stainless steel stents
JP2017214614A (en) Method for producing electrolytically polished metal compact
EP2407582B1 (en) Method and electrolytic solution for electropolishing stents made of high strength medical alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250