JP6787691B2 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP6787691B2
JP6787691B2 JP2016101633A JP2016101633A JP6787691B2 JP 6787691 B2 JP6787691 B2 JP 6787691B2 JP 2016101633 A JP2016101633 A JP 2016101633A JP 2016101633 A JP2016101633 A JP 2016101633A JP 6787691 B2 JP6787691 B2 JP 6787691B2
Authority
JP
Japan
Prior art keywords
core wire
covering member
welded portion
sheath
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101633A
Other languages
Japanese (ja)
Other versions
JP2017207443A (en
Inventor
俊哉 大矢
俊哉 大矢
拓也 土井
拓也 土井
大矢 誠二
誠二 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016101633A priority Critical patent/JP6787691B2/en
Publication of JP2017207443A publication Critical patent/JP2017207443A/en
Application granted granted Critical
Publication of JP6787691B2 publication Critical patent/JP6787691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、感温素子を備える温度センサに関する。 The present invention relates to a temperature sensor including a temperature sensitive element.

従来、温度検出信号が流れる素子芯線を有する感温素子を備える温度センサが知られている(特許文献1,2)。
この温度センサにおいては、感温素子の素子芯線がシース部材のシース芯線と溶接部で溶接される。感温素子および溶接部は、素子収容部の素子収容空間に収容される。素子収容空間のうち感温素子と素子収容部の内壁との間には、素子保持部材が配置される。
Conventionally, a temperature sensor including a temperature sensitive element having an element core wire through which a temperature detection signal flows is known (Patent Documents 1 and 2).
In this temperature sensor, the element core wire of the temperature sensitive element is welded to the sheath core wire of the sheath member at the welded portion. The temperature sensitive element and the welded portion are accommodated in the element accommodating space of the element accommodating portion. An element holding member is arranged between the temperature-sensitive element and the inner wall of the element accommodating portion in the element accommodating space.

このような温度センサは、例えば、内燃機関(例えば、自動車エンジンなど)の排気系などにおいて使用できる。 Such a temperature sensor can be used, for example, in the exhaust system of an internal combustion engine (for example, an automobile engine).

特開2006−234632号公報JP-A-2006-234632

しかし、上記の温度センサにおいては、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面が、酸化により劣化する虞がある。
つまり、接合界面が酸化により劣化すると、溶接部を介した素子芯線とシース芯線との電気的接続状態が不良となり、温度検出信号を外部に出力できない虞がある。
However, in the above temperature sensor, the bonding interface between the element core wire and the welded portion and the bonding interface between the sheath core wire and the welded portion may be deteriorated by oxidation.
That is, if the bonding interface deteriorates due to oxidation, the electrical connection between the element core wire and the sheath core wire via the welded portion becomes poor, and there is a risk that the temperature detection signal cannot be output to the outside.

そこで、本発明は、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面の酸化による劣化を抑制できる温度センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a temperature sensor capable of suppressing deterioration due to oxidation of the joint interface between the element core wire and the welded portion and the joint interface between the sheath core wire and the welded portion.

本発明の1つの局面における温度センサは、感温素子と、シース部材と、溶接部と、素子収容部と、素子保持部材と、を備える温度センサであって、被覆部材を備える。
感温素子は、検出温度に応じた検出信号の信号経路となる素子芯線を有する。シース部材は、長手方向に延びるシース芯線を有する。溶接部は、素子芯線とシース芯線とを溶接する部材である。素子収容部は、感温素子および溶接部を収容する素子収容空間を有する。素子保持部材は、素子収容空間のうち感温素子と素子収容部の内壁との間に配置される。
The temperature sensor in one aspect of the present invention is a temperature sensor including a temperature sensitive element, a sheath member, a welded portion, an element accommodating portion, and an element holding member, and includes a covering member.
The temperature-sensitive element has an element core wire that serves as a signal path for a detection signal according to the detection temperature. The sheath member has a sheath core wire extending in the longitudinal direction. The welded portion is a member that welds the element core wire and the sheath core wire. The element accommodating portion has an element accommodating space for accommodating the temperature sensitive element and the welded portion. The element holding member is arranged between the temperature-sensitive element and the inner wall of the element accommodating portion in the element accommodating space.

被覆部材は、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面をそれぞれ覆う。被覆部材は、素子保持部材よりも気孔率が低い材料で形成されている。
この温度センサは、上述のような被覆部材を備えることで、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面に、酸素が到達しがたくなり、接合界面が酸化により劣化することを抑制できる。
The covering member covers the joint interface between the element core wire and the welded portion and the joint interface between the sheath core wire and the welded portion, respectively. The covering member is made of a material having a lower porosity than the element holding member.
By providing the covering member as described above, this temperature sensor makes it difficult for oxygen to reach the joint interface between the element core wire and the welded portion and the joint interface between the sheath core wire and the welded portion, and the joint interface is oxidized. It is possible to suppress deterioration due to.

よって、この温度センサによれば、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面の酸化による劣化を抑制できる。
次に、上述の温度センサにおいては、被覆部材の線熱膨張係数は、素子芯線の線熱膨張係数とシース芯線の線熱膨張係数とに挟まれる数値範囲に含まれるものであってもよい。
Therefore, according to this temperature sensor, deterioration due to oxidation of the bonding interface between the element core wire and the welded portion and the bonding interface between the sheath core wire and the welded portion can be suppressed.
Next, in the above-mentioned temperature sensor, the linear thermal expansion coefficient of the covering member may be included in the numerical range sandwiched between the linear thermal expansion coefficient of the element core wire and the linear thermal expansion coefficient of the sheath core wire.

このような被覆部材は、温度変化に伴う線熱膨張係数の差により、被覆部材と溶接部との間、被覆部材と素子芯線との間、被覆部材とシース芯線との間に、それぞれ生じる応力が大きくなることを抑制できる。これにより、温度変化に伴い生じる応力によって、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面に、クラックが生じることを抑制できる。 In such a covering member, stress generated between the covering member and the welded portion, between the covering member and the element core wire, and between the covering member and the sheath core wire due to the difference in the coefficient of linear thermal expansion due to the temperature change, respectively. Can be suppressed from becoming large. As a result, it is possible to prevent cracks from occurring at the joint interface between the element core wire and the welded portion and the joint interface between the sheath core wire and the welded portion due to the stress generated due to the temperature change.

次に、上述の温度センサにおいては、被覆部材の線熱膨張係数は、素子芯線の線熱膨張係数との差分値が、シース芯線の線熱膨張係数との差分値よりも小さいものであってもよい。 Next, in the above-mentioned temperature sensor, the coefficient of linear thermal expansion of the covering member is such that the difference value from the coefficient of linear thermal expansion of the element core wire is smaller than the difference value from the coefficient of linear thermal expansion of the sheath core wire. May be good.

これにより、温度変化に伴い生じる応力によって、シース芯線と溶接部との接合界面にクラックが生じることを抑制できる。
次に、上述の温度センサにおいては、被覆部材は、溶接部の全体を覆う状態で形成されてもよい。
As a result, it is possible to suppress the occurrence of cracks at the joint interface between the sheath core wire and the welded portion due to the stress generated due to the temperature change.
Next, in the above-mentioned temperature sensor, the covering member may be formed so as to cover the entire welded portion.

このような被覆部材を備えることで、溶接部の酸化をより抑制できると共に、素子芯線とシース芯線との接続状態を被覆部材によって補助できる。これにより、素子芯線とシース芯線との電気的接続状態を良好な状態に維持できる。 By providing such a covering member, oxidation of the welded portion can be further suppressed, and the connection state between the element core wire and the sheath core wire can be assisted by the covering member. As a result, the electrical connection state between the element core wire and the sheath core wire can be maintained in a good state.

次に、上述の温度センサにおいては、素子芯線およびシース芯線は、それぞれ複数備えられてもよく、被覆部材は、複数の素子芯線および複数のシース芯線ごとに個別に備えられてもよい。 Next, in the above-mentioned temperature sensor, a plurality of element core wires and a plurality of sheath core wires may be provided, and the covering member may be individually provided for each of the plurality of element core wires and the plurality of sheath core wires.

このような構成であれば、高温下での被覆部材の絶縁低下に起因して、異なる素子芯線どうしの電気的短絡や異なるシース芯線どうしの電気的短絡が発生するのを抑制できる。これにより、電気的短絡に起因して検出信号の信号経路が不適切な状態になることを抑制できる。 With such a configuration, it is possible to suppress the occurrence of electrical short circuits between different element core wires and electrical short circuits between different sheath core wires due to a decrease in insulation of the covering member at a high temperature. As a result, it is possible to prevent the signal path of the detection signal from becoming an inappropriate state due to an electrical short circuit.

次に、上述の温度センサにおいては、素子芯線およびシース芯線は、それぞれ複数備えられてもよく、1つの被覆部材は、素子芯線と溶接部との接合界面の全て、およびシース芯線と溶接部との接合界面の全てを覆うように形成されてもよい。 Next, in the above-mentioned temperature sensor, a plurality of element core wires and sheath core wires may be provided, respectively, and one covering member includes all the joint interfaces between the element core wire and the welded portion, and the sheath core wire and the welded portion. It may be formed so as to cover all of the bonding interfaces of the above.

このような構成であれば、温度センサの製造時において、被覆部材の形成を一度に実行することができ、被覆部材の形成工程を簡略化できる。 With such a configuration, the covering member can be formed all at once at the time of manufacturing the temperature sensor, and the covering member forming step can be simplified.

本発明の温度センサによれば、素子芯線と溶接部との接合界面、およびシース芯線と溶接部との接合界面の酸化による劣化を抑制できる。 According to the temperature sensor of the present invention, deterioration due to oxidation of the joint interface between the element core wire and the welded portion and the joint interface between the sheath core wire and the welded portion can be suppressed.

第1実施形態の温度センサの全体構造を示す一部断面説明図である。It is a partial cross-sectional explanatory view which shows the whole structure of the temperature sensor of 1st Embodiment. 被覆部材を備える温度センサの先端側部分を拡大して示す断面説明図である。It is sectional drawing which shows the tip side part of the temperature sensor which includes a covering member enlarged. 第2被覆部材を備える温度センサの先端側部分を拡大して示す断面説明図である。It is sectional drawing explanatory drawing which enlarges and shows the tip end side part of the temperature sensor which includes the 2nd covering member. 第3被覆部材を備える温度センサの先端側部分を拡大して示す断面説明図である。It is sectional drawing explanatory drawing which enlarges and shows the tip side part of the temperature sensor which includes the 3rd covering member. 電極側被覆部材およびシース側被覆部材を備える温度センサの先端側部分を拡大して示す断面説明図である。It is sectional drawing which shows the tip side part of the temperature sensor including the electrode side covering member and the sheath side covering member enlarged. 第4被覆部材を備える温度センサの先端側部分を拡大して示す断面説明図である。It is sectional drawing explanatory drawing which enlarges and shows the tip end side part of the temperature sensor which includes the 4th covering member.

以下、本発明が適用された実施形態について、図面を用いて説明する。
尚、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
Hereinafter, embodiments to which the present invention has been applied will be described with reference to the drawings.
It should be noted that the present invention is not limited to the following embodiments, and it goes without saying that various forms can be adopted as long as it belongs to the technical scope of the present invention.

[1.第1実施形態]
[1−1.全体構成]
本実施形態に係る温度センサの構造を説明する。
[1. First Embodiment]
[1-1. overall structure]
The structure of the temperature sensor according to this embodiment will be described.

図1は、温度センサ1の一部を破断して内部構造を示した説明図である。
温度センサ1は、内燃機関の排気管などの流通管に装着されることにより、測定対象流体が流れる流通管内に配置されて、測定対象流体(排気ガス)の温度検出に用いられるものである。排気ガスの温度が0℃前後の低温域から1000℃前後の高温域まで急激に変化するのに伴って、温度センサ1も上記温度範囲内で上昇−冷却する冷熱サイクルを受ける。
FIG. 1 is an explanatory view showing an internal structure by breaking a part of the temperature sensor 1.
The temperature sensor 1 is mounted on a flow pipe such as an exhaust pipe of an internal combustion engine, is arranged in the flow pipe through which the fluid to be measured flows, and is used for temperature detection of the fluid to be measured (exhaust gas). As the temperature of the exhaust gas suddenly changes from a low temperature range of about 0 ° C. to a high temperature range of about 1000 ° C., the temperature sensor 1 also undergoes a thermal cycle of rising-cooling within the above temperature range.

なお、ここでは、温度センサ1の長手方向が軸線方向であり、図1の上下方向である。また、温度センサ1の先端側は図1の下側であり、後端側は図1の上側である。
この温度センサ1は、感温素子3と、シース部7と、金属チューブ9(内筒9ともいう)と、取付部材11と、ナット部13と、を備えている。
Here, the longitudinal direction of the temperature sensor 1 is the axial direction, which is the vertical direction of FIG. The front end side of the temperature sensor 1 is the lower side of FIG. 1, and the rear end side is the upper side of FIG.
The temperature sensor 1 includes a temperature sensing element 3, a sheath portion 7, a metal tube 9 (also referred to as an inner cylinder 9), a mounting member 11, and a nut portion 13.

感温素子3は、測定対象ガスが流れる流通管内に配置される測温素子であり、金属チューブ9の内部に配置されるものである。感温素子3の詳細については後述する。
シース部7は、一対の金属芯線15(以下、シース芯線15ともいう)を外筒17の内側にて絶縁保持するものである。シース部7は、金属製の外筒17と、導電性金属を用いて形成される一対のシース芯線15と、外筒17と2本のシース芯線15との間を電気的に絶縁してシース芯線15を保持する絶縁粉末(図示せず)と、を備えている。
The temperature sensitive element 3 is a temperature measuring element arranged in a flow tube through which a gas to be measured flows, and is arranged inside a metal tube 9. The details of the temperature sensitive element 3 will be described later.
The sheath portion 7 insulates and holds a pair of metal core wires 15 (hereinafter, also referred to as sheath core wires 15) inside the outer cylinder 17. The sheath portion 7 electrically insulates between a metal outer cylinder 17, a pair of sheath core wires 15 formed by using a conductive metal, and the outer cylinder 17 and two sheath core wires 15 to form a sheath. It includes an insulating powder (not shown) that holds the core wire 15.

感温素子3は、一対の電極線5を備えている。一対の電極線5は、高価な材料で構成された線材(例えば、Pt線、Pt−Rh合金線、Pt又はPt合金にSrを含有させた線材等)を用いて形成されるが、感温素子3で生成される検出信号を伝達するシース芯線15は、安価な材料(例えば、SUS等)で形成することでコストダウンが図られている。 The temperature sensitive element 3 includes a pair of electrode wires 5. The pair of electrode wires 5 are formed by using a wire rod made of an expensive material (for example, a Pt wire, a Pt-Rh alloy wire, a wire rod containing Sr in Pt or a Pt alloy, etc.), but the temperature is sensitive. The sheath core wire 15 for transmitting the detection signal generated by the element 3 is formed of an inexpensive material (for example, SUS or the like) to reduce the cost.

電極線5とシース芯線15とは、溶接部61を介して接合されている。溶接部61は、被覆部材71で覆われている。温度センサ1は、一対の溶接部61および一対の被覆部材71を備えている。被覆部材71の詳細については、後述する。 The electrode wire 5 and the sheath core wire 15 are joined via a welded portion 61. The welded portion 61 is covered with a covering member 71. The temperature sensor 1 includes a pair of welded portions 61 and a pair of covering members 71. Details of the covering member 71 will be described later.

金属チューブ9は、軸線方向に延びる筒状の部材の先端側を閉塞して形成した有底筒状の部材であり、耐腐食性金属(例えば、耐熱性金属でもあるSUS310Sなどのステンレス合金)を用いて形成されたものである。 The metal tube 9 is a bottomed tubular member formed by closing the tip end side of a tubular member extending in the axial direction, and is made of a corrosion-resistant metal (for example, a stainless alloy such as SUS310S which is also a heat-resistant metal). It was formed using.

この金属チューブ9は、鋼板の深絞り加工により、チューブ先端(底部)が閉塞した軸線方向に延びる筒状に形成され、筒状のチューブ後端が開放した形状に形成されている。また、金属チューブ9は、チューブ後端側が取付部材11の内面に当接するように、軸線方向寸法が設定されている。 The metal tube 9 is formed in a tubular shape in which the tip (bottom) of the tube is closed and extends in the axial direction by deep drawing of a steel plate, and the rear end of the tubular tube is open. Further, the metal tube 9 is set in the axial direction so that the rear end side of the tube abuts on the inner surface of the mounting member 11.

金属チューブ9は、先端部分に形成された小径部25と、小径部25の後端側に形成され、小径部25よりも径が大きい大径部27と、小径部25と大径部27との間に形成された段差部29と、を有する。段差部29は、小径部25から大径部27に向かって徐々に径が大きくなっている。 The metal tube 9 includes a small diameter portion 25 formed at the tip portion, a large diameter portion 27 formed on the rear end side of the small diameter portion 25 and having a diameter larger than that of the small diameter portion 25, and a small diameter portion 25 and a large diameter portion 27. It has a stepped portion 29 formed between the two. The diameter of the step portion 29 gradually increases from the small diameter portion 25 to the large diameter portion 27.

金属チューブ9の内部には、感温素子3およびセメント23(素子保持部材23)が配置されている。セメント23は、感温素子3の周囲に充填されるものであり、感温素子3を保持してその揺動を防止するものである。このセメント23としては、熱伝導率が高く、高耐熱、高絶縁性の材料を用いて構成される。 A temperature sensitive element 3 and a cement 23 (element holding member 23) are arranged inside the metal tube 9. The cement 23 is filled around the temperature sensitive element 3 and holds the temperature sensitive element 3 to prevent its rocking. The cement 23 is made of a material having high thermal conductivity, high heat resistance, and high insulation.

セメント23としては、例えば、AlやMgOなどの酸化物、AlNやTiNやSiやBN等の窒化物、および、SiCやTiCやZrC等の炭化物が主体のセメントを用いてもよい。また、セメント23としては、AlやMgOなどの酸化物、AlNやTiNやSiやBN等の窒化物、および、SiCやTiCやZrC等の炭化物が主体で、AlやSiOやMgO等の無機バインダーを混合したセメントを用いてもよい。 As the cement 23, for example, an oxide mainly composed of oxides such as Al 2 O 3 and MgO, nitrides such as Al N, TiN, Si 3 N 4 and BN, and carbides such as SiC, TiC and ZrC are used. May be good. The cement 23 is mainly composed of oxides such as Al 2 O 3 and Mg O, nitrides such as Al N, TiN, Si 3 N 4 and BN, and carbides such as SiC, TiC and Zr C, and Al 2 O. Cement mixed with an inorganic binder such as 3 or SiO 2 or MgO may be used.

取付部材11は、少なくとも金属チューブ9の先端側が外部に露出する状態で金属チューブ9の後端側の外周面を取り囲んで、金属チューブ9を支持する部材である。この取付部材11には、径方向外側に突出する突出部31と、突出部31の後端側に位置すると共に軸線方向に延びる後端側鞘部33と、が設けられている。 The mounting member 11 is a member that supports the metal tube 9 by surrounding the outer peripheral surface on the rear end side of the metal tube 9 with at least the tip end side of the metal tube 9 exposed to the outside. The mounting member 11 is provided with a protruding portion 31 protruding outward in the radial direction, and a rear end side sheath portion 33 located on the rear end side of the protruding portion 31 and extending in the axial direction.

突出部31は、先端側に取り付け座35が設けられた環状の部材である。取り付け座35は、先端側に向かって径が小さくなるテ―パ形状の部材であり、排気管(図示せず)のセンサ取り付け位置の形状に対応したものである。排気管のセンサ取り付け位置は、取り付け座35に当接する部位として、温度センサ1の後端側に向かって径が大きくなるテ―パ部を備えて形成されている。 The protruding portion 31 is an annular member provided with a mounting seat 35 on the tip end side. The mounting seat 35 is a taper-shaped member whose diameter decreases toward the tip side, and corresponds to the shape of the sensor mounting position of the exhaust pipe (not shown). The sensor mounting position of the exhaust pipe is formed to include a taper portion whose diameter increases toward the rear end side of the temperature sensor 1 as a portion that abuts on the mounting seat 35.

なお、取付部材11は、排気管のセンサ取り付け位置に配置されると、取り付け座35がセンサ取り付け位置のテーパ部に密着し、排気管から外部への排気ガスの漏出を抑制するものである。 When the mounting member 11 is arranged at the sensor mounting position of the exhaust pipe, the mounting seat 35 comes into close contact with the tapered portion of the sensor mounting position and suppresses the leakage of exhaust gas from the exhaust pipe to the outside.

後端側鞘部33は、筒状に形成されている。後端側鞘部33は、先端側の外径寸法が大きく、後端側の外形寸法が大きく形成されている。後端側鞘部33は、先端側および後端側ともに内径寸法が一定である。 The rear end side sheath portion 33 is formed in a tubular shape. The rear end side sheath portion 33 has a large outer diameter on the front end side and a large outer diameter on the rear end side. The rear end side sheath portion 33 has a constant inner diameter dimension on both the front end side and the rear end side.

取付部材11が金属チューブ9の後端部に圧入された後、後端側鞘部33と金属チューブ9とがレーザ溶接により接合されることで、取付部材11および金属チューブ9が互いに固定される。 After the mounting member 11 is press-fitted into the rear end portion of the metal tube 9, the rear end side sheath portion 33 and the metal tube 9 are joined by laser welding, so that the mounting member 11 and the metal tube 9 are fixed to each other. ..

ナット部13は、六角ナット部39およびネジ部41を有する筒状の部材である。ナット部13は、取付部材11のうち突出部31の後端面にネジ部41の先端面を当接させた状態で、取付部材11の外周にて回動自在に配置される。ナット部13のネジ部41が排気管に設けられたネジ穴と螺合することにより、温度センサ1が排気管のセンサ取り付け位置に取付けられる。 The nut portion 13 is a tubular member having a hexagon nut portion 39 and a screw portion 41. The nut portion 13 is rotatably arranged on the outer circumference of the mounting member 11 in a state where the tip surface of the screw portion 41 is in contact with the rear end surface of the protruding portion 31 of the mounting member 11. The temperature sensor 1 is attached to the sensor mounting position of the exhaust pipe by screwing the screw portion 41 of the nut portion 13 with the screw hole provided in the exhaust pipe.

シース芯線15は、先端部が感温素子3に電気的に接続されている。シース芯線15は、後端部が抵抗溶接により加締め端子43に接続されている。つまり、シース芯線15は、自身の後端が加締め端子43を介して外部回路(例えば、車両の電子制御装置(ECU)等)の接続用のリード線45に接続されている。 The tip of the sheath core wire 15 is electrically connected to the temperature sensitive element 3. The rear end of the sheath core wire 15 is connected to the crimping terminal 43 by resistance welding. That is, the rear end of the sheath core wire 15 is connected to the lead wire 45 for connecting an external circuit (for example, an electronic control device (ECU) of a vehicle) via a crimping terminal 43.

一対のシース芯線15のうち後端部分は、絶縁チューブ47によって互いに絶縁されており、一対の加締め端子43も絶縁チューブ47により互いに絶縁されている。リード線45は、導線を絶縁性の被覆材により被覆したものであり、このリード線45は、耐熱ゴム製の補助リング49の内部を貫通して配置されている。 The rear end portions of the pair of sheath core wires 15 are insulated from each other by an insulating tube 47, and the pair of crimping terminals 43 are also insulated from each other by an insulating tube 47. The lead wire 45 is obtained by coating the lead wire with an insulating coating material, and the lead wire 45 is arranged so as to penetrate the inside of the auxiliary ring 49 made of heat-resistant rubber.

[1−2.感温素子]
次に、感温素子3の構成について説明する。
図2に示すように、感温素子3は、温度に応じて電気的特性が変化する感温部4と、感温部4に接続された一対の電極線5と、を備えている。
[1-2. Temperature sensitive element]
Next, the configuration of the temperature sensitive element 3 will be described.
As shown in FIG. 2, the temperature sensitive element 3 includes a temperature sensitive portion 4 whose electrical characteristics change according to temperature, and a pair of electrode wires 5 connected to the temperature sensitive portion 4.

感温部4は、セラミック基体54と、金属抵抗体55と、接合層56と、セラミック被覆層57と、一対の電極パッド58と、を有する。
セラミック基体54は、純度99.5〜99.9%のアルミナを用いて構成されており、セラミックグリーンシートを予め焼成してなる焼成済みシートである。
The temperature-sensitive portion 4 has a ceramic substrate 54, a metal resistor 55, a bonding layer 56, a ceramic coating layer 57, and a pair of electrode pads 58.
The ceramic substrate 54 is made of alumina having a purity of 99.5 to 99.9%, and is a fired sheet obtained by firing a ceramic green sheet in advance.

金属抵抗体55は、白金(Pt)を主体に構成され、温度に応じて電気的特性(電気抵抗値)が変化する測温抵抗体である。金属抵抗体55は、セラミック基体54の表面に、複数回蛇行してなる所定のパターン形状で形成されている。 The metal resistor 55 is a resistance temperature detector that is mainly composed of platinum (Pt) and whose electrical characteristics (electrical resistance value) change according to the temperature. The metal resistor 55 is formed on the surface of the ceramic substrate 54 in a predetermined pattern shape meandering a plurality of times.

セラミック被覆層57は、純度99.5〜99.9%のアルミナを用いて構成されており、セラミックグリーンシートを予め焼成してなる焼成済みシートである。セラミック被覆層57は、金属抵抗体55のうち、セラミック基体54と接する面とは反対側の面において、金属抵抗体55の先端側を被覆している。 The ceramic coating layer 57 is made of alumina having a purity of 99.5 to 99.9%, and is a fired sheet obtained by firing a ceramic green sheet in advance. The ceramic coating layer 57 covers the tip end side of the metal resistor 55 on the surface of the metal resistor 55 opposite to the surface in contact with the ceramic substrate 54.

接合層56は、純度99.5〜99.9%のアルミナを用いて構成されている。接合層56は、接合前はアルミナ粉末を含むペーストであり、焼成済みのセラミック基体54とセラミック被覆層57とを上記ペーストで貼り合わせた後、熱処理されることで、最終的に接合層56となる。 The bonding layer 56 is made of alumina having a purity of 99.5 to 99.9%. The bonding layer 56 is a paste containing alumina powder before bonding, and the fired ceramic substrate 54 and the ceramic coating layer 57 are bonded to each other with the above paste and then heat-treated to finally form the bonding layer 56. Become.

金属抵抗体55のうち後端側(図2の右側)は、セラミック被覆層57によって被覆される導体パターンより幅広に形成された一対の電極パッド58を介して、一対の電極線5が電気的に接続される。一対の電極パッド58と一対の電極線5とは、抵抗溶接、レーザー溶接等の溶接により、溶接点60において接合されている。 On the rear end side (right side of FIG. 2) of the metal resistor 55, a pair of electrode wires 5 are electrically connected via a pair of electrode pads 58 formed wider than a conductor pattern coated by the ceramic coating layer 57. Connected to. The pair of electrode pads 58 and the pair of electrode wires 5 are joined at the welding point 60 by welding such as resistance welding and laser welding.

一対の電極パッド58と一対の電極線5との接合部分は、被覆部材59によって被覆されている。被覆部材59は、アルミノケイ酸塩ガラスを主体とするガラス材料を用いて構成されている。このガラス材料には、セラミック材料(アルミナ等)を副成分として含有させてもよい。 The joint portion between the pair of electrode pads 58 and the pair of electrode wires 5 is covered with a covering member 59. The covering member 59 is made of a glass material mainly composed of aluminosilicate glass. This glass material may contain a ceramic material (alumina or the like) as a subcomponent.

一対の電極線5は、金属抵抗体55の後端側からシース部7に向かって延びるように配置されている。一対の電極線5の後端は、一対のシース芯線15の先端と突き合わせて配置されている。一対の電極線5の後端と一対のシース芯線15の先端とは、抵抗溶接、レーザー溶接等の溶接により、溶接部61を介して接合されている。なお、電極線5の断面積は、シース芯線15の断面積よりも小さく設定されている。電極線5及びシース芯線15の断面積とは、軸方向に直交する断面の面積である。 The pair of electrode wires 5 are arranged so as to extend from the rear end side of the metal resistor 55 toward the sheath portion 7. The rear ends of the pair of electrode wires 5 are arranged so as to abut against the tips of the pair of sheath core wires 15. The rear ends of the pair of electrode wires 5 and the tips of the pair of sheath core wires 15 are joined via a welded portion 61 by welding such as resistance welding and laser welding. The cross-sectional area of the electrode wire 5 is set to be smaller than the cross-sectional area of the sheath core wire 15. The cross-sectional area of the electrode wire 5 and the sheath core wire 15 is the area of the cross section orthogonal to the axial direction.

そして、本実施形態において、電極線5は、白金線を用いて構成されている。
一方、電極線5に接続されるシース芯線15は、電極線5とは異なる材料により構成されている。具体的には、シース芯線15は、Fe、Ni、Co及びCrのうち、いずれか1種を主成分とする合金により構成されている。本実施形態では、Fe合金としては、SUS310Sを用いた。なお、シース芯線15は、Fe合金に限定されず、Ni合金を用いても良く、Ni合金としては、NCF600、NCF601等を用いることができる。
Then, in the present embodiment, the electrode wire 5 is configured by using a platinum wire.
On the other hand, the sheath core wire 15 connected to the electrode wire 5 is made of a material different from that of the electrode wire 5. Specifically, the sheath core wire 15 is made of an alloy containing any one of Fe, Ni, Co and Cr as a main component. In this embodiment, SUS310S was used as the Fe alloy. The sheath core wire 15 is not limited to the Fe alloy, and a Ni alloy may be used. As the Ni alloy, NCF600, NCF601, or the like can be used.

[1−3.被覆部材]
次に、被覆部材71について説明する。
被覆部材71は、図2に示すように、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面をそれぞれ覆うように形成されている。とりわけ、本実施形態では、被覆部材71は、溶接部61の全体を覆う状態で形成される。
[1-3. Covering member]
Next, the covering member 71 will be described.
As shown in FIG. 2, the covering member 71 is formed so as to cover the joining interface between the electrode wire 5 and the welded portion 61 and the joining interface between the sheath core wire 15 and the welded portion 61, respectively. In particular, in the present embodiment, the covering member 71 is formed so as to cover the entire welded portion 61.

また、電極線5、シース芯線15、溶接部61は、それぞれ一対ずつ備えられており、被覆部材71についても一対備えられている。つまり、一対の被覆部材71は、一対の電極線5、シース芯線15、溶接部61をそれぞれ個別に覆うように備えられている。 Further, a pair of electrode wires 5, a sheath core wire 15, and a welded portion 61 are provided, and a pair of covering members 71 are also provided. That is, the pair of covering members 71 are provided so as to individually cover the pair of electrode wires 5, the sheath core wire 15, and the welded portion 61.

一対の被覆部材71は、[表1]に示す各成分(元素)を含んだ材料で構成されている。また、各成分の含有割合は、[表1]に示すとおりであり、単位は、atm%である。 The pair of covering members 71 are made of a material containing each component (element) shown in [Table 1]. The content ratio of each component is as shown in [Table 1], and the unit is atm%.

Figure 0006787691
被覆部材71が備えられることで、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面は、それぞれ、セメント23と直接接触することがない。
Figure 0006787691
By providing the covering member 71, the joining interface between the electrode wire 5 and the welded portion 61 and the joining interface between the sheath core wire 15 and the welded portion 61 do not come into direct contact with the cement 23, respectively.

また、被覆部材71には開気孔(外部に通じている孔)が存在せず、セメント23には開気孔が存在している。つまり、被覆部材71は、セメント23(素子保持部材)よりも通気性が小さくなっている。なお、本実施形態では、被覆部材71には開気孔は存在していないが、セメント23よりも通気性が小さくなる形態であれば、被覆部材71に開気孔が僅かに存在する場合も本発明は許容するものである。 Further, the covering member 71 does not have open pores (holes leading to the outside), and the cement 23 has open pores. That is, the covering member 71 has a smaller air permeability than the cement 23 (element holding member). In the present embodiment, the covering member 71 does not have open pores, but the present invention may have a slight open pore in the covering member 71 as long as the air permeability is smaller than that of the cement 23. Is acceptable.

次に、被覆部材71の線熱膨張係数は、11.2×10−6/℃であり、電極線5(Pt線)の線熱膨張係数は、9.5×10−6/℃であり、シース芯線15(SUS310S製)の線熱膨張係数は、16.9×10−6/℃である。つまり、被覆部材71の線熱膨張係数は、電極線5の線熱膨張係数とシース芯線15の線熱膨張係数とに挟まれる数値範囲に含まれている。なお、本明細書において、線熱膨張係数の数値は20〜300℃での線膨張係数である。 Next, the coefficient of linear thermal expansion of the covering member 71 is 11.2 × 10 -6 / ° C, and the coefficient of linear thermal expansion of the electrode wire 5 (Pt wire) is 9.5 × 10 -6 / ° C. , The coefficient of linear thermal expansion of the sheath core wire 15 (manufactured by SUS310S) is 16.9 × 10 -6 / ° C. That is, the coefficient of linear thermal expansion of the covering member 71 is included in the numerical range sandwiched between the coefficient of linear thermal expansion of the electrode wire 5 and the coefficient of linear thermal expansion of the sheath core wire 15. In this specification, the numerical value of the coefficient of linear thermal expansion is the coefficient of linear expansion at 20 to 300 ° C.

また、本実施形態では、被覆部材71の線熱膨張係数は、電極線5の線熱膨張係数との差分値が、シース芯線15の線熱膨張係数との差分値よりも小さい。
[1−4.効果]
以上説明したように、本実施形態の温度センサ1は、被覆部材71を備えており、被覆部材71は、セメント23よりも通気性が小さくなっている。温度センサ1は、被覆部材71を備えることで、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面に、酸素が到達しがたくなる。
Further, in the present embodiment, the difference value of the linear thermal expansion coefficient of the covering member 71 from the linear thermal expansion coefficient of the electrode wire 5 is smaller than the difference value from the linear thermal expansion coefficient of the sheath core wire 15.
[1-4. effect]
As described above, the temperature sensor 1 of the present embodiment includes the covering member 71, and the covering member 71 has a smaller air permeability than the cement 23. By providing the coating member 71, the temperature sensor 1 makes it difficult for oxygen to reach the bonding interface between the electrode wire 5 and the welded portion 61 and the bonding interface between the sheath core wire 15 and the welded portion 61.

よって、温度センサ1によれば、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面の酸化による劣化を抑制できる。
次に、被覆部材71の線熱膨張係数は、電極線5の線熱膨張係数とシース芯線15の線熱膨張係数とに挟まれる数値範囲に含まれる。
Therefore, according to the temperature sensor 1, deterioration due to oxidation of the bonding interface between the electrode wire 5 and the welded portion 61 and the bonding interface between the sheath core wire 15 and the welded portion 61 can be suppressed.
Next, the coefficient of linear thermal expansion of the covering member 71 is included in the numerical range sandwiched between the coefficient of linear thermal expansion of the electrode wire 5 and the coefficient of linear thermal expansion of the sheath core wire 15.

このような被覆部材71は、温度変化に伴う線熱膨張係数の差により、被覆部材71と溶接部61との間、被覆部材71と電極線5との間、被覆部材71とシース芯線15との間に、それぞれ生じる応力が大きくなることを抑制できる。これにより、温度変化に伴い生じる応力によって、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面に、クラックが生じることを抑制できる。 In such a covering member 71, due to the difference in the coefficient of linear thermal expansion due to the temperature change, the covering member 71 and the welded portion 61, the covering member 71 and the electrode wire 5, and the covering member 71 and the sheath core wire 15 It is possible to suppress an increase in the stress generated between the two. As a result, it is possible to prevent cracks from occurring at the joint interface between the electrode wire 5 and the welded portion 61 and the joint interface between the sheath core wire 15 and the welded portion 61 due to the stress generated due to the temperature change.

次に、被覆部材71の線熱膨張係数は、電極線5の線熱膨張係数との差分値が、シース芯線15の線熱膨張係数との差分値よりも小さい。
このような被覆部材71は、温度変化に伴い被覆部材71とシース芯線15との間に生じる応力を、温度変化に伴い被覆部材71と電極線5との間に生じる応力よりも小さく(大きく)することができる。これにより、温度変化に伴い生じる応力によって、シース芯線15と溶接部61との接合界面にクラックが生じることをより抑制できる。
Next, in the linear thermal expansion coefficient of the covering member 71, the difference value from the linear thermal expansion coefficient of the electrode wire 5 is smaller than the difference value from the linear thermal expansion coefficient of the sheath core wire 15.
In such a covering member 71, the stress generated between the covering member 71 and the sheath core wire 15 due to the temperature change is smaller (larger) than the stress generated between the covering member 71 and the electrode wire 5 due to the temperature change. can do. As a result, it is possible to further suppress the occurrence of cracks at the joint interface between the sheath core wire 15 and the welded portion 61 due to the stress generated due to the temperature change.

次に、1つの被覆部材71は、1つの溶接部61の全体を覆う状態で形成されている。
このような被覆部材71を備えることで、溶接部61の酸化を抑制できると共に、電極線5とシース芯線15との接続状態を被覆部材71によって補助できる。これにより、温度センサ1は、被覆部材71を備えることで、電極線5とシース芯線15との電気的接続状態を良好な状態に維持できる。
Next, one covering member 71 is formed so as to cover the entire one welded portion 61.
By providing such a covering member 71, oxidation of the welded portion 61 can be suppressed, and the connection state between the electrode wire 5 and the sheath core wire 15 can be assisted by the covering member 71. As a result, the temperature sensor 1 can maintain a good electrical connection state between the electrode wire 5 and the sheath core wire 15 by providing the covering member 71.

次に、温度センサ1においては、電極線5およびシース芯線15がそれぞれ複数備えられており、被覆部材71は、複数の電極線5および複数のシース芯線15ごとに個別に備えられている。つまり、一対の被覆部材71は、一対の電極線5、シース芯線15、溶接部61をそれぞれ個別に覆うように備えられている。 Next, in the temperature sensor 1, a plurality of electrode wires 5 and a plurality of sheath core wires 15 are provided, and a covering member 71 is individually provided for each of the plurality of electrode wires 5 and the plurality of sheath core wires 15. That is, the pair of covering members 71 are provided so as to individually cover the pair of electrode wires 5, the sheath core wire 15, and the welded portion 61.

このような構成であれば、高温下での被覆部材の絶縁低下に起因して、異なる電極線5どうしの電気的短絡や異なるシース芯線15どうしの電気的短絡が発生するのを抑制できる。これにより、温度センサ1は、電気的短絡に起因して検出信号の信号経路が不適切な状態になることを抑制できる。 With such a configuration, it is possible to suppress the occurrence of an electrical short circuit between different electrode wires 5 and an electrical short circuit between different sheath core wires 15 due to a decrease in insulation of the covering member at a high temperature. As a result, the temperature sensor 1 can prevent the signal path of the detection signal from becoming an inappropriate state due to an electrical short circuit.

[1−5.文言の対応関係]
ここで、文言の対応関係について説明する。
温度センサ1が温度センサの一例に相当し、感温素子3が感温素子の一例に相当し、電極線5が素子芯線の一例に相当し、シース部7がシース部材の一例に相当し、金属芯線15(シース芯線15)がシース芯線の一例に相当し、溶接部61が溶接部の一例に相当し、金属チューブ9が素子収容部の一例に相当し、セメント23が素子保持部材の一例に相当し、被覆部材71が被覆部材の一例に相当する。
[1-5. Correspondence of wording]
Here, the correspondence between words will be described.
The temperature sensor 1 corresponds to an example of a temperature sensor, the temperature sensitive element 3 corresponds to an example of a temperature sensitive element, the electrode wire 5 corresponds to an example of an element core wire, and the sheath portion 7 corresponds to an example of a sheath member. The metal core wire 15 (sheath core wire 15) corresponds to an example of the sheath core wire, the welded portion 61 corresponds to an example of the welded portion, the metal tube 9 corresponds to an example of the element accommodating portion, and the cement 23 corresponds to an example of the element holding member. The covering member 71 corresponds to an example of the covering member.

[2.第2実施形態]
[2−1.全体構成]
次に、第2実施形態について説明する。なお、第1実施形態と同一の構成要素についての説明は省略し、異なる部分を中心に説明する。
[2. Second Embodiment]
[2-1. overall structure]
Next, the second embodiment will be described. The same components as those in the first embodiment will be omitted, and different parts will be mainly described.

図3に示すように、第2実施形態の温度センサは、第1実施形態の温度センサ1における電極線5とシース芯線15との溶接部分の構成を変更した例である。なお、第1実施形態と同様の構成及び作用効果については説明を省略する。 As shown in FIG. 3, the temperature sensor of the second embodiment is an example in which the configuration of the welded portion between the electrode wire 5 and the sheath core wire 15 in the temperature sensor 1 of the first embodiment is changed. The description of the same configuration and operation / effect as in the first embodiment will be omitted.

第2実施形態においては、一対の電極線5の後端部は、シース部7(図1参照)の先端から引き出された一対のシース芯線15の先端部と重ね合されている。一対の電極線5と一対のシース芯線15とは、抵抗溶接、レーザー溶接等の溶接により、第2溶接部62において接合されている。なお、電極線5の断面積は、シース芯線15の断面積よりも小さく設定されている。また、第2実施形態では、一対のシース芯線15として、Ni合金であるNCF600を用いた。 In the second embodiment, the rear end portion of the pair of electrode wires 5 is overlapped with the tip end portion of the pair of sheath core wires 15 drawn from the tip end of the sheath portion 7 (see FIG. 1). The pair of electrode wires 5 and the pair of sheath core wires 15 are joined at the second welded portion 62 by welding such as resistance welding and laser welding. The cross-sectional area of the electrode wire 5 is set to be smaller than the cross-sectional area of the sheath core wire 15. Further, in the second embodiment, NCF600, which is a Ni alloy, was used as the pair of sheath core wires 15.

第2実施形態の温度センサ1においては、電極線5とシース芯線15との重ね合わせ部分の一部、および第2溶接部62は、第2被覆部材73で覆われている。つまり、第2実施形態の温度センサ1は、一対の第2溶接部62および一対の第2被覆部材73を備えている。 In the temperature sensor 1 of the second embodiment, a part of the overlapping portion of the electrode wire 5 and the sheath core wire 15 and the second welded portion 62 are covered with the second covering member 73. That is, the temperature sensor 1 of the second embodiment includes a pair of second welded portions 62 and a pair of second covering members 73.

第2被覆部材73は、図3に示すように、電極線5と第2溶接部62との接合界面、およびシース芯線15と第2溶接部62との接合界面をそれぞれ覆うように形成されている。とりわけ、第2実施形態では、第2被覆部材73は、第2溶接部62の全体を覆う状態で形成される。 As shown in FIG. 3, the second covering member 73 is formed so as to cover the joining interface between the electrode wire 5 and the second welded portion 62 and the joining interface between the sheath core wire 15 and the second welded portion 62, respectively. There is. In particular, in the second embodiment, the second covering member 73 is formed so as to cover the entire second welded portion 62.

また、電極線5、シース芯線15、第2溶接部62は、それぞれ一対ずつ備えられており、第2被覆部材73についても一対備えられている。つまり、一対の第2被覆部材73は、一対の電極線5、シース芯線15、第2溶接部62をそれぞれ個別に覆うように備えられている。 Further, a pair of the electrode wire 5, the sheath core wire 15, and the second welded portion 62 are provided, and a pair of the second covering member 73 is also provided. That is, the pair of second covering members 73 are provided so as to individually cover the pair of electrode wires 5, the sheath core wire 15, and the second welded portion 62, respectively.

一対の第2被覆部材73は、上記の[表1]に示す各成分(元素)を含んだ材料で構成されている。
第2被覆部材73が備えられることで、電極線5と第2溶接部62との接合界面、およびシース芯線15と第2溶接部62との接合界面は、それぞれ、セメント23と直接接触することがない。
The pair of second covering members 73 are made of a material containing each component (element) shown in the above [Table 1].
By providing the second covering member 73, the bonding interface between the electrode wire 5 and the second welded portion 62 and the bonding interface between the sheath core wire 15 and the second welded portion 62 are in direct contact with the cement 23, respectively. There is no.

また、第2被覆部材73は、セメント23よりも通気性が小さくなっている。つまり、セメント23には、開気孔が多く存在するが、セメント23には開気孔が実質的に存在していない。 Further, the second covering member 73 has a smaller air permeability than the cement 23. That is, the cement 23 has many open pores, but the cement 23 has substantially no open pores.

次に、第2被覆部材73の線熱膨張係数は、11.2×10−6/℃であり、電極線5(Pt線)の線熱膨張係数は、9.5×10−6/℃であり、シース芯線15(NCF600製)の線熱膨張係数は、14.2×10−6/℃である。つまり、第2被覆部材73の線熱膨張係数は、電極線5の線熱膨張係数とシース芯線15の線熱膨張係数とに挟まれる数値範囲に含まれている。 Next, the coefficient of linear thermal expansion of the second covering member 73 is 11.2 × 10 -6 / ° C, and the coefficient of linear thermal expansion of the electrode wire 5 (Pt wire) is 9.5 × 10 -6 / ° C. The coefficient of linear thermal expansion of the sheath core wire 15 (manufactured by NCF600) is 14.2 × 10 -6 / ° C. That is, the coefficient of linear thermal expansion of the second covering member 73 is included in the numerical range sandwiched between the coefficient of linear thermal expansion of the electrode wire 5 and the coefficient of linear thermal expansion of the sheath core wire 15.

また、第2実施形態では、第2被覆部材73の線熱膨張係数は、電極線5の線熱膨張係数との差分値が、シース芯線15の線熱膨張係数との差分値よりも小さい。
[2−2.効果]
以上説明したように、第2実施形態の温度センサ1は、第2被覆部材73を備えており、第1実施形態と同様に、電極線5と第2溶接部62との接合界面、およびシース芯線15と第2溶接部62との接合界面の酸化による劣化を抑制できる。
Further, in the second embodiment, the difference value of the linear thermal expansion coefficient of the second covering member 73 from the linear thermal expansion coefficient of the electrode wire 5 is smaller than the difference value from the linear thermal expansion coefficient of the sheath core wire 15.
[2-2. effect]
As described above, the temperature sensor 1 of the second embodiment includes the second covering member 73, and similarly to the first embodiment, the joint interface between the electrode wire 5 and the second welded portion 62 and the sheath. Deterioration due to oxidation of the bonding interface between the core wire 15 and the second welded portion 62 can be suppressed.

[2−3.文言の対応関係]
ここで、文言の対応関係について説明する。
第2溶接部62が溶接部の一例に相当し、第2被覆部材73が被覆部材の一例に相当する。
[2-3. Correspondence of wording]
Here, the correspondence between words will be described.
The second welded portion 62 corresponds to an example of the welded portion, and the second covering member 73 corresponds to an example of the covering member.

[3.他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
[3. Other embodiments]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented in various embodiments without departing from the gist of the present invention.

例えば、上述の実施形態では、感温部4について、温度に応じて電気的特性が変化する金属抵抗体55を用いて構成したが、例えば、温度に応じて電気的特性が変化するサーミスタ焼結体を用いて構成してもよい。サーミスタ焼結体としては、例えば、(Sr,Y)(Al,Mn,Fe)Oをベース組成としたペロブスカイト型酸化物等を用いることができる。 For example, in the above-described embodiment, the temperature sensitive portion 4 is configured by using the metal resistor 55 whose electrical characteristics change according to the temperature. For example, thermistor sintering whose electrical characteristics change according to the temperature. It may be constructed using the body. As the thermistor sintered body, for example, a perovskite-type oxide having a base composition of (Sr, Y) (Al, Mn, Fe) O 3 or the like can be used.

図4に、サーミスタ焼結体により構成された感温部4と、感温部4に接続された一対の電極線5と、を有する感温素子3を備えた温度センサ1を示す。一対の電極線5の後端部は、シース部7(図1参照)の先端から引き出された一対のシース芯線15の先端部と重ね合されている。一対の電極線5と一対のシース芯線15とは、抵抗溶接、レーザー溶接等の溶接により、第3溶接部63において接合されている。なお、電極線5の断面積は、シース芯線15の断面積よりも小さく設定されている。 FIG. 4 shows a temperature sensor 1 including a temperature sensing element 3 having a temperature sensing portion 4 composed of a thermistor sintered body and a pair of electrode wires 5 connected to the temperature sensing portion 4. The rear ends of the pair of electrode wires 5 are overlapped with the tip ends of the pair of sheath core wires 15 drawn from the tips of the sheath portions 7 (see FIG. 1). The pair of electrode wires 5 and the pair of sheath core wires 15 are joined at the third welded portion 63 by welding such as resistance welding and laser welding. The cross-sectional area of the electrode wire 5 is set to be smaller than the cross-sectional area of the sheath core wire 15.

この温度センサ1は、第3被覆部材75を備えている。この温度センサ1は、第2実施形態と同様に、電極線5とシース芯線15との重ね合わせ部分の一部、および第3溶接部63が、第3被覆部材75で覆われるように構成されている。つまり、この温度センサ1は、一対の第3溶接部63および一対の第3被覆部材75を備えている。 The temperature sensor 1 includes a third covering member 75. Similar to the second embodiment, the temperature sensor 1 is configured such that a part of the overlapping portion of the electrode wire 5 and the sheath core wire 15 and the third welded portion 63 are covered with the third covering member 75. ing. That is, the temperature sensor 1 includes a pair of third welded portions 63 and a pair of third covering members 75.

よって、図4に示す温度センサ1は、第3被覆部材75を備えており、第2実施形態と同様に、電極線5と第3溶接部63との接合界面、およびシース芯線15と第3溶接部63との接合界面の酸化による劣化を抑制できる。 Therefore, the temperature sensor 1 shown in FIG. 4 includes a third covering member 75, and similarly to the second embodiment, the bonding interface between the electrode wire 5 and the third welded portion 63, and the sheath core wire 15 and the third Deterioration due to oxidation of the joint interface with the welded portion 63 can be suppressed.

次に、上述の実施形態では、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面を、それぞれ1つの被覆部材で覆う構成について説明したが、被覆部材はこのような構成に限られることはない。例えば、図5に示すように、第1実施形態における被覆部材71を、2つの被覆部材(電極側被覆部材77、シース側被覆部材79)に置き換えた構成としてもよい。図5に示す温度センサ1は、電極線5と溶接部61との接合界面を覆う電極側被覆部材77と、シース芯線15と溶接部61との接合界面を覆うシース側被覆部材79と、を備える。 Next, in the above-described embodiment, the configuration in which the bonding interface between the electrode wire 5 and the welded portion 61 and the bonding interface between the sheath core wire 15 and the welded portion 61 are each covered with one covering member has been described. Is not limited to such a configuration. For example, as shown in FIG. 5, the covering member 71 in the first embodiment may be replaced with two covering members (electrode side covering member 77, sheath side covering member 79). The temperature sensor 1 shown in FIG. 5 includes an electrode-side coating member 77 that covers the bonding interface between the electrode wire 5 and the welded portion 61, and a sheath-side coating member 79 that covers the bonding interface between the sheath core wire 15 and the welded portion 61. Be prepared.

この温度センサ1は、第1実施形態と同様に、電極線5と溶接部61との接合界面、およびシース芯線15と溶接部61との接合界面の酸化による劣化を抑制できる。
次に、上述の第1実施形態では、電極線5、シース芯線15、溶接部61がそれぞれ一対ずつ備えられる温度センサにおいて、一対の被覆部材71を備える構成について説明したが、被覆部材はこのような構成に限られることはない。例えば、図6に示す第4被覆部材81のように、第1実施形態の2つの被覆部材71を連結した形態の1つの被覆部材を備えてもよい。換言すれば、1つの第4被覆部材81が、電極線5と溶接部61との接合界面の全て、およびシース芯線15と溶接部61との接合界面の全てを覆うように形成される構成であってもよい。
Similar to the first embodiment, the temperature sensor 1 can suppress deterioration due to oxidation of the bonding interface between the electrode wire 5 and the welded portion 61 and the bonding interface between the sheath core wire 15 and the welded portion 61.
Next, in the above-described first embodiment, a configuration in which a pair of covering members 71 is provided in a temperature sensor in which a pair of electrode wires 5, a sheath core wire 15, and a welded portion 61 are provided is described. It is not limited to such a configuration. For example, as in the fourth covering member 81 shown in FIG. 6, one covering member in a form in which the two covering members 71 of the first embodiment are connected may be provided. In other words, one fourth covering member 81 is formed so as to cover all of the joining interface between the electrode wire 5 and the welded portion 61 and all of the joining interface between the sheath core wire 15 and the welded portion 61. There may be.

このような第4被覆部材81を備える温度センサ1であれば、温度センサ1の製造時において、第4被覆部材81の形成を一度に実行することができ、第4被覆部材81の形成工程を簡略化できる。 If the temperature sensor 1 includes such a fourth covering member 81, the formation of the fourth covering member 81 can be executed at one time at the time of manufacturing the temperature sensor 1, and the forming step of the fourth covering member 81 can be performed. Can be simplified.

次に、被覆部材、素子芯線(電極線5)、シース芯線のそれぞれの線熱膨張係数は、上記の実施形態における各数値に限定されることはなく、本発明の技術的範囲に属する限り、任意の数値を採ることができる。 Next, the coefficient of linear thermal expansion of each of the covering member, the element core wire (electrode wire 5), and the sheath core wire is not limited to each numerical value in the above embodiment, and as long as it belongs to the technical scope of the present invention. Any numerical value can be taken.

また、温度センサを構成する各部材(例えば、感温素子、シース部、金属チューブ、取付部材、ナット部など)の材料は、上記実施形態に記載の材料に限られることはなく、本発明の技術的範囲に含まれる限り、任意の材料を採用することができる。 Further, the material of each member (for example, temperature sensitive element, sheath portion, metal tube, mounting member, nut portion, etc.) constituting the temperature sensor is not limited to the material described in the above embodiment, and is not limited to the material described in the above embodiment. Any material can be used as long as it is within the technical scope.

さらに、感温素子を収容する温度センサの構成としては、上記構成に限られることはなく、公知の各種の構成を採用できる。 Further, the configuration of the temperature sensor accommodating the temperature sensing element is not limited to the above configuration, and various known configurations can be adopted.

1…温度センサ、3…感温素子、4…感温部、5…電極線、7…シース部、9…金属チューブ(内筒)、11…取付部材、15…金属芯線(シース芯線)、17…外筒、23…セメント(素子保持部材)、61…溶接部、62…第2溶接部、63…第3溶接部、71…被覆部材、73…第2被覆部材、75…第3被覆部材、77…電極側被覆部材、79…シース側被覆部材。 1 ... Temperature sensor, 3 ... Temperature sensitive element, 4 ... Temperature sensitive part, 5 ... Electrode wire, 7 ... Sheath part, 9 ... Metal tube (inner cylinder), 11 ... Mounting member, 15 ... Metal core wire (sheath core wire), 17 ... outer cylinder, 23 ... cement (element holding member), 61 ... welded part, 62 ... second welded part, 63 ... third welded part, 71 ... covering member, 73 ... second covering member, 75 ... third coating Member, 77 ... Electrode side covering member, 79 ... Sheath side covering member.

Claims (5)

検出温度に応じた検出信号の信号経路となる素子芯線を有する感温素子と、
長手方向に延びるシース芯線を有するシース部材と、
前記素子芯線と前記シース芯線とを溶接する溶接部と、
前記感温素子および前記溶接部を少なくとも収容する素子収容空間を有する素子収容部と、
前記素子収容空間のうち前記感温素子と前記素子収容部の内壁との間に配置される素子保持部材と、
を備える温度センサであって、
前記素子芯線と前記溶接部との接合界面、および前記シース芯線と前記溶接部との接合界面をそれぞれ覆う被覆部材を備え、
前記被覆部材は、前記素子保持部材よりも通気性が小さく、
前記被覆部材の線熱膨張係数は、前記素子芯線の線熱膨張係数と前記シース芯線の線熱膨張係数とに挟まれる数値範囲に含まれる、
温度センサ。
A temperature-sensitive element having an element core wire that serves as a signal path for a detection signal according to the detection temperature,
A sheath member having a sheath core wire extending in the longitudinal direction,
A welded portion for welding the element core wire and the sheath core wire,
An element accommodating portion having an element accommodating space for accommodating at least the temperature sensitive element and the welded portion, and an element accommodating portion.
An element holding member arranged between the temperature-sensitive element and the inner wall of the element accommodating portion in the element accommodating space,
It is a temperature sensor equipped with
A covering member that covers the bonding interface between the element core wire and the welded portion and the bonding interface between the sheath core wire and the welded portion is provided.
The covering member has a smaller air permeability than the element holding member ,
The coefficient of linear thermal expansion of the covering member is included in a numerical range sandwiched between the coefficient of linear thermal expansion of the element core wire and the coefficient of linear thermal expansion of the sheath core wire.
Temperature sensor.
前記被覆部材の線熱膨張係数は、前記素子芯線の線熱膨張係数との差分値が、前記シース芯線の線熱膨張係数との差分値よりも小さい、
請求項1に記載の温度センサ。
Regarding the linear thermal expansion coefficient of the covering member, the difference value from the linear thermal expansion coefficient of the element core wire is smaller than the difference value from the linear thermal expansion coefficient of the sheath core wire.
The temperature sensor according to claim 1.
前記被覆部材は、前記溶接部の全体を覆う状態で形成される、
請求項1または請求項2に記載の温度センサ。
The covering member is formed so as to cover the entire welded portion.
The temperature sensor according to claim 1 or 2.
前記素子芯線および前記シース芯線は、それぞれ複数備えられており、
前記被覆部材は、複数の前記素子芯線および複数の前記シース芯線ごとに個別に備えられる、
請求項1から請求項3のうちいずれか一項に記載の温度センサ。
A plurality of the element core wire and the sheath core wire are provided, respectively.
The covering member is individually provided for each of the plurality of element core wires and the plurality of sheath core wires.
The temperature sensor according to any one of claims 1 to 3.
前記素子芯線および前記シース芯線は、それぞれ複数備えられており、
1つの前記被覆部材は、前記素子芯線と前記溶接部との接合界面の全て、および前記シース芯線と前記溶接部との接合界面の全てを覆うように形成される、
請求項1から請求項3のうちいずれか一項に記載の温度センサ。
A plurality of the element core wire and the sheath core wire are provided, respectively.
One covering member is formed so as to cover all of the joining interface between the element core wire and the welded portion and all of the joining interface between the sheath core wire and the welded portion.
The temperature sensor according to any one of claims 1 to 3.
JP2016101633A 2016-05-20 2016-05-20 Temperature sensor Active JP6787691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101633A JP6787691B2 (en) 2016-05-20 2016-05-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101633A JP6787691B2 (en) 2016-05-20 2016-05-20 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2017207443A JP2017207443A (en) 2017-11-24
JP6787691B2 true JP6787691B2 (en) 2020-11-18

Family

ID=60417164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101633A Active JP6787691B2 (en) 2016-05-20 2016-05-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JP6787691B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582618B2 (en) * 2003-05-02 2010-11-17 日本特殊陶業株式会社 Temperature sensor
JP4348137B2 (en) * 2003-08-01 2009-10-21 日本特殊陶業株式会社 Temperature sensor and manufacturing method thereof
JP5561292B2 (en) * 2012-03-06 2014-07-30 株式会社デンソー Temperature sensor
JP6265001B2 (en) * 2014-03-28 2018-01-24 株式会社デンソー Temperature sensor

Also Published As

Publication number Publication date
JP2017207443A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP2004317499A (en) Temperature sensor
JP4739042B2 (en) Gas sensor and manufacturing method thereof
JP4253642B2 (en) Temperature sensor
JP6301753B2 (en) Temperature sensor
JP2009270989A (en) Temperature sensor
JP2007240341A (en) Temperature sensor
JP2011047756A (en) Ammonia gas sensor
JP2016085864A (en) Heater with thermoelectric couple, and gas sensor with the same
JP6787691B2 (en) Temperature sensor
JP6510405B2 (en) Temperature sensor
JP6239899B2 (en) Gas sensor
JP2007187562A (en) Temperature sensor element and temperature sensor
JP4621186B2 (en) Sensor heater and sensor
JP3826095B2 (en) Temperature sensor
JP6321470B2 (en) Thermistor element and temperature sensor
JP6917207B2 (en) Gas sensor
JP2017146247A (en) Temperature sensor
JP6406786B2 (en) Gas sensor
JP5123344B2 (en) Temperature sensor
JP7050584B2 (en) Sensor
JP2018112513A (en) Temperature sensor
JP6204252B2 (en) Ammonia gas sensor
JP6483361B2 (en) Thermistor element and temperature sensor
JP5336426B2 (en) Gas sensor
JP4143449B2 (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250