JP6794718B2 - Electrodeposition liquid for forming water-dispersed insulating film - Google Patents

Electrodeposition liquid for forming water-dispersed insulating film Download PDF

Info

Publication number
JP6794718B2
JP6794718B2 JP2016166752A JP2016166752A JP6794718B2 JP 6794718 B2 JP6794718 B2 JP 6794718B2 JP 2016166752 A JP2016166752 A JP 2016166752A JP 2016166752 A JP2016166752 A JP 2016166752A JP 6794718 B2 JP6794718 B2 JP 6794718B2
Authority
JP
Japan
Prior art keywords
electrodeposition
insulating film
polymer particles
water
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166752A
Other languages
Japanese (ja)
Other versions
JP2017115120A (en
Inventor
洵子 磯村
洵子 磯村
慎太郎 飯田
慎太郎 飯田
桜井 英章
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020187017392A priority Critical patent/KR102595402B1/en
Priority to CN201680074952.5A priority patent/CN108473813A/en
Priority to EP16878086.4A priority patent/EP3395917B1/en
Priority to PCT/JP2016/078424 priority patent/WO2017110188A1/en
Priority to US16/064,383 priority patent/US10800942B2/en
Priority to TW105131711A priority patent/TWI718183B/en
Publication of JP2017115120A publication Critical patent/JP2017115120A/en
Priority to JP2020119074A priority patent/JP6973576B2/en
Application granted granted Critical
Publication of JP6794718B2 publication Critical patent/JP6794718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4461Polyamides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Description

本発明は、絶縁電線等の絶縁物が備える絶縁皮膜を、電着法により形成する際に用いられる水分散型絶縁皮膜形成用電着液に関する。 The present invention relates to an electrodeposition liquid for forming an aqueous dispersion type insulating film, which is used when forming an insulating film provided by an insulating material such as an insulated electric wire by an electrodeposition method.

従来から、モーター、リアクトル、トランス等には、電線の表面が絶縁皮膜により被覆された絶縁電線等の絶縁物が用いられている。電線の表面に絶縁皮膜を形成する方法としては、浸漬法や電着法(電着塗装)等が知られている。浸漬法は、例えば被塗装体として平角状の導線等を用い、これを塗料に浸漬して引き上げた後、乾燥させる工程を繰り返し行って、所望の膜厚を有する絶縁皮膜を形成する方法である。一方、電着法は、電着塗料(電着液)に浸漬させた被塗装体と電着塗料に挿入した電極に直流電流を流すことで電気を帯びた塗料粒子を被塗装体側に析出させて絶縁皮膜を形成する方法である。 Conventionally, an insulating material such as an insulated electric wire whose surface is covered with an insulating film has been used for a motor, a reactor, a transformer and the like. As a method of forming an insulating film on the surface of an electric wire, a dipping method, an electrodeposition method (electrodeposition coating), and the like are known. The dipping method is a method of forming an insulating film having a desired film thickness by repeating a step of using, for example, a flat wire as an object to be coated, dipping it in a paint, pulling it up, and then drying it. .. On the other hand, in the electrodeposition method, electrically charged paint particles are deposited on the object to be coated by passing a direct current through the object to be coated immersed in the electrodeposition paint (electrodeposition liquid) and the electrodes inserted in the electrodeposition paint. This is a method of forming an insulating film.

電着法は、他の方法よりも、均一な膜厚で塗装するのが容易であり、また、焼き付け後に高い防錆力や密着性を持つ絶縁皮膜が形成できることから注目されており、様々な改良がなされている。例えば、電着法に用いられる塗料として、分子骨格中にシロキサン結合を有し、分子中にアニオン性基を有するブロック共重合ポリイミドの粒子であって、所定の平均粒径及び粒度分布を有する粒子を分散させたサスペンジョン型ポリイミド電着塗料が開示されている(例えば、特許文献1参照。)。この電着塗料では、長期保存しても変質しにくい優れた保存安定性を有するとともに、高い電着速度で、膜性状の均一性が高い電着皮膜を形成することができるとされている。 The electrodeposition method is attracting attention because it is easier to apply with a uniform film thickness than other methods, and it is possible to form an insulating film with high rust prevention and adhesion after baking. Improvements have been made. For example, as a coating material used in an electrodeposition method, particles of a block copolymer polyimide having a siloxane bond in the molecular skeleton and an anionic group in the molecule and having a predetermined average particle size and particle size distribution. A suspension-type polyimide electrodeposition coating material is disclosed (see, for example, Patent Document 1). It is said that this electrodeposition coating material has excellent storage stability that does not easily deteriorate even after long-term storage, and can form an electrodeposition coating film having high uniformity in film properties at a high electrodeposition rate.

また、電着法に用いられる電着材料として、ポリアミドイミド系材料を主成分として含有し、このポリアミドイミド系材料の分子鎖にポリジメチルシロキサンを導入してなる電着材料が開示されている(例えば、特許文献2参照。)。この電着材料では、所定の分子構造を有するポリアミドイミド系材料を使用することにより、特に、摺動部材等の塗装に求められる耐熱性を付与することができ、また、電着塗膜のひび割れ等を抑制できるとされている。 Further, as an electrodeposition material used in the electrodeposition method, an electrodeposition material containing a polyamide-imide-based material as a main component and introducing polydimethylsiloxane into the molecular chain of the polyamide-imide-based material is disclosed ( For example, see Patent Document 2.). In this electrodeposition material, by using a polyamide-imide-based material having a predetermined molecular structure, it is possible to impart heat resistance particularly required for coating sliding members and the like, and cracks in the electrodeposition coating film. Etc. are said to be able to be suppressed.

上記従来の特許文献1では、分子中にアニオン性基を有するポリイミド粒子を使用しているため、粒子の表面電位が大きく、粒子同士の静電反発力によって分散性が高くなる。そのため、調製後の電着液を数日保管しても粒子の凝集又は沈降の発生が抑制される。しかし、カルボキシル基若しくはスルホン酸基を有するジアミンを用いるか、或いはイミド結合に寄与しないカルボキシル基若しくはスルホン酸基を有するテトラカルボン酸無水物を用いる必要があることから、使用できるモノマーの種類が制限されてしまい、製造コストが高くなる。また、上記従来の特許文献2では、樹脂に水溶性ポリアミドイミドを使用しており、電着中に水に不溶性の連続膜が導体表面に形成される。このため、皮膜の形成がある程度進行すると、その後の電着効率が悪くなり、所望の厚さを有する絶縁皮膜の形成が困難になる等の問題があった。 In the above-mentioned conventional patent document 1, since polyimide particles having an anionic group in the molecule are used, the surface potential of the particles is large, and the dispersibility is improved by the electrostatic repulsive force between the particles. Therefore, even if the electrodeposited liquid after preparation is stored for several days, the occurrence of particle aggregation or sedimentation is suppressed. However, since it is necessary to use a diamine having a carboxyl group or a sulfonic acid group, or a tetracarboxylic acid anhydride having a carboxyl group or a sulfonic acid group that does not contribute to the imide bond, the types of monomers that can be used are limited. Therefore, the manufacturing cost becomes high. Further, in the above-mentioned conventional patent document 2, a water-soluble polyamide-imide is used as a resin, and a water-insoluble continuous film is formed on the conductor surface during electrodeposition. Therefore, if the formation of the film progresses to some extent, the subsequent electrodeposition efficiency deteriorates, and there is a problem that it becomes difficult to form an insulating film having a desired thickness.

このような従来技術が抱える問題について、本発明者らは、これまでに主鎖中にアニオン性基を持たないポリマー粒子を使用しつつも、分散安定性に優れた新たな電着液の開発に従事している。アニオン性基を持たないポリマー粒子は、アニオン性基を持たないがために表面電位が小さく、粒子同士の静電反発力が小さくなるため、電着液中における分散性が悪化し、粒子が凝集又は沈降しやすくなることが懸念される。このような問題について、新たに開発された電着液では、ポリマー粒子の平均粒径や粒度分布を所定の条件で制御することより、電着液中におけるポリマー粒子の良好な分散性が確保され、これによって数日保管してもポリマー粒子の凝集又は沈降の発生が抑制される。 With respect to the problems of the prior art, the present inventors have developed a new electrodeposition solution having excellent dispersion stability while using polymer particles having no anionic group in the main chain. Engaged in. Polymer particles that do not have anionic groups have a small surface potential because they do not have anionic groups, and the electrostatic repulsive force between the particles is small, so that the dispersibility in the electrodeposited liquid deteriorates and the particles aggregate. Or there is a concern that it will easily settle. With respect to such problems, in the newly developed electrodeposition solution, good dispersibility of the polymer particles in the electrodeposition solution is ensured by controlling the average particle size and particle size distribution of the polymer particles under predetermined conditions. As a result, the occurrence of aggregation or sedimentation of polymer particles is suppressed even after storage for several days.

特許第5555063号公報Japanese Patent No. 5555063 特開2002−20893号公報JP-A-2002-20893

一方、上記電着液を開発するにあたり、電着液の保存安定性に関して、上述のポリマー粒子の凝集又は沈降の問題とは別の新たな問題が浮上していた。例えば、数日保管した電着液を用い、比較的厚みのある絶縁皮膜を形成するために電着液の塗布量を増加させると、保管中に電着液の粘度が増加すること等に起因して、塗膜の乾燥又は焼成時に発泡が生じやすくなることが分かった。このため、保管後の電着液を用いて所望の厚さの絶縁皮膜を形成するのが困難になるという問題が生じていた。そこで、こうした保存安定性に関する新たな問題点を克服できる電着液の早期開発が求められていた。 On the other hand, in developing the electrodeposition solution, a new problem has emerged regarding the storage stability of the electrodeposition solution, which is different from the above-mentioned problem of aggregation or sedimentation of polymer particles. For example, if an electrodeposition solution stored for several days is used and the amount of the electrodeposition solution applied is increased in order to form a relatively thick insulating film, the viscosity of the electrodeposition solution increases during storage. As a result, it was found that foaming is likely to occur when the coating film is dried or fired. For this reason, there has been a problem that it becomes difficult to form an insulating film having a desired thickness by using the electrodeposited liquid after storage. Therefore, there has been a demand for early development of an electrodeposition solution that can overcome these new problems related to storage stability.

本発明の目的は、保存安定性に優れ、長期保存しても電着液の粘度上昇等が抑えられ、塗膜の乾燥又は焼成時に発泡が生じるのを抑制することができる水分散型絶縁皮膜形成用電着液を提供することにある。 An object of the present invention is an aqueous dispersion type insulating film having excellent storage stability, suppressing an increase in viscosity of an electrodeposited liquid even after long-term storage, and suppressing foaming during drying or firing of a coating film. The purpose is to provide an electrodeposition liquid for forming.

本発明者らは、上述の保存安定性に関する新たな問題点について、更に鋭意研究を重ねた結果、電着液中に通常含まれる、特にポリマー粒子以外の他の成分に特定の性質を有する化合物を選択的に使用することによって、これらを解決できる電着液の開発に至った。 As a result of further diligent research on the above-mentioned new problems related to storage stability, the present inventors have conducted a compound having specific properties in components other than polymer particles, which are usually contained in an electrodeposition solution. We have developed an electrodeposition solution that can solve these problems by selectively using.

本発明の第1の観点は、ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する水分散型絶縁皮膜形成用電着液において、ポリマー粒子が主鎖中にアニオン性基を有しないポリアミドイミドであり、塩基性化合物が水とのHSP距離が36.2〜43.0の窒素含有化合物であり、前記ポリマー粒子の体積基準のメジアン径(D50)が0.112〜0.175μmであり、かつメジアン径(D50)の粒子径の±30%以内に有る粒子が全粒子の54〜67%(体積基準)であることを特徴とする。 The first aspect of the present invention is a polyamide-imide in which the polymer particles do not have an anionic group in the main chain in an electrodeposition solution for forming an aqueous dispersion type insulating film containing polymer particles, an organic solvent, a basic compound and water. The basic compound is a nitrogen-containing compound having an HSP distance of 36.2 to 43.0 from water, and the volume-based median diameter (D 50 ) of the polymer particles is 0.112 to 0.175 μm . Moreover , the number of particles within ± 30% of the particle size of the polymer diameter (D 50 ) is 54 to 67% (volume basis ) of the total particles.

本発明の第1の観点の水分散型絶縁皮膜形成用電着液は、ポリマー粒子、有機溶媒、塩基性化合物及び水を含有し、ポリマー粒子が主鎖中にアニオン性基を有しないポリアミドイミドであって、塩基性化合物が水とのHSP距離が36.2〜43.0の窒素含有化合物であり、前記ポリマー粒子の体積基準のメジアン径(D 50 )が0.112〜0.175μmであり、かつメジアン径(D 50 )の粒子径の±30%以内に有る粒子が全粒子の54〜67%(体積基準)である。これにより、電着液の保存安定性が向上し、長期保存しても電着液の粘度上昇等が抑えられ、塗膜の乾燥又は焼成時に発泡が生じるのを抑制することができる。
The electrodeposition solution for forming an aqueous dispersion type insulating film according to the first aspect of the present invention contains polymer particles, an organic solvent, a basic compound and water, and the polymer particles do not have an anionic group in the main chain. The basic compound is a nitrogen-containing compound having an HSP distance of 36.2 to 43.0 from water, and the volume-based median diameter (D 50 ) of the polymer particles is 0.112 to 0.175 μm. 54 to 67% (volume basis) of the total particles are present and are within ± 30% of the particle size of the polymer diameter (D 50 ) . As a result, the storage stability of the electrodeposited liquid is improved, the increase in viscosity of the electrodeposited liquid can be suppressed even after long-term storage, and foaming can be suppressed during drying or firing of the coating film.

また、本発明の第の観点の水分散型絶縁皮膜形成用電着液は、塩基性化合物がアルキルアミン化合物であることにより、上述の電着液の保存安定性を向上させる効果がより高められる。 Further, in the electrodeposition solution for forming an aqueous dispersion type insulating film according to the first aspect of the present invention, since the basic compound is an alkylamine compound, the effect of improving the storage stability of the above-mentioned electrodeposition solution is further enhanced. Be done.

本発明の実施形態の電着塗装装置を模式的に表した図である。It is a figure which represented typically the electrodeposition coating apparatus of embodiment of this invention.

次に本発明を実施するための形態を図面に基づいて説明する。この水分散型絶縁皮膜形成用電着液は、ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する。水以外に貧溶媒を含有してもよい。 Next, a mode for carrying out the present invention will be described with reference to the drawings. The electrodeposition solution for forming an aqueous dispersion type insulating film contains polymer particles, an organic solvent, a basic compound and water. A poor solvent may be contained in addition to water.

<ポリマー粒子>
この電着液に含まれるポリマー粒子は高分子(ポリマー)であるポリアミドイミドから構成される。ポリマー粒子に、ポリアミドイミドからなる粒子を使用する理由は、他のポリマー粒子に比べて耐熱性、可とう性の面で優れるからである。
<Polymer particles>
The polymer particles contained in this electrodeposition liquid are composed of polyamide-imide, which is a polymer. The reason why the particles made of polyamide-imide are used as the polymer particles is that they are superior in heat resistance and flexibility as compared with other polymer particles.

ポリマー粒子の平均粒径は、乾燥又は焼成時の発泡を抑制するという観点からは、特に限定されず、一般的な電着液用途に用いられる粒径のものを使用できる。例えば平均粒径が好ましくは、0.05〜1.0μmの範囲にあるポリマー粒子等を使用することができる。なお、ここで言うポリマー粒子の平均粒径とは、動的光散乱式粒度分布測定装置(堀場製作所社製 型式名:LB-550)により測定された体積基準のメジアン径(D50)をいう。 The average particle size of the polymer particles is not particularly limited from the viewpoint of suppressing foaming during drying or firing, and those having a particle size used for general electrodeposition liquid applications can be used. For example, polymer particles having an average particle size preferably in the range of 0.05 to 1.0 μm can be used. The average particle size of the polymer particles referred to here refers to the volume-based median diameter (D 50 ) measured by a dynamic light scattering type particle size distribution measuring device (model name: LB-550 manufactured by HORIBA, Ltd.). ..

ポリマー粒子を構成するポリアミドイミドについては、一般的な電着液用途に用いられているポリアミドイミド等を、当該ポリマー粒子を構成する樹脂として利用できる。例えば、主鎖中にアニオン性基を有するポリアミドイミドであっても、主鎖中にアニオン性基を有しないポリアミドイミドであってもよい。アニオン性基とは、−COOH基(カルボキシル基)や−SO3H(スルホン酸基)等のように、塩基性溶液中でプロトン等が脱離して−COO-基等のマイナス電荷を帯びる性質を有する官能基をいう。主鎖中にアニオン性基を有するポリアミドイミドによって構成されるポリマー粒子を使用すれば、ポリマー粒子の高い表面電位により、粒子間に大きな静電反発力が得られ、電着液中における分散性が向上し、数日保管してもポリマー粒子の凝集又は沈降が抑制される。 As for the polyamide-imide constituting the polymer particles, the polyamide-imide or the like used for general electrodeposition liquid applications can be used as the resin constituting the polymer particles. For example, it may be a polyamide-imide having an anionic group in the main chain or a polyamide-imide having no anionic group in the main chain. The anionic group, as such -COOH group (carboxyl group) or -SO 3 H (sulfonic acid group), in a basic solution such as proton is eliminated -COO - nature take on negative charge of such group Refers to a functional group having. When polymer particles composed of polyamide-imide having an anionic group in the main chain are used, a large electrostatic repulsive force can be obtained between the particles due to the high surface potential of the polymer particles, and the dispersibility in the electrodeposition liquid can be improved. It is improved and the aggregation or sedimentation of polymer particles is suppressed even after storage for several days.

そのため、ポリマー粒子を構成するポリアミドイミドは、ポリマー粒子の凝集又は沈降を抑制する上では主鎖中にアニオン性基を有するものが望ましいが、発泡の抑制という観点からは、特にアニオン性基を有するものに限られない。また、主鎖中にアニオン性基を有するものは、その合成に使用するモノマーにもアニオン性基を有するものを使用する必要があり、使用できるモノマーが制限されることから、製造コストが上がる場合がある。このため、低コスト化を図る上では、主鎖中にアニオン性基を有しないポリアミドイミドにて構成されるポリマー粒子を使用するのが望ましい。 Therefore, the polyamide-imide constituting the polymer particles preferably has an anionic group in the main chain in order to suppress aggregation or precipitation of the polymer particles, but particularly has an anionic group from the viewpoint of suppressing foaming. Not limited to things. In addition, for those having an anionic group in the main chain, it is necessary to use a monomer having an anionic group as the monomer used for the synthesis, and the monomers that can be used are limited, so that the manufacturing cost increases. There is. Therefore, in order to reduce the cost, it is desirable to use polymer particles composed of polyamide-imide having no anionic group in the main chain.

一方、主鎖中にアニオン性基を有しないポリアミドイミドにて構成されるポリマー粒子は、表面電位が比較的小さい値を示す。そのため、粒子間の静電反発力による分散性が十分に得られない場合があるが、粒径や粒度分布等の制御により分散性を高めることは可能である。このため、発泡の抑制に加え、更に低コスト化や凝集又は沈降の抑制を図る場合には、分散性を考慮してポリマー粒子の粒径や粒度分布をより厳密に制御することが望ましい。主鎖中にアニオン性基を有しないポリマー粒子を使用する場合、その体積基準のメジアン径(D50)が0.05〜0.5μmであり、かつメジアン径(D50)の粒子径の±30%以内に有る粒子が全粒子の50%(体積基準)以上であることが好ましい。即ち、このポリマー粒子は、該粒子からなる粉末について体積基準の粒度分布を測定したときに、メジアン径(D50)が0.05〜0.5μmの範囲内を示し、かつ当該粒度分布において全粒子の50%以上の粒子が、メジアン径(D50)の±30%の範囲内([D50−0.3D50]μm〜[D50+0.3D50]μmの範囲内)に分布するものである。なお、上記体積基準のメジアン径(D50)及びメジアン径(D50)の±30%の範囲内に分布する粒子の割合(体積基準)は、いずれもレーザー回折散乱式粒度分布測定装置(堀場製作所社製 型式名:LA-960)にて測定した体積基準の粒度分布に基づくものである。また、主鎖中にアニオン性基を有しないポリアミドイミドとは、少なくとも、その主鎖末端以外の炭素原子にアニオン性基を有しないポリアミドイミドをいう。主鎖中にアニオン性基を有しないポリマー粒子の体積基準のメジアン径(D50)が上記範囲であることが好ましい理由は、この体積基準のメジアン径(D50)が小さくなりすぎると、後述の絶縁層を形成するときの電着中に、ポリマー粒子が連続膜を形成して、次第に電着効率が低下し、絶縁層の厚膜化が困難になる場合があるからである。また、体積基準のメジアン径(D50)の制御により、電着によって絶縁層の形成がある程度進行しても、その後の電流の流れを良好に保ちやすくすることができる。その理由は、溶媒中に含まれる導電性のある水が、ポリマー粒子間に存在しやすくなるためである。一方、体積基準のメジアン径(D50)が大きくなりすぎると、数日保管した電着液に沈殿が生じる場合がある。また、体積基準のメジアン径(D50)の±30%の範囲内に分布する粒子の割合が50%以上であることが好ましい理由は、該粒子の割合が少なくなりすぎても、数日保管した電着液に沈殿が生じる場合があるからである。このうち、アニオン性基を有しないポリマー粒子は、体積基準のメジアン径(D50)が0.08〜0.25μmであり、かつメジアン径(D50)の±30%の範囲内に分布する粒子の割合は75%以上であることがより好ましい。 On the other hand, the polymer particles composed of polyamide-imide having no anionic group in the main chain show a value having a relatively small surface potential. Therefore, the dispersibility due to the electrostatic repulsive force between the particles may not be sufficiently obtained, but it is possible to improve the dispersibility by controlling the particle size and the particle size distribution. Therefore, in order to further reduce costs and suppress aggregation or sedimentation in addition to suppressing foaming, it is desirable to more strictly control the particle size and particle size distribution of the polymer particles in consideration of dispersibility. When polymer particles having no anionic group in the main chain are used, the volume- based median diameter (D 50 ) is 0.05 to 0.5 μm, and the particle diameter of the median diameter (D 50 ) is ±. It is preferable that the number of particles within 30% is 50% or more ( volume basis) of all particles. That is, the polymer particles show a median diameter (D 50 ) in the range of 0.05 to 0.5 μm when the volume- based particle size distribution of the powder composed of the particles is measured, and the particle size distribution is the same. 50% or more of particles having a particle element is distributed within a range of ± 30% of the median diameter (D 50) ([D 50 -0.3D 50] μm~ [D 50 + 0.3D 50] within the range of [mu] m) It is something to do. The proportion of particles ( volume basis) distributed within ± 30% of the volume- based median diameter (D 50 ) and median diameter (D 50 ) is determined by the laser diffraction scattering type particle size distribution measuring device (HORIBA). It is based on the volume- based particle size distribution measured by Model Name: LA-960) manufactured by HORIBA, Ltd. Further, the polyamide-imide having no anionic group in the main chain means at least a polyamide-imide having no anionic group in a carbon atom other than the terminal of the main chain. The reason why the volume- based median diameter (D 50 ) of the polymer particles having no anionic group in the main chain is preferably in the above range is that if the volume- based median diameter (D 50 ) becomes too small, it will be described later. This is because the polymer particles form a continuous film during electrodeposition when forming the insulating layer of the above, and the electrodeposition efficiency is gradually lowered, which may make it difficult to thicken the insulating layer. Further, by controlling the volume- based median diameter (D 50 ), even if the formation of the insulating layer progresses to some extent due to electrodeposition, it is possible to easily maintain a good current flow thereafter. The reason is that the conductive water contained in the solvent tends to exist between the polymer particles. On the other hand, if the volume- based median diameter (D 50 ) becomes too large, precipitation may occur in the electrodeposited liquid stored for several days. The reason why the proportion of particles distributed within ± 30% of the volume- based median diameter (D 50 ) is preferably 50% or more is that even if the proportion of the particles becomes too small, it is stored for several days. This is because precipitation may occur in the electrodeposited liquid. Of these, the polymer particles having no anionic group have a volume- based median diameter (D 50 ) of 0.08 to 0.25 μm and are distributed within ± 30% of the median diameter (D 50 ). More preferably, the proportion of particles is 75% or more.

ポリマー粒子を構成するポリアミドイミドは、モノマーに、芳香族ジイソシアネート成分を含むジイソシアネート成分と、トリメリット酸無水物等を含む酸成分を用い、これらを重合反応させて得られる反応生成物(樹脂)である。 The polyamide-imide constituting the polymer particles is a reaction product (resin) obtained by polymerizing a diisocyanate component containing an aromatic diisocyanate component and an acid component containing trimellitic acid anhydride as a monomer. is there.

ジイソシアネート成分としては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、ジフェニルメタン−3,3’−ジイソシアネート、ジフェニルメタン−3,4’−ジイソシアネート、ジフェニルエーテル−4,4’−ジイソシアネート、ベンゾフェノン−4,4’−ジイソシアネート、ジフェニルスルホン−4,4’−ジイソシアネート等の芳香族ジイソシアネートが挙げられる。 The diisocyanate components include diphenylmethane-4,4'-diisocyanate (MDI), diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, and benzophenone-4,4'. Examples thereof include aromatic diisocyanates such as −diisocyanate and diphenylsulfone-4,4′-diisocyanate.

また、酸成分としては、トリメリット酸無水物(TMA)、1,2,5−トリメリット酸(1,2,5−ETM)、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、オキシジフタル酸二無水物(OPDA)、ピロメリット酸二無水物(PMDA)、4,4’−(2,2’−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等の芳香族酸無水物が挙げられる。 The acid components include trimellitic dianhydride (TMA), 1,2,5-trimellitic acid (1,2,5-ETM), biphenyltetracarboxylic dianhydride, and benzophenonetetracarboxylic dianhydride. , Diphenylsulfonetetracarboxylic dianhydride, oxydiphthalic dianhydride (OPDA), pyromellitic dianhydride (PMDA), 4,4'-(2,2'-hexafluoroisopropyridene) diphthalic acid dianhydride Such as aromatic acid anhydrides.

これらジイソシアネート成分と酸成分とを等量ずつ混合し、有機溶媒中で加熱して重合反応させることにより、ポリアミドイミド樹脂ワニスを得ることができる。なお、上記イソシアネート成分と酸成分はそれぞれ1種類ずつ用いても良いし、複数の種類を組み合わせて使用しても良い。 A polyamide-imide resin varnish can be obtained by mixing equal amounts of these diisocyanate components and acid components and heating them in an organic solvent to carry out a polymerization reaction. One type of each of the isocyanate component and the acid component may be used, or a plurality of types may be used in combination.

また、ポリマー粒子を構成するポリアミドイミドは、シロキサン結合を有しないものであることが好ましい。シロキサン結合を有すると、シロキサン結合が熱分解しやすいため、絶縁皮膜の耐熱性が劣化する不具合が生じることがあるからである。シロキサン結合の有無は、シロキサン結合を含有するモノマーを使用することに起因するため、シロキサン結合を含有しないモノマーを使用することにより、シロキサン結合を有しないポリマーとすることができる。 Further, the polyamide-imide constituting the polymer particles preferably does not have a siloxane bond. This is because if a siloxane bond is present, the siloxane bond is easily thermally decomposed, which may cause a problem that the heat resistance of the insulating film is deteriorated. Since the presence or absence of a siloxane bond is due to the use of a monomer containing a siloxane bond, a polymer having no siloxane bond can be obtained by using a monomer that does not contain a siloxane bond.

<有機溶媒、水、貧溶媒>
有機溶媒には、1,3−ジメチル−2−イミダゾリジノン(DMI)、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミドや、γ−ブチロラクタム等の極性溶剤を使用することができる。また、水には、純水、超純水、イオン交換水等が挙げられる。また、水以外に貧溶媒を含有する場合には、貧溶媒には、1−プロパノール、イソプロピルアルコール等の脂肪族アルコール類、2−メトキシエタノール等のエチレングリコール類、1−メトキシ−2−プロパノール等のプロピレングリコール類等を使用することができる。
<Organic solvent, water, poor solvent>
Organic solvents include 1,3-dimethyl-2-imidazolidinone (DMI), N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, hexa. Polar solvents such as ethyl phosphate triamide and γ-butylolactum can be used. Further, examples of water include pure water, ultrapure water, ion-exchanged water and the like. When a poor solvent is contained in addition to water, the poor solvent includes aliphatic alcohols such as 1-propanol and isopropyl alcohol, ethylene glycols such as 2-methoxyethanol, 1-methoxy-2-propanol and the like. Propylene glycols and the like can be used.

<塩基性化合物(分散剤又は中和剤)>
塩基性化合物は、中和剤又は分散剤として電着液中に添加される成分であり、この塩基性化合物には、水とのHSP距離が35以上の窒素含有化合物を使用する。ここで、HSP(Hansen Solubility Parameter:ハンセン溶解度パラメーター)とは、ある物質がある物質にどれくらい溶けるかを示す溶解性の指標として用いられる値である。このHSP値は分散項(dD)、極性項(dP)、水素結合項(dH)の3つのパラメータで構成され、各物質ごとに固有の値を示す。これら3つのパラメータは、3次元空間(ハンセン空間)内の座標とみなすことができるため、HSP値は上記空間内の0を始点、HSP値によって与えられる座標を終点とするベクトルとして表される。HSP距離(Ra)とは、2つの物質のHSP値によって与えられる上記座標間の距離又はベクトル間距離のことであり、一般に下記式(1)により算出される。
<Basic compound (dispersant or neutralizer)>
The basic compound is a component added to the electrodeposition liquid as a neutralizing agent or a dispersant, and a nitrogen-containing compound having an HSP distance of 35 or more with water is used as the basic compound. Here, the HSP (Hansen Solubility Parameter) is a value used as an index of solubility indicating how much a substance is soluble in a certain substance. This HSP value is composed of three parameters, a dispersion term (dD), a polarity term (dP), and a hydrogen bond term (dH), and shows a value unique to each substance. Since these three parameters can be regarded as coordinates in the three-dimensional space (Hansen space), the HSP value is represented as a vector whose starting point is 0 in the space and whose ending point is the coordinates given by the HSP value. The HSP distance (Ra) is the distance between the coordinates or the distance between the vectors given by the HSP values of the two substances, and is generally calculated by the following formula (1).

HSP距離=[4×(dD1−dD2)2+(dP1−dP2)2+(dH1−dH2)2]1/2 (1) HSP distance = [4 × (dD 1 − dD 2 ) 2 + (dP 1 − dP 2 ) 2 + (dH 1 − dH 2 ) 2 ] 1/2 (1)

上記式(1)中、dD1、dP1、dH1は、2つの物質のうちの一方の物質のHSP値であり、dD2、dP2、dH2は他方の物質のHSP値である。この式(1)により算出されるHSP距離が小さい値を示す物質同士程、2つの物質の相溶性が高いことを示している。水とのHSP距離が35以上の窒素含有化合物とは、水のHSP値(dD=15.5、dP=16、dH=42.3)と窒素含有化合物のHSP値を上記式(1)に代入して算出される値(HSP距離)が35以上の値となる窒素含有化合物である。 In the above formula (1), dD 1 , dP 1 , and dH 1 are HSP values of one of the two substances, and dD 2 , dP 2 , and dH 2 are HSP values of the other substance. It is shown that the substances having a smaller HSP distance calculated by the formula (1) have higher compatibility between the two substances. For a nitrogen-containing compound having an HSP distance of 35 or more with water, the HSP value of water (dD = 15.5, dP = 16, dH = 42.3) and the HSP value of the nitrogen-containing compound are expressed in the above formula (1). It is a nitrogen-containing compound having a value (HSP distance) of 35 or more calculated by substitution.

電着液中に含まれる塩基性化合物に、水とのHSP距離が所定値以上の窒素含有化合物を使用することにより、電着液の保存安定性を向上させることができる。これにより、調製後の電着液を長期保存しても電着液の粘度上昇等が抑えられ、塗膜の乾燥又は焼成時に発泡が生じて膜厚が低下するのを抑制できる。このような物性値を示す窒素含有化合物を使用することで電着液の保存安定性が向上する技術的理由は、現在では解明されていないが、例えば次の理由等がその主立った技術的理由として推察される。塩基性化合物はポリマー構造中に結合して電着液の分散性を高める働きをする。塩基性化合物が2−アミノエタノールのように親水性であると、ポリマー粒子に電着液中の水が近づきやすくなるため、ポリアミドイミドが加水分解されやすくなる。ポリアミドイミドが加水分解されると、カルボキシル基やアミノ基といった極性基が生じるため、DMI等の極性溶媒や水を引き付け、ポリマーが溶媒を取り込んで一部ゲル化することで液粘度が上昇することが考えられる。一方、水とのHSP距離が大きく水との親和性が低い、即ち疎水性が高い塩基性化合物を用いると、ポリマー粒子に水を近づけにくいので、上述のような加水分解に伴う電着液の変化を抑制できると考えられる。なお、水とのHSP距離が少なくとも35に達する窒素含有化合物であれば特に上限については限定されないが、現在確認できる窒素含有化合物のHSP値との関係等から、水とのHSP距離が35〜45であるものが好ましい。 By using a nitrogen-containing compound having an HSP distance of a predetermined value or more from water as the basic compound contained in the electrodeposition solution, the storage stability of the electrodeposition solution can be improved. As a result, even if the electrodeposited liquid after preparation is stored for a long period of time, an increase in the viscosity of the electrodeposited liquid can be suppressed, and foaming occurs during drying or firing of the coating film to prevent a decrease in film thickness. The technical reason for improving the storage stability of the electrodeposited liquid by using a nitrogen-containing compound exhibiting such physical property values has not been clarified at present, but for example, the following reasons are the main technical reasons. Inferred as. The basic compound binds to the polymer structure and works to enhance the dispersibility of the electrodeposited liquid. When the basic compound is hydrophilic such as 2-aminoethanol, the water in the electrodeposition solution is easily approached to the polymer particles, so that the polyamide-imide is easily hydrolyzed. When polyamideimide is hydrolyzed, polar groups such as carboxyl groups and amino groups are generated. Therefore, the liquid viscosity increases by attracting polar solvents such as DMI and water, and the polymer takes in the solvent and partially gels. Can be considered. On the other hand, if a basic compound having a large HSP distance to water and a low affinity to water, that is, having high hydrophobicity is used, it is difficult for water to come close to the polymer particles, so that the electrodeposition solution associated with hydrolysis as described above It is thought that changes can be suppressed. The upper limit is not particularly limited as long as the HSP distance to water reaches at least 35, but the HSP distance to water is 35 to 45 due to the relationship with the HSP value of the nitrogen-containing compound that can be confirmed at present. Is preferable.

このような物性値を示し、電着液中に含まれる塩基性化合物として好適な窒素含有化合物としては、具体的にはアルキルアミン化合物が挙げられる。更に、アルキルアミン化合物としては、例えばプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、デシルアミン等の第1級アルキルアミンや、ジプロピルアミン、ジブチルアミン、ジアミルアミン、ジヘキシルアミン、ジオクチルアミン等の第2級アルキルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、トリヘキシルアミン等の第3級アルキルアミンが挙げられる。このうち、水とのHSP距離が大きく、高い疎水性を示すことから、トリプロピルアミン、トリブチルアミン、トリアミルアミン、トリヘキシルアミン等が特に好ましい。 Specific examples of the nitrogen-containing compound which exhibits such physical property values and is suitable as a basic compound contained in the electrodeposition liquid include an alkylamine compound. Further, examples of the alkylamine compound include primary alkylamines such as propylamine, butylamine, amylamine, hexylamine, octylamine and decylamine, and second alkylamines such as dipropylamine, dibutylamine, diamylamine, dihexylamine and dioctylamine. Examples thereof include tertiary alkylamines such as tertiary alkylamines, tripropylamines, tributylamines, triamylamines and trihexylamines. Of these, tripropylamine, tributylamine, triamylamine, trihexylamine and the like are particularly preferable because they have a large HSP distance from water and exhibit high hydrophobicity.

<電着液の調製>
電着液は、例えば、次のような方法で得ることができる。先ず、上述のようにジイソシアネート成分と酸成分と有機溶媒を用いて、ポリアミドイミド樹脂ワニスを合成する。具体的には、モノマーとしての上記ジイソシアネート成分と上記酸成分をそれぞれ準備し、これらとともに、DMI等の有機溶媒をフラスコ内へ所定の割合で投入する。フラスコには、撹拌機や、冷却管、窒素導入管、温度計等を備えた四つ口フラスコを用いるのが好ましい。上記ジイソシアネート成分と酸成分の配合比は、モル比で1:1となる割合とするのが好ましい。また、有機溶媒の割合は、合成後に得られる樹脂の質量の1〜3倍に相当する割合とするのが好ましい。これらをフラスコ内へ投入した後は、好ましくは80〜180℃の温度まで昇温させ、好ましくは2〜8時間反応させる。
<Preparation of electrodeposition solution>
The electrodeposition liquid can be obtained, for example, by the following method. First, a polyamide-imide resin varnish is synthesized using a diisocyanate component, an acid component, and an organic solvent as described above. Specifically, the diisocyanate component and the acid component as monomers are prepared respectively, and an organic solvent such as DMI is charged into the flask at a predetermined ratio together with these. As the flask, it is preferable to use a four-necked flask equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe, a thermometer, and the like. The blending ratio of the diisocyanate component and the acid component is preferably a molar ratio of 1: 1. Further, the ratio of the organic solvent is preferably a ratio corresponding to 1 to 3 times the mass of the resin obtained after synthesis. After putting these into the flask, the temperature is preferably raised to a temperature of 80 to 180 ° C., and the reaction is preferably carried out for 2 to 8 hours.

その後、必要に応じて、上述の有機溶媒で希釈させることにより、不揮発分として合成したポリアミドイミド樹脂を、好ましくは20〜50質量%の割合で含有するポリアミドイミド樹脂ワニスが得られる。 Then, if necessary, by diluting with the above-mentioned organic solvent, a polyamide-imide resin varnish containing a polyamide-imide resin synthesized as a non-volatile component in a proportion of preferably 20 to 50% by mass can be obtained.

このように合成されたポリアミドイミド樹脂ワニスから、水分散型絶縁皮膜形成用電着液を調製するには、上記調製したポリアミドイミド樹脂ワニスを、必要に応じて上記有機溶媒で更に希釈し、ここに分散剤又は中和剤として上述の塩基性化合物を添加する。このとき、必要に応じて貧溶媒を添加しても良い。そして、好ましくは回転速度8000〜12000rpmにて撹拌しながら、常温下で水を添加して十分に分散させる。貧溶媒を添加する場合には、電着液中の各成分の好ましい割合は、ポリアミドイミド樹脂/有機溶媒/貧溶媒/水/塩基性化合物=1〜10質量%/60〜79質量%/残部/10〜20質量%/0.05〜0.3質量%である。 In order to prepare an electrodeposition solution for forming an aqueous dispersion type insulating film from the polyamide-imide resin varnish synthesized in this way, the above-prepared polyamide-imide resin varnish is further diluted with the above-mentioned organic solvent, if necessary, and here. The above-mentioned basic compound is added as a dispersant or a neutralizing agent. At this time, a poor solvent may be added if necessary. Then, water is added and sufficiently dispersed at room temperature while stirring preferably at a rotation speed of 8000 to 12000 rpm. When a poor solvent is added, the preferable ratio of each component in the electrodeposition solution is polyamide-imide resin / organic solvent / poor solvent / water / basic compound = 1 to 10% by mass / 60 to 79% by mass / balance. / 10 to 20% by mass / 0.05 to 0.3% by mass.

以上の工程により、上述の水分散型絶縁皮膜形成用電着液が得られる。 By the above steps, the above-mentioned electrodeposition liquid for forming an aqueous dispersion type insulating film can be obtained.

<絶縁物の製造>
続いて、上記水分散型絶縁皮膜形成用電着液を用いて金属表面に絶縁皮膜が形成された絶縁物の製造方法について、電線の表面に絶縁皮膜が形成された絶縁電線の製造方法を例に図面に基づいて説明する。図1に示すように、電着塗装装置10を用いて上記電着液11を電着塗装法により電線12の表面に電着させて絶縁層21aを形成する。具体的には、予め、円筒状に巻き込んである横断面円形の円柱状の電線13を、直流電源14の正極に陽極16を介して電気的に接続しておく。そして、この円柱状の電線13を図1の実線矢印の方向に引上げて次の各工程を経る。
<Manufacturing of insulation>
Subsequently, as a method for producing an insulator in which an insulating film is formed on a metal surface using the electrodeposition liquid for forming an aqueous dispersion type insulating film, an example of a method for producing an insulated wire in which an insulating film is formed on the surface of the electric wire is used. Will be described based on the drawings. As shown in FIG. 1, the electrodeposition liquid 11 is electrodeposited on the surface of the electric wire 12 by the electrodeposition coating method using the electrodeposition coating device 10 to form the insulating layer 21a. Specifically, a cylindrical electric wire 13 having a circular cross section, which is wound in a cylindrical shape, is electrically connected to the positive electrode of the DC power supply 14 via an anode 16. Then, the columnar electric wire 13 is pulled up in the direction of the solid arrow in FIG. 1 and undergoes the following steps.

先ず、第1の工程として、円柱状の電線13を一対の圧延ローラ17,17により扁平に圧延して、横断面長方形の平角状の電線12を形成する。電線としては、銅線、アルミ線、鋼線、銅合金線、アルミ合金線等が挙げられる。次いで、第2の工程として、電着液11を電着槽18に貯留し、好ましくは5〜60℃の温度に維持して、この電着槽18内の電着液11中に平角状の電線12を通過させる。ここで、電着槽18内の電着液11中には、通過する平角状の電線12と間隔を設けて直流電源14の負極に電気的に接続された陰極19が挿入される。電着槽18内の電着液11中を平角状の電線12が通過する際に、直流電源14により直流電圧が平角状の電線12と陰極19との間に印加される。なお、このときの直流電源14の直流電圧は1〜300Vとするのが好ましく、直流電流の通電時間は0.01〜30秒とするのが好ましい。これにより、電着液11中で、マイナスに帯電したポリマー粒子(図示せず)が平角状の電線12の表面に電着されて絶縁層21aが形成される。 First, as a first step, the columnar electric wire 13 is flatly rolled by a pair of rolling rollers 17 and 17 to form a flat electric wire 12 having a rectangular cross section. Examples of the electric wire include copper wire, aluminum wire, steel wire, copper alloy wire, aluminum alloy wire and the like. Next, as a second step, the electrodeposition liquid 11 is stored in the electrodeposition tank 18, preferably maintained at a temperature of 5 to 60 ° C., and is flat in the electrodeposition liquid 11 in the electrodeposition tank 18. Pass the electric wire 12. Here, a cathode 19 electrically connected to the negative electrode of the DC power supply 14 is inserted into the electrodeposition liquid 11 in the electrodeposition tank 18 at a distance from the passing flat electric wire 12. When the flat wire 12 passes through the electrodeposition liquid 11 in the electrodeposition tank 18, a DC voltage is applied between the flat wire 12 and the cathode 19 by the DC power supply 14. The DC voltage of the DC power supply 14 at this time is preferably 1 to 300 V, and the energization time of the DC current is preferably 0.01 to 30 seconds. As a result, in the electrodeposition liquid 11, negatively charged polymer particles (not shown) are electrodeposited on the surface of the flat wire 12 to form an insulating layer 21a.

次に、表面に絶縁層21aが電着された平角状の電線12に対し、焼付処理を施すことにより、電線12の表面に絶縁皮膜21bを形成する。この実施の形態では、表面に上記絶縁層21aが形成された電線12を、焼付炉22内を通過させることにより行う。上記焼付処理は、近赤外線加熱炉、熱風加熱炉、誘導加熱炉、遠赤外線加熱炉等により行われることが好ましい。また焼付処理の温度は250〜500℃の範囲内であることが好ましく、焼付処理の時間は1〜10分間の範囲内であることが好ましい。なお、焼付処理の温度は焼付炉内の中央部の温度である。焼付炉22を通過することにより、電線12の表面を絶縁皮膜21bで被覆した絶縁電線23が製造される。 Next, the flat electric wire 12 having the insulating layer 21a electrodeposited on the surface is subjected to a baking treatment to form an insulating film 21b on the surface of the electric wire 12. In this embodiment, the electric wire 12 having the insulating layer 21a formed on its surface is passed through the baking furnace 22. The baking treatment is preferably performed in a near-infrared heating furnace, a hot air heating furnace, an induction heating furnace, a far-infrared heating furnace, or the like. The temperature of the baking treatment is preferably in the range of 250 to 500 ° C., and the baking treatment time is preferably in the range of 1 to 10 minutes. The temperature of the baking process is the temperature of the central part in the baking furnace. By passing through the baking furnace 22, the insulated wire 23 in which the surface of the wire 12 is covered with the insulating film 21b is manufactured.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
攪拌機、冷却管、窒素導入管及び温度計を備えた2リットルの四つ口フラスコに1,3−ジメチル−2−イミダゾリジノン(DMI)30.97g、ジフェニルメタン−4,4’−ジイソシアネート7.508g(30ミリモル)及び無水トリメリット酸5.764g(30ミリモル)を仕込み、160℃まで昇温させた。約6時間反応させることにより、数平均分子量が40000のポリマー(ポリアミドイミド樹脂)を合成し、ポリアミドイミド樹脂(不揮発分)の濃度が30質量%のポリアミドイミドワニス(ポリアミドイミド樹脂/DMI=30質量%/70質量%)を得た。
<Example 1>
3. 0.97 g of 1,3-dimethyl-2-imidazolidinone (DMI), diphenylmethane-4,4'-diisocyanate in a 2 liter four-necked flask equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer. 508 g (30 mmol) and 5.764 g (30 mmol) of trimellitic anhydride were charged and the temperature was raised to 160 ° C. By reacting for about 6 hours, a polymer (polyamideimide resin) having a number average molecular weight of 40,000 was synthesized, and a polyamide-imide varnish (polyamideimide resin / DMI = 30 mass) having a polyamide-imide resin (nonvolatile content) concentration of 30% by mass was synthesized. % / 70% by mass) was obtained.

次いで、上記得られたポリアミドイミドワニス1.7gをDMI4.8gで更に希釈し、貧溶媒として1−メトキシプロパノール1.7g、塩基性化合物としてトリプロピルアミン0.02gを加えた後、この液を回転速度10000rpmの高速で撹拌しつつ、常温(25℃)下で水1.8gを添加した。これにより、ポリアミドイミド微粒子が分散する電着液(ポリアミドイミド樹脂/DMI/貧溶媒/水/塩基性化合物=5質量%/60質量%/17質量%/18質量%/0.2質量%)を得た。 Next, 1.7 g of the obtained polyamide-imide varnish was further diluted with 4.8 g of DMI, 1.7 g of 1-methoxypropanol as a poor solvent and 0.02 g of tripropylamine as a basic compound were added, and then this solution was added. 1.8 g of water was added at room temperature (25 ° C.) while stirring at a high rotation speed of 10000 rpm. As a result, the electrodeposition liquid in which the polyamide-imide fine particles are dispersed (polyamide-imide resin / DMI / poor solvent / water / basic compound = 5% by mass / 60% by mass / 17% by mass / 18% by mass / 0.2% by mass). Got

<実施例2〜7及び比較例1>
以下の表1に示すように、ポリマー粒子の平均粒径、塩基性化合物の種類、及び電着液中の各成分の割合を変更したこと以外は、実施例1と同様にして電着液を得た。なお、ポリマー粒子の平均粒径は、他の液成分の割合を変更したことにより得られた数値である。
<Examples 2 to 7 and Comparative Example 1>
As shown in Table 1 below, the electrodeposition solution was prepared in the same manner as in Example 1 except that the average particle size of the polymer particles, the type of the basic compound, and the ratio of each component in the electrodeposition solution were changed. Obtained. The average particle size of the polymer particles is a numerical value obtained by changing the ratio of other liquid components.

<比較試験及び評価>
実施例1〜7及び比較例1で得られた電着液等について、以下の(i)〜(iii)の評価を行った。これらの結果を以下の表1又は表2に示す。
<Comparative tests and evaluations>
The electrodeposition solutions and the like obtained in Examples 1 to 7 and Comparative Example 1 were evaluated in the following (i) to (iii). These results are shown in Table 1 or Table 2 below.

(i) 水とのHSP距離:下記式(1)に、水のHSP値と、各実施例又は比較例で塩基性化合物として使用した窒素含有化合物のHSP値をそれぞれ代入することにより、各窒素含有化合物と水のHSP距離をそれぞれ算出した。 (i) HSP distance to water: By substituting the HSP value of water and the HSP value of the nitrogen-containing compound used as the basic compound in each Example or Comparative Example into the following formula (1), each nitrogen The HSP distances of the contained compound and water were calculated respectively.

HSP距離=[4×(dD1−dD2)2+(dP1−dP2)2+(dH1−dH2)2]1/2 (1) HSP distance = [4 × (dD 1 − dD 2 ) 2 + (dP 1 − dP 2 ) 2 + (dH 1 − dH 2 ) 2 ] 1/2 (1)

(ii) 体積基準のメジアン径(D50):各実施例又は比較例で合成したポリマー粒子について、動的光散乱式粒度分布測定装置(堀場製作所社製 型式名:LB-550)により測定された体積基準のメジアン径(D50)を測定した。 (ii) Volume-based median diameter (D 50 ): The polymer particles synthesized in each Example or Comparative Example were measured by a dynamic light scattering type particle size distribution measuring device (model name: LB-550 manufactured by HORIBA, Ltd.). The volume-based median diameter (D 50 ) was measured.

(iii) メジアン径(D50)の±30%の範囲内に分布する粒子の割合:上記装置により測定した体積基準の粒度分布から、メジアン径(D50)の±30%の範囲内([D50−0.3D50]μm〜[D50+0.3D50]μmの範囲内)に分布する粒子の全粒子数に占める割合を算出した。

(iii) Percentage of particles distributed within ± 30% of median diameter (D 50 ): From the volume- based particle size distribution measured by the above device, within ± 30% of median diameter (D 50 ) ([ D 50 -0.3D 50] μm~ [was calculated percentage of D 50 + 0.3D 50] the total number of particles of particles distributed in the range of [mu] m).

(iii) 保存安定性:各実施例及び比較例で得られた調製直後の電着液と、調整後1ヶ月間保管した電着液を用いて、銅板の表面に絶縁皮膜が成膜された絶縁物を作製し、この絶縁皮膜中の気泡の有無を目視にて観察することにより、電着液の保存安定性を評価した。表2中、「無」は、絶縁皮膜中に気泡が1個も確認されなかったことを示す。また、「有」は、絶縁皮膜中に気泡が1個以上確認されたことを示す。 (iii) Storage stability: An insulating film was formed on the surface of the copper plate using the electrodeposition solution immediately after preparation obtained in each Example and Comparative Example and the electrodeposition solution stored for one month after adjustment. An insulator was prepared, and the storage stability of the electrodeposited liquid was evaluated by visually observing the presence or absence of air bubbles in the insulating film. In Table 2, "None" indicates that no air bubbles were confirmed in the insulating film. “Yes” indicates that one or more bubbles were confirmed in the insulating film.

なお、絶縁物の作製は、後述の手順により行った。また、各実施例及び比較例では、各電着液ごとに、絶縁皮膜の膜厚がそれぞれ10μm、20μm、30μmの3つの絶縁物をそれぞれ作製した。上記調製直後の電着液とは、調製後、24時間経過する前の電着液をいい、また、調整後1ヶ月間保管した電着液とは、調整した電着液をガラス瓶に密封し、大気中、25℃の温度で1ヶ月間保管した電着液である。また、上記膜厚とは、銅板表面に絶縁皮膜を成膜した後、マイクロメータ(ミツトヨ社製 型式名:MDH-25M)を用いて測定した値である。 The insulating material was produced by the procedure described later. Further, in each Example and Comparative Example, three insulating films having an insulating film thickness of 10 μm, 20 μm, and 30 μm were prepared for each electrodeposition liquid, respectively. The electrodeposition solution immediately after preparation refers to the electrodeposition solution before 24 hours have passed after preparation, and the electrodeposition solution stored for one month after adjustment means that the adjusted electrodeposition solution is sealed in a glass bottle. , An electrodeposition solution stored in the air at a temperature of 25 ° C. for one month. The film thickness is a value measured using a micrometer (model name: MDH-25M manufactured by Mitutoyo Co., Ltd.) after forming an insulating film on the surface of a copper plate.

各絶縁物は次の手順により作製した。先ず、電着液を電着槽内に貯留し、この電着槽内の電着液の温度を25℃に調整した。次に、18mm角(厚さは0.3mm)の銅板とステンレス鋼板をそれぞれ陽極、陰極として用意し、電着液中にこれらを互いに対向させて設置した。そして、銅板とステンレス鋼板との間に直流電圧100Vを印加して電着を行った。その際、クーロンメ−タにより流れた電気量を確認し、電気量が所定量に到達したところで電圧の印加を停止した。なお、膜厚が10μmの絶縁皮膜を形成する際には電気量が0.05Cに到達したところで電圧の印加を停止し、膜厚が20μmの絶縁皮膜を形成する際には電気量が0.10Cに到達したところで電圧の印加を停止し、膜厚が30μmの絶縁皮膜を形成する際には電気量が0.15Cに到達したところで電圧の印加を停止した。これにより銅板の表面に絶縁層を形成した。 Each insulation was prepared by the following procedure. First, the electrodeposition liquid was stored in the electrodeposition tank, and the temperature of the electrodeposition liquid in the electrodeposition tank was adjusted to 25 ° C. Next, an 18 mm square (thickness: 0.3 mm) copper plate and a stainless steel plate were prepared as anodes and cathodes, respectively, and placed in the electrodeposition liquid so as to face each other. Then, a DC voltage of 100 V was applied between the copper plate and the stainless steel plate to perform electrodeposition. At that time, the amount of electricity flowing by the Coulomb meter was confirmed, and when the amount of electricity reached a predetermined amount, the application of voltage was stopped. When forming an insulating film having a film thickness of 10 μm, the application of voltage is stopped when the amount of electricity reaches 0.05 C, and when forming an insulating film having a film thickness of 20 μm, the amount of electricity is 0. When the voltage reached 10 C, the voltage application was stopped, and when the insulating film having a film thickness of 30 μm was formed, the voltage application was stopped when the amount of electricity reached 0.15 C. As a result, an insulating layer was formed on the surface of the copper plate.

次に、表面に絶縁層が形成された銅板について焼付処理を行った。具体的には、絶縁層が形成された銅板を、250℃の温度に保持された焼付炉に3分間保持することにより行った。これにより、銅板の表面に絶縁皮膜が形成された絶縁物を得た。なお、焼付炉内の温度は、熱電対で測定した炉内中央部の温度である。 Next, a baking treatment was performed on a copper plate having an insulating layer formed on its surface. Specifically, the copper plate on which the insulating layer was formed was held in a baking oven maintained at a temperature of 250 ° C. for 3 minutes. As a result, an insulator having an insulating film formed on the surface of the copper plate was obtained. The temperature inside the baking furnace is the temperature at the center of the furnace measured by a thermocouple.

Figure 0006794718
Figure 0006794718

Figure 0006794718
Figure 0006794718

表1及び表2から明らかなように、調製直後の電着液を用いた場合には、実施例1〜実施例7及び比較例1のいずれの絶縁皮膜にも、乾燥又は焼成時の発泡による気泡はみられなかった。 As is clear from Tables 1 and 2, when the electrodeposition solution immediately after preparation is used, the insulating films of Examples 1 to 7 and Comparative Example 1 are formed by foaming during drying or firing. No bubbles were found.

一方、調製後1ヶ月間保管した電着液で成膜した絶縁皮膜について比較してみると、塩基性化合物として水とのHSP距離が所定値に満たない窒素含有化合物を使用した比較例1では、全ての膜厚の絶縁皮膜に、乾燥又は焼成時の発泡による気泡が発生した。 On the other hand, when comparing the insulating film formed by the electrodeposition solution stored for one month after preparation, in Comparative Example 1 in which a nitrogen-containing compound having an HSP distance of less than a predetermined value with water was used as the basic compound. , Bubbles were generated due to foaming during drying or firing in the insulating films of all thicknesses.

これに対し、塩基性化合物として水とのHSP距離が所定値以上の窒素含有化合物を使用した実施例1〜実施例7では、実施例2及び実施例4〜6の30μm厚の絶縁皮膜に気泡が若干みられた点を除き、いずれの絶縁皮膜にも乾燥又は焼成時の発泡による気泡はみられなかった。このことから、塩基性化合物として水とのHSP距離が所定値以上の窒素含有化合物を使用した実施例1〜実施例7の電着液は、保存安定性に非常に優れることが確認された。特に、実施例1及び実施例7では、塩基性化合物として水とのHSP距離がそれぞれ43.0及び42.5と大きいため、膜厚が30μmでも、乾燥又は焼成時の発泡による気泡はみられなかった。 On the other hand, in Examples 1 to 7, when a nitrogen-containing compound having an HSP distance to water of a predetermined value or more was used as the basic compound, bubbles were formed in the 30 μm-thick insulating film of Examples 2 and 4 to 6. No bubbles due to foaming during drying or firing were observed in any of the insulating films, except that some of them were observed. From this, it was confirmed that the electrodeposition solutions of Examples 1 to 7 using a nitrogen-containing compound having an HSP distance of a predetermined value or more as a basic compound are extremely excellent in storage stability. In particular, in Examples 1 and 7, since the HSP distance to water as a basic compound is as large as 43.0 and 42.5, respectively, bubbles due to foaming during drying or firing are observed even if the film thickness is 30 μm. There wasn't.

本発明は、パーソナルコンピュータ、スマートフォン等の電源用パワーインダクタのほか、車載用インバータのトランス、リアクトル、モーター等に使用される絶縁電線や、その他の絶縁物の製造に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for manufacturing power inductors for power supplies of personal computers, smartphones, etc., insulated electric wires used for transformers, reactors, motors, etc. of in-vehicle inverters, and other insulating materials.

11 電着液 11 Electrodeposition liquid

Claims (1)

ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する水分散型絶縁皮膜形成用電着液において、
前記ポリマー粒子が主鎖中にアニオン性基を有しないポリアミドイミドであり、
前記塩基性化合物が水とのHSP距離が36.2〜43.0の窒素含有化合物であり、
前記ポリマー粒子の体積基準のメジアン径(D50)が0.112〜0.175μmであり、かつメジアン径(D50)の粒子径の±30%以内に有る粒子が全粒子の54〜67%(体積基準)であり、
前記塩基性化合物はアルキルアミン化合物であることを特徴とする水分散型絶縁皮膜形成用電着液。
In an electrodeposition solution for forming an aqueous dispersion type insulating film containing polymer particles, an organic solvent, a basic compound and water,
The polymer particles are polyamide-imides that do not have an anionic group in the main chain .
The basic compound is a nitrogen-containing compound having an HSP distance of 36.2 to 43.0 from water.
54 to 67% of all particles have a volume-based median diameter (D 50 ) of 0.112 to 0.175 μm and are within ± 30% of the median diameter (D 50 ) particle size of the polymer particles. (Volume standard )
An electrodeposition solution for forming an aqueous dispersion type insulating film, wherein the basic compound is an alkylamine compound.
JP2016166752A 2015-12-22 2016-08-29 Electrodeposition liquid for forming water-dispersed insulating film Active JP6794718B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680074952.5A CN108473813A (en) 2015-12-22 2016-09-27 Water-dispersion type insulating coating formation electrodeposit liquid
EP16878086.4A EP3395917B1 (en) 2015-12-22 2016-09-27 Aqueous dispersion type electrodeposition liquid for insulating-film formation
PCT/JP2016/078424 WO2017110188A1 (en) 2015-12-22 2016-09-27 Aqueous dispersion type electrodeposition liquid for insulating-film formation
US16/064,383 US10800942B2 (en) 2015-12-22 2016-09-27 Water-based electrodeposition dispersion for forming insulating film
KR1020187017392A KR102595402B1 (en) 2015-12-22 2016-09-27 Electrodeposition solution for forming water-dispersible insulating film
TW105131711A TWI718183B (en) 2015-12-22 2016-09-30 Water-dispersion type electrodeposition liquid for forming insulating film
JP2020119074A JP6973576B2 (en) 2015-12-22 2020-07-10 Electrodeposition liquid for forming water-dispersed insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249739 2015-12-22
JP2015249739 2015-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020119074A Division JP6973576B2 (en) 2015-12-22 2020-07-10 Electrodeposition liquid for forming water-dispersed insulating film

Publications (2)

Publication Number Publication Date
JP2017115120A JP2017115120A (en) 2017-06-29
JP6794718B2 true JP6794718B2 (en) 2020-12-02

Family

ID=59234881

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016166752A Active JP6794718B2 (en) 2015-12-22 2016-08-29 Electrodeposition liquid for forming water-dispersed insulating film
JP2020119074A Active JP6973576B2 (en) 2015-12-22 2020-07-10 Electrodeposition liquid for forming water-dispersed insulating film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020119074A Active JP6973576B2 (en) 2015-12-22 2020-07-10 Electrodeposition liquid for forming water-dispersed insulating film

Country Status (6)

Country Link
US (1) US10800942B2 (en)
EP (1) EP3395917B1 (en)
JP (2) JP6794718B2 (en)
KR (1) KR102595402B1 (en)
CN (1) CN108473813A (en)
TW (1) TWI718183B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141885A1 (en) 2016-02-18 2017-08-24 三菱マテリアル株式会社 Electrodeposition liquid and electrodeposition-coated article
JP6787147B2 (en) * 2016-02-18 2020-11-18 三菱マテリアル株式会社 Electrodeposition liquid and electrodeposition coating body
JP6769076B2 (en) * 2016-04-04 2020-10-14 三菱マテリアル株式会社 Electrodeposition coating composition and method for manufacturing insulated wires using it
JP6769425B2 (en) * 2017-11-21 2020-10-14 三菱マテリアル株式会社 Manufacturing method of resin for forming insulating film, varnish, electrodeposition liquid, insulating conductor
TWI646217B (en) * 2018-03-09 2019-01-01 冠宏國際事業有限公司 Metal fixing member coated with integral insulating resistance film layer and process
JP7460074B2 (en) 2020-04-30 2024-04-02 二葉産業株式会社 Method and apparatus for electrocoating linear or strip-shaped workpieces

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850773A (en) * 1972-06-23 1974-11-26 Gen Electric Method for making polyimide coated conductors in a continuous manner
US4051091A (en) 1974-11-19 1977-09-27 Mitsubishi Denki Kabushiki Kaisha Water-dispersion varnish for electrodeposition and process for making said water dispersion varnish
GB1486325A (en) 1974-11-22 1977-09-21 Mitsubishi Electric Corp Process for preparing water-dispersion varnish for electrodeposition
JPS573390Y2 (en) 1978-10-07 1982-01-21
JPS6443578A (en) 1987-08-10 1989-02-15 Mitsubishi Electric Corp Emulsion for electrodeposition
WO2000044840A1 (en) 1999-01-29 2000-08-03 The Nisshin Oil Mills, Ltd. Coating material or ink composition
JP2002020893A (en) 2000-07-06 2002-01-23 Sankyo Seiki Mfg Co Ltd Electrodeposition material, method for forming electrodeposition coating film and sliding device using the material
US20060219569A1 (en) 2003-05-12 2006-10-05 Toshitaka Kawanami Method of coating a square wire and an insulated wire of a square wire
JP5259041B2 (en) 2004-08-10 2013-08-07 株式会社シミズ Resin composition and aqueous electrodeposition coating
US7497935B2 (en) 2004-08-27 2009-03-03 Ppg Industries Ohio, Inc. Electrodepositable coating compositions and methods related thereto
JP2007149824A (en) 2005-11-25 2007-06-14 Ebara Corp Film forming method and film forming device
JP5555063B2 (en) 2010-06-10 2014-07-23 三菱電線工業株式会社 Polyimide electrodeposition paint and method for producing the same
FR2995312B1 (en) * 2012-09-12 2015-07-03 Vallourec Mannesmann Oil & Gas PROCESS FOR THE PREPARATION OF A STABLE AQUEOUS DISPERSION OF POLYAMIDE-IMIDE FREE OF CARCINOGENIC SUBSTANCE, MUTAGE OR REPROTOXIC AND APPLICATION TO COATINGS
WO2014057633A1 (en) * 2012-10-12 2014-04-17 バンドー化学株式会社 Bonding composition
JP6787147B2 (en) 2016-02-18 2020-11-18 三菱マテリアル株式会社 Electrodeposition liquid and electrodeposition coating body
JP6443578B1 (en) 2017-09-29 2018-12-26 王子ホールディングス株式会社 Adhesive composition, adhesive sheet and laminate

Also Published As

Publication number Publication date
US20180362802A1 (en) 2018-12-20
EP3395917A1 (en) 2018-10-31
TWI718183B (en) 2021-02-11
JP6973576B2 (en) 2021-12-01
KR20180097559A (en) 2018-08-31
JP2020180294A (en) 2020-11-05
EP3395917B1 (en) 2020-11-04
TW201731979A (en) 2017-09-16
US10800942B2 (en) 2020-10-13
KR102595402B1 (en) 2023-10-27
CN108473813A (en) 2018-08-31
JP2017115120A (en) 2017-06-29
EP3395917A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
JP4584014B2 (en) Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JP5994955B1 (en) Electrodeposition solution for water-dispersed insulation film formation
CN108603074B (en) Electrodeposition liquid and electrodeposition-coated body
TW201835246A (en) Electrodeposition solution and method of producing conductor with insulating coating formed by using same
JP2013234257A (en) Electrodeposition paint composition and electrodeposition method and insulation member
EP3447172B1 (en) Insulated flat conductive wire having high aspect ratio, method for manufacturing same, and coil
JP2017066014A (en) Resin-coated boron nitride powder, and dispersion liquid thereof
WO2017141885A1 (en) Electrodeposition liquid and electrodeposition-coated article
WO2017110188A1 (en) Aqueous dispersion type electrodeposition liquid for insulating-film formation
US10465080B2 (en) Water-dispersed electrodeposition solution for forming insulating film
WO2017002666A1 (en) Water-dispersed electrodeposition liquid for forming insulating coating film
JP6769076B2 (en) Electrodeposition coating composition and method for manufacturing insulated wires using it
JP2017137541A (en) Electrodeposition liquid and method for forming insulation coated film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200805

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6794718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150