JP6793096B2 - Internal combustion engine with supercharged engine - Google Patents

Internal combustion engine with supercharged engine Download PDF

Info

Publication number
JP6793096B2
JP6793096B2 JP2017128703A JP2017128703A JP6793096B2 JP 6793096 B2 JP6793096 B2 JP 6793096B2 JP 2017128703 A JP2017128703 A JP 2017128703A JP 2017128703 A JP2017128703 A JP 2017128703A JP 6793096 B2 JP6793096 B2 JP 6793096B2
Authority
JP
Japan
Prior art keywords
evaporator
working medium
engine
temperature change
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128703A
Other languages
Japanese (ja)
Other versions
JP2019011710A (en
Inventor
足立 成人
成人 足立
裕 成川
成川  裕
和真 西村
和真 西村
高橋 和雄
和雄 高橋
治幸 松田
治幸 松田
一也 荒平
一也 荒平
泰輔 森下
泰輔 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017128703A priority Critical patent/JP6793096B2/en
Priority to KR1020180071270A priority patent/KR102067153B1/en
Priority to CN201810696780.6A priority patent/CN109209532B/en
Publication of JP2019011710A publication Critical patent/JP2019011710A/en
Application granted granted Critical
Publication of JP6793096B2 publication Critical patent/JP6793096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、過給機付エンジンを搭載する内燃機関に関する。 The present invention relates to an internal combustion engine equipped with an engine with a supercharger.

従来、過給機からエンジンへ供給される過給空気の熱を回収する熱エネルギー回収ユニットを備える過給機付エンジン搭載内燃機関が知られている。例えば、特許文献1には、エンジンと、タービン及びコンプレッサーを有する過給機と、過給機からエンジンに供給される過給空気の熱を回収する排熱回収装置と、を備える船舶が開示されている。タービンは、エンジンから排出された排ガスによって駆動される。コンプレッサーは、タービンに接続されており、前記過給空気を吐出する。排熱回収装置は、作動媒体を蒸発させる蒸発器と、膨張機と、動力回収機と、凝縮器と、ポンプと、を備えている。蒸発器は、過給機のコンプレッサーとエンジンとを接続する吸気ラインに設けられている。つまり、排熱回収装置では、蒸発器において、エンジンに供給される前の過給空気から作動媒体が熱を受け取り、この熱エネルギーが膨張機を介して動力回収機によって回収される。 Conventionally, an internal combustion engine equipped with an engine with a supercharger including a thermal energy recovery unit that recovers the heat of the supercharged air supplied from the supercharger to the engine is known. For example, Patent Document 1 discloses a ship including an engine, a supercharger having a turbine and a compressor, and an exhaust heat recovery device for recovering heat of supercharged air supplied from the supercharger to the engine. ing. The turbine is driven by the exhaust gas emitted from the engine. The compressor is connected to the turbine and discharges the supercharged air. The exhaust heat recovery device includes an evaporator for evaporating the working medium, an expander, a power recovery device, a condenser, and a pump. The evaporator is provided in the intake line connecting the compressor of the turbocharger and the engine. That is, in the exhaust heat recovery device, in the evaporator, the working medium receives heat from the supercharged air before being supplied to the engine, and this heat energy is recovered by the power recovery machine via the expander.

特開2015−200182号公報Japanese Unexamined Patent Publication No. 2015-200182

特許文献1に記載されるような船舶では、荒天時等に動力回収機での動力の回収量に変動が生じ得る。具体的に、荒天時等には、エンジンの負荷が比較的大きく変動するため、過給機からエンジンに供給される過給空気の熱量も比較的大きく変動する。このため、蒸発器での作動媒体の過給空気からの受熱量、つまり、動力回収機での動力の回収量が変動する。 In a ship as described in Patent Document 1, the amount of power recovered by the power recovery machine may fluctuate in stormy weather or the like. Specifically, in stormy weather or the like, the load of the engine fluctuates relatively greatly, so that the amount of heat of the supercharged air supplied from the supercharger to the engine also fluctuates relatively greatly. Therefore, the amount of heat received from the supercharged air of the working medium in the evaporator, that is, the amount of power recovered by the power recovery machine fluctuates.

このような課題は、船舶に限らず、航空機や大型発電機等の過給機付エンジンを備える内燃機関において広く生じ得る。 Such a problem can occur widely not only in ships but also in internal combustion engines equipped with supercharged engines such as aircraft and large generators.

本発明の目的は、動力回収機での動力の回収量の変動を抑制することが可能な過給機付エンジン搭載内燃機関を提供することである。 An object of the present invention is to provide an internal combustion engine equipped with an engine with a supercharger capable of suppressing fluctuations in the amount of power recovered by the power recovery machine.

前記の目的を達成するため、本発明は、エンジンと、前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、前記制御部は、前記蒸発器に流入する過給空気の熱量の増減に応じて前記蒸発器への前記作動媒体の流入量を増減させる調整部と、前記蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になったときに、そのことを示す温度変化信号を出力する温度変化検出部と、を有し、前記調整部は、前記蒸発器への前記作動媒体の流入量を低下させることを示す低下信号を受信したときに、前記蒸発器への前記作動媒体の流入量を前記低下信号を受信したときの流入量よりも少なくかつ一定の量である減少一定量に維持する、過給機付エンジン搭載内燃機関を提供する。 In order to achieve the above object, the present invention comprises an engine, a compressor driven by exhaust gas discharged from the engine, and a compressor connected to the turbine and discharging supercharged air to be supplied to the engine. An turbocharger that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium, and an expander that expands the working medium that flows out of the evaporator. A power recovery machine connected to the expander, a condenser that condenses the working medium that has flowed out of the expander, a pump that sends the working medium that has flowed out of the condenser to the evaporator, and the above-mentioned to the evaporator. A control unit that controls the inflow amount of the working medium is provided, and the control unit increases or decreases the inflow amount of the working medium into the evaporator according to the increase or decrease in the amount of heat of the supercharged air flowing into the evaporator. It has an adjusting unit and a temperature change detecting unit that outputs a temperature change signal indicating that when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds a threshold value. When the adjusting unit receives a lowering signal indicating that the inflow amount of the working medium into the evaporator is reduced, the adjusting unit receives the lowering signal regarding the inflow amount of the working medium into the evaporator. Provided is an internal combustion engine equipped with an engine with a supercharger, which is maintained at a constant decrease amount which is smaller than the inflow amount and is a constant amount.

本過給機付エンジン搭載内燃機関(船舶等)では、荒天等に影響により、蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になると、温度変化検出部が温度変化信号を出力する。よって、例えば、この温度変化信号が過給機付エンジン搭載内燃機関の作業員への報知信号(ブザー等)として利用される場合、その報知信号を受けた作業員が調整部に対して低下信号を送る(調整部に対して低下信号を送信可能なスイッチの操作等を行う)ことにより、蒸発器への作動媒体の流入量が、蒸発器に流入する過給空気の熱量の増減に応じて増減する状態から、前記低下信号を受信したときの流入量よりも少なくかつ一定の量である減少一定量に維持される状態に切り替わる。この結果、蒸発器から流出する(膨張機に流入する)作動媒体の圧力、すなわち、動力回収機での動力の回収量は低下するものの、その回収量は、蒸発器に流入する過給空気の温度変化の影響を受けない一定の値に維持される。よって、動力回収機での動力の回収量(出力)の変動が抑制される。 In an internal combustion engine equipped with an engine with a supercharger (ship, etc.), when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds the threshold due to the influence of stormy weather, the temperature change detector changes the temperature. Output a signal. Therefore, for example, when this temperature change signal is used as a notification signal (buzzer, etc.) to a worker of an internal combustion engine equipped with an engine with a supercharger, the worker who receives the notification signal sends a lower signal to the adjusting unit. (Operating a switch capable of transmitting a decrease signal to the adjusting unit, etc.), the amount of inflow of the working medium into the evaporator increases or decreases according to the amount of heat of the supercharged air flowing into the evaporator. The state of increasing / decreasing is switched to a state of being maintained at a constant decrease amount, which is a constant amount less than the inflow amount when the decrease signal is received. As a result, the pressure of the working medium flowing out of the evaporator (flowing into the expander), that is, the amount of power recovered by the power recovery machine is reduced, but the recovery amount is that of the supercharged air flowing into the evaporator. It is maintained at a constant value that is not affected by temperature changes. Therefore, fluctuations in the amount (output) of power recovered by the power recovery machine are suppressed.

この場合において、前記温度変化検出部は、前記温度変化信号を前記低下信号として前記調整部に送信することが好ましい。 In this case, it is preferable that the temperature change detection unit transmits the temperature change signal as the decrease signal to the adjustment unit.

このようにすれば、温度変化検出部が過給空気の温度の所定期間における変化度が閾値以上となったことを検出したときに、自動的に動力回収機での動力の回収量が低下し、その回収量で安定する。 In this way, when the temperature change detection unit detects that the degree of change in the temperature of the supercharged air in a predetermined period exceeds the threshold value, the amount of power recovered by the power recovery machine automatically decreases. , Stable with the recovered amount.

また、前記過給機付エンジン搭載内燃機関において、前記調整部は、前記温度変化信号を受信すると、当該温度変化信号の受信前の特定期間における前記蒸発器への前記作動媒体の流入量の最小値以下の量を前記減少一定量として設定することが好ましい。 Further, in the internal combustion engine equipped with an engine with a supercharger, when the adjusting unit receives the temperature change signal, the minimum amount of inflow of the working medium into the evaporator in a specific period before receiving the temperature change signal is minimized. It is preferable to set an amount equal to or less than the value as the constant decrease amount.

このようにすれば、作動媒体が気液二相の状態で膨張機に流入することが抑制される。具体的に、前記減少一定量が特定期間における蒸発器への作動媒体の流入量の最小値よりも大きい場合、蒸発器への作動媒体の流入量が前記最小値であったときと同程度にまで蒸発器に流入する過給空気の熱量が減少したときに、蒸発器での作動媒体の蒸発が不十分となる。ただし、前記減少一定量を蒸発器への作動媒体の流入量の最小値以下の量に設定することにより、作動媒体の温度が飽和温度未満の状態で当該作動媒体が蒸発器から流出することが抑制されるので、作動媒体が気液二相の状態で膨張機に流入することが抑制される。 In this way, it is possible to prevent the working medium from flowing into the expander in a gas-liquid two-phase state. Specifically, when the constant decrease amount is larger than the minimum value of the inflow amount of the working medium into the evaporator in a specific period, the inflow amount of the working medium into the evaporator is about the same as when it is the minimum value. When the amount of heat of the boosted air flowing into the evaporator is reduced, the evaporation of the working medium in the evaporator becomes insufficient. However, by setting the constant decrease amount to an amount equal to or less than the minimum value of the inflow amount of the working medium into the evaporator, the working medium may flow out from the evaporator when the temperature of the working medium is less than the saturation temperature. Since it is suppressed, it is suppressed that the working medium flows into the expander in a gas-liquid two-phase state.

また、本発明は、エンジンと、前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、前記制御部は、前記膨張機に流入する作動媒体の過熱度が規定範囲内で推移するように前記蒸発器への前記作動媒体の流入量を調整する調整部と、前記蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になったときに、そのことを示す温度変化信号を出力する温度変化検出部と、を有し、前記調整部は、前記過熱度の前記規定範囲の上限値を増加させることを示す上限値増加信号を受信したときに、前記規定範囲の上限値を一定値増加させる、過給機付エンジン搭載内燃機関を提供する。 Further, the present invention includes an engine, a turbocharger driven by exhaust gas discharged from the engine, and a supercharger having a compressor connected to the turbine and discharging supercharged air for supplying to the engine. An evaporator that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium, an expander that expands the working medium flowing out of the evaporator, and an expander connected to the expander. The power recovery machine, the condenser that condenses the working medium that has flowed out of the expander, the pump that sends the working medium that has flowed out of the condenser to the evaporator, and the inflow amount of the working medium into the evaporator. The control unit includes a control unit for controlling, and the control unit adjusts the inflow amount of the working medium into the evaporator so that the degree of superheating of the working medium flowing into the expander changes within a specified range. And a temperature change detection unit that outputs a temperature change signal indicating that when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds a threshold value, the adjustment is performed. When receiving an upper limit value increase signal indicating that the upper limit value of the specified range of the degree of superheating is increased, the unit increases the upper limit value of the specified range by a certain value, and an internal combustion engine equipped with an engine with a supercharger. provide.

この過給機付エンジン搭載内燃機関では、荒天等に影響により、蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になると、温度変化検出部が温度変化信号を出力する。よって、例えば、この温度変化信号が過給機付エンジン搭載内燃機関の作業員への報知信号(ブザー等)として利用される場合、その報知信号を受けた作業員が調整部に対して上限値増加信号を送る(調整部に対して上限値増加信号を送信可能なスイッチの操作等を行う)ことにより、過熱度の規定範囲の上限値が一定値増加する。このため、蒸発器に流入する過給空気の温度が上昇したとしても、すなわち、動力回収量が増えるように蒸発器への作動媒体の流入量を増加させることが可能な状態になったとしても、蒸発器への作動媒体の流入量が調整部が上限値増加信号を受信したときの流入量から増加することが抑制される。よって、動力回収機での動力の回収量(出力)の変動が抑制される。 In this internal combustion engine equipped with an engine with a supercharger, the temperature change detection unit outputs a temperature change signal when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds the threshold value due to the influence of stormy weather or the like. .. Therefore, for example, when this temperature change signal is used as a notification signal (buzzer, etc.) to a worker of an internal combustion engine equipped with a supercharger engine, the worker who receives the notification signal has an upper limit value for the adjusting unit. By sending an increase signal (operating a switch capable of transmitting an upper limit value increase signal to the adjusting unit, etc.), the upper limit value of the specified range of the degree of superheating is increased by a constant value. Therefore, even if the temperature of the supercharged air flowing into the evaporator rises, that is, even if the amount of the working medium flowing into the evaporator can be increased so as to increase the power recovery amount. , The inflow amount of the working medium into the evaporator is suppressed from increasing from the inflow amount when the adjusting unit receives the upper limit value increase signal. Therefore, fluctuations in the amount (output) of power recovered by the power recovery machine are suppressed.

この場合において、前記温度変化検出部は、前記温度変化信号を前記上限値増加信号として前記調整部に送信することが好ましい。 In this case, it is preferable that the temperature change detection unit transmits the temperature change signal as the upper limit value increase signal to the adjustment unit.

このようにすれば、温度変化検出部が過給空気の温度の所定期間における変化度が閾値以上となったことを検出したときに、自動的に過熱度の規定範囲の上限値が増加する。よって、動力回収機での動力の回収量の変動が自動的に抑制される。 In this way, when the temperature change detection unit detects that the degree of change in the temperature of the supercharged air in a predetermined period exceeds the threshold value, the upper limit of the specified range of the degree of superheat is automatically increased. Therefore, fluctuations in the amount of power recovered by the power recovery machine are automatically suppressed.

また、前記過給機付エンジン搭載内燃機関において、前記調整部は、前記蒸発器に流入する過給空気の温度の前記所定期間における最大値と最小値との差と同じ値を前記一定値として前記規定範囲の上限値に加えることが好ましい。 Further, in the internal combustion engine equipped with an engine with a supercharger, the adjusting unit sets the same value as the difference between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator in the predetermined period as the constant value. It is preferable to add it to the upper limit of the specified range.

このようにすれば、より確実に動力回収機での動力の回収量の変動が抑制される。具体的に、規定範囲の上限値に加えられる前記一定値が蒸発器に流入する過給空気の温度の所定期間における最大値と最小値との差よりも小さい場合、蒸発器に流入する過給空気の温度が前記最大値程度にまで変化したときに、蒸発器での作動媒体の受熱量が増加するので、膨張機に流入する作動媒体の過熱度が上限値を超える。この結果、調整部は、蒸発器への作動媒体の流入量を増加させるので、動力回収機での動力の回収量が増加する。ただし、前記差と同じ値が前記一定値として規定範囲の上限値に加えられることにより、膨張機に流入する作動媒体の過熱度が前記一定値が加えられた後の上限値以上になることが抑制されるので、動力回収機での動力の回収量の変動がより確実に抑制される。 By doing so, fluctuations in the amount of power recovered by the power recovery machine can be suppressed more reliably. Specifically, when the constant value added to the upper limit value of the specified range is smaller than the difference between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator in a predetermined period, the supercharging flowing into the evaporator When the temperature of the air changes to about the maximum value, the amount of heat received by the working medium in the evaporator increases, so that the degree of superheating of the working medium flowing into the expander exceeds the upper limit value. As a result, the adjusting unit increases the amount of inflow of the working medium into the evaporator, so that the amount of power recovered by the power recovery machine increases. However, when the same value as the difference is added to the upper limit value of the specified range as the constant value, the degree of superheat of the working medium flowing into the expander may be equal to or higher than the upper limit value after the constant value is added. Since it is suppressed, fluctuations in the amount of power recovered by the power recovery machine are more reliably suppressed.

また、本発明は、エンジンと、前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、前記制御部は、前記膨張機に流入する作動媒体の過熱度が規定範囲内で推移するように前記蒸発器への前記作動媒体の流入量を調整する調整部を有し、前記調整部は、前記蒸発器に流入する過給空気の温度の基準期間における最大値と最小値との差と同じ値を前記規定範囲の上限値に加える、過給機付エンジン搭載内燃機関を提供する。 Further, the present invention includes an engine, a turbocharger driven by exhaust gas discharged from the engine, and a supercharger having a compressor connected to the turbine and discharging supercharged air for supplying to the engine. An evaporator that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium, an expander that expands the working medium flowing out of the evaporator, and an expander connected to the expander. The power recovery machine, the condenser that condenses the working medium that has flowed out of the expander, the pump that sends the working medium that has flowed out of the condenser to the evaporator, and the inflow amount of the working medium into the evaporator. The control unit includes a control unit for controlling, and the control unit adjusts the inflow amount of the working medium into the evaporator so that the degree of superheating of the working medium flowing into the expander changes within a specified range. The adjusting unit adds the same value as the difference between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator in the reference period to the upper limit value of the specified range. Provides an on-board internal combustion engine.

本過給機付エンジン搭載内燃機関においても、動力回収機での動力の回収量の変動が抑制される。具体的に、前記基準期間における前記差と同じ値が前記一定値として過熱度の規定範囲の上限値に加えられることにより、膨張機に流入する作動媒体の過熱度が前記一定値が加えられた後の上限値以上になることが抑制されるので、動力回収量の変動が抑制される。 Even in the internal combustion engine equipped with the engine with the turbocharger, fluctuations in the amount of power recovered by the power recovery machine are suppressed. Specifically, the same value as the difference in the reference period is added to the upper limit value of the specified range of the degree of superheat as the constant value, so that the constant value is added to the degree of superheat of the working medium flowing into the expander. Since it is suppressed that the value exceeds the upper limit value later, the fluctuation of the power recovery amount is suppressed.

以上のように、本発明によれば、動力回収機での動力の回収量の変動を抑制することが可能な過給機付エンジン搭載内燃機関を提供することができる。 As described above, according to the present invention, it is possible to provide an internal combustion engine equipped with an engine with a supercharger capable of suppressing fluctuations in the amount of power recovered by the power recovery machine.

本発明の第1実施形態の過給機付エンジン搭載内燃機関の構成を概略的に示す図である。It is a figure which shows schematic structure of the internal combustion engine mounted on the engine with a supercharger of 1st Embodiment of this invention. 蒸発器に流入する過給空気の温度の推移と、ポンプの回転数の推移と、の関係の例を示す図である。It is a figure which shows the example of the relationship between the transition of the temperature of supercharged air flowing into an evaporator, and the transition of the rotation speed of a pump. 本発明の第2実施形態の過給機付エンジン搭載内燃機関の構成を概略的に示す図である。It is a figure which shows roughly the structure of the internal combustion engine with a supercharger engine of the 2nd Embodiment of this invention. 蒸発器における過給空気の温度及び作動媒体の温度と、交換熱量と、の関係を示す図である。It is a figure which shows the relationship between the temperature of supercharged air in an evaporator, the temperature of a working medium, and the amount of exchange heat. 熱エネルギー回収ユニットの変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery unit. 熱エネルギー回収ユニットの変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery unit.

以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の第1実施形態の過給機付エンジン搭載内燃機関について、図1及び図2を参照しながら説明する。この過給機付エンジン搭載内燃機関は、エンジン10と、過給機20と、熱エネルギー回収ユニット40と、を備えている。本実施形態では、過給機付エンジン搭載内燃機関として、船舶が示される。つまり、エンジン10として、船舶用エンジンが採用されている。
(First Embodiment)
The internal combustion engine mounted on the engine with a supercharger according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. This engine-mounted internal combustion engine with a supercharger includes an engine 10, a supercharger 20, and a thermal energy recovery unit 40. In this embodiment, a ship is shown as an internal combustion engine equipped with an engine with a supercharger. That is, a marine engine is adopted as the engine 10.

過給機20は、エンジン10から排出された排ガスによって駆動されるタービン21と、タービン21に接続されておりエンジン10に供給するための過給空気を吐出するコンプレッサー22と、を有する。コンプレッサー22から吐出された過給空気は、コンプレッサー22とエンジンとを接続する吸気ライン11を通じてエンジンに供給される。エンジン10から排出された排ガスは、エンジン10とタービン21とを接続する排気ライン12を通じてタービン21に供給される。 The supercharger 20 includes a turbine 21 driven by exhaust gas discharged from the engine 10 and a compressor 22 connected to the turbine 21 and discharging supercharged air to be supplied to the engine 10. The supercharged air discharged from the compressor 22 is supplied to the engine through the intake line 11 connecting the compressor 22 and the engine. The exhaust gas discharged from the engine 10 is supplied to the turbine 21 through an exhaust line 12 connecting the engine 10 and the turbine 21.

本実施形態では、吸気ライン11にエアクーラ30が設けられている。エアクーラ30は、エンジン10に供給される過給空気を冷却媒体(海水等)によって冷却する。 In the present embodiment, the air cooler 30 is provided in the intake line 11. The air cooler 30 cools the supercharged air supplied to the engine 10 by a cooling medium (seawater or the like).

熱エネルギー回収ユニット40は、蒸発器42と、膨張機44と、動力回収機46と、凝縮器48と、ポンプ50と、蒸発器42、膨張機44、凝縮器48及びポンプ50をこの順に接続する循環流路52と、制御部60と、を備えている。 The thermal energy recovery unit 40 connects the evaporator 42, the expander 44, the power recovery device 46, the condenser 48, the pump 50, the evaporator 42, the expander 44, the condenser 48 and the pump 50 in this order. The circulation flow path 52 and the control unit 60 are provided.

蒸発器42は、吸気ライン11のうちコンプレッサー22とエアクーラ30との間の部位に設けられている。蒸発器42は、コンプレッサー22から吐出された(エンジン10に供給される)過給空気と作動媒体とを熱交換させることによって作動媒体を蒸発させる。 The evaporator 42 is provided at a portion of the intake line 11 between the compressor 22 and the air cooler 30. The evaporator 42 evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor 22 (supplied to the engine 10) and the working medium.

膨張機44は、循環流路52のうち蒸発器42の下流側の部位に設けられている。膨張機44は、蒸発器42から流出した気相の作動媒体を膨張させる。本実施形態では、膨張機44として、気相の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュ膨張機が用いられている。 The expander 44 is provided in a portion of the circulation flow path 52 on the downstream side of the evaporator 42. The expander 44 expands the working medium of the gas phase that has flowed out of the evaporator 42. In the present embodiment, as the expander 44, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of the working medium of the gas phase is used.

動力回収機46は、膨張機44に接続されている。動力回収機46は、膨張機44の駆動に伴って回転することにより作動媒体から動力を回収する。本実施形態では、動力回収機46として発電機が用いられている。なお、動力回収機46として、圧縮機等が用いられてもよい。 The power recovery machine 46 is connected to the expander 44. The power recovery machine 46 recovers power from the operating medium by rotating with the drive of the expansion machine 44. In this embodiment, a generator is used as the power recovery machine 46. A compressor or the like may be used as the power recovery machine 46.

凝縮器48は、循環流路52のうち膨張機44の下流側の部位に設けられている。凝縮器48は、膨張機44から流出した作動媒体と冷却媒体(海水等)とを熱交換させることによって作動媒体を凝縮させる。 The condenser 48 is provided in a portion of the circulation flow path 52 on the downstream side of the expander 44. The condenser 48 condenses the working medium by exchanging heat between the working medium flowing out of the expander 44 and the cooling medium (seawater or the like).

ポンプ50は、循環流路52のうち凝縮器48の下流側の部位(凝縮器48と蒸発器42との間の部位)に設けられている。ポンプ50は、凝縮器48から流出した液相の作動媒体を蒸発器42に送る。 The pump 50 is provided in a portion of the circulation flow path 52 on the downstream side of the condenser 48 (a portion between the condenser 48 and the evaporator 42). The pump 50 sends the working medium of the liquid phase flowing out of the condenser 48 to the evaporator 42.

制御部60は、動力回収機46での動力の回収量(本実施形態では発電量)が安定するように蒸発器42への作動媒体の流入量を制御する。本実施形態では、制御部60は、蒸発器42に流入する過給空気の熱量の増減に応じて蒸発器42への作動媒体の流入量を増減させる。蒸発器42に流入する過給空気の熱量は、吸気ライン11のうちコンプレッサー22と蒸発器42との間に設けられた圧力センサ71及び温度センサ72の各検出値に基づいて求められる。具体的に、制御部60は、調整部62と、温度変化検出部64と、を有する。 The control unit 60 controls the inflow amount of the working medium into the evaporator 42 so that the amount of power recovered by the power recovery machine 46 (the amount of power generation in the present embodiment) is stable. In the present embodiment, the control unit 60 increases or decreases the amount of the working medium flowing into the evaporator 42 according to the increase or decrease in the amount of heat of the supercharged air flowing into the evaporator 42. The amount of heat of the supercharged air flowing into the evaporator 42 is determined based on the detected values of the pressure sensor 71 and the temperature sensor 72 provided between the compressor 22 and the evaporator 42 in the intake line 11. Specifically, the control unit 60 includes an adjustment unit 62 and a temperature change detection unit 64.

調整部62は、ポンプ50の回転数を調整することによって蒸発器42への作動媒体の流入量を調整する。図2には、ポンプ50の回転数と、蒸発器42に流入する過給空気の温度の推移と、の関係が例示されている。また、調整部62は、蒸発器42への作動媒体の流入量を低下させることを示す低下信号を受信したときに、蒸発器42への作動媒体の流入量を前記低下信号を受信したときの流入量よりも少なくかつ一定の量である減少一定量(図2を参照)に維持する。 The adjusting unit 62 adjusts the inflow amount of the working medium into the evaporator 42 by adjusting the rotation speed of the pump 50. FIG. 2 illustrates the relationship between the rotation speed of the pump 50 and the transition of the temperature of the supercharged air flowing into the evaporator 42. Further, when the adjusting unit 62 receives the lowering signal indicating that the inflow amount of the working medium into the evaporator 42 is reduced, the adjusting unit 62 receives the lowering signal for the inflow amount of the working medium into the evaporator 42. Maintain a constant decrease (see FIG. 2), which is less than the inflow and constant.

温度変化検出部64は、蒸発器42に流入する過給空気の温度(温度センサ72の検出値)の所定期間(例えば3分)t1における変化度が閾値以上となったときに、そのことを示す温度変化信号を出力する。具体的に、温度変化検出部64は、蒸発器42に流入する過給空気の温度の所定期間t1における最大値と最小値との差ΔTが基準値(例えば10℃)以上になったときに、前記温度変化信号を出力する。本実施形態では、温度変化検出部64は、温度変化信号を前記低下信号として調整部62に送る。つまり、調整部62は、温度変化検出部64が出力する温度変化信号(低下信号)を受信したときに、蒸発器42への作動媒体の流入量が前記減少一定量となるようにポンプ50の回転数を低下させる。より具体的には、調整部62は、温度変化信号を受信したときに、温度変化信号の受信前の特定期間(例えば数時間)t2における蒸発器42への作動媒体の流入量の最小値fmin以下の量を前記減少一定量として設定する。 The temperature change detection unit 64 detects when the degree of change in the temperature of the supercharged air flowing into the evaporator 42 (detected value of the temperature sensor 72) in a predetermined period (for example, 3 minutes) t1 exceeds the threshold value. The indicated temperature change signal is output. Specifically, the temperature change detection unit 64 receives when the difference ΔT between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator 42 in a predetermined period t1 becomes a reference value (for example, 10 ° C.) or more. , The temperature change signal is output. In the present embodiment, the temperature change detection unit 64 sends the temperature change signal as the decrease signal to the adjustment unit 62. That is, when the adjusting unit 62 receives the temperature change signal (decrease signal) output by the temperature change detecting unit 64, the adjusting unit 62 of the pump 50 so that the inflow amount of the working medium into the evaporator 42 becomes the constant decrease amount. Decrease the number of revolutions. More specifically, when the adjusting unit 62 receives the temperature change signal, the minimum value fmin of the inflow amount of the working medium into the evaporator 42 in a specific period (for example, several hours) t2 before receiving the temperature change signal. The following amount is set as the constant decrease amount.

以上のように、本実施形態の船舶(過給機付エンジン搭載内燃機関)では、荒天等に影響により、蒸発器42に流入する過給空気の温度の所定期間t1における変化度が閾値以上になると、調整部62は、温度変化検出部64から出力された温度変化信号(低下信号)を受信することにより、蒸発器42への作動媒体の流入量を、蒸発器42に流入する過給空気の熱量の増減に応じて増減する状態から、前記温度変化信号を受信したときの流入量よりも少なくかつ一定の量である減少一定量に維持される状態に切り替える。この結果、蒸発器42から流出する(膨張機44に流入する)作動媒体の圧力、すなわち、動力回収機46での動力の回収量は低下するものの、その回収量は、蒸発器42に流入する過給空気の温度変化の影響を受けない一定の値に維持される。よって、動力回収機46での動力の回収量(出力)の変動が抑制される。 As described above, in the ship of the present embodiment (internal combustion engine equipped with an engine with a supercharger), the degree of change in the temperature of the supercharged air flowing into the evaporator 42 in a predetermined period t1 is equal to or higher than the threshold value due to the influence of stormy weather or the like. Then, the adjusting unit 62 receives the temperature change signal (decrease signal) output from the temperature change detecting unit 64, so that the amount of the working medium flowing into the evaporator 42 is increased to the supercharged air flowing into the evaporator 42. The state of increasing or decreasing according to the increase or decrease of the amount of heat of the above is switched to the state of being maintained at a constant decrease amount which is a constant amount less than the inflow amount when the temperature change signal is received. As a result, the pressure of the working medium flowing out of the evaporator 42 (flowing into the expander 44), that is, the recovery amount of the power in the power recovery machine 46 decreases, but the recovery amount flows into the evaporator 42. It is maintained at a constant value that is not affected by temperature changes in the supercharged air. Therefore, the fluctuation of the power recovery amount (output) of the power recovery machine 46 is suppressed.

また、調整部62は、前記温度変化信号を受信すると、当該温度変化信号の受信前の特定期間t2における蒸発器42への作動媒体の流入量の最小値fmin以下の量を前記減少一定量として設定する。このため、作動媒体が気液二相の状態で膨張機44に流入することが抑制される。具体的に、前記減少一定量が特定期間t2における蒸発器42への作動媒体の流入量の最小値fminよりも大きい場合、蒸発器42への作動媒体の流入量が前記最小値fminであったときと同程度にまで蒸発器42に流入する過給空気の熱量(温度)が減少したときに、蒸発器42での作動媒体の蒸発が不十分となる。ただし、前記減少一定量を前記最小値fmin以下の量に設定することにより、蒸発器42において作動媒体が過給空気から受け取る熱によって当該作動媒体が十分に蒸発するので、作動媒体の温度が飽和温度未満の状態で当該作動媒体が蒸発器42から流出することが抑制される。よって、作動媒体が気液二相の状態で膨張機44に流入することが抑制される。 Further, when the adjusting unit 62 receives the temperature change signal, the amount of the minimum value fmin or less of the inflow amount of the working medium into the evaporator 42 in the specific period t2 before the reception of the temperature change signal is set as the constant decrease amount. Set. Therefore, it is suppressed that the working medium flows into the expander 44 in a gas-liquid two-phase state. Specifically, when the constant decrease amount is larger than the minimum value fmin of the inflow amount of the working medium into the evaporator 42 in the specific period t2, the inflow amount of the working medium into the evaporator 42 is the minimum value fmin. When the amount of heat (temperature) of the supercharging air flowing into the evaporator 42 decreases to the same extent as the case, the evaporation of the working medium in the evaporator 42 becomes insufficient. However, by setting the constant decrease amount to an amount equal to or less than the minimum value fmin, the working medium is sufficiently evaporated by the heat received by the working medium from the supercharged air in the evaporator 42, so that the temperature of the working medium is saturated. It is suppressed that the working medium flows out from the evaporator 42 in a state of being lower than the temperature. Therefore, it is suppressed that the working medium flows into the expander 44 in a gas-liquid two-phase state.

なお、温度変化検出部64が出力する温度変化信号は、船舶の作業員への報知信号(ブザー等)として用いられてもよい。この場合、その報知信号を受けた作業員は、調整部62に前記低下信号を送信可能なスイッチの操作等を行う。これにより、蒸発器42への作動媒体の流入量が前記減少一定量となるようにポンプ50の回転数が低下する。このようにしても、動力回収機46での動力の回収量(出力)の変動が抑制される。 The temperature change signal output by the temperature change detection unit 64 may be used as a notification signal (buzzer or the like) to the workers of the ship. In this case, the worker who receives the notification signal operates a switch capable of transmitting the lowering signal to the adjusting unit 62 and the like. As a result, the rotation speed of the pump 50 is reduced so that the inflow amount of the working medium into the evaporator 42 becomes the constant decrease amount. Even in this way, the fluctuation of the power recovery amount (output) of the power recovery machine 46 is suppressed.

また、蒸発器42に流入する過給空気の熱量は、前記圧力センサ71及び温度センサ72の代わりに設けられた流量センサの検出値に基づいて求められてもよい。あるいは、蒸発器42に流入する過給空気の熱量は、排気ライン12内の排ガスの温度及び圧力や、排気ライン12内の排ガスの流量に基づいて求められてもよい。 Further, the amount of heat of the supercharged air flowing into the evaporator 42 may be obtained based on the detection value of the flow rate sensor provided instead of the pressure sensor 71 and the temperature sensor 72. Alternatively, the amount of heat of the supercharged air flowing into the evaporator 42 may be determined based on the temperature and pressure of the exhaust gas in the exhaust line 12 and the flow rate of the exhaust gas in the exhaust line 12.

(第2実施形態)
次に、図3及び図4を参照しながら、本発明の第2実施形態の過給機付エンジン搭載内燃機関について説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
Next, the internal combustion engine mounted on the engine with a supercharger according to the second embodiment of the present invention will be described with reference to FIGS. 3 and 4. In the second embodiment, only the parts different from the first embodiment will be described, and the description of the same structure, action and effect as in the first embodiment will be omitted.

本実施形態では、制御部60の調整部66は、膨張機44に流入する作動媒体の過熱度が規定範囲内(例えば2℃〜5℃)で推移するように蒸発器42への作動媒体の流入量(ポンプ50の回転数)を調整する。この調整部66は、前記規定範囲を記憶する記憶部67を有している。なお、膨張機44に流入する作動媒体の過熱度は、循環流路52のうち蒸発器42と膨張機44との間の部位に設けられた圧力センサ73及び温度センサ74の各検出値に基づいて求められる。 In the present embodiment, the adjusting unit 66 of the control unit 60 transfers the operating medium to the evaporator 42 so that the degree of superheat of the operating medium flowing into the expander 44 changes within a specified range (for example, 2 ° C to 5 ° C). The inflow amount (the number of revolutions of the pump 50) is adjusted. The adjusting unit 66 has a storage unit 67 that stores the specified range. The degree of superheat of the working medium flowing into the expander 44 is based on the detected values of the pressure sensor 73 and the temperature sensor 74 provided in the portion between the evaporator 42 and the expander 44 in the circulation flow path 52. Is required.

温度変化検出部64は、蒸発器42に流入する過給空気の温度の所定期間t1における最大値と最小値との差ΔTが基準値(例えば10℃)以上になったときに、そのことを示す温度変化信号を出力する。具体的に、温度変化検出部64は、前記差ΔTが基準値以上になったときに、前記温度変化信号として、過熱度の規定範囲の上限値α1を増加させることを示す上限値増加信号を調整部66に送信する。調整部66は、前記上限値増加信号を受信したときに、記憶部67に記憶されている規定範囲の上限値α1を一定値増加させる。より具体的には、図4に示されるように、調整部66は、前記所定期間t1に温度変化検出部64で検出された温度の最大値と最小値との差ΔTと同じ値を前記一定値として規定範囲の上限値α1に加える。 The temperature change detection unit 64 detects when the difference ΔT between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator 42 in a predetermined period t1 becomes a reference value (for example, 10 ° C.) or more. The indicated temperature change signal is output. Specifically, the temperature change detection unit 64 sends an upper limit value increase signal indicating that the upper limit value α1 in the specified range of the degree of superheat is increased as the temperature change signal when the difference ΔT becomes equal to or more than the reference value. It is transmitted to the adjustment unit 66. When the adjusting unit 66 receives the upper limit value increasing signal, the adjusting unit 66 increases the upper limit value α1 of the specified range stored in the storage unit 67 by a constant value. More specifically, as shown in FIG. 4, the adjusting unit 66 sets the same value as the difference ΔT between the maximum value and the minimum value of the temperature detected by the temperature change detecting unit 64 during the predetermined period t1. As a value, it is added to the upper limit value α1 in the specified range.

以上のように、本実施形態の船舶(過給機付エンジン搭載内燃機関)では、荒天等に影響により、所定期間t1に温度変化検出部64で検出された温度の最大値と最小値との差ΔTが基準値になると、調整部66は、温度変化検出部64から出力された温度変化信号(上限値増加信号)を受信することにより、記憶部67に記憶されている規定範囲の上限値α1を一定値増加させる。このため、蒸発器42に流入する過給空気の温度が上昇したとしても、すなわち、動力回収量が増えるように蒸発器42への作動媒体の流入量を増加させることが可能な状態になったとしても、蒸発器42への作動媒体の流入量が調整部66が上限値増加信号を受信したときの流入量から増加することが抑制される。よって、動力回収機46での動力の回収量(出力)の変動が抑制される。 As described above, in the ship of the present embodiment (internal combustion engine equipped with an engine with a supercharger), the maximum value and the minimum value of the temperature detected by the temperature change detection unit 64 during the predetermined period t1 due to the influence of stormy weather or the like. When the difference ΔT becomes the reference value, the adjusting unit 66 receives the temperature change signal (upper limit value increasing signal) output from the temperature change detecting unit 64, and thereby receives the upper limit value of the specified range stored in the storage unit 67. Increase α1 by a certain value. Therefore, even if the temperature of the supercharged air flowing into the evaporator 42 rises, that is, it is possible to increase the inflow amount of the working medium into the evaporator 42 so as to increase the power recovery amount. Even so, it is suppressed that the inflow amount of the working medium into the evaporator 42 increases from the inflow amount when the adjusting unit 66 receives the upper limit value increase signal. Therefore, the fluctuation of the power recovery amount (output) of the power recovery machine 46 is suppressed.

また、調整部66は、蒸発器42に流入する過給空気の温度の所定期間t1における最大値と最小値との差ΔTと同じ値を前記一定値として規定範囲の上限値α1に加える。このため、より確実に動力回収機46での動力の回収量の変動が抑制される。具体的に、規定範囲の上限値α1に加えられる前記一定値が蒸発器42に流入する過給空気の温度の所定期間t1における最大値と最小値との差ΔTよりも小さい場合、蒸発器42に流入する過給空気の温度が前記最大値程度にまで変化したときに、蒸発器42での作動媒体の受熱量が増加するので、膨張機44に流入する作動媒体の過熱度が上限値を超える。この結果、調整部66は、蒸発器42への作動媒体の流入量を増加させるので、動力回収機46での動力の回収量が増加する。ただし、前記差ΔTと同じ値が前記一定値として規定範囲の上限値α1に加えられることにより、膨張機44に流入する作動媒体の過熱度が前記一定値が加えられた後の上限値以上になることが抑制されるので、動力回収機46での動力の回収量の変動がより確実に抑制される。 Further, the adjusting unit 66 adds the same value as the difference ΔT between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator 42 in the predetermined period t1 to the upper limit value α1 in the specified range as the constant value. Therefore, the fluctuation of the power recovery amount in the power recovery machine 46 is more reliably suppressed. Specifically, when the constant value added to the upper limit value α1 of the specified range is smaller than the difference ΔT between the maximum value and the minimum value in the predetermined period t1 of the temperature of the supercharged air flowing into the evaporator 42, the evaporator 42 When the temperature of the supercharged air flowing into the evaporator changes to about the maximum value, the amount of heat received by the working medium in the evaporator 42 increases, so that the degree of superheating of the working medium flowing into the expander 44 reaches the upper limit. Exceed. As a result, the adjusting unit 66 increases the inflow amount of the working medium into the evaporator 42, so that the amount of power recovered by the power recovery machine 46 increases. However, by adding the same value as the difference ΔT to the upper limit value α1 in the specified range as the constant value, the degree of superheat of the working medium flowing into the expander 44 becomes equal to or higher than the upper limit value after the constant value is added. Since this is suppressed, fluctuations in the amount of power recovered by the power recovery machine 46 are more reliably suppressed.

なお、本実施形態において、調整部66は、温度変化信号の受信によることなく、基準期間(例えば3分)における温度センサ72の検出値の最大値と最小値との差ΔTを過熱度の規定範囲の上限値α1に加えてもよい。このようにしても、動力回収機46での動力の回収量の変動が抑制される。この場合、圧力センサ71は省略可能である。 In the present embodiment, the adjusting unit 66 defines the degree of superheat as the difference ΔT between the maximum value and the minimum value of the detected value of the temperature sensor 72 in the reference period (for example, 3 minutes) without receiving the temperature change signal. It may be added to the upper limit value α1 of the range. Even in this way, fluctuations in the amount of power recovered by the power recovery machine 46 are suppressed. In this case, the pressure sensor 71 can be omitted.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the scope of claims rather than the description of the above-described embodiment, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

例えば、調整部62,66による蒸発器42への作動媒体の流入量の調整は、図5に示されるように、ポンプ50をバイパスするように循環流路52に接続されたバイパス流路54に設けられたバイパス弁56の開度を調整することによって行われてもよい。あるいは、前記流入量の調整は、図6に示されるように、循環流路52のうちポンプ50の下流側の部位に設けられた流量調整弁58の開度を調整することによって行われてもよい。なお、図5及び図6では、制御部60に入力される信号の図示は省略されている。 For example, the adjustment of the inflow amount of the working medium into the evaporator 42 by the adjusting units 62 and 66 is performed in the bypass flow path 54 connected to the circulation flow path 52 so as to bypass the pump 50, as shown in FIG. This may be done by adjusting the opening degree of the provided bypass valve 56. Alternatively, as shown in FIG. 6, the inflow amount may be adjusted by adjusting the opening degree of the flow rate adjusting valve 58 provided on the downstream side of the pump 50 in the circulation flow path 52. Good. Note that in FIGS. 5 and 6, the signal input to the control unit 60 is not shown.

10 エンジン
20 過給機
21 タービン
22 コンプレッサー
40 熱エネルギー回収ユニット
42 蒸発器
44 膨張機
46 動力回収機
48 凝縮器
50 ポンプ
52 循環流路
54 バイパス流路
56 バイパス弁
60 制御部
62 調整部
64 温度変化検出部
66 調整部
67 記憶部
10 Engine 20 Supercharger 21 Turbine 22 Compressor 40 Thermal energy recovery unit 42 Evaporator 44 Expander 46 Power recovery machine 48 Condenser 50 Pump 52 Circulation flow path 54 Bypass flow path 56 Bypass valve 60 Control unit 62 Adjustment unit 64 Temperature change Detection unit 66 Adjustment unit 67 Storage unit

Claims (7)

エンジンと、
前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、
前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、
前記制御部は、
前記ポンプの回転数を調整することによって前記蒸発器に流入する過給空気の熱量の増減に応じて前記蒸発器への前記作動媒体の流入量を増減させる調整部と、
前記蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になったときに、そのことを示す温度変化信号を出力する温度変化検出部と、を有し、
荒天時に前記エンジンの負荷が変動して前記過給機から前記エンジンに供給される過給空気の熱量が変動した際に、前記調整部は、前記蒸発器への前記作動媒体の流入量を低下させることを示す信号であって前記温度変化信号として前記温度変化検出部から出力される低下信号又は前記温度変化検出部から出力される前記温度変化信号に基づいて前記調整部に送られる低下信号を受信したときに、前記蒸発器への前記作動媒体の流入量を、前記蒸発器に流入する過給空気の熱量の増減に応じて増減する状態から、前記低下信号を受信したときの流入量よりも少なくかつ一定の量である減少一定量に維持する状態になるように前記ポンプの回転数を低下させる、過給機付エンジン搭載内燃機関。
With the engine
A turbocharger having a turbine driven by exhaust gas discharged from the engine and a compressor connected to the turbine and discharging supercharged air for supplying to the engine.
An evaporator that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium.
An expander that expands the working medium that flows out of the evaporator,
The power recovery machine connected to the inflator and
A condenser that condenses the working medium that flows out of the expander,
A pump that sends the working medium flowing out of the condenser to the evaporator,
A control unit for controlling the inflow of the working medium into the evaporator is provided.
The control unit
An adjusting unit that increases or decreases the amount of flow of the working medium into the evaporator according to the increase or decrease in the amount of heat of the supercharged air flowing into the evaporator by adjusting the rotation speed of the pump .
It has a temperature change detection unit that outputs a temperature change signal indicating that when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds a threshold value.
When the load of the engine fluctuates during stormy weather and the amount of heat of the supercharging air supplied from the supercharger to the engine fluctuates, the adjusting unit reduces the inflow amount of the working medium into the evaporator. A lowering signal output from the temperature change detection unit as the temperature change signal or a lowering signal sent to the adjusting unit based on the temperature change signal output from the temperature change detection unit. When received, the inflow amount of the working medium into the evaporator is increased or decreased according to the increase or decrease in the heat amount of the supercharged air flowing into the evaporator, and the inflow amount when the decrease signal is received is increased. An internal combustion engine equipped with an engine with a supercharger that reduces the number of revolutions of the pump so as to maintain a constant decrease, which is a small and constant amount.
請求項1に記載の過給機付エンジン搭載内燃機関において、
前記温度変化検出部は、前記温度変化信号を前記低下信号として前記調整部に送信する、過給機付エンジン搭載内燃機関。
In the internal combustion engine equipped with an engine with a supercharger according to claim 1.
The temperature change detection unit is an internal combustion engine equipped with an engine with a supercharger that transmits the temperature change signal as the decrease signal to the adjustment unit.
請求項1又は2に記載の過給機付エンジン搭載内燃機関において、
前記調整部は、前記温度変化信号を受信すると、当該温度変化信号の受信前の特定期間における前記蒸発器への前記作動媒体の流入量の最小値以下の量を前記減少一定量として設定する、過給機付エンジン搭載内燃機関。
In the internal combustion engine equipped with an engine with a supercharger according to claim 1 or 2.
When the adjusting unit receives the temperature change signal, the adjusting unit sets an amount equal to or less than the minimum value of the inflow amount of the working medium into the evaporator in a specific period before receiving the temperature change signal as the constant decrease amount. Internal combustion engine equipped with an engine with a supercharger.
エンジンと、
前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、
前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、
前記制御部は、
前記ポンプの回転数を調整することによって前記膨張機に流入する作動媒体の過熱度が規定範囲内で推移するように前記蒸発器への前記作動媒体の流入量を調整する調整部と、
前記蒸発器に流入する過給空気の温度の所定期間における変化度が閾値以上になったときに、そのことを示す温度変化信号を出力する温度変化検出部と、を有し、
荒天時に前記エンジンの負荷が変動して前記過給機から前記エンジンに供給される過給空気の熱量が変動した際に、前記調整部は、前記過熱度の前記規定範囲の上限値を増加させることを示す信号であって前記温度変化信号として前記温度変化検出部から出力される上限値増加信号又は前記温度変化検出部から出力される前記温度変化信号に基づいて前記調整部に送られる上限値増加信号を受信したときに、前記蒸発器への前記作動媒体の流入量を抑制するために前記規定範囲の上限値を一定値増加させる、過給機付エンジン搭載内燃機関。
With the engine
A turbocharger having a turbine driven by exhaust gas discharged from the engine and a compressor connected to the turbine and discharging supercharged air for supplying to the engine.
An evaporator that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium.
An expander that expands the working medium that flows out of the evaporator,
The power recovery machine connected to the inflator and
A condenser that condenses the working medium that flows out of the expander,
A pump that sends the working medium flowing out of the condenser to the evaporator,
A control unit for controlling the inflow of the working medium into the evaporator is provided.
The control unit
An adjusting unit that adjusts the amount of inflow of the working medium into the evaporator so that the degree of superheat of the working medium flowing into the expander changes within a specified range by adjusting the rotation speed of the pump .
It has a temperature change detection unit that outputs a temperature change signal indicating that when the degree of change in the temperature of the supercharged air flowing into the evaporator in a predetermined period exceeds a threshold value.
When the load of the engine fluctuates during stormy weather and the amount of heat of the supercharging air supplied from the supercharger to the engine fluctuates, the adjusting unit increases the upper limit value of the supercharging degree in the specified range. upper limit value to be sent to the adjustment unit on the basis of the temperature change signal outputted from the upper limit value increase signal or said temperature change detector a signal output from said temperature change detecting unit as the temperature change signal indicating that An engine-equipped internal combustion engine with a supercharger that increases the upper limit of the specified range by a certain value in order to suppress the inflow of the working medium into the evaporator when an increase signal is received.
請求項4に記載の過給機付エンジン搭載内燃機関において、
前記温度変化検出部は、前記温度変化信号を前記上限値増加信号として前記調整部に送信する、過給機付エンジン搭載内燃機関。
In the internal combustion engine equipped with an engine with a supercharger according to claim 4.
The temperature change detection unit is an internal combustion engine equipped with an engine with a supercharger that transmits the temperature change signal as the upper limit value increase signal to the adjustment unit.
請求項4又は5に記載の過給機付エンジン搭載内燃機関において、
前記調整部は、前記蒸発器に流入する過給空気の温度の前記所定期間における最大値と最小値との差と同じ値を前記一定値として前記規定範囲の上限値に加える、過給機付エンジン搭載内燃機関。
In the internal combustion engine equipped with an engine with a supercharger according to claim 4 or 5.
The adjusting unit includes a supercharger that adds the same value as the difference between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator in the predetermined period as the constant value to the upper limit value of the specified range. Internal combustion engine equipped with an engine.
エンジンと、
前記エンジンから排出された排ガスにより駆動されるタービン及び前記タービンに接続されており前記エンジンに供給するための過給空気を吐出するコンプレッサーを有する過給機と、
前記コンプレッサーから吐出された過給空気と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器への前記作動媒体の流入量を制御する制御部と、を備え、
前記制御部は、
前記膨張機に流入する作動媒体の過熱度が規定範囲内で推移するように前記蒸発器への前記作動媒体の流入量を調整する調整部を有し、
前記調整部は、前記蒸発器に流入する過給空気の温度の基準期間における最大値と最小値との差と同じ値を前記規定範囲の上限値に加える、過給機付エンジン搭載内燃機関。
With the engine
A turbocharger having a turbine driven by exhaust gas discharged from the engine and a compressor connected to the turbine and discharging supercharged air for supplying to the engine.
An evaporator that evaporates the working medium by exchanging heat between the supercharged air discharged from the compressor and the working medium.
An expander that expands the working medium that flows out of the evaporator,
The power recovery machine connected to the inflator and
A condenser that condenses the working medium that flows out of the expander,
A pump that sends the working medium flowing out of the condenser to the evaporator,
A control unit for controlling the inflow of the working medium into the evaporator is provided.
The control unit
It has an adjusting unit for adjusting the inflow amount of the working medium into the evaporator so that the degree of superheat of the working medium flowing into the expander changes within a specified range.
The adjusting unit is an internal combustion engine equipped with an engine with a supercharger that adds the same value as the difference between the maximum value and the minimum value of the temperature of the supercharged air flowing into the evaporator in the reference period to the upper limit value of the specified range.
JP2017128703A 2017-06-30 2017-06-30 Internal combustion engine with supercharged engine Active JP6793096B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017128703A JP6793096B2 (en) 2017-06-30 2017-06-30 Internal combustion engine with supercharged engine
KR1020180071270A KR102067153B1 (en) 2017-06-30 2018-06-21 Internal combustion engine with supercharged engine
CN201810696780.6A CN109209532B (en) 2017-06-30 2018-06-29 Internal combustion apparatus having supercharger-equipped engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128703A JP6793096B2 (en) 2017-06-30 2017-06-30 Internal combustion engine with supercharged engine

Publications (2)

Publication Number Publication Date
JP2019011710A JP2019011710A (en) 2019-01-24
JP6793096B2 true JP6793096B2 (en) 2020-12-02

Family

ID=64989697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128703A Active JP6793096B2 (en) 2017-06-30 2017-06-30 Internal combustion engine with supercharged engine

Country Status (3)

Country Link
JP (1) JP6793096B2 (en)
KR (1) KR102067153B1 (en)
CN (1) CN109209532B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222906A (en) * 1992-02-12 1993-08-31 Toshiba Corp Controller for power plant utilizing exhaust heat
FR2757903B1 (en) * 1996-12-31 1999-03-26 New Sulzer Diesel France Sa METHOD AND APPARATUS FOR RECOVERING HEAT IN COMBUSTION AIR OF AN ENGINE
WO2003104635A2 (en) * 2002-06-10 2003-12-18 Rgp Engineering, Llc System and method for producing injection-quality steam for combustion turbine power augmentation
CN102003229B (en) * 2010-11-19 2013-10-02 北京工业大学 Control system and method for generating power by waste heat of diesel engine
JP6002417B2 (en) * 2012-01-20 2016-10-05 日立造船株式会社 Waste heat recovery device
JP5891146B2 (en) * 2012-08-29 2016-03-22 株式会社神戸製鋼所 Power generation device and method for controlling power generation device
JP6194273B2 (en) * 2014-04-04 2017-09-06 株式会社神戸製鋼所 Waste heat recovery device and waste heat recovery method
JP6194274B2 (en) * 2014-04-04 2017-09-06 株式会社神戸製鋼所 Waste heat recovery system and waste heat recovery method
JP6254928B2 (en) * 2014-11-14 2017-12-27 株式会社神戸製鋼所 Ship propulsion system and ship, and operation method of ship propulsion system
JP6621251B2 (en) * 2015-06-16 2019-12-18 パナソニック株式会社 Rankine cycle device, control device, power generation device, and control method
JP6335859B2 (en) * 2015-09-29 2018-05-30 株式会社神戸製鋼所 Thermal energy recovery system

Also Published As

Publication number Publication date
KR20190003352A (en) 2019-01-09
JP2019011710A (en) 2019-01-24
CN109209532A (en) 2019-01-15
CN109209532B (en) 2021-03-16
KR102067153B1 (en) 2020-01-17

Similar Documents

Publication Publication Date Title
JP6002417B2 (en) Waste heat recovery device
US9732637B2 (en) Waste heat recovery system and waste heat recovery method
US8959914B2 (en) Waste heat utilization device for internal combustion engine
US8991180B2 (en) Device and method for the recovery of waste heat from an internal combustion engine
KR101708109B1 (en) Waste heat recovery apparatus and waste heat recovery method
JP6670123B2 (en) Exhaust heat recovery device and binary power generation device
JP6489856B2 (en) Waste heat recovery device, waste heat recovery type ship propulsion device, and waste heat recovery method
KR101897871B1 (en) Thermal energy recovery system
US10550730B2 (en) Waste heat recovery system
JP6793096B2 (en) Internal combustion engine with supercharged engine
KR101990247B1 (en) Thermal energy recovery systems and ship carring them
JP2019027318A (en) Waste heat recovery device
KR101873692B1 (en) Thermal energy recovery system
JP2019094802A (en) Exhaust heat recovery system of marine engine, and control method of exhaust heat recovery system of marine engine
WO2013008613A1 (en) Waste-heat-recovery device
JP2018053856A (en) Thermal energy recovery system
JP2019007378A (en) Thermal energy recovery system and ship equipped with the same
WO2014010465A1 (en) Rankine cycle device
JP2017120068A (en) Waste heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6793096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150