JP6785979B2 - Flow path plate and manufacturing method of flow path plate - Google Patents

Flow path plate and manufacturing method of flow path plate Download PDF

Info

Publication number
JP6785979B2
JP6785979B2 JP2019541936A JP2019541936A JP6785979B2 JP 6785979 B2 JP6785979 B2 JP 6785979B2 JP 2019541936 A JP2019541936 A JP 2019541936A JP 2019541936 A JP2019541936 A JP 2019541936A JP 6785979 B2 JP6785979 B2 JP 6785979B2
Authority
JP
Japan
Prior art keywords
flow path
path plate
plate
cut
mountain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019541936A
Other languages
Japanese (ja)
Other versions
JPWO2019054052A1 (en
Inventor
義浩 細川
義浩 細川
晋介 中畑
晋介 中畑
慎也 守川
慎也 守川
彰則 清水
彰則 清水
一 外川
一 外川
隆裕 川崎
隆裕 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019054052A1 publication Critical patent/JPWO2019054052A1/en
Application granted granted Critical
Publication of JP6785979B2 publication Critical patent/JP6785979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Description

本発明は、流路板及び流路板の製造方法に関する。 The present invention relates to a manufacturing method of the flow path Ita及beauty channel plate.

基板を挟んで給気流と排気流を流すことで熱交換する熱交換素子として、対向流型熱交換素子がある。対向流型熱交換素子は、例えば、特許文献1に示すように、コルゲートシートから切断された2以上の流路板を交互に積層して形成された対向流路部と、同様に製造され、対向流路部に接合された第1の分離流路部と、同様に製造され、対向流路部の他端に接合された第2の分離流路部と、を備える。 There is a countercurrent type heat exchange element as a heat exchange element that exchanges heat by flowing a supply air flow and an exhaust flow across a substrate. The countercurrent heat exchange element is manufactured in the same manner as, for example, as shown in Patent Document 1, a countercurrent flow path portion formed by alternately stacking two or more flow path plates cut from a corrugated sheet. It includes a first separation flow path portion joined to the countercurrent flow path portion, and a second separation flow path portion similarly manufactured and joined to the other end of the countercurrent flow path portion.

熱交換素子は、流路の圧力損失を小さくすることが望まれる。熱交換素子で発生する圧力損失を小さくした熱交換素子の一例として、特許文献2に示すように、シート状の基材にドット状の盛り上がり部を形成した熱交換エレメントがある。 The heat exchange element is desired to reduce the pressure loss in the flow path. As an example of a heat exchange element in which the pressure loss generated in the heat exchange element is reduced, as shown in Patent Document 2, there is a heat exchange element in which a dot-shaped raised portion is formed on a sheet-shaped base material.

国際公開第2016/147359号International Publication No. 2016/147359 特開平06−50693号公報Japanese Unexamined Patent Publication No. 06-50693

特許文献1に開示された熱交換素子は、既存のコルゲートシートを使用して製造されるので、流路の形状又は大きさは予め定められており、圧力損失を小さくすることは困難である。また、特許文献2に開示された熱交換エレメントを流路板として使用する場合には、製造が煩雑であり、コストもかかる。 Since the heat exchange element disclosed in Patent Document 1 is manufactured using an existing corrugated sheet, the shape or size of the flow path is predetermined, and it is difficult to reduce the pressure loss. Further, when the heat exchange element disclosed in Patent Document 2 is used as a flow path plate, the production is complicated and costly.

本発明は、上述のような課題を解決するためになされたもので、流路の圧力損失を小さくでき、製造も簡単である流路板及び流路板の製造方法を提供することを目的とする。 The present invention has been made to solve the problems as described above, can reduce the pressure loss of the flow path, intended to provide a method for manufacturing is simple passage Ita及beauty flow plate And.

上記問題点を解決し、目的を達成するために、本発明に係る熱交換素子の流路板は、基板と、互いの頂部が平行に伸びる2以上の山部と2以上の谷部を備え、2以上の谷部の頂部が基板に接着されて流路を形成する流路形成板と、を備え、2以上の山部は、山部の頂部が伸びる方向に当該山部の一端部から他端部まで連続して少なくとも頂部が切除された形状を備える切除部を有する山部と、切除部を有さない山部と、を備える。 To solve the above problems and to achieve the object, the channel plate of the heat exchange element according to the present invention includes a base plate, two or more peaks and two or more valleys apex extending parallel to each other provided, comprising a two or more of the top of the valley are adhered to a plate and a flow path formation to that channel forming plate, the two or more ridges are of the mountain portion in the direction in which the top extends the crest It is provided with a mountain portion having a cut portion having a shape in which at least the top is cut continuously from one end to the other end, and a mountain portion having no cut portion.

本発明によれば、流路の圧力損失を小さくでき、製造も簡単である流路板及び流路板の製造方法を提供できる。 According to the present invention, it is possible to reduce the pressure loss of the flow path, can provide a method for manufacturing is simple passage Ita及beauty channel plate.

本発明の実施の形態1に係る熱交換素子の一部を上下方向に分解した分解斜視図An exploded perspective view of a part of the heat exchange element according to the first embodiment of the present invention, which is disassembled in the vertical direction. 従来の熱交換素子を第1の交差流路部と、対向流路部と、第2の交差流路部で分解した分解斜視図An exploded perspective view of the conventional heat exchange element disassembled at the first cross flow path portion, the countercurrent flow path portion, and the second cross flow path portion. 従来の流路板を示す図であり、第2の流路板と第3の流路板の斜視図It is a figure which shows the conventional flow path board, and is the perspective view of the 2nd flow path board and the 3rd flow path board. 従来の流路板を示す図であり、第4の流路板を示す斜視図It is a figure which shows the conventional flow path board, and is the perspective view which shows the 4th flow path board. 従来の流路板を示す図であり、第5の流路板を示す斜視図It is a figure which shows the conventional flow path board, and is the perspective view which shows the 5th flow path board. 従来の流路板を示す図であり、第6の流路板を示す斜視図It is a figure which shows the conventional flow path board, and is the perspective view which shows the 6th flow path board. 従来の流路板を示す図であり、第7の流路板を示す斜視図It is a figure which shows the conventional flow path board, and is the perspective view which shows the 7th flow path board. 流路板を製造するために使用されるコルゲートロールと、コルゲートロールから流路板を切り出した状態を示す図The figure which shows the corrugated roll used for manufacturing a flow path board, and the state which cut out the flow path board from a corrugated roll. 実施の形態1に係る流路板を示す図であり、図4に示すコルゲートシートの山部を切り取る前の断面図It is a figure which shows the flow path board which concerns on Embodiment 1, and is the cross-sectional view before cutting off the mountain part of the corrugated sheet shown in FIG. 図5Aに示す一点破線で山部を切り取った後の第1の流路板の断面図Cross-sectional view of the first flow path plate after the mountain portion is cut off by the alternate long and short dash line shown in FIG. 5A. 第1の流路板の変形例を示す図The figure which shows the modification of the 1st flow path plate 実施の形態1に係る流路板を製造するために使用されるコルゲートロールと、コルゲートロールから流路板を切り出した状態を示す図The figure which shows the corrugated roll used for manufacturing the flow path board which concerns on Embodiment 1, and the state which cut out the flow path board from a corrugated roll. 第1の流路板の他の変形例を示す図The figure which shows the other modification of the 1st flow path plate 図7Aの第1の流路板の残部を湾曲させた状態を示す図FIG. 7A is a diagram showing a state in which the remaining portion of the first flow path plate of FIG. 7A is curved. 実施の形態1に係る流路板を製造するために使用されるカッター刃の正面図と側面図Front view and side view of the cutter blade used for manufacturing the flow path plate according to the first embodiment. 図8Aのカッター刃の使用例を示す図The figure which shows the use example of the cutter blade of FIG. 8A 他のカッター刃の外観を示す図Diagram showing the appearance of other cutter blades 他のカッター刃の分解図Exploded view of other cutter blades 他のカッター刃の刃部の長さの変化を示す図The figure which shows the change of the length of the blade part of another cutter blade 他のカッター刃の使用例を示す図Diagram showing usage examples of other cutter blades 実施の形態1に係る第4の流路板を示す斜視図A perspective view showing a fourth flow path plate according to the first embodiment. 実施の形態1に係る第5の流路板を示す斜視図A perspective view showing a fifth flow path plate according to the first embodiment. 実施の形態1に係る第6の流路板を示す斜視図A perspective view showing a sixth flow path plate according to the first embodiment. 実施の形態1に係る第7の流路板を示す斜視図A perspective view showing a seventh flow path plate according to the first embodiment. 図1の熱交換素子をA−A’線で切断した切断図A cutting view of the heat exchange element of FIG. 1 cut along the AA'line. 従来の流路板と実施の形態1の第1の流路板の圧力損失と風量の関係を示す図The figure which shows the relationship between the pressure loss and the air volume of the conventional flow path plate and the 1st flow path plate of Embodiment 1. 本発明の実施の形態2に係る流路板の山部を切除する前の断面図Sectional drawing before cutting off the mountain part of the flow path plate which concerns on Embodiment 2 of this invention 実施の形態2に係る流路板の山部を切除した後の断面図Cross-sectional view after cutting off the mountain portion of the flow path plate according to the second embodiment. 実施の形態1の流路板と実施の形態2の流路板の圧力損失と風量の関係を示す図The figure which shows the relationship between the pressure loss and the air volume of the flow path board of Embodiment 1 and the flow path board of Embodiment 2. 本発明の実施の形態3に係る熱交換素子を示す斜視図A perspective view showing a heat exchange element according to the third embodiment of the present invention. 変形例の係る熱交換素子を示す斜視図A perspective view showing a heat exchange element according to a modified example. 本発明の実施の形態4に係る流路板を製造するためのコルゲートシートを製造する方法を示す図The figure which shows the method of manufacturing the corrugated sheet for manufacturing the flow path board which concerns on Embodiment 4 of this invention. 実施の形態4に係る流路板を製造するためのコルゲートシートを製造する方法を示す図The figure which shows the method of manufacturing the corrugated sheet for manufacturing the flow path board which concerns on Embodiment 4. 実施の形態4に係る流路板を製造するためのコルゲートシートを製造する方法を示す図The figure which shows the method of manufacturing the corrugated sheet for manufacturing the flow path board which concerns on Embodiment 4. 実施の形態4に係る流路板を製造するために使用されるコルゲートロールと、コルゲートロールから流路板を切り出した状態を示す図The figure which shows the corrugated roll used for manufacturing the flow path board which concerns on Embodiment 4, and the state which cut out the flow path board from a corrugated roll. 実施の形態4に係る流路板を示す図であり、山部を切除する前のコルゲートシートの断面図It is a figure which shows the flow path board which concerns on Embodiment 4, and is the cross-sectional view of the corrugated sheet before cutting a mountain part. 実施の形態4に係る流路板を示す図であり、山部を切除した後のコルゲートシートの断面図It is a figure which shows the flow path board which concerns on Embodiment 4, and is the sectional view of the corrugated sheet after excision of a mountain part. 本発明の実施の形態5に係る熱交換素子の上面図Top view of the heat exchange element according to the fifth embodiment of the present invention 本発明の実施の形態6に係る熱交換素子の上面図Top view of the heat exchange element according to the sixth embodiment of the present invention 本発明の実施の形態7に係る熱交換素子の上面図Top view of the heat exchange element according to the seventh embodiment of the present invention 実施の形態1〜7に係る熱交換素子を含む熱交換換気装置を示す図The figure which shows the heat exchange ventilation apparatus which includes the heat exchange element which concerns on Embodiments 1-7.

以下、本発明の実施の形態にかかる流路板、熱交換素子、及び流路板の製造方法について、図面に基づいて詳細に説明する。なお、この実施の形態により発明が限定されるものではない。熱交換素子の幅方向をX軸とし、奥行き方向をY軸とし、高さ方向をZ軸とするXYZ座標を設定し、適宜当該座標を参照して説明する。 Hereinafter, a flow path plate, a heat exchange element, and a method for manufacturing the flow path plate according to the embodiment of the present invention will be described in detail with reference to the drawings. The invention is not limited to this embodiment. XYZ coordinates with the width direction of the heat exchange element as the X axis, the depth direction as the Y axis, and the height direction as the Z axis are set, and the description will be described with reference to the coordinates as appropriate.

(実施の形態1)
本実施の形態に係る熱交換素子は、複数の流路が形成された流路板を交互に積層し、流路板を介して給気流と排気流との間で熱交換をする部材である。熱交換素子は、室外空気を室内に給気する給気流と、室内空気を室外に排気する排気流との間で熱交換させる熱交換換気装置に用いられる。
(Embodiment 1)
The heat exchange element according to the present embodiment is a member in which flow path plates in which a plurality of flow paths are formed are alternately laminated and heat is exchanged between the supply air flow and the exhaust flow via the flow path plates. .. The heat exchange element is used in a heat exchange ventilation device that exchanges heat between a supply air stream that supplies outdoor air into a room and an exhaust stream that exhausts indoor air to the outside.

図1は、本発明の実施の形態1に係る熱交換素子100の一部をZ軸方向に分解した分解斜視図である。熱交換素子100は、対向流路部200と、対向流路部200の一端部に接合された第1の交差流路部300と、対向流路部200の一端部と対向する他端部に接合された第2の交差流路部400と、を備える。 FIG. 1 is an exploded perspective view of a part of the heat exchange element 100 according to the first embodiment of the present invention, which is disassembled in the Z-axis direction. The heat exchange element 100 is provided at the countercurrent flow path portion 200, the first cross flow path portion 300 joined to one end portion of the countercurrent flow path portion 200, and the other end portion facing the one end portion of the countercurrent flow path portion 200. It includes a second countercurrent exchange section 400 joined.

対向流路部200は、基板を挟んで給気流と排気流が平行に、かつ対向して流れる流路部材であり、基板を介して給気流と排気流との間で熱交換をする。第1の交差流路部300と第2の交差流路部400は、基板を挟んで給気流と排気流が交差して流れ、基板を介して熱交換をする部材である。 The countercurrent flow path portion 200 is a flow path member in which the air supply airflow and the exhaust flow flow in parallel and facing each other across the substrate, and heat is exchanged between the supply airflow and the exhaust flow through the substrate. The first cross flow path portion 300 and the second cross flow path portion 400 are members in which the supply air flow and the exhaust flow flow intersect with each other across the substrate and exchange heat through the substrate.

本実施の形態の特徴は、第1の交差流路部300と第2の交差流路部400の流路板の一部に第1の流路板を備えることである。説明の順序として、図4、図5A〜5C、及び図6により第1の流路板を説明し、次に、図2により、第1の流路板を備えない従来の熱交換素子を説明したのち、図1により、本実施の形態の第1の流路板を備える熱交換素子100について、説明する。 A feature of this embodiment is that a first flow path plate is provided as a part of the flow path plates of the first cross flow path portion 300 and the second cross flow path portion 400. As the order of description, the first flow path plate will be described with reference to FIGS. 4, 5A to 5C, and FIG. 6, and then, the conventional heat exchange element without the first flow path plate will be described with reference to FIG. Then, with reference to FIG. 1, the heat exchange element 100 provided with the first flow path plate of the present embodiment will be described.

(第1の流路板)
第1の流路板について、図4、図5A、5B、及び図6を参照して説明する。図5Aは、図4に示すコルゲートシート1101の山部を切り取る前の断面図であり、図5Bは、第1の流路板の断面図、図6は、山部の一部が切り取られたコルゲートシートを巻回したコルゲートロールと、コルゲートシートから切り取られた第1の流路板を示す図である。
(First flow path plate)
The first flow path plate will be described with reference to FIGS. 4, 5A, 5B, and 6. 5A is a cross-sectional view of the corrugated sheet 1101 shown in FIG. 4 before cutting out, FIG. 5B is a cross-sectional view of the first flow path plate, and FIG. 6 shows a part of the mountain portion cut off. It is a figure which shows the corrugated roll around which the corrugated sheet was wound, and the first flow path plate cut out from the corrugated sheet.

第1の流路板は、図4に示すコルゲートロール1100から山部の頂部を切除して取得されるコルゲートシートを用いて製造される。図5Aに示すように、図4に示す複数の山部1130aを備えるコルゲートシート1101から、一点破線で示すように山部1130aの頂部を一つ置きに切除して、図6に示すコルゲートシート1201が取得される。コルゲートシート1201は巻回されて、コルゲートロール1200として保管される。 The first flow path plate is manufactured by using a corrugated sheet obtained by cutting off the top of a mountain portion from the corrugated roll 1100 shown in FIG. As shown in FIG. 5A, from the corrugated sheet 1101 provided with the plurality of mountain portions 1130a shown in FIG. Is obtained. The corrugated sheet 1201 is wound and stored as a corrugated roll 1200.

第1の流路板10は、コルゲートロール1200からコルゲートシート1201を引き出し、引き出されたコルゲートシート1201を、所望する長さと幅で、D−D’線及びE−E’線で切り取ることで取得される。 The first flow path plate 10 is obtained by pulling out the corrugated sheet 1201 from the corrugated roll 1200 and cutting out the drawn corrugated sheet 1201 with a desired length and width along the DD'line and the EE' line. Will be done.

第1の流路板10は、図5B、図6に示すように、第1の基板11と、第1の基板11の一方の面に接着された第1の流路形成板12と、を備える。第1の流路形成板12は、互いの頂部が平行に伸びる山部13aと谷部13bを備え、谷部13bの頂部が、第1の基板11に接着剤により接着される。第1の流路板10は、後述する第2の流路板210の山部213aと同数の8個の山部13aを備える。 As shown in FIGS. 5B and 6, the first flow path plate 10 includes a first substrate 11 and a first flow path forming plate 12 adhered to one surface of the first substrate 11. Be prepared. The first flow path forming plate 12 includes a peak portion 13a and a valley portion 13b whose tops extend in parallel with each other, and the top of the valley portion 13b is adhered to the first substrate 11 with an adhesive. The first flow path plate 10 includes eight mountain portions 13a, which is the same number as the mountain portions 213a of the second flow path plate 210 described later.

山部13aは、図5Bに点線で示すように、一つ置きに、山部13aの頂部が切除された切除部13cを備える。切除部13cは、山部13aの伸びる方向に沿って、山部13aの一端部から他端部まで連続して形成されている。また、山部13aには、山部13aの頂部が切除されて残った残部13aaが、第1の基板11から起立する形状で残る。 As shown by the dotted line in FIG. 5B, the mountain portion 13a includes an excised portion 13c in which the top of the mountain portion 13a is excised. The cut portion 13c is continuously formed from one end to the other end of the mountain portion 13a along the extending direction of the mountain portion 13a. Further, in the mountain portion 13a, the remaining portion 13aa remaining after the top portion of the mountain portion 13a is cut off remains in a shape of standing up from the first substrate 11.

切除部13cが形成されていない山部13aと第1の基板11との間に、第1の流路14aが形成され、切除部13cが形成された空間を含む一対の切除部13cが形成されていない山部13aの間の空間に、第1の流路14bが形成される。図5Bに示すように、切除部13cが形成された山部13aを含む第1の流路14bは、切除部13cを備えることにより、切除部13cを備えない山部13aにより形成される第1の流路14aより流路断面積が大きくなり、圧力損失を小さくできる。 A first flow path 14a is formed between the mountain portion 13a on which the cut portion 13c is not formed and the first substrate 11, and a pair of cut portions 13c including the space in which the cut portion 13c is formed are formed. The first flow path 14b is formed in the space between the mountain portions 13a. As shown in FIG. 5B, the first flow path 14b including the mountain portion 13a on which the cut portion 13c is formed is formed by the mountain portion 13a not provided with the cut portion 13c by providing the cut portion 13c. The cross-sectional area of the flow path is larger than that of the flow path 14a of the above, and the pressure loss can be reduced.

また、切除部13cは、山部13aの伸びる方向に沿って、山部13aの一端部から他端部まで連続して形成されている。第1の流路14bは、山部13aの一端部から他端部に向かう方向あるいはその逆の方向に流れる流路となる。第1の流路14bの断面積は、切除部13cが連続して形成されるので、山部13aの伸びる方向に不連続に変化しない。したがって、切除部13cを山部13aの伸びる方向に沿って不連続に形成した流路と比較して、第1の流路14bの圧力損失を低減できる。 Further, the cut portion 13c is continuously formed from one end to the other end of the mountain portion 13a along the extending direction of the mountain portion 13a. The first flow path 14b is a flow path that flows in the direction from one end to the other end of the mountain portion 13a or in the opposite direction. Since the cut portion 13c is continuously formed, the cross-sectional area of the first flow path 14b does not change discontinuously in the extending direction of the mountain portion 13a. Therefore, the pressure loss of the first flow path 14b can be reduced as compared with the flow path in which the cut portion 13c is formed discontinuously along the extending direction of the mountain portion 13a.

(変形例1)
図5Bで示す切除部13cは、山部13aの頂部を切除して形成されるが、山部13aの全部が切除されないので、第1の基板11から起立する残部13aaが残る。残部13aaがあることにより、第1の流路14b内では空気抵抗が発生し、圧力損失が増加する。したがって、残部13aaを残さず、頂部を含む山部13aの全部を切除してもよい。
(Modification example 1)
The excised portion 13c shown in FIG. 5B is formed by excising the top of the mountain portion 13a, but since the entire mountain portion 13a is not excised, the remaining portion 13aa standing up from the first substrate 11 remains. Due to the presence of the remaining portion 13aa, air resistance is generated in the first flow path 14b, and the pressure loss increases. Therefore, the entire mountain portion 13a including the top may be excised without leaving the remaining portion 13aa.

図5Cに、頂部を含む山部13aの全部を切除した変形例を示す。図5Aに示すコルゲートシート1101の複数の山部1130aを、一つ置きに、全部を切除して、図5Cに示す第1の流路板10を取得する。第1の流路板10の第1の流路形成板12は、山部13aと、切除部13cが交互に配置されて形成される。切除部13cは、山部13aの伸びる方向に沿って、山部13aの一端部から他端部まで形成されている。 FIG. 5C shows a modified example in which the entire mountain portion 13a including the top is excised. The plurality of mountain portions 1130a of the corrugated sheet 1101 shown in FIG. 5A are cut off every other portion to obtain the first flow path plate 10 shown in FIG. 5C. The first flow path forming plate 12 of the first flow path plate 10 is formed by alternately arranging mountain portions 13a and cutting portions 13c. The cut portion 13c is formed from one end to the other end of the mountain portion 13a along the extending direction of the mountain portion 13a.

第1の流路14aは、切除部13cが形成されていない山部13aと第1の基板11の間の空間に形成され、第1の流路14bは、切除部13cが形成された山部13aを含む、一対の切除部13cが形成されていない山部13aの間の空間に形成される。図5Cに示すように、全ての山部を切除した切除部13cを備えることにより、第1の流路14bは、切除部13cを備えない山部13aにより形成される第1の流路14a、又は残部13aaを有する山部13aより形成される第1の流路14bより、流路の断面積が大きくなり、圧力損失を低減できる。 The first flow path 14a is formed in the space between the mountain portion 13a in which the cut portion 13c is not formed and the first substrate 11, and the first flow path 14b is the mountain portion in which the cut portion 13c is formed. It is formed in the space between the mountain portions 13a in which the pair of cut portions 13c including the 13a are not formed. As shown in FIG. 5C, the first flow path 14b is formed by the mountain portion 13a without the cut portion 13c by providing the cut portion 13c in which all the mountain portions are cut. Alternatively, the cross-sectional area of the flow path is larger than that of the first flow path 14b formed from the mountain portion 13a having the remaining portion 13aa, and the pressure loss can be reduced.

(変形例2)
図5Aでは、頂部を切除した後に残った残部13aaを、第1の基板11から起立した形状で残す例を示したが、残部13aaを切除した状態のまま残すのではなく、残部13aaに第1の基板11の方向に押しつける力を加えて、残部13aaを第1の基板11に向けて湾曲させ、第1の基板11の基板面に近接させることもできる。
(Modification 2)
FIG. 5A shows an example in which the remaining portion 13aa remaining after cutting the top portion is left in a shape standing upright from the first substrate 11, but the remaining portion 13aa is not left in the cut state, but the first remaining portion 13aa is left in the remaining portion 13aa. It is also possible to apply a pressing force in the direction of the substrate 11 to bend the remaining portion 13aa toward the first substrate 11 and bring it closer to the substrate surface of the first substrate 11.

図7A、7Bは、残部13aaを第1の基板11の基板面に近接させた変形例を示す。図7Aは、第1の流路形成板12の谷部13bを第1の基板11上に接着剤13abで取付け、山部13aの頂部が切除された状態を示す拡大図である。図示するように、第1の流路形成板12の山部13aの頂部が切除されることで、残部13aaが残る。残部13aaは、山部13aを形成する一部であり、上方に向けて湾曲している。残部13aaに上方から押圧治具等で力(F)を加えることにより、残部13aaを下方に曲げ、第1の基板11の基板面に近接させて配置する。第1の基板11の基板面に近接させた残部13aaは、第1の基板11と残部13aaとの間に接着剤13abを介在させ、第1の基板11に接着させてもよいし、接着剤13abを用いなくてもよい。 7A and 7B show a modified example in which the remaining portion 13aa is brought close to the substrate surface of the first substrate 11. FIG. 7A is an enlarged view showing a state in which the valley portion 13b of the first flow path forming plate 12 is attached to the first substrate 11 with an adhesive 13ab and the top portion of the mountain portion 13a is cut off. As shown in the figure, the top of the mountain portion 13a of the first flow path forming plate 12 is cut off, so that the remaining portion 13aa remains. The remaining portion 13aa is a part forming the mountain portion 13a and is curved upward. By applying a force (F) to the remaining portion 13aa from above with a pressing jig or the like, the remaining portion 13aa is bent downward and arranged close to the substrate surface of the first substrate 11. The remaining portion 13aa close to the substrate surface of the first substrate 11 may be adhered to the first substrate 11 by interposing an adhesive 13ab between the first substrate 11 and the remaining portion 13aa, or the adhesive. It is not necessary to use 13ab.

第1の流路14aは、切除部13cが形成されない山部13aと第1の基板11の間の空間に形成される。第1の流路14bは、切除部13cを含む一対の切除部13cが形成されない山部13aの間の空間に形成される。残部13aaを第1の基板11の基板面に押付け、第1の基板11に近接させたので、残部13aaが上方に向けて湾曲した形状で残った状態で形成される流路と相違して、第1の流路14bには障害物がなくなり、圧力損失を軽減できる。 The first flow path 14a is formed in the space between the mountain portion 13a on which the cut portion 13c is not formed and the first substrate 11. The first flow path 14b is formed in the space between the mountain portions 13a where the pair of cutting portions 13c including the cutting portion 13c is not formed. Since the remaining portion 13aa was pressed against the substrate surface of the first substrate 11 and brought close to the first substrate 11, the remaining portion 13aa was formed in a state of being curved upward, unlike the flow path formed. There are no obstacles in the first flow path 14b, and the pressure loss can be reduced.

第1の流路板10は、第1の交差流路部300を構成する第4の流路板310と第5の流路板320、及び第2の交差流路部400を構成する第6の流路板410と第7の流路板420のうち、何れか一つの流路板と置き換えられて使用される。 The first flow path plate 10 comprises a fourth flow path plate 310 forming the first cross flow path portion 300, a fifth flow path plate 320, and a second cross flow path portion 400. It is used in place of any one of the flow path plate 410 and the seventh flow path plate 420.

次に、第1の流路板10に、切除部13cを形成する方法について説明する。 Next, a method of forming the cut portion 13c on the first flow path plate 10 will be described.

山部13aの頂部を切除して切除部13cを形成するために、本実施の形態では、カッター装置を用いる。カッター装置に使用されるカッター刃として、山部の頂部の伸びる方向に沿って山部に切り込みを入れる円盤状のカッター刃を使用する。カッター刃80は、例えば、図8A、Bに示すように円盤状に形成され、その中央部には、厚み方向に貫通する軸孔80aが形成される。軸孔80aには、後述する回転軸が挿入され、回転軸が回転することで、カッター刃80も回転する。カッター刃80の外周部には刃部80bが形成され、カッター刃80を回転させて山部13aの頂部に刃部80bを当接させることにより、山部13aの頂部が切断される。カッター刃80は、例えば、複数の金属を貼り合わせて構成されたクラッド鋼から形成される。 In this embodiment, a cutter device is used to excise the top of the mountain portion 13a to form the excised portion 13c. As the cutter blade used in the cutter device, a disk-shaped cutter blade that makes a cut in the mountain portion along the extending direction of the top of the mountain portion is used. For example, the cutter blade 80 is formed in a disk shape as shown in FIGS. 8A and 8B, and a shaft hole 80a penetrating in the thickness direction is formed in the central portion thereof. A rotation shaft, which will be described later, is inserted into the shaft hole 80a, and the rotation of the rotation shaft causes the cutter blade 80 to rotate. A blade portion 80b is formed on the outer peripheral portion of the cutter blade 80, and the top portion of the mountain portion 13a is cut by rotating the cutter blade 80 to bring the blade portion 80b into contact with the top portion of the mountain portion 13a. The cutter blade 80 is formed of, for example, clad steel formed by laminating a plurality of metals.

カッター刃80を使用した山部の頂部の切断方法を、具体的に説明する。図8Bに示すように、一対のカッター刃80の各々の軸孔80aに、回転軸80cが挿入され、回転軸80cは図示しない支持部材により、支持される。一対のカッター刃80は、所定の間隔m1に配置される。所定の間隔m1は、山部13aに隣り合う、一対の谷部13bの頂点の間の距離m2より小さく設定する。カッター刃80は、山部13aの頂部が伸びる方向と円盤の盤面が平行となるように、配置される。この状態で、回転軸80cを中心にカッター刃80を回転させ、刃部80bを山部13aに当接させながら、第1の流路板10を、山部13aの頂部の伸びる方向と同一方向に相対移動させることにより、山部13aを切断する。山部13aは、山部13aの頂部の伸びる方向に沿って、山部13aの一端部から他端部まで連続して切断される。山部13aを切断することにより、切除部13c及び残部13aaが形成される。 A method of cutting the top of the mountain portion using the cutter blade 80 will be specifically described. As shown in FIG. 8B, the rotary shaft 80c is inserted into each shaft hole 80a of the pair of cutter blades 80, and the rotary shaft 80c is supported by a support member (not shown). The pair of cutter blades 80 are arranged at a predetermined interval m1. The predetermined distance m1 is set to be smaller than the distance m2 between the vertices of the pair of valleys 13b adjacent to the peak 13a. The cutter blade 80 is arranged so that the direction in which the top of the mountain portion 13a extends is parallel to the disc surface of the disk. In this state, the cutter blade 80 is rotated around the rotation shaft 80c, and while the blade portion 80b is brought into contact with the mountain portion 13a, the first flow path plate 10 is placed in the same direction as the extending direction of the top of the mountain portion 13a. By moving relative to, the mountain portion 13a is cut. The mountain portion 13a is continuously cut from one end to the other end of the mountain portion 13a along the extending direction of the top portion of the mountain portion 13a. By cutting the mountain portion 13a, the excised portion 13c and the remaining portion 13aa are formed.

山部13aの切断は、山部13aのみを切断し、第1の基板11は切断しない、いわゆるハーフカット加工の手法を用いる。 For cutting the mountain portion 13a, a so-called half-cut processing method is used in which only the mountain portion 13a is cut and the first substrate 11 is not cut.

ハーフカット加工は、回転軸80cと第1の基板11との距離H1を調整することにより実現される。例えば、図8Bに示すように、回転軸80cと第1の基板11の基板面との距離H1を、刃部80bの刃先が、山部13aには接触するが第1の基板11には接触しない範囲に設定する。使用者は、設定する範囲に応じて回転軸80cの位置を変更する。刃部80bの刃先が第1の基板11に接触しないために、例えば、カッター刃80の半径H2より大きくしないように設定してもよい。このような位置にカッター刃80を配置することにより、カッター刃80は、第1の基板11を切断せずに、山部13aのみを切断できる。山部13aに残部13aaを多く残したい場合には、回転軸80cと第1の基板11との距離H1を大きくし、山部13aに残部13aaを少なく残したい場合には、回転軸80bとの距離H1を小さくする。また、距離H1を変更する場合には、一対のカッター刃80間の距離m1も変更して、カッター刃80の刃部80bが山部13aに当接するように調整する。 The half-cut processing is realized by adjusting the distance H1 between the rotating shaft 80c and the first substrate 11. For example, as shown in FIG. 8B, the distance H1 between the rotating shaft 80c and the substrate surface of the first substrate 11 is such that the cutting edge of the blade portion 80b contacts the mountain portion 13a but contacts the first substrate 11. Set to a range that does not. The user changes the position of the rotation shaft 80c according to the set range. Since the cutting edge of the blade portion 80b does not come into contact with the first substrate 11, for example, it may be set so as not to be larger than the radius H2 of the cutter blade 80. By arranging the cutter blade 80 at such a position, the cutter blade 80 can cut only the mountain portion 13a without cutting the first substrate 11. When it is desired to leave a large amount of the remaining portion 13aa on the mountain portion 13a, the distance H1 between the rotating shaft 80c and the first substrate 11 is increased, and when it is desired to leave a small amount of the remaining portion 13aa on the mountain portion 13a, the rotating shaft 80b is used. Decrease the distance H1. When the distance H1 is changed, the distance m1 between the pair of cutter blades 80 is also changed so that the blade portion 80b of the cutter blade 80 abuts on the mountain portion 13a.

このように、カッター刃80を、第1の基板11の山部13aの頂部が伸びる方向と同一方向に相対的に移動させることにより、容易に切除部13cを形成することができる。また、ハーフカット加工による切断方法を適合することにより、第1の基板11は切断せずに山部13aのみを切断することができる。 In this way, the cutting portion 13c can be easily formed by moving the cutter blade 80 relatively in the same direction as the direction in which the top of the mountain portion 13a of the first substrate 11 extends. Further, by adapting the cutting method by half-cut processing, only the mountain portion 13a can be cut without cutting the first substrate 11.

(変形例3)
カッター刃として、円盤状の回転するカッター刃ではなく、ナイフ形状の固定されたカッター刃を用いてもよい。図9Aにナイフ形状のカッター刃90の外観を示す。図示するように、カッター刃90は、ホルダ90aと刃部90bとから構成される。カッター刃90は、図示しない支持部材により、山部13aの上方に配置される。
(Modification 3)
As the cutter blade, a knife-shaped fixed cutter blade may be used instead of the disk-shaped rotating cutter blade. FIG. 9A shows the appearance of the knife-shaped cutter blade 90. As shown in the figure, the cutter blade 90 is composed of a holder 90a and a blade portion 90b. The cutter blade 90 is arranged above the mountain portion 13a by a support member (not shown).

ホルダ90aは、図9Bの分解図に示すように、一対の本体部90aaから構成され、各本体部90aaは、刃部90bを収納する凹部90abを備える。また刃部90bの刃の形状として、片刃を用いてもよいし、両刃を用いてもよい。 As shown in the exploded view of FIG. 9B, the holder 90a is composed of a pair of main body portions 90aa, and each main body portion 90aa includes a recess 90ab for accommodating the blade portion 90b. Further, as the shape of the blade of the blade portion 90b, a single blade may be used, or a double blade may be used.

図9Dに示すように、刃部90bの刃先が、第1の流路形成板12の山部13aに当接して、山部13aの伸びる方向に相対移動することにより、山部13aの頂部が切断され、切除部13c及び残部13aaが形成される。 As shown in FIG. 9D, the cutting edge of the blade portion 90b abuts on the mountain portion 13a of the first flow path forming plate 12 and moves relative to the mountain portion 13a in the extending direction, whereby the top of the mountain portion 13a is moved. It is cut to form the excised portion 13c and the remaining portion 13aa.

ハーフカット加工は、図9Dに示すように、ホルダ90a内に収納される刃部90bのホルダ90aの端部から突出する距離D1を調整することで実現される。例えば、刃部90bの刃先が山部13aには当接するが、第1の基板11には接触しない範囲に、距離D1を調整する。また、刃部90bの刃先が第1の基板11に接触しないように、ホルダ90aの端部から第1の基板11との距離D2が、距離D1より大きくないように設定する。具体的には、図9Cに示すように、ホルダ90aの凹部90abに収容されている刃部90bの収容位置を変更し、ホルダ90aの端部から突出する量を変更する。このような位置に刃部90bを配置することにより、カッター刃90の刃部90bの先端が、第1の基板11は切断せずに、山部13aのみを切断できる。山部13aの残部13aaを多く残したい場合には、距離D1を小さくし、山部13aに残部13aaを少なく残したい場合には、距離D1を大きくする。また、距離D1を変更することにともない、一対のカッター刃90間の距離nも変更する。 As shown in FIG. 9D, the half-cut processing is realized by adjusting the distance D1 of the blade portion 90b housed in the holder 90a so as to protrude from the end of the holder 90a. For example, the distance D1 is adjusted so that the cutting edge of the blade portion 90b comes into contact with the mountain portion 13a but does not come into contact with the first substrate 11. Further, the distance D2 from the end of the holder 90a to the first substrate 11 is set not to be larger than the distance D1 so that the cutting edge of the blade portion 90b does not come into contact with the first substrate 11. Specifically, as shown in FIG. 9C, the accommodation position of the blade portion 90b accommodated in the recess 90ab of the holder 90a is changed, and the amount of protrusion from the end portion of the holder 90a is changed. By arranging the blade portion 90b at such a position, the tip of the blade portion 90b of the cutter blade 90 can cut only the mountain portion 13a without cutting the first substrate 11. If it is desired to leave a large amount of the remaining portion 13aa of the mountain portion 13a, the distance D1 is reduced, and if it is desired to leave a small amount of the remaining portion 13aa in the mountain portion 13a, the distance D1 is increased. Further, as the distance D1 is changed, the distance n between the pair of cutter blades 90 is also changed.

(従来の熱交換素子の全体構成)
図2は、従来の熱交換素子110を、対向流路部200と、第1の交差流路部300と、第2の交差流路部400に分解した斜視図である。熱交換素子110は、熱交換素子100と同様に、対向流路部200と、第1の交差流路部300と、第2の交差流路部400と、を備える。
(Overall configuration of conventional heat exchange element)
FIG. 2 is a perspective view of the conventional heat exchange element 110 disassembled into a countercurrent flow path portion 200, a first cross flow path portion 300, and a second cross flow path portion 400. Similar to the heat exchange element 100, the heat exchange element 110 includes a countercurrent flow path portion 200, a first cross flow path portion 300, and a second cross flow path portion 400.

対向流路部200、第1の交差流路部300、及び第2の交差流路部400に使用される流路板は、コルゲートロールから引き出されたコルゲートシートを、切断して形成された流路板である。ここで、コルゲートシートとは、平坦なシート部材に、断面が山部と谷部で形成された波型の流路形成部材の、谷部又は山部の頂部が接着された部材をいい、コルゲートシートを巻回した部材をコルゲートロールと称する。 The flow path plate used for the counter flow path portion 200, the first cross flow path portion 300, and the second cross flow path portion 400 is a flow formed by cutting a corrugated sheet drawn from a corrugated roll. It is a road board. Here, the corrugated sheet refers to a member in which a corrugated flow path forming member having a cross section formed by a mountain portion and a valley portion and the valley portion or the top of the mountain portion is adhered to a flat sheet member. The member around which the sheet is wound is called a corrugated roll.

シート部材は、伝熱性と透湿性を有する素材、又は伝熱性のみを有する素材で形成される。流路形成部材は、少なくとも通気性のない素材で形成される。シート部材の素材として、例えば、パルプ素材が使用される。流路形成板の素材としては、例えば、金属素材、樹脂素材、カーボン素材が使用される。 The sheet member is formed of a material having heat transfer property and moisture permeability, or a material having only heat transfer property. The flow path forming member is formed of at least a non-breathable material. As the material of the sheet member, for example, a pulp material is used. As the material of the flow path forming plate, for example, a metal material, a resin material, and a carbon material are used.

対向流路部200は、図2に示すように、長方形形状の第2の流路板210と、長方形形状の第3の流路板220を交互に積層して形成される。 As shown in FIG. 2, the countercurrent flow path portion 200 is formed by alternately stacking a second rectangular flow path plate 210 and a rectangular third flow path plate 220.

第2の流路板210と第3の流路板220は、図4に示すコルゲートロール1100から、コルゲートシート1101を引出し、コルゲートシート1101の幅方向に平行なB−B’線と、幅方向に垂直なC−C’線とで切断して、取得される。コルゲートシート1101は、板状のシート部材1120と、シート部材1120の一方の面に接着された流路形成部材1130と、を備える。流路形成部材1130には、コルゲートシート1101の幅方向に平行に頂部が伸びる山部1130aと谷部1130bとが交互に形成されている。なお、コルゲートシート1101は、第1の流路板10を製造するコルゲートシート1101とは流路の直径が異なる。 The second flow path plate 210 and the third flow path plate 220 draw out the corrugated sheet 1101 from the corrugated roll 1100 shown in FIG. 4, and have a BB'line parallel to the width direction of the corrugated sheet 1101 and a width direction. It is obtained by cutting at the CC'line perpendicular to. The corrugated sheet 1101 includes a plate-shaped sheet member 1120 and a flow path forming member 1130 adhered to one surface of the sheet member 1120. In the flow path forming member 1130, peaks 1130a and valleys 1130b whose tops extend parallel to the width direction of the corrugated sheet 1101 are alternately formed. The corrugated sheet 1101 has a different flow path diameter from the corrugated sheet 1101 that manufactures the first flow path plate 10.

第2の流路板210は、図3Aに示すように、第2の基板211と、第2の基板211の一方の面に接着された第2の流路形成板212と、を備える。第2の流路形成板212は、第2の基板211の一辺に平行に交互に配置された山部213aと谷部213bを備える。山部213aと谷部213bは、互いの頂部が平行に伸びて配置される。谷部213bの頂部が、第2の基板211に接着剤により接着され、第2の基板211との間に第2の流路214が形成される。本実施の形態では、第2の流路板210は、8個の山部213aを備える。 As shown in FIG. 3A, the second flow path plate 210 includes a second substrate 211 and a second flow path forming plate 212 adhered to one surface of the second substrate 211. The second flow path forming plate 212 includes mountain portions 213a and valley portions 213b arranged alternately in parallel with one side of the second substrate 211. The peaks 213a and valleys 213b are arranged so that their tops extend in parallel. The top of the valley portion 213b is adhered to the second substrate 211 with an adhesive, and a second flow path 214 is formed between the valley portion 213b and the second substrate 211. In the present embodiment, the second flow path plate 210 includes eight mountain portions 213a.

第3の流路板220は、第2の流路板210と同一の構造を備え、図3Aに示すように、第3の基板221と、第3の基板221の一方の面に接着された第3の流路形成板222と、を備える。第3の流路形成板222は、第3の基板221の一辺に平行に交互に配置された山部223aと谷部223bを備える。山部223aと谷部223bは、互いの頂部が平行に伸びて配置される。谷部223bの頂部が、第3の基板221に接着剤により接着され、第3の基板221との間に第3の流路224が形成される。本実施の形態では、第3の流路板220は、第2の流路板210の山部213aと同数の8個の山部223aを備える。 The third flow path plate 220 has the same structure as the second flow path plate 210, and is adhered to one surface of the third substrate 221 and the third substrate 221 as shown in FIG. 3A. A third flow path forming plate 222 is provided. The third flow path forming plate 222 includes mountain portions 223a and valley portions 223b arranged alternately in parallel with one side of the third substrate 221. The peaks 223a and valleys 223b are arranged so that their tops extend in parallel. The top of the valley portion 223b is adhered to the third substrate 221 with an adhesive, and a third flow path 224 is formed between the valley portion 223b and the third substrate 221. In the present embodiment, the third flow path plate 220 includes eight mountain portions 223a, which is the same number as the mountain portions 213a of the second flow path plate 210.

第2の流路板210と第3の流路板220は、第2の流路214と第3の流路224とが平行に配置されて交互に積層され、図2に示すように、直方体形状の対向流路部200が形成される。対向流路部200は、第2の流路形成板212の山部213a及び第3の流路形成板222の山部223aの伸びる方向と垂直な面で互いに対向する、第1の面230と第2の面240を備える。第1の面230には、第2の流路214と第3の流路224の一方の開口が開口し、第2の面240には、第2の流路214と第3の流路224の他方の開口が開口する。 The second flow path plate 210 and the third flow path plate 220 are a rectangular parallelepiped as shown in FIG. 2, in which the second flow path 214 and the third flow path 224 are arranged in parallel and laminated alternately. A countercurrent channel portion 200 having a shape is formed. The countercurrent flow path portion 200 has a surface perpendicular to the extending direction of the mountain portion 213a of the second flow path forming plate 212 and the mountain portion 223a of the third flow path forming plate 222, and the first surface 230. A second surface 240 is provided. One opening of the second flow path 214 and the third flow path 224 is opened in the first surface 230, and the second flow path 214 and the third flow path 224 are opened in the second surface 240. The other opening of is opened.

第1の交差流路部300は、図2に示すように、三角形形状の第4の流路板310と、三角形形状の第5の流路板320を交互に積層して形成される。第4の流路板310は、図3Bに示すように、図4に示すコルゲートロール1100とは相違するコルゲートシートから、流路に対して角度αをもって切り出され、第5の流路板320は、図3Cに示すように、流路に対して角度βをもって切り出された流路板である。本実施の形態では、角度αは鈍角であり、角度βは鋭角である。第4の流路板310と第5の流路板320の切断面に開口する孔の直径は、第2の流路板210及び第3の流路板220の直径と同じである。 As shown in FIG. 2, the first crossing flow path portion 300 is formed by alternately stacking a triangular-shaped fourth flow path plate 310 and a triangular-shaped fifth flow path plate 320. As shown in FIG. 3B, the fourth flow path plate 310 is cut out from a corrugated sheet different from the corrugated roll 1100 shown in FIG. 4 at an angle α with respect to the flow path, and the fifth flow path plate 320 is , As shown in FIG. 3C, is a flow path plate cut out at an angle β with respect to the flow path. In the present embodiment, the angle α is an obtuse angle and the angle β is an acute angle. The diameters of the holes opened in the cut surfaces of the fourth flow path plate 310 and the fifth flow path plate 320 are the same as the diameters of the second flow path plate 210 and the third flow path plate 220.

第4の流路板310は、図3Bに示すように、三角形形状の第4の基板311と、第4の基板311の一方の面に接着された第4の流路形成板312と、を備える。第4の流路形成板312は、第4の基板311の三角形の流路に直交する辺から角度αをもって切断された辺に向けて、平行に伸びる山部313aと谷部313bを備える。谷部313bの頂部が、第4の基板311に接着剤により接着され、第4の基板311との間に第4の流路314が形成される。本実施の形態では、第4の流路板310は、第2の流路板210の山部213aと同数の8個の山部313aを備える。 As shown in FIG. 3B, the fourth flow path plate 310 comprises a triangular-shaped fourth substrate 311 and a fourth flow path forming plate 312 bonded to one surface of the fourth substrate 311. Be prepared. The fourth flow path forming plate 312 includes a mountain portion 313a and a valley portion 313b extending in parallel from the side orthogonal to the triangular flow path of the fourth substrate 311 toward the side cut at an angle α. The top of the valley portion 313b is adhered to the fourth substrate 311 with an adhesive, and a fourth flow path 314 is formed between the valley portion 313b and the fourth substrate 311. In the present embodiment, the fourth flow path plate 310 includes eight mountain portions 313a, which is the same number as the mountain portions 213a of the second flow path plate 210.

第5の流路板320は、図3Cに示すように、三角形形状の第5の基板321と、第5の基板321の一方の面に接着された第5の流路形成板322と、を備える。第5の流路形成板322は、第5の基板321の三角形の流路に直交する辺から角度βをもって切断された辺に向けて、平行に伸びる山部323aと谷部323bを備える。谷部323bの頂部が、第5の基板321に、接着剤により接着され、第5の基板321との間に第5の流路324が形成される。本実施の形態では、第5の流路板320は、第2の流路板210の山部213aと同数の8個の山部323aを備える。 As shown in FIG. 3C, the fifth flow path plate 320 comprises a triangular-shaped fifth substrate 321 and a fifth flow path forming plate 322 adhered to one surface of the fifth substrate 321. Be prepared. The fifth flow path forming plate 322 includes a mountain portion 323a and a valley portion 323b extending in parallel from the side orthogonal to the triangular flow path of the fifth substrate 321 toward the side cut at an angle β. The top of the valley portion 323b is adhered to the fifth substrate 321 with an adhesive, and a fifth flow path 324 is formed between the valley portion 323b and the fifth substrate 321. In the present embodiment, the fifth flow path plate 320 includes eight mountain portions 323a, which is the same number as the mountain portions 213a of the second flow path plate 210.

第4の流路板310と第5の流路板320は、第4の流路314と第5の流路324とが交差して配置されて交互に積層され、図2に示す三角柱状の第1の交差流路部300が形成される。 The fourth flow path plate 310 and the fifth flow path plate 320 are arranged alternately with the fourth flow path 314 and the fifth flow path 324 intersecting with each other, and have a triangular columnar shape shown in FIG. The first crossing flow path portion 300 is formed.

第1の交差流路部300は、第1の面230と対向する第3の面330と、第3の面330と異なる方向を向く第4の面340と、第3の面330と第4の面340と異なる方向を向く第5の面350を備える。第3の面330と、第4の面340と、第5の面350とで、第1の交差流路部300の三角柱の側面を形成する。そして、第3の面330から第4の面340に向けて、第4の流路314が貫通し、第3の面330から第5の面350に向けて、第5の流路324が貫通する。第3の面330には、第4の流路314と第5の流路324の開口の一方が開口する。 The first intersecting flow path portion 300 includes a third surface 330 facing the first surface 230, a fourth surface 340 facing a direction different from the third surface 330, and a third surface 330 and a fourth surface. A fifth surface 350 facing a direction different from that of the surface 340 is provided. The third surface 330, the fourth surface 340, and the fifth surface 350 form the side surface of the triangular prism of the first crossing flow path portion 300. Then, the fourth flow path 314 penetrates from the third surface 330 to the fourth surface 340, and the fifth flow path 324 penetrates from the third surface 330 to the fifth surface 350. To do. One of the openings of the fourth flow path 314 and the fifth flow path 324 opens on the third surface 330.

第1の面230と第3の面330は対向して互いに当接され、それにより第2の流路板210と第4の流路板310、及び第3の流路板220と第5の流路板320が対向して当接される。また、第2の流路214と第4の流路314が連通され、第3の流路224と第5の流路324が連通される。 The first surface 230 and the third surface 330 face each other and are brought into contact with each other, whereby the second flow plate 210 and the fourth flow plate 310, and the third flow plate 220 and the fifth flow plate 220 and the fifth. The flow path plates 320 face each other and come into contact with each other. Further, the second flow path 214 and the fourth flow path 314 are communicated with each other, and the third flow path 224 and the fifth flow path 324 are communicated with each other.

第4の流路板310は、コルゲートシートからαの角度をもって切り出された部材であり、第5の流路板320は、βの角度をもって切り出された部材であるので、対向流路部200の流路と、第1の交差流路部300の流路とは、図2に示すように接合部分で折曲して配置される。したがって、接合部分では、大きい圧力損失が生じる。 Since the fourth flow path plate 310 is a member cut out from the corrugated sheet at an angle of α and the fifth flow path plate 320 is a member cut out at an angle of β, the countercurrent flow path portion 200 As shown in FIG. 2, the flow path and the flow path of the first crossed flow path portion 300 are arranged so as to be bent at the joint portion. Therefore, a large pressure loss occurs at the joint portion.

第4の流路314の他方の開口は、第4の面340に開口し、第5の流路324の他方の開口は、第5の面350に開口する。第4の面340及び第5の面350に形成された開口を介して第4の流路314と第5の流路324は室内または室外に続く流路に連通される。 The other opening of the fourth flow path 314 opens to the fourth surface 340, and the other opening of the fifth flow path 324 opens to the fifth surface 350. The fourth flow path 314 and the fifth flow path 324 are communicated with the flow path leading to the indoor or outdoor through the openings formed in the fourth surface 340 and the fifth surface 350.

第2の交差流路部400は、図2に示すように、三角形形状の第6の流路板410と、三角形形状の第7の流路板420を交互に積層して形成される。第6の流路板410は、図3Dに示すように、図4に示すコルゲートロール1100とは相違するコルゲートシートから流路に対して角度γをもって切り出され、第7の流路板420は、図3Eに示すように、流路に対して角度ωをもって切り出された流路板である。本実施の形態では、角度γは鋭角であり、角度ωは鈍角である。第6の流路板410と第7の流路板420の切断面に開口する孔の直径は、第2の流路板210、第3の流路板220の直径と同じである。 As shown in FIG. 2, the second crossed flow path portion 400 is formed by alternately stacking a triangular-shaped sixth flow path plate 410 and a triangular-shaped seventh flow path plate 420. As shown in FIG. 3D, the sixth flow path plate 410 is cut out from a corrugated sheet different from the corrugated roll 1100 shown in FIG. 4 at an angle γ with respect to the flow path, and the seventh flow path plate 420 is As shown in FIG. 3E, it is a flow path plate cut out at an angle ω with respect to the flow path. In the present embodiment, the angle γ is an acute angle and the angle ω is an obtuse angle. The diameters of the holes opened in the cut surfaces of the sixth flow path plate 410 and the seventh flow path plate 420 are the same as the diameters of the second flow path plate 210 and the third flow path plate 220.

第6の流路板410は、図3Dに示すように、三角形形状の第6の基板411と、第6の基板411の一方の面に接着された第6の流路形成板412と、を備える。第6の流路形成板412は、第6の基板411の三角形の流路と直交する辺から角度γをもって切り出された辺に向けて、平行に伸びる山部413aと谷部413bを備え、谷部413bの頂部が、第6の基板411に、接着剤により接着され、第6の基板411との間に第6の流路414が形成される。本実施の形態では、第6の流路板410は、第2の流路板210の山部213aと同数の8個の山部413aを備える。 As shown in FIG. 3D, the sixth flow path plate 410 comprises a triangular-shaped sixth substrate 411 and a sixth flow path forming plate 412 bonded to one surface of the sixth substrate 411. Be prepared. The sixth flow path forming plate 412 includes a peak portion 413a and a valley portion 413b extending in parallel from the side orthogonal to the triangular flow path of the sixth substrate 411 toward the side cut out at an angle γ, and has a valley. The top of the portion 413b is adhered to the sixth substrate 411 with an adhesive to form a sixth flow path 414 with the sixth substrate 411. In the present embodiment, the sixth flow path plate 410 includes eight mountain portions 413a in the same number as the mountain portions 213a of the second flow path plate 210.

第7の流路板420は、図3Eに示すように、三角形形状の第7の基板421と、第7の基板421の一方の面に接着された第7の流路形成板422と、を備える。第7の流路形成板422は、第7の基板421の三角形の流路と直交する辺から角度ωをもって切り出された辺に向けて、平行に伸びる山部423aと谷部423bを備える。谷部423bの頂部が、第7の基板421に、接着剤により接着され、第7の基板421との間に第7の流路424が形成される。本実施の形態では、第7の流路板420は、第2の流路板210の山部213aと同数の8個の山部423aを備える。 As shown in FIG. 3E, the seventh flow path plate 420 comprises a triangular-shaped seventh substrate 421 and a seventh flow path forming plate 422 adhered to one surface of the seventh substrate 421. Be prepared. The seventh flow path forming plate 422 includes a mountain portion 423a and a valley portion 423b extending in parallel from the side orthogonal to the triangular flow path of the seventh substrate 421 toward the side cut out at an angle ω. The top of the valley portion 423b is adhered to the seventh substrate 421 with an adhesive, and a seventh flow path 424 is formed between the valley portion 423b and the seventh substrate 421. In the present embodiment, the seventh flow path plate 420 includes eight mountain portions 423a, which is the same number as the mountain portions 213a of the second flow path plate 210.

第6の流路板410と第7の流路板420とは、第6の流路414と第7の流路424とが交差して配置されて交互に積層され、図2に示す三角柱状の第2の交差流路部400が形成される。 The sixth flow path plate 410 and the seventh flow path plate 420 are arranged so that the sixth flow path 414 and the seventh flow path 424 intersect each other and are alternately laminated, and are triangular columns shown in FIG. The second crossing flow path portion 400 of the above is formed.

第2の交差流路部400は、第2の面240と対向する第6の面430と、第6の面430と異なる方向を向く第7の面440と、第6の面430と第7の面440と異なる方向を向く第8の面450を備える。第6の面430と、第7の面440と、第8の面450とで、第2の交差流路部400の三角柱の側面を形成する。 The second intersecting flow path portion 400 includes a sixth surface 430 facing the second surface 240, a seventh surface 440 facing a direction different from the sixth surface 430, and a sixth surface 430 and a seventh surface. It is provided with an eighth surface 450 that faces in a direction different from that of the surface 440. The sixth surface 430, the seventh surface 440, and the eighth surface 450 form the side surface of the triangular prism of the second crossing flow path portion 400.

第6の面430から第7の面440に向けて、第6の流路414が貫通し、第6の面430から第8の面450に向けて、第7の流路424が貫通する。第6の面430には、第6の流路414と第7の流路424の開口の一方が開口する。 The sixth flow path 414 penetrates from the sixth surface 430 to the seventh surface 440, and the seventh flow path 424 penetrates from the sixth surface 430 to the eighth surface 450. One of the openings of the sixth flow path 414 and the seventh flow path 424 opens on the sixth surface 430.

第2の面240と第6の面430は対向して当接される。それにより、第2の流路板210と第6の流路板410、及び第3の流路板220と第7の流路板420が対向して当接される。また、第2の流路214と第6の流路414が連通され、第3の流路224と第7の流路424が連通される。 The second surface 240 and the sixth surface 430 face each other and come into contact with each other. As a result, the second flow path plate 210 and the sixth flow path plate 410, and the third flow path plate 220 and the seventh flow path plate 420 face each other and come into contact with each other. Further, the second flow path 214 and the sixth flow path 414 are communicated with each other, and the third flow path 224 and the seventh flow path 424 are communicated with each other.

第6の流路板410は、コルゲートシートからγの角度をもって切り出された部材であり、第7の流路板420は、ωの角度をもって切り出された部材であるので、対向流路部200の流路と、第2の交差流路部400の流路とは、接合部分で折曲して配置される。したがって、接合部分で大きい圧力損失が生じる。 Since the sixth flow path plate 410 is a member cut out from the corrugated sheet at an angle of γ and the seventh flow path plate 420 is a member cut out at an angle of ω, the countercurrent flow path portion 200 The flow path and the flow path of the second crossed flow path portion 400 are arranged so as to be bent at the joint portion. Therefore, a large pressure loss occurs at the joint portion.

第7の面440には、第6の流路414の他方が開口し、第8の面450には、第7の流路424の他方が開口する。第7の面440及び第8の面450に形成された開口を介して第6の流路414と第7の流路424は室内または室外に続く流路に連通される。 The other side of the sixth flow path 414 opens to the seventh surface 440, and the other side of the seventh flow path 424 opens to the eighth surface 450. The sixth flow path 414 and the seventh flow path 424 are communicated with the flow path leading to the indoor or outdoor through the openings formed in the seventh surface 440 and the eighth surface 450.

(第1の流路板を含む熱交換素子の全体構成)
図1に示すように、第1の流路板を含む熱交換素子100は、熱交換素子110と同様に対向流路部200と、第1の交差流路部300と、第2の交差流路部400と、を備える。
(Overall configuration of heat exchange element including the first flow path plate)
As shown in FIG. 1, the heat exchange element 100 including the first flow path plate has a countercurrent flow path portion 200, a first cross flow path portion 300, and a second cross flow, similarly to the heat exchange element 110. It includes a road portion 400.

対向流路部200は、長方形形状の第2の流路板210と、長方形形状の第3の流路板220を交互に積層して形成される。対向流路部200は、熱交換素子110で説明した対向流路部200と同一構造を備える。 The countercurrent flow path portion 200 is formed by alternately stacking a second rectangular flow path plate 210 and a rectangular third flow path plate 220. The countercurrent flow path portion 200 has the same structure as the countercurrent flow path portion 200 described in the heat exchange element 110.

第1の交差流路部300は、三角形形状の第4の流路板310と、三角形形状の第5の流路板320を交互に積層して形成される。熱交換素子110と相違して、第4の流路板310と第5の流路板320は、第1の流路板10に置き替えた構造を備える。 The first crossing flow path portion 300 is formed by alternately stacking a triangular-shaped fourth flow path plate 310 and a triangular-shaped fifth flow path plate 320. Unlike the heat exchange element 110, the fourth flow path plate 310 and the fifth flow path plate 320 have a structure in which the first flow path plate 10 is replaced.

第2の交差流路部400は、三角形形状の第6の流路板410と、三角形形状の第7の流路板420を交互に積層して形成される。熱交換素子110と相違して、第6の流路板410と第7の流路板420は、第1の流路板10に置き替えた構造を備える。 The second crossing flow path portion 400 is formed by alternately stacking a triangular-shaped sixth flow path plate 410 and a triangular-shaped seventh flow path plate 420. Unlike the heat exchange element 110, the sixth flow path plate 410 and the seventh flow path plate 420 have a structure in which the first flow path plate 10 is replaced.

第4の流路板310、第5の流路板320、第6の流路板410、及び第7の流路板420のそれぞれを、第1の流路板10に置き換えた場合の斜視図を、図10A〜Dに示す。図10Aは第4の流路板310を、図10Bは第5の流路板320を、図10Cは第6の流路板410を、図10Dは第7の流路板420を、第1の流路板10で置き換えた場合の斜視図である。以下、第1の流路板10を使用した第4の流路板310は、第4の流路板310として表記し、第1の流路板10を使用した第5の流路板320は、第5の流路板320として表記し、第1の流路板10を使用した第6の流路板410は、第6の流路板410として表記し、第1の流路板10を使用した第7の流路板420は、第7の流路板420として表記して説明する。 Perspective view when each of the fourth flow path plate 310, the fifth flow path plate 320, the sixth flow path plate 410, and the seventh flow path plate 420 is replaced with the first flow path plate 10. Are shown in FIGS. 10A to 10D. 10A shows a fourth flow path plate 310, FIG. 10B shows a fifth flow path plate 320, FIG. 10C shows a sixth flow path plate 410, and FIG. 10D shows a seventh flow path plate 420. It is a perspective view when it is replaced with the flow path plate 10. Hereinafter, the fourth flow path plate 310 using the first flow path plate 10 is referred to as the fourth flow path plate 310, and the fifth flow path plate 320 using the first flow path plate 10 is referred to as a fourth flow path plate 310. , The sixth flow path plate 410, which is described as the fifth flow path plate 320 and uses the first flow path plate 10, is described as the sixth flow path plate 410, and the first flow path plate 10 is referred to as the sixth flow path plate 410. The 7th flow path plate 420 used will be described as the 7th flow path plate 420.

図10A〜10Dに示すように、第4の流路板310、第5の流路板320、第6の流路板410、第7の流路板420は、それぞれ第1の基板11と、第1の基板11の一方の面に接着された第1の流路形成板12と、を備える。第1の流路形成板12は、第1の基板11に、頂部が平行に伸びる山部13aを備える。山部13aは、一つ置きに、頂部が切除された切除部13cを備える。図10A〜10Dにおいては、山部13aは、頂部を含め山部13aのすべてが切除された切除部13cを備えたものとして表示し、図面上は、4つの山部13aが表示されている。 As shown in FIGS. 10A to 10D, the fourth flow path plate 310, the fifth flow path plate 320, the sixth flow path plate 410, and the seventh flow path plate 420 are the first substrate 11, respectively. A first flow path forming plate 12 bonded to one surface of the first substrate 11 is provided. The first flow path forming plate 12 includes a mountain portion 13a having a top extending in parallel with the first substrate 11. Every other mountain portion 13a includes an excision portion 13c whose top is excised. In FIGS. 10A to 10D, the mountain portion 13a is displayed as having the excised portion 13c in which all of the mountain portion 13a including the top is excised, and four mountain portions 13a are displayed on the drawing.

対向流路部200は、図1に示すように、熱交換素子110と同様に、第1の面230と第2の面240を備え、第1の交差流路部300は、熱交換素子110と同様に、第3の面330と、第4の面340と、第5の面350を備え、第2の交差流路部400は、熱交換素子110と同様に、第6の面430と、第7の面440と、第8の面450を備える。対向流路部200の第1の面230と、第3の面330と、が対向して当接され、対向流路部200の第2の面240と、第6の面430と、が対向して当接される。 As shown in FIG. 1, the countercurrent flow path portion 200 includes a first surface 230 and a second surface 240, similarly to the heat exchange element 110, and the first cross flow path portion 300 includes the heat exchange element 110. Similarly, the third surface 330, the fourth surface 340, and the fifth surface 350 are provided, and the second countercurrent exchange portion 400 has the sixth surface 430 and the same as the heat exchange element 110. , A seventh surface 440 and an eighth surface 450 are provided. The first surface 230 and the third surface 330 of the countercurrent flow path portion 200 face each other, and the second surface 240 and the sixth surface 430 of the countercurrent flow path portion 200 face each other. And are contacted.

第2の流路板210と第4の流路板310、及び第2の流路板210と第6の流路板410は、対向面に接着剤が塗布され、X軸方向の当接部に接合テープ500が貼付されることで接合される。第3の流路板220と第5の流路板320、及び第3の流路板220と第7の流路板420は、対向面に接着剤が塗布され、X軸方向の当接部に接合テープ600が貼付されることで接合される。 Adhesive is applied to the facing surfaces of the second flow path plate 210 and the fourth flow path plate 310, and the second flow path plate 210 and the sixth flow path plate 410, and the contact portion in the X-axis direction. The bonding tape 500 is attached to the surface to be bonded. Adhesive is applied to the facing surfaces of the third flow path plate 220 and the fifth flow path plate 320, and the third flow path plate 220 and the seventh flow path plate 420, and the contact portion in the X-axis direction. The bonding tape 600 is attached to the surface to be bonded.

第1の交差流路部300と対向流路部200のZ軸方向の接合部には、補強テープ700が貼付され、第2の交差流路部400と対向流路部200のZ軸方向の当接部にも、補強テープ700が貼付され、排気流及び給気流が熱交換素子100から外へ漏れることを防止する。 A reinforcing tape 700 is attached to the joint between the first crossing flow path portion 300 and the countercurrent flow path portion 200 in the Z-axis direction, and the second crossing flow path portion 400 and the countercurrent flow path portion 200 are in the Z-axis direction. A reinforcing tape 700 is also attached to the contact portion to prevent the exhaust flow and the supply air flow from leaking to the outside from the heat exchange element 100.

本実施の形態によれば、第1の交差流路部300と第2の交差流路部400の流路板として、第1の流路板10を適用した熱交換素子100を用いることで、切除部13cと隣接する山部13aとで拡大された流路が形成されるので、圧力損失が小さい熱交換素子100を提供することができる。 According to the present embodiment, the heat exchange element 100 to which the first flow path plate 10 is applied is used as the flow path plate of the first cross flow path portion 300 and the second cross flow path portion 400. Since an enlarged flow path is formed between the cut portion 13c and the adjacent mountain portion 13a, it is possible to provide the heat exchange element 100 having a small pressure loss.

切除部13cを備える第1の流路板10を用いることで圧力損失が低減されることが実現されることを、シュミレーションした結果を図12に示す。 FIG. 12 shows the result of simulating that the pressure loss can be reduced by using the first flow path plate 10 provided with the cut portion 13c.

図12は、切除部13cが一つ置きに形成された第1の流路板10と、切除部を備えない流路板の、圧力損失と風量の関係を示す。図12の縦軸は、圧力損失(Pa)を示し、横軸は、風量であるCMH(Cubic Meter per Hour)を示す。CMHは、1時間当たり何立方米(m)の空気を送ることができるかを示すものである。図中、●は、切除部を備えない流路板の値を示し、△は、切除部13cが一つ置きに形成された第1の流路板10の値を示す。FIG. 12 shows the relationship between the pressure loss and the air volume between the first flow path plate 10 in which every other cut portion 13c is formed and the flow path plate not provided with the cut portion. The vertical axis of FIG. 12 shows the pressure loss (Pa), and the horizontal axis shows the air volume CMH (Cubic Meter per Hour). CMH indicates how many cubic meters (m 3 ) of air can be sent per hour. In the figure, ● indicates the value of the flow path plate having no cut portion, and Δ indicates the value of the first flow path plate 10 in which every other cut portion 13c is formed.

図12に示すように、切除部を備えない流路板より、一つ置きに切除部13cを備える第1の流路板10のほうが、低い圧力損失を示す。 As shown in FIG. 12, the first flow path plate 10 having the cut portion 13c shows a lower pressure loss than the flow path plate having no cut portion.

(給気流及び排気流の流れ)
このような構成を備える熱交換素子100において、対向流路部200、第1の交差流路部300、第2の交差流路部400、における気流の流れについて説明する。
(Air supply and exhaust flow)
In the heat exchange element 100 having such a configuration, the flow of airflow in the countercurrent flow path portion 200, the first cross flow path portion 300, and the second cross flow path portion 400 will be described.

対向流路部200を、図1のA−A’線で切断した断面を図11に示す。図11に示す対向流路部200は、第1の交差流路部300と第2の交差流路部400が接続されていな場合の流体の流れを示す。対向流路部200は、第2の流路214を備える第2の流路板210と、第3の流路224を備える第3の流路板220とが交互に積層されて形成される。図示した二重丸の印は、紙面の裏側から表面を貫通する方向に気流が流れることを意味する。○の中に×印で示す印は、紙面の表側から裏側に貫通する方向に気流が流れることを意味する。一方の流路に給気流、他方の流路に排気流が流れ、第2の基板211及び第3の基板221を介して熱交換がされる。 FIG. 11 shows a cross section of the countercurrent flow path portion 200 cut along the AA'line of FIG. The countercurrent flow path portion 200 shown in FIG. 11 shows the flow of the fluid when the first cross flow path portion 300 and the second cross flow path portion 400 are not connected. The countercurrent flow path portion 200 is formed by alternately stacking a second flow path plate 210 having a second flow path 214 and a third flow path plate 220 including a third flow path 224. The double circle mark shown in the figure means that the air flow flows from the back side of the paper surface in the direction of penetrating the surface surface. The mark indicated by x in the circle means that the air flow flows in the direction of penetrating from the front side to the back side of the paper surface. A supply air flow flows through one flow path and an exhaust flow flows through the other flow path, and heat exchange is performed via the second substrate 211 and the third substrate 221.

第2の流路214に流れる空気流と、第3の流路224に流れる空気流は、いずれか一方が給気流であり他方が排気流となる。給気流と排気流は、図1に矢印で示すように、対向して流れ、第2の基板211及び第3の基板221を介して全熱交換される。 One of the air flow flowing through the second flow path 214 and the air flow flowing through the third flow path 224 is a supply air flow and the other is an exhaust flow. As shown by the arrows in FIG. 1, the air supply airflow and the exhaust airflow flow in opposition to each other, and total heat is exchanged via the second substrate 211 and the third substrate 221.

対向流路部200では、給気流と排気流とが互いに平行に流れるので、圧力損失も小さい。第1の交差流路部300と対向流路部200、及び第2の交差流路部400と対向流路部200は、流路が折曲して接続されているため、圧力損失が大きい。また、第1の交差流路部300と第2の交差流路部400の流路の長さを合計した長さ(L1)と、対向流路部200の流路長さ(L2)の比(L1/L2)が大きくなるほど、第1の交差流路部300と第2の交差流路部400の占める体積が大きくなる。互いに交差する流路での給気流と排気流の熱交換率は、互いに平行する流路での熱交換率より低い。したがって、第1の交差流路部300と第2の交差流路部400の占める体積を小さくし、対向流路部200の流路長さ(L2)をできるだけ長くする必要がある。しかし、対向流路部200を長くすると装置全体が大きくなるとともに、第1の交差流路部300と第2の交差流路部400に充分な交差流路を形成することが困難となる。 In the countercurrent flow path portion 200, the supply airflow and the exhaust flow flow in parallel with each other, so that the pressure loss is small. Since the first crossed flow path portion 300 and the countercurrent flow path portion 200, and the second cross flow path portion 400 and the countercurrent flow path portion 200 are connected by bending the flow path, the pressure loss is large. Further, the ratio of the total length (L1) of the flow paths of the first cross flow path portion 300 and the second cross flow path portion 400 to the flow path length (L2) of the countercurrent flow path portion 200. As (L1 / L2) becomes larger, the volume occupied by the first cross-flow channel portion 300 and the second cross-current flow path portion 400 becomes larger. The heat exchange rate of the supply air flow and the exhaust flow in the flow paths intersecting each other is lower than the heat exchange rate in the flow paths parallel to each other. Therefore, it is necessary to reduce the volume occupied by the first cross flow path portion 300 and the second cross flow path portion 400 and to make the flow path length (L2) of the countercurrent flow path portion 200 as long as possible. However, if the countercurrent flow path portion 200 is lengthened, the entire device becomes large, and it becomes difficult to form a sufficient cross flow path in the first cross flow path portion 300 and the second cross flow path portion 400.

図1に示すように、第4の流路板310から第2の流路板210を通り、第6の流路板410へ流体が流れる場合には、切除部13cが形成されていない山部13aと、切除部が形成されていない山部213aと、が接続される。また、切除部が形成された山部13aと、切除部が形成されていない山部213aとが接続される。切除部が形成されていない山部同士では、山部の内部を流体が通過する流路が形成される。切除部が形成された山部13aでは、図5Bに示すように、切除部13cと隣り合う山部13aとで、2つの流路が混合する流路が形成され、対向流路部200では、図11に示す流路の外側にも流体が流れることになる。第7の流路板420から第3の流路板220を通り、第5の流路板320へ流体が流れる場合は、切除部13cが形成されていない山部13aと、切除部が形成されていない山部223aと、が接続される。そして、第4の流路板310から第2の流路板210を通り、第6の流路板410へ流体が流れる場合と同様に、流路板間で流体が流れる。熱交換素子100は、第1の交差流路部300、対向流路部200、及び第2の交差流路部400の間で、全体として一方の方向から流れる給気流と、一方の方向と反対方向の排気流が流れる。 As shown in FIG. 1, when the fluid flows from the fourth flow path plate 310 through the second flow path plate 210 to the sixth flow path plate 410, the mountain portion in which the cut portion 13c is not formed is not formed. The 13a and the mountain portion 213a in which the excision portion is not formed are connected. Further, the mountain portion 13a in which the cut portion is formed and the mountain portion 213a in which the cut portion is not formed are connected. A flow path through which a fluid passes through the inside of the mountain portion is formed between the mountain portions where the cut portion is not formed. In the mountain portion 13a on which the cut portion is formed, as shown in FIG. 5B, a flow path in which the two flow paths are mixed is formed between the cut portion 13c and the adjacent mountain portion 13a, and in the countercurrent flow path portion 200, the cutout portion 200 The fluid will also flow outside the flow path shown in FIG. When the fluid flows from the 7th flow path plate 420 through the 3rd flow path plate 220 to the 5th flow path plate 320, the mountain portion 13a in which the cut portion 13c is not formed and the cut portion 13a are formed. The mountain part 223a that is not connected is connected. Then, the fluid flows between the flow path plates as in the case where the fluid flows from the fourth flow path plate 310 through the second flow path plate 210 to the sixth flow path plate 410. The heat exchange element 100 is opposed to the air supply flowing from one direction as a whole between the first cross flow path portion 300, the countercurrent flow path portion 200, and the second cross flow path portion 400. Exhaust flow in the direction flows.

本実施の形態では、対向流路部200の流路を長くし又は第1の交差流路部300と第2の交差流路部400の流路を短くして圧力損失を小さくするのではなく、第1の交差流路部300と第2の交差流路部400の流路板として、切除部13cを有する第1の流路板10を使用して、圧力損失を小さくする。 In the present embodiment, the pressure loss is not reduced by lengthening the flow path of the countercurrent flow path portion 200 or shortening the flow path of the first cross flow path portion 300 and the second cross flow path portion 400. , A first flow path plate 10 having a cut portion 13c is used as a flow path plate of the first cross flow path portion 300 and the second cross flow path portion 400 to reduce the pressure loss.

本実施の形態では、第1の交差流路部300と第2の交差流路部400の流路板として第1の流路板10を使用した。第1の流路板10は、山部13aの頂部を切除した切除部13cを備えるので、切除部13cを備えない流路より断面積の大きい流路が形成され、圧力損失を小さくできる。 In the present embodiment, the first flow path plate 10 is used as the flow path plate of the first cross flow path portion 300 and the second cross flow path portion 400. Since the first flow path plate 10 includes a cut-out portion 13c in which the top of the mountain portion 13a is cut off, a flow path having a larger cross-sectional area than a flow path without the cut-out portion 13c is formed, and the pressure loss can be reduced.

図1に示すように、第1の交差流路部300においては、第4の流路板310から第2の流路板210に向けて排気流又は給気流の一方が流れ、第3の流路板220から第5の流路板320に向けて排気流又は給気流のいずれか他方が流れ、第4の流路板310と第5の流路板320との間で、排気流と給気流は交差して流れる。第2の交差流路部400においても、第6の流路板410と第5の流路板320との間で、排気流と給気流は交差して流れる。給気流と排気流が交差して流れることにより、基板を介して熱交換がされる。交差する空気流同士の熱交換率は、対向する空気流同士の熱交換率より低いが、第1の交差流路部300及び第2の交差流路部400の流路板として第1の流路板10を使用することにより、基板と空気流との接触面積が増加し、熱交換率も向上する。 As shown in FIG. 1, in the first crossing flow path portion 300, one of the exhaust flow and the supply air flow flows from the fourth flow path plate 310 to the second flow path plate 210, and the third flow. Either the exhaust flow or the supply air flow flows from the road plate 220 to the fifth flow path plate 320, and the exhaust flow and the supply flow are provided between the fourth flow path plate 310 and the fifth flow path plate 320. The airflows intersect and flow. Also in the second intersecting flow path portion 400, the exhaust flow and the air supply flow intersect between the sixth flow path plate 410 and the fifth flow path plate 320. Heat is exchanged through the substrate by the crossing of the air supply and the exhaust flow. The heat exchange rate between the intersecting air flows is lower than the heat exchange rate between the opposing air flows, but the first flow as the flow board of the first cross flow path portion 300 and the second cross flow path portion 400. By using the road plate 10, the contact area between the substrate and the air flow is increased, and the heat exchange rate is also improved.

(実施の形態2)
実施の形態1においては、切除部13cを備える山部13aと、切除部13cを備えない山部13aが、交互に配置される場合を説明した。切除部13cを備える山部13aを配置する数、間隔は、様々なバリエーションがある。例えば、図13Bに示すように、切除部23cを備える2つの山部23aと、切除部23cを備えない山部23aが交互に配置された第1の流路板20を使用してもよい。
(Embodiment 2)
In the first embodiment, the case where the mountain portion 13a having the cut portion 13c and the mountain portion 13a not having the cut portion 13c are alternately arranged has been described. There are various variations in the number and intervals of arranging the mountain portions 13a including the excision portions 13c. For example, as shown in FIG. 13B, a first flow path plate 20 may be used in which two mountain portions 23a having the cut portion 23c and mountain portions 23a not having the cut portion 23c are alternately arranged.

第1の流路板20は、図13Aに示すように、図4に示すコルゲートシート1101から、山部1130aの頂部を、一点破線で示すように、2つ連続する山部1130aから切除したコルゲートシートから製造される。第1の流路板20は、2つ連続する山部1130aを切除したコルゲートシートから、所望の長さ及び幅を切り取って取得される。 As shown in FIG. 13A, the first flow path plate 20 is a corrugated sheet obtained by cutting the top of the mountain portion 1130a from the corrugated sheet 1101 shown in FIG. 4 from two consecutive mountain portions 1130a as shown by a dashed line. Manufactured from sheets. The first flow path plate 20 is obtained by cutting out a desired length and width from a corrugated sheet obtained by cutting off two consecutive peaks 1130a.

第1の流路板20は、図13Bに示すように、第1の基板21と、第1の基板21の一方の面に接着された第1の流路形成板22と、を備える。第1の流路形成板22は、第1の基板21に互いの頂部が平行に伸びる山部23aと谷部23bとを備え、谷部23bの頂部が、第1の基板21に接着剤により接着され、第1の基板21との間に第1の流路24を形成する。 As shown in FIG. 13B, the first flow path plate 20 includes a first substrate 21 and a first flow path forming plate 22 adhered to one surface of the first substrate 21. The first flow path forming plate 22 includes a peak portion 23a and a valley portion 23b whose tops extend in parallel with each other on the first substrate 21, and the top of the valley portion 23b is attached to the first substrate 21 by an adhesive. It is adhered to form a first flow path 24 with the first substrate 21.

第1の流路形成板22は、第2の流路形成板212の山部213aと同数の8個の山部23aを備える。山部23aは、山部1130aの頂部が切除された切除部23cを備える。そして、切除部23cを備える2つの山部23aと、切除部23cを備えない山部23aが、交互に配置される。 The first flow path forming plate 22 includes eight mountain portions 23a, which is the same number as the mountain portions 213a of the second flow path forming plate 212. The mountain portion 23a includes an excised portion 23c in which the top of the mountain portion 1130a is excised. Then, the two mountain portions 23a having the cut portion 23c and the mountain portions 23a not having the cut portion 23c are alternately arranged.

第1の流路24は、切除部23cが形成されていない山部23aと第1の基板21との間、及び切除部23cが形成された山部23aと第1の基板21との間に形成される。切除部23cが形成された山部23aと第1の基板21との間に形成される第1の流路24は、切除部23cにより流路断面積が大きくなり、圧力損失が小さくなる。また、切除部23cを備える山部23aを連続して2つ配置したので、第1の流路板10より流路断面積を大きくなり、第1の流路板10より圧力損失を小さくできる。 The first flow path 24 is formed between the mountain portion 23a on which the cut portion 23c is not formed and the first substrate 21, and between the mountain portion 23a on which the cut portion 23c is formed and the first substrate 21. It is formed. In the first flow path 24 formed between the mountain portion 23a on which the cut portion 23c is formed and the first substrate 21, the cutout portion 23c increases the cross-sectional area of the flow path and reduces the pressure loss. Further, since two mountain portions 23a provided with the cut portion 23c are arranged in succession, the flow path cross-sectional area can be made larger than that of the first flow path plate 10, and the pressure loss can be made smaller than that of the first flow path plate 10.

第1の流路板10と第1の流路板20の圧力損失をシュミレーションした結果を、図14に示す。図14は、2つ連続した切除部23cを備える第1の流路板20と、1つ置きに切除部を13c備える第1の流路板10の圧力損失と流量との関係を示す。図中、△は、一つ置きに切除部13cが形成された第1の流路板10の値を示し、□は、2つ連続して切除部23cが形成された第1の流路板20の値を示す。図14に示すように、1つ置きの切除部13cを備える第1の流路板10より、2つ連続して切除部23cを備える第1の流路板20のほうが、低い圧力損失を示す。 The result of simulating the pressure loss of the first flow path plate 10 and the first flow path plate 20 is shown in FIG. FIG. 14 shows the relationship between the pressure loss and the flow rate of the first flow path plate 20 having two continuous cutting portions 23c and the first flow path plate 10 having every other cutting portion 13c. In the figure, Δ indicates the value of the first flow path plate 10 in which the cut portions 13c are formed every other time, and □ indicates the value of the first flow path plate in which two cut portions 23c are formed in succession. A value of 20 is shown. As shown in FIG. 14, the first flow path plate 20 having two consecutive cut portions 23c shows lower pressure loss than the first flow path plate 10 having every other cut portion 13c. ..

第1の流路板20は、第1の交差流路部300を形成する第4の流路板310及び第5の流路板320、並びに第2の交差流路部400を形成する第6の流路板410及び第7の流路板420の流路板として使用される。そして、第1の流路板20を使用した第1の交差流路部300と、第1の流路板20を使用した第2の交差流路部400を、対向流路部200と組み合わせて熱交換素子100を形成する。熱交換素子100の他の構成は、実施の形態1と同様である。 The first flow path plate 20 forms a fourth flow path plate 310 and a fifth flow path plate 320 that form the first cross flow path portion 300, and a sixth flow path plate that forms the second cross flow path portion 400. It is used as a flow path plate for the flow path plate 410 and the seventh flow path plate 420. Then, the first crossing flow path portion 300 using the first flow path plate 20 and the second crossing flow path portion 400 using the first flow path plate 20 are combined with the countercurrent flow path portion 200. The heat exchange element 100 is formed. The other configuration of the heat exchange element 100 is the same as that of the first embodiment.

本実施の形態によれば、第4の流路板310、第5の流路板320、第6の流路板410及び第7の流路板420の流路板として、切除部23cを備える山部23aを2つ並べて配置した第1の流路板20を使用することで、流路を流れる給気流又は排気流の圧力損失を小さくできる。 According to the present embodiment, the cut portion 23c is provided as the flow path plate of the fourth flow path plate 310, the fifth flow path plate 320, the sixth flow path plate 410, and the seventh flow path plate 420. By using the first flow path plate 20 in which two mountain portions 23a are arranged side by side, the pressure loss of the supply air flow or the exhaust flow flowing through the flow path can be reduced.

(実施の形態3)
実施の形態1及び2では、第1の交差流路部300と第2の交差流路部400の流路板として、第1の流路板10、20を使用した例を説明した。本発明は、このような使用例に限定されず、第1の交差流路部300と第2の交差流路部400を構成する流路板のうち、いずれか1つの流路板として第1の流路板10又は第1の流路板20を使用すればよい。
(Embodiment 3)
In the first and second embodiments, examples of using the first flow path plates 10 and 20 as the flow path plates of the first cross flow path portion 300 and the second cross flow path portion 400 have been described. The present invention is not limited to such usage examples, and the first flow path plate is one of the flow path plates constituting the first cross flow path portion 300 and the second cross flow path portion 400. The flow path plate 10 or the first flow path plate 20 of the above may be used.

本実施の形態は、1つ置きに切除部13cを備える第1の流路板10を、第1の交差流路部300を形成する流路板の一部として使用した例である。 This embodiment is an example in which the first flow path plate 10 having the cut portion 13c every other portion is used as a part of the flow path plate forming the first crossing flow path portion 300.

図15に示すように、熱交換素子100は、第1の交差流路部300、対向流路部200と、第2の交差流路部400と、を備える。対向流路部200の構造は、実施の形態1、2と同様である。第1の交差流路部300は、第4の流路板310と第5の流路板320とを備え、第4の流路板310と第5の流路板320を積層して形成される。 As shown in FIG. 15, the heat exchange element 100 includes a first cross flow path portion 300, a countercurrent flow path portion 200, and a second cross flow path portion 400. The structure of the countercurrent flow path portion 200 is the same as that of the first and second embodiments. The first crossing flow path portion 300 includes a fourth flow path plate 310 and a fifth flow path plate 320, and is formed by laminating a fourth flow path plate 310 and a fifth flow path plate 320. To.

第1の交差流路部300は、第4の流路板310を第1の流路板10に置き換えたものと、置き換えない流路板とを交互に配置されて形成される。第5の流路板320は、第1の流路板10に置き換えたものを使用してもよいし、置き換えなくてもよい。第2の交差流路部400の第6の流路板410と第7の流路板420も、第1の流路板10に置き換えてもよいし置き換えなくてもよい。 The first crossed flow path portion 300 is formed by alternately arranging a flow path plate 310 in which the fourth flow path plate 310 is replaced with the first flow path plate 10 and a flow path plate not replaced with the first flow path plate 10. As the fifth flow path plate 320, the one replaced with the first flow path plate 10 may or may not be replaced. The sixth flow path plate 410 and the seventh flow path plate 420 of the second cross flow path portion 400 may or may not be replaced with the first flow path plate 10.

本実施の形態よれば、第1の交差流路部300の第4の流路板310の一部を、第1の流路板10に置き換えることにより、圧力損失を小さくできるとともに、置き替える流路板を一部としたことで、第1の交差流路部300の強度を保持することができる。 According to the present embodiment, by replacing a part of the fourth flow path plate 310 of the first cross flow path portion 300 with the first flow path plate 10, the pressure loss can be reduced and the flow to be replaced can be reduced. By making the road plate a part, the strength of the first cross flow path portion 300 can be maintained.

(変形例)
第1の交差流路部300又は第2の交差流路部400の流路板として、第1の流路板10と第1の流路板20を組み合わせて使用してもよい。本変形例は、1つ置きに切除部13cを備える第1の流路板10と、2つ連続して切除部23cを備える第1の流路板20を、第1の交差流路部300を形成する流路板として使用した例である。
(Modification example)
As the flow path plate of the first cross flow path portion 300 or the second cross flow path portion 400, the first flow path plate 10 and the first flow path plate 20 may be used in combination. In this modification, the first flow path plate 10 having the cut portion 13c every other portion and the first flow path plate 20 having two consecutive cut portions 23c are provided with the first crossing flow path portion 300. This is an example of using it as a flow path plate for forming.

図16に示すように、熱交換素子100は、第1の交差流路部300、対向流路部200と、第2の交差流路部400と、を備える。対向流路部200の構造は、実施の形態1と同様である。第1の交差流路部300は、第4の流路板310と第5の流路板320とを備え、第4の流路板310と第5の流路板320を積層して形成される。 As shown in FIG. 16, the heat exchange element 100 includes a first cross flow path portion 300, a countercurrent flow path portion 200, and a second cross flow path portion 400. The structure of the countercurrent flow path portion 200 is the same as that of the first embodiment. The first crossing flow path portion 300 includes a fourth flow path plate 310 and a fifth flow path plate 320, and is formed by laminating a fourth flow path plate 310 and a fifth flow path plate 320. To.

第1の交差流路部300は、第4の流路板310を第1の流路板10に置き換えたものと、第1の流路板20に置き換えたものとが交互に配置されて形成される。第5の流路板320は、第1の流路板10又は第1の流路板20に置き換えたものを使用してもよいし、置き換えなくてもよい。第2の交差流路部400の第6の流路板410と第7の流路板420も、第1の流路板10又は第1の流路板20に置き換えてもよいし置き換えなくてもよい。 The first crossed flow path portion 300 is formed by alternately arranging one in which the fourth flow path plate 310 is replaced with the first flow path plate 10 and one in which the first flow path plate 20 is replaced. Will be done. As the fifth flow path plate 320, one replaced with the first flow path plate 10 or the first flow path plate 20 may or may not be replaced. The sixth flow path plate 410 and the seventh flow path plate 420 of the second cross flow path portion 400 may or may not be replaced with the first flow path plate 10 or the first flow path plate 20. May be good.

本変形例によれば、第1の交差流路部300の第4の流路板310を、第1の流路板10及び第1の流路板20に置き換えることにより、圧力損失を小さくすることができる。また、切除部23cが連続して2つ配置された第1の流路板20を併用することにより、第1の流路板10のみを第1の交差流路部300に適用した場合より、圧力損失を小さくできる。 According to this modification, the pressure loss is reduced by replacing the fourth flow path plate 310 of the first cross flow path portion 300 with the first flow path plate 10 and the first flow path plate 20. be able to. Further, by using the first flow path plate 20 in which two cutting portions 23c are continuously arranged, the case where only the first flow path plate 10 is applied to the first cross flow path portion 300 is compared with the case where only the first flow path plate 10 is applied. The pressure loss can be reduced.

本実施の形態によれば、第1の流路板10と第1の流路板20との組み合わせ、あるいは、これらと、切除部13c、切除部23cを備えない流路板と、を組み合わせることにより、熱交換素子100の圧力損失の傾向又は熱交換素子100の強度の特徴に応じた熱交換素子100を提供できる。 According to the present embodiment, a combination of the first flow path plate 10 and the first flow path plate 20, or a combination of these with a flow path plate having no cut portion 13c and a cut portion 23c is combined. Therefore, it is possible to provide the heat exchange element 100 according to the tendency of the pressure loss of the heat exchange element 100 or the characteristics of the strength of the heat exchange element 100.

(実施の形態4)
実施の形態1〜3においては、コルゲートシート1101から山部1130aを切除し、山部1130aが切除されたコルゲートシート1101を所望の長さ、幅で切断して、第1の流路板10、20を製造していた。本発明は、コルゲートシート1101を用いずに、他のコルゲートシートを用いて第1の流路板を製造することもできる。
(Embodiment 4)
In the first to third embodiments, the corrugated sheet 1101 is cut from the corrugated sheet 1101 and the corrugated sheet 1101 from which the mountain portion 1130a is cut is cut to a desired length and width to form the first flow path plate 10. 20 was being manufactured. According to the present invention, the first flow path plate can be manufactured by using another corrugated sheet without using the corrugated sheet 1101.

例えば、図17A〜17C、18に示すように、谷部の頂部が接着剤で接着されていないコルゲートシート1301を用いて、第1の流路板30を製造する。 For example, as shown in FIGS. 17A to 17C, 18, the first flow path plate 30 is manufactured by using the corrugated sheet 1301 in which the tops of the valleys are not adhered with an adhesive.

図17A〜17Cは、一部の谷部の頂部が接着されていないコルゲートシートを製造する方法を示す図であり、図18は、一部の谷部の頂部が接着されていないコルゲートシートを巻回したコルゲートロールを示す図であり、図19A、19Bは、図18に示すコルゲートロールから山部の一部を切り取って、第1の流路板を製造する方法を示す図である。 17A to 17C are views showing a method of manufacturing a corrugated sheet in which the tops of some valleys are not adhered, and FIG. 18 is a view in which a corrugated sheet in which the tops of some valleys are not adhered is wound. 19A and 19B are views showing a rotated corrugated roll, and FIGS. 19A and 19B are views showing a method of manufacturing a first flow path plate by cutting a part of a mountain portion from the corrugated roll shown in FIG.

最初に、コルゲートシートを製造する方法を説明する。 First, a method for manufacturing a corrugated sheet will be described.

まず、山部1303と谷部1304を備える流路形成部材1305を供給する。そして、図17Aに示すように、流路形成部材1305を、山部1303と谷部1304の頂部が形成された方向と直交する方向に移動させる。それとともに、接着部材70を、谷部1304に向けて進退させるように移動させる。接着部材70を谷部に向けて移動させ、接着部材70が谷部1304の頂部に接触すると、谷部1304の頂部に接着剤71が塗布される。接着部材70が谷部1304から離れると接着剤71は塗布されない。接着部材70を進退させることで、谷部1304の頂部の一つ置きに接着剤71が塗布される。 First, a flow path forming member 1305 having a mountain portion 1303 and a valley portion 1304 is supplied. Then, as shown in FIG. 17A, the flow path forming member 1305 is moved in a direction orthogonal to the direction in which the peaks of the peaks 1303 and 1304 are formed. At the same time, the adhesive member 70 is moved so as to advance and retreat toward the valley portion 1304. When the adhesive member 70 is moved toward the valley portion and the adhesive member 70 comes into contact with the top portion of the valley portion 1304, the adhesive 71 is applied to the top portion of the valley portion 1304. When the adhesive member 70 is separated from the valley portion 1304, the adhesive 71 is not applied. By advancing and retreating the adhesive member 70, the adhesive 71 is applied to every other top of the valley 1304.

次に、図17Bに示すように、シート部材1302を供給し、接着剤71が塗布された流路形成部材1305と、シート部材1302とを貼り合わせる。 Next, as shown in FIG. 17B, the sheet member 1302 is supplied, and the flow path forming member 1305 coated with the adhesive 71 and the sheet member 1302 are bonded together.

シート部材1302と流路形成部材1305とを貼り合わせると、図17Cに示すように、接着剤71が塗布されない谷部1304はシート部材1302に接着されず、一部の谷部1304の頂部が、シート部材1302に接着されないコルゲートシート1301が取得される。 When the sheet member 1302 and the flow path forming member 1305 are bonded together, as shown in FIG. 17C, the valley portion 1304 to which the adhesive 71 is not applied is not adhered to the sheet member 1302, and the top of a part of the valley portion 1304 is formed. A corrugated sheet 1301 that is not adhered to the sheet member 1302 is acquired.

コルゲートシート1301は、図17Cに示すように、シート部材1302と、頂部が平行に伸びる山部1303と谷部1304を備えるとともに、谷部1304がシート部材1303の一方の面に接着剤で接着された流路形成部材1305と、を備える。 As shown in FIG. 17C, the corrugated sheet 1301 includes a sheet member 1302, a peak portion 1303 and a valley portion 1304 whose tops extend in parallel, and the valley portion 1304 is adhered to one surface of the sheet member 1303 with an adhesive. The flow path forming member 1305 is provided.

谷部1304は、シート部材1302に接着された谷部1304aと頂部が接着されない谷部1304bとを備える。具体的には、2つ連続して頂部が接着された谷部1304aと、接着されない谷部1304bとが、が交互に並べられて、シート部材1302に配置される。接着されない谷部1304bにより、コルゲートシート1301には、通常の山部1303と、谷部1304bが接着されないことで山部1303が2つ合体した合体山部1306とが、交互に配置される。コルゲートシート1301は、図18に示すように、巻回されて、コルゲートロール1300として保管される。 The valley portion 1304 includes a valley portion 1304a bonded to the sheet member 1302 and a valley portion 1304b whose top is not bonded. Specifically, the valley portion 1304a having two consecutive tops bonded to each other and the valley portion 1304b to which the tops are not bonded are alternately arranged and arranged on the sheet member 1302. Due to the unbonded valleys 1304b, the corrugated sheet 1301 is alternately arranged with the normal peaks 1303 and the combined peaks 1306 in which the two peaks 1303 are united because the valleys 1304b are not adhered. As shown in FIG. 18, the corrugated sheet 1301 is wound and stored as a corrugated roll 1300.

続いて、コルゲートシート1301から第1の流路板を製造する方法を説明する。 Subsequently, a method of manufacturing the first flow path plate from the corrugated sheet 1301 will be described.

まず、図18に示すコルゲートロール1300から、コルゲートシート1301を引き出し、所望する長さ又は幅で切り取る。そして、図19Aに示すように、コルゲートシート1301から合体山部1306の頂部を、図に示す一点破線で切り取り、図19Bに示す第1の流路板30が取得される。 First, the corrugated sheet 1301 is pulled out from the corrugated roll 1300 shown in FIG. 18 and cut to a desired length or width. Then, as shown in FIG. 19A, the top of the combined mountain portion 1306 is cut off from the corrugated sheet 1301 by the alternate long and short dash line shown in the figure, and the first flow path plate 30 shown in FIG. 19B is acquired.

第1の流路板30は、図19Bに示すように、第1の基板31と、山部32aと谷部32bを備える第1の流路形成板32とを備え、第1の基板31の一方に面に谷部32bが接着される。山部32aと山部32aの間には、コルゲートシート1301の合体山部1306の頂部を切り取って形成された切除部33cが形成される。また、第1の基板31と山部32aとの間に第1の流路34aが形成され、第1の基板31と切除部33cとの間に第1の流路34bが形成される。第1の流路34bは、切除部33cと隣り合う谷部32bとで合体した流路となる。 As shown in FIG. 19B, the first flow path plate 30 includes a first substrate 31 and a first flow path forming plate 32 having a peak portion 32a and a valley portion 32b, and the first substrate 31. The valley portion 32b is adhered to one side. Between the mountain portion 32a and the mountain portion 32a, a cut portion 33c formed by cutting off the top of the combined mountain portion 1306 of the corrugated sheet 1301 is formed. Further, a first flow path 34a is formed between the first substrate 31 and the mountain portion 32a, and a first flow path 34b is formed between the first substrate 31 and the cut portion 33c. The first flow path 34b is a flow path in which the cut portion 33c and the adjacent valley portion 32b are combined.

本実施の形態によれば、一部の谷部の頂部が接着されていないコルゲートシート1301から第1の流路板30を製造した。第1の流路板30は、実施の形態2の第1の流路板20のように2つの山部32aを切除せず、ひとつの合体山部1306を切除するだけで、2つの山部32aを切除したと同等の切除部を備えることができる。したがって、切除作業を簡略化することができる。また、第1の流路板30は、実施の形態2の第1の流路板20のように、山部間に谷部の頂部が残部として残存することはない。谷部の残部が残存しないことにより、圧力損失を小さくできる。さらに、第1の流路34bを流れる空気流は、第1の基板31と接触する面積が、第1の流路34aより大きくなるため、熱交換効率も向上する。 According to the present embodiment, the first flow path plate 30 is manufactured from the corrugated sheet 1301 to which the tops of some valleys are not adhered. The first flow path plate 30 does not cut off the two mountain portions 32a as in the first flow path plate 20 of the second embodiment, but only cuts out one combined mountain portion 1306, and the two mountain portions. An excision portion equivalent to the excision of 32a can be provided. Therefore, the excision work can be simplified. Further, unlike the first flow path plate 20 of the second embodiment, the first flow path plate 30 does not have the top of the valley portion remaining as a remainder between the mountain portions. Since the remaining part of the valley does not remain, the pressure loss can be reduced. Further, since the area of the air flow flowing through the first flow path 34b in contact with the first substrate 31 is larger than that of the first flow path 34a, the heat exchange efficiency is also improved.

(実施の形態5)
実施の形態1と2において、切除部13c又は切除部23cが、流路板全体に配置された例を説明した。切除部13cは、流路板全体に配置されなくてもよく、流路板の一部の領域に形成されてもよい。
(Embodiment 5)
In the first and second embodiments, an example in which the cut portion 13c or the cut portion 23c is arranged on the entire flow path plate has been described. The cut portion 13c does not have to be arranged on the entire flow path plate, and may be formed in a part of the flow path plate.

例えば、図20に示すように、第5の流路板320と第7の流路板420の流路板として、第1の流路板40を使用する。以下、第1の流路板40を使用した第5の流路板320は、第5の流路板320として表記し、第1の流路板40を使用した第7の流路板420は、第7の流路板420として表記して説明する。図中、実線で示した箇所は切除部が形成されていない山部であり、点線で示した箇所は切除部が形成された山部である。 For example, as shown in FIG. 20, the first flow path plate 40 is used as the flow path plate of the fifth flow path plate 320 and the seventh flow path plate 420. Hereinafter, the fifth flow path plate 320 using the first flow path plate 40 will be referred to as a fifth flow path plate 320, and the seventh flow path plate 420 using the first flow path plate 40 will be referred to as a fifth flow path plate 320. , And will be described as the seventh flow path plate 420. In the figure, the part shown by the solid line is the mountain part where the excised part is not formed, and the part shown by the dotted line is the mountain part where the excised part is formed.

第5の流路板320は、切除部43cが形成された山部43aと、切除部43cが形成されていない山部43aを備える。切除部43cは、第5の流路板320の長い山部43aが形成された第1の領域44に形成される。第7の流路板420は、切除部43cが形成された山部43aと、切除部43cが形成されていない山部43aを備える。切除部43cは、第7の流路板420の長い山部43aが形成された第2の領域45に形成される。第1の領域44と第2の領域45とは、熱交換素子100において、点対称となる位置に配置される。 The fifth flow path plate 320 includes a mountain portion 43a in which the cut portion 43c is formed and a mountain portion 43a in which the cut portion 43c is not formed. The cut portion 43c is formed in the first region 44 in which the long peak portion 43a of the fifth flow path plate 320 is formed. The seventh flow path plate 420 includes a mountain portion 43a in which the cut portion 43c is formed and a mountain portion 43a in which the cut portion 43c is not formed. The cut portion 43c is formed in the second region 45 in which the long peak portion 43a of the seventh flow path plate 420 is formed. The first region 44 and the second region 45 are arranged at positions that are point-symmetrical in the heat exchange element 100.

本実施の形態によれば、切除部43cが形成された第1の領域44と第2の領域45とは、点対称となる位置に配置されるので、同等な圧力損失が発生する位置に切除部43cが配置されることになる。同等な圧力損失が発生する位置に切除部43cが形成されることにより、圧力損失のバランスを保つともに、圧力損失を小さくできる。また、第5の流路板320と第7の流路板420の一部の領域のみに切除部43cが形成されるので、熱交換素子100の強度を保つことができる。 According to the present embodiment, since the first region 44 and the second region 45 in which the excision portion 43c is formed are arranged at positions that are point-symmetrical, excision is performed at a position where an equivalent pressure loss occurs. The part 43c will be arranged. By forming the cut portion 43c at a position where an equivalent pressure loss occurs, the pressure loss can be balanced and the pressure loss can be reduced. Further, since the cut portion 43c is formed only in a part of the region of the fifth flow path plate 320 and the seventh flow path plate 420, the strength of the heat exchange element 100 can be maintained.

(実施の形態6)
実施の形態1、2においては、切除部13c、23cは、山部13a、23aの伸びる方向に沿って山部13a、23aの一端部から他端部まで形成されていた。本発明における切除部は、山部の一端部から他端部まで連続的形成される場合に限定されない。例えば、切除部は、山部の伸びる方向に沿って、間隔を隔てて形成されてもよい。
(Embodiment 6)
In the first and second embodiments, the cut portions 13c and 23c are formed from one end to the other end of the mountain portions 13a and 23a along the extending direction of the mountain portions 13a and 23a. The cut portion in the present invention is not limited to the case where the cut portion is continuously formed from one end to the other end of the mountain portion. For example, the excision portions may be formed at intervals along the extending direction of the mountain portion.

例えば、図21に示すように、第1の交差流路部300及び第2の交差流路部400の流路板として、切除部53cが間隔を隔てて形成された第1の流路板50を適用する。図中、第1の流路板50の山部53aを直線で示し、切除部53cを空白で示す。以下、第1の流路板50を使用した第5の流路板320は、第5の流路板320として表記し、第1の流路板50を使用した第7の流路板420は、第7の流路板420として表記して説明する。 For example, as shown in FIG. 21, the first flow path plate 50 in which the cut portions 53c are formed at intervals as the flow path plates of the first cross flow path portion 300 and the second cross flow path portion 400. To apply. In the figure, the mountain portion 53a of the first flow path plate 50 is shown by a straight line, and the cut portion 53c is shown by a blank. Hereinafter, the fifth flow path plate 320 using the first flow path plate 50 will be referred to as a fifth flow path plate 320, and the seventh flow path plate 420 using the first flow path plate 50 will be referred to as a fifth flow path plate 320. , And will be described as the seventh flow path plate 420.

第5の流路板320は、山部53aの伸びる方向に沿って、間隔を隔てて形成された切除部53cを備え、第7の流路板420も同様に、山部53aの伸びる方向に沿って、間隔を隔てて形成された切除部53cを備える。切除部53cは、少なくとも一つの山部に形成されればよく、全ての山部53aに形成されてもよいし、一つ置きの山部53aあるいは二つ連続する山部53aに形成されてもよい。 The fifth flow path plate 320 includes cut portions 53c formed at intervals along the extending direction of the mountain portion 53a, and the seventh flow path plate 420 also includes the extending direction of the mountain portion 53a. Along, there are cuts 53c formed at intervals. The excision portion 53c may be formed in at least one mountain portion, may be formed in all mountain portions 53a, may be formed in every other mountain portion 53a, or may be formed in two consecutive mountain portions 53a. Good.

本実施の形態によれば、切除部53cを、山部53aの伸びる方向に沿って間隔を隔てて形成することで、圧力損失を小さくしつつ、熱交換素子の強度を保持することができる。 According to the present embodiment, the cutting portions 53c are formed at intervals along the extending direction of the mountain portions 53a, so that the strength of the heat exchange element can be maintained while reducing the pressure loss.

(実施の形態7)
実施の形態1〜5においては、切除部は、山部の伸びる方向に沿って形成されていた。本発明における切除部は、第1の面と第3の面が接合する部分のいずれか一つの山部、又は第2の面と第4の面が接合する部分のいずれか一つの山部に、形成されてもよい。
(Embodiment 7)
In the first to fifth embodiments, the excised portion was formed along the extending direction of the mountain portion. The cut portion in the present invention is formed on any one mountain portion of the portion where the first surface and the third surface are joined, or any one mountain portion of the portion where the second surface and the fourth surface are joined. , May be formed.

例えば、図22に示すように、第1の交差流路部300及び第2の交差流路部400の流路板として、切除部63cが形成された第1の流路板60を適用する。図中、第1の流路板60の山部63aを直線で示し、切除部53cを空白で示す。以下、第1の流路板50を使用した第5の流路板320は、第5の流路板320として表記し、第1の流路板50を使用した第7の流路板420は、第7の流路板420として表記して説明する。 For example, as shown in FIG. 22, as the flow path plate of the first cross flow path portion 300 and the second cross flow path portion 400, the first flow path plate 60 in which the cut portion 63c is formed is applied. In the figure, the mountain portion 63a of the first flow path plate 60 is shown by a straight line, and the cut portion 53c is shown by a blank. Hereinafter, the fifth flow path plate 320 using the first flow path plate 50 will be referred to as a fifth flow path plate 320, and the seventh flow path plate 420 using the first flow path plate 50 will be referred to as a fifth flow path plate 320. , The seventh flow path plate 420 will be described.

第3の流路板220と第5の流路板320とは、図1に示すように、第1の面230と第3の面330が接合されることにより、対向する端部において接合される。図22に示すように、第5の流路板320は、第3の流路板220と接合する部分の山部63aの頂部を切除した切除部63cを備える。 As shown in FIG. 1, the third flow path plate 220 and the fifth flow path plate 320 are joined at opposite ends by joining the first surface 230 and the third surface 330. To. As shown in FIG. 22, the fifth flow path plate 320 includes a cut portion 63c in which the top of the mountain portion 63a of the portion joined to the third flow path plate 220 is cut off.

第3の流路板220と第7の流路板420とは、図1に示すように、第2の面240と第6の面430が接合されることにより、対向する端部において接合される。図22に示すように、第7の流路板420は、第3の流路板220と接合する部分の山部63aの頂部を切除した切除部63cを備える。切除部63cは、少なくとも接合部の連続する山部63aに形成されていればよい。 As shown in FIG. 1, the third flow path plate 220 and the seventh flow path plate 420 are joined at opposite ends by joining the second surface 240 and the sixth surface 430. To. As shown in FIG. 22, the seventh flow path plate 420 includes a cut portion 63c in which the top of the mountain portion 63a of the portion joined to the third flow path plate 220 is cut off. The excised portion 63c may be formed at least on a continuous mountain portion 63a of the joint portion.

第5の流路板320と第7の流路板420に形成される切除部63cは、少なくとも一つの山部63aに形成されればよく、全ての山部63aに形成されてもよいし、一つ置きの山部63aあるいは二つ連続する山部63aに形成されてもよい。 The cut portion 63c formed in the fifth flow path plate 320 and the seventh flow path plate 420 may be formed in at least one mountain portion 63a, or may be formed in all the mountain portions 63a. It may be formed on every other mountain portion 63a or on two consecutive mountain portions 63a.

本実施の形態によれば、第3の流路板220と、第5の流路板320又は第7の流路板420と、が接合される位置に連続して切除部63cを形成することにより、圧力損失を小さくできる。また、山部63aの接合部付近のみを切除するので、熱交換素子の強度も保つことができる。なお、第3の流路板220の接合部の山部に切除部を形成してもよい。 According to the present embodiment, the cut portion 63c is continuously formed at a position where the third flow path plate 220 and the fifth flow path plate 320 or the seventh flow path plate 420 are joined. Therefore, the pressure loss can be reduced. Further, since only the vicinity of the joint portion of the mountain portion 63a is cut off, the strength of the heat exchange element can be maintained. In addition, a cut portion may be formed in the mountain portion of the joint portion of the third flow path plate 220.

(熱交換換気装置)
本実施の形態1〜7において説明した熱交換素子100は、図23に示す熱交換換気装置800に適用される。熱交換換気装置800は、熱交換素子100と、排気ファン801と、給気ファン802を備える。室外の空気OAは、給気ファン802が稼働され、熱交換素子100を介して給気ファン802に給気されて、給気SAとして室内に導入される。一方、室内の空気RAは、排気ファン801が稼働されることにより、熱交換素子100を介して排気ファン801により排気され、排気EAとして室外に排気される。給気流と排気流が熱交換素子100の対向流路部において対向する気流となることにより、全熱交換されて、効率的に熱交換をすることができる。
(Heat exchange ventilation system)
The heat exchange element 100 described in the first to seventh embodiments is applied to the heat exchange ventilation device 800 shown in FIG. 23. The heat exchange ventilation device 800 includes a heat exchange element 100, an exhaust fan 801 and an air supply fan 802. The outdoor air OA is introduced into the room as an air supply SA by operating the air supply fan 802 and supplying air to the air supply fan 802 via the heat exchange element 100. On the other hand, the indoor air RA is exhausted by the exhaust fan 801 via the heat exchange element 100 when the exhaust fan 801 is operated, and is exhausted to the outside as an exhaust EA. Since the air supply airflow and the exhaust airflow become airflows facing each other in the countercurrent flow path portion of the heat exchange element 100, total heat exchange can be performed and heat exchange can be performed efficiently.

実施の形態1において、第1の流路板10は、切除部13cを備える一つ置きに備え、実施の形態2、4において、第1の流路板20は、切除部23cを2つ連続して備える場合を説明した。本発明は、切除部を形成する位置は、このような場合に限定されない。流路板の剛性を考慮して、切除部を3以上連続しても形成してもよい。 In the first embodiment, the first flow path plate 10 is provided with every other cutting portion 13c, and in the second and fourth embodiments, the first flow path plate 20 has two cutting portions 23c in succession. The case of preparing for the above was explained. In the present invention, the position where the excision portion is formed is not limited to such a case. In consideration of the rigidity of the flow path plate, three or more cut portions may be formed continuously.

実施の形態1において、対向流路部200、第1の交差流路部300、第2の交差流路部400を形成する流路板の山部は8個であると説明したが、山部は少なくとも2つあればよく、種々の熱交換素子に適用できる。 In the first embodiment, it has been described that the number of mountain portions of the flow path plate forming the countercurrent flow path portion 200, the first cross flow path portion 300, and the second cross flow path portion 400 is eight. It suffices to have at least two, and can be applied to various heat exchange elements.

実施の形態1において、カッター刃90と第1の基板11との距離を、ホルダ90aの端部から突出する刃部90bの距離D1を変更することにより調整すると説明したが、ホルダ90aを支持する支持部材を上下させて調整させてもよい。 In the first embodiment, it has been described that the distance between the cutter blade 90 and the first substrate 11 is adjusted by changing the distance D1 of the blade portion 90b protruding from the end portion of the holder 90a, but the holder 90a is supported. The support member may be moved up and down for adjustment.

実施の形態1において、山部13aの切断をするときに、一対のカッター刃80、90を使用したが、ひとつのカッター刃80、90を使用してもよい。 In the first embodiment, a pair of cutter blades 80 and 90 are used when cutting the mountain portion 13a, but one cutter blade 80 and 90 may be used.

実施の形態1において、切除部13cを形成するために、カッター刃80、90を使用したが、実施の形態2〜7において、切除部23c、33c、43c、53c、63cを形成するために、カッター刃80又はカッター刃90を使用してもよい。 In the first embodiment, the cutter blades 80 and 90 were used to form the cutting portion 13c, but in the second to seventh embodiments, the cutting portions 23c, 33c, 43c, 53c and 63c are formed. Cutter blade 80 or cutter blade 90 may be used.

実施の形態1及び2において、第1の交差流路部300と第2の交差流路部400の全ての流路板を第1の流路板10又は第1の流路板20と置き換えると説明したが、一部の流路板のみを置き換えてもよい。 In the first and second embodiments, if all the flow path plates of the first cross flow path portion 300 and the second cross flow path portion 400 are replaced with the first flow path plate 10 or the first flow path plate 20. As described above, only a part of the flow path plates may be replaced.

実施の形態4において、谷部の頂部に一つ置きに接着剤を塗布して取得したコルゲートシート1301を使用して第1の基板31を製造した。本発明は、谷部の頂部の一つ置きに接着剤を塗布する場合に限定されず、例えば、谷部の頂部に二つ置きに接着剤を塗布して、3つの合体した山部を切除して切除部を形成してもよい。 In the fourth embodiment, the first substrate 31 was manufactured using the corrugated sheet 1301 obtained by applying an adhesive to every other top of the valley. The present invention is not limited to the case where the adhesive is applied to every other top of the valley, for example, the adhesive is applied to every two tops of the valley, and the three combined peaks are cut off. To form a cut portion.

実施の形態4において、谷部の頂部に接着剤を塗布する方法として、直線的に移動する流路形成板に、接着部材を進退させる方法を説明した。本発明は、このような塗布の方法に限定されず、例えば、円筒部材に流路形成板を巻き付けながら、接着部材を進退させてもよい。 In the fourth embodiment, as a method of applying the adhesive to the top of the valley portion, a method of advancing and retreating the adhesive member to the flow path forming plate that moves linearly has been described. The present invention is not limited to such a coating method, and for example, the adhesive member may be advanced or retreated while winding the flow path forming plate around the cylindrical member.

実施の形態5において、第1の領域44と第2の領域45に切除部43cが形成されると説明した。切除部43cは、実施の形態1で説明したように1つ置きの山部に形成されてもよいし、実施の形態2で説明したように2つ連続した山部に形成されてもよい。さらに、実施の形態6で説明したように、山部の頂部が伸びる方向に沿って、間隔を置いて形成されてもよい。 It was explained that in the fifth embodiment, the excision portion 43c is formed in the first region 44 and the second region 45. The excision portion 43c may be formed in every other mountain portion as described in the first embodiment, or may be formed in two consecutive mountain portions as described in the second embodiment. Further, as described in the sixth embodiment, it may be formed at intervals along the direction in which the top of the mountain portion extends.

実施の形態5において、第5の流路板320と第7の流路板420の流路板として、第1の流路板40を使用した場合を説明したが、第4の流路板310と第6の流路板410として、第1の流路板40を使用してもよい。 In the fifth embodiment, the case where the first flow path plate 40 is used as the flow path plate of the fifth flow path plate 320 and the seventh flow path plate 420 has been described, but the fourth flow path plate 310 And as the sixth flow path plate 410, the first flow path plate 40 may be used.

実施の形態6、7において、第5の流路板320と第7の流路板420に切除部53c、切除部63cが形成されると説明したが、第4の流路板310と第6の流路板410にも同様に切除部53c、切除部63cを形成してもよい。 In the sixth and seventh embodiments, it has been described that the cut portion 53c and the cut portion 63c are formed on the fifth flow board 320 and the seventh flow board 420, but the fourth flow board 310 and the sixth flow board 310 and the sixth. Similarly, the cutting portion 53c and the cutting portion 63c may be formed on the flow path plate 410 of the above.

実施の形態1〜7において、第1の流路板を第1の交差流路部300又は第2の交差流路部400に用いると説明したが、対向流路部200に用いてもよい。 Although it has been described in the first to seventh embodiments that the first flow path plate is used for the first cross flow path portion 300 or the second cross flow path portion 400, it may be used for the countercurrent flow path portion 200.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows for various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.

本出願は、2017年9月13日に出願された、日本国特許出願特願2017−175927号に基づく。本明細書中に日本国特許出願特願2017−175927号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2017-175927 filed on September 13, 2017. The specification, claims, and drawings of Japanese Patent Application No. 2017-175927 shall be incorporated into this specification as a reference.

本発明は、流路板及び流路板の製造方法に好適に利用できる。 The present invention can be suitably used in the manufacturing method of the flow path Ita及beauty channel plate.

10,20,30,40,50 第1の流路板、11,21,31 第1の基板、12 第1の流路形成板、13a,23a,32a,43a,53a、63a 山部、13aa 残部、13ab 接着剤、13b,23b,32b 谷部、13c,23c,33c,43c,53c,63c 切除部、14a,14b 第1の流路、34a,34b 第1の流路、44 第1の領域、45 第2の領域、70 接着部材、71 接着剤、80 カッター刃、80a 軸孔、80b 刃部、80c 回転軸、90 カッター刃、90a ホルダ、90aa 本体部、90ab 凹部、90b 刃部、100,110 熱交換素子、111 第1の基板、112 第1の流路形成板、112a 山部、112b 谷部、114 第1の流路、200 対向流路部、210 第2の流路板、211 第2の基板、212 第2の流路形成板、213a 山部、213b 谷部、214 第2の流路、220 第3の流路板、221 第3の基板、222 第3の流路形成板、223a 山部、223aa 単位山部、223b 谷部、224 第3の流路、230 第1の面、240 第2の面、300 第1の交差流路部、310 第4の流路板、311 第4の基板、312 第4の流路形成板、313a 山部、313aa 単位山部、313b 谷部、313bb 単位山部、314 第4の流路、320 第5の流路板、321 第5の基板、322 第5の流路形成板、323a 山部、323b 谷部、324 第5の流路、330 第3の面、340 第4の面、350 第5の面、400 第2の交差流路部、410 第6の流路板、411 第6の基板、412 第6の流路形成板、413a 山部、413b 谷部、414 第6の流路、420 第7の流路板、421 第7の基板、422 第7の流路形成板、423a 山部、423b 谷部、424 第7の流路、430 第6の面、440 第7の面、450 第8の面、500,600 接合テープ、700 補助テープ、800 熱交換換気装置、801 排気ファン、802 給気ファン、1100,1200,1300 コルゲートロール、1101,1201,1301 コルゲートシート、1120 シート部材、1130 流路形成部材、1130a 山部、1130b 谷部、1302 シート部材、1303 山部、1304,1304a,1304b 谷部、1305 流路形成部材、1306 合体山部。 10, 20, 30, 40, 50 1st flow path plate 11,21,31 1st substrate, 12 1st flow path forming plate, 13a, 23a, 32a, 43a, 53a, 63a Yamabe, 13aa Remaining part, 13ab adhesive, 13b, 23b, 32b valley part, 13c, 23c, 33c, 43c, 53c, 63c excision part, 14a, 14b first flow path, 34a, 34b first flow path, 44 first Region, 45 Second region, 70 Adhesive member, 71 Adhesive, 80 Cutter blade, 80a shaft hole, 80b blade, 80c rotating shaft, 90 cutter blade, 90a holder, 90aa main body, 90ab recess, 90b blade, 100, 110 heat exchange element, 111 first substrate, 112 first flow path forming plate, 112a mountain part, 112b valley part, 114 first flow path, 200 facing flow path part, 210 second flow path plate , 211 2nd substrate, 212 2nd flow path forming plate, 213a mountain part, 213b valley part, 214 2nd flow path, 220 3rd flow path plate, 221 3rd substrate, 222 3rd flow Road forming plate, 223a mountain part, 223aa unit mountain part, 223b valley part, 224 3rd flow path, 230 1st surface, 240 2nd surface, 300 1st cross flow path part, 310 4th flow Road plate, 311 4th substrate, 312 4th flow path forming plate, 313a mountain part, 313a unit mountain part, 313b valley part, 313bb unit mountain part, 314 4th flow path, 320 5th flow path plate , 321 5th substrate, 322 5th flow path forming plate, 323a mountain part, 323b valley part, 324 5th flow path, 330 3rd surface, 340 4th surface, 350 5th surface, 400 2nd crossing flow path, 410 6th flow board, 411 6th substrate, 412 6th flow path forming plate, 413a peak, 413b valley, 414 6th flow path, 420 7th Channel plate, 421 7th substrate, 422 7th flow path forming plate, 423a mountain part, 423b valley part, 424 7th flow path, 430 6th surface, 440 7th surface, 450 8th Surface, 500, 600 bonding tape, 700 auxiliary tape, 800 heat exchange ventilator, 801 exhaust fan, 802 air supply fan, 1100, 1200, 1300 corrugated roll, 11 01,1201,1301 Corrugated sheet, 1120 sheet member, 1130 flow path forming member, 1130a mountain part, 1130b valley part, 1302 sheet member, 1303 mountain part, 1304, 1304a, 1304b valley part, 1305 flow path forming member, 1306 Yamabe.

Claims (9)

熱交換素子に使用される流路板であって、
板と、
互いの頂部が平行に伸びる2以上の山部と2以上の谷部を備え、前記2以上の谷部の頂部が前記基板に接着されて流路を形成する流路形成板と、を備え、
前記2以上の山部は、山部の頂部が伸びる方向に当該山部の一端部から他端部まで連続して少なくとも頂部が切除された形状を備える切除部を有する山部と、前記切除部を有さない山部と、を備える、
流路板。
A flow path plate used for heat exchange elements
And the base plate,
Includes two or more peaks and two or more valleys top of each other extending in parallel, and the two or more troughs flow tops that form a are bonded flow path before Kimoto plate path forming plate, With
The two or more ridges are a ridge having a cut portion having a shape in which at least the top is cut continuously from one end to the other end of the ridge in the direction in which the top of the ridge extends, and the cut portion. With Yamabe, which does not have
Channel plate.
前記切除部は、前記山部の頂部が切除されることにより残る残部を備え、The excision includes a remainder that remains after the apex of the mountain is excised.
前記残部は、前記基板の基板面に接着された、 The remainder was adhered to the substrate surface of the substrate.
請求項1に記載の流路板。 The flow path plate according to claim 1.
前記切除部は、前記切除部を有する山部の全部が切除された形状を備える、
請求項1に記載の流路板。
The excised portion has a shape in which the entire mountain portion having the excised portion is excised.
The flow path plate according to claim 1.
前記切除部を有する1以上の山部と、前記切除部を有さない1以上の山部とが、交互に配置された、One or more ridges having the cut and one or more ridges without the cut were alternately arranged.
請求項1から3の何れか1項に記載の流路板。 The flow path plate according to any one of claims 1 to 3.
前記切除部を有する2つの山部と、前記切除部を有さない1つの山部とが、交互に配置された、Two peaks having the cut and one peak without the cut were alternately arranged.
請求項4に記載の流路板。 The flow path plate according to claim 4.
流路板の基板となるシート部材を供給する工程と、
互いの頂部が平行に伸びる2以上の山部と2以上の谷部を備える流路形成部材を供給する工程と、
前記シート部材と、前記流路形成部材の前記2以上の谷部とを接着してコルゲートシートを取得する工程と、
前記コルゲートシートを切断して、前記基板と前記流路形成部材とで構成される前記流路板を取得する工程と、
前記流路形成部材の2以上の山部において、山部の頂部が伸びる方向に当該山部の一端部から他端部まで連続して当該山部の少なくとも頂部を切断して形成された山部と、当該山部の頂部が切断されていない山部と、を形成する工程と、を備える、
流路板の製造方法。
The process of supplying the sheet member that will be the substrate of the flow path plate, and
A step of supplying a flow path forming member having two or more peaks and two or more valleys whose tops extend in parallel with each other.
A step of adhering the sheet member and the two or more valleys of the flow path forming member to obtain a corrugated sheet.
A step of cutting the corrugated sheet to obtain the flow path plate composed of the substrate and the flow path forming member, and
In two or more mountain portions of the flow path forming member, a mountain portion formed by continuously cutting at least the top of the mountain portion from one end to the other end in the direction in which the top of the mountain portion extends. And a step of forming a mountain portion in which the top of the mountain portion is not cut .
Manufacturing method of flow path plate.
記山部の少なくとも頂部を切断する場合に
カッター刃を、前記山部の伸びる方向に沿って前記流路板との間で相対移動させることにより、前記山部を切断する、
請求項に記載の流路板の製造方法。
When cutting the at least a top portion of the front Kiyama portion,
By moving the cutter blade relative to the flow path plate along the extending direction of the mountain portion, the mountain portion is cut.
The method for manufacturing a flow path plate according to claim 6 .
記山部の少なくとも頂部を切断する場合に
前記カッター刃の刃先を、前記山部は切断するが前記基板は切断しない位置に位置決めして、前記山部を切断する、
請求項に記載の流路板の製造方法。
When cutting the at least a top portion of the front Kiyama portion,
The cutting edge of the cutter blade is positioned at a position where the peak portion is cut but the substrate is not cut, and the peak portion is cut.
The method for manufacturing a flow path plate according to claim 7 .
シート部材を供給する工程と、
互いの頂部が平行に伸びる2以上の山部と2以上の谷部を備える流路形成部材を供給する工程と、
前記谷部の頂部に1以上の間隔をおいて接着剤を塗布し、前記接着剤が塗布された谷部と前記接着剤が塗布されない谷部を取得する工程と、
前記接着剤が塗布された前記流路形成部材と前記シート部材を貼り合わせ、前記接着剤が塗布されない谷部と当該谷部に隣接する山部とにより合体山部が形成されたコルゲートシートを取得する工程と、
前記コルゲートシートを切断する工程と、
前記切断されたコルゲートシートの前記合体山部の頂部を切除し、流路板を取得する工程と、を備える、
流路板の製造方法。
The process of supplying sheet members and
A step of supplying a flow path forming member having two or more peaks and two or more valleys whose tops extend in parallel with each other.
A step of applying an adhesive to the top of the valley at an interval of 1 or more to obtain a valley to which the adhesive is applied and a valley to which the adhesive is not applied.
The flow path forming member to which the adhesive is applied and the sheet member are bonded together to obtain a corrugated sheet in which a coalesced mountain portion is formed by a valley portion to which the adhesive is not applied and a mountain portion adjacent to the valley portion. And the process to do
The step of cutting the corrugated sheet and
A step of cutting off the top of the coalesced mountain portion of the cut corrugated sheet to obtain a flow path plate.
Manufacturing method of flow path plate.
JP2019541936A 2017-09-13 2018-07-20 Flow path plate and manufacturing method of flow path plate Active JP6785979B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017175927 2017-09-13
JP2017175927 2017-09-13
PCT/JP2018/027312 WO2019054052A1 (en) 2017-09-13 2018-07-20 Flow channel plate, heat exchange element, and method for manufacturing flow channel plate

Publications (2)

Publication Number Publication Date
JPWO2019054052A1 JPWO2019054052A1 (en) 2020-01-23
JP6785979B2 true JP6785979B2 (en) 2020-11-18

Family

ID=65723591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019541936A Active JP6785979B2 (en) 2017-09-13 2018-07-20 Flow path plate and manufacturing method of flow path plate

Country Status (2)

Country Link
JP (1) JP6785979B2 (en)
WO (1) WO2019054052A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223356B1 (en) * 2020-07-13 2021-03-05 송길섭 Method of manufacturing counter flow total heat exchanger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656258A (en) * 1945-04-18 1953-10-20 Standard Oil Co Reaction furnace for contacting a gas and fluidized solids
US2656158A (en) * 1948-07-23 1953-10-20 Air Preheater Plate type heat exchanger and method of manufacturing same
FR2350167A1 (en) * 1976-05-06 1977-12-02 Chausson Usines Sa PROCESS FOR THE MANUFACTURING OF HEAT EXCHANGERS OF THE TYPE WITH PIPES AND DISSIPATORS AND EXCHANGER OBTAINED BY THIS PROCESS
JPH0517368U (en) * 1991-04-12 1993-03-05 大同紙工業株式会社 Heat exchange type ventilator
JPH09296989A (en) * 1996-05-02 1997-11-18 Toyo Radiator Co Ltd Fins for heat exchanger, its manufacture and heat exchanger
JP3700293B2 (en) * 1996-11-25 2005-09-28 株式会社デンソー Heat exchanger
JP3731114B2 (en) * 2001-11-01 2006-01-05 三菱電機株式会社 Manufacturing method of heat exchanger
JP2006064345A (en) * 2004-08-30 2006-03-09 T Rad Co Ltd Heat transfer fin
WO2007084984A2 (en) * 2006-01-19 2007-07-26 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
EP2169339B1 (en) * 2007-06-18 2015-07-22 Mitsubishi Electric Corporation Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
US8327924B2 (en) * 2008-07-03 2012-12-11 Honeywell International Inc. Heat exchanger fin containing notches
WO2011158371A1 (en) * 2010-06-18 2011-12-22 トヨタ自動車株式会社 Cooler
KR101644812B1 (en) * 2014-12-15 2016-08-03 한국에너지기술연구원 Plate type heat exchanger with cutted plate
JP6275325B2 (en) * 2015-03-18 2018-02-07 三菱電機株式会社 Manufacturing method of heat exchange element

Also Published As

Publication number Publication date
JPWO2019054052A1 (en) 2020-01-23
WO2019054052A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
CN101680721B (en) Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
JP6785979B2 (en) Flow path plate and manufacturing method of flow path plate
JP3969064B2 (en) Heat exchanger and heat exchange ventilator
TWI463104B (en) Heat exchanger perforated fins
EP2154463A1 (en) Heat exchanger element, process for manufacturing the same, and heat exchange ventilation apparatus
EP0777094A2 (en) Heat exchanging element
JP6793858B2 (en) Manufacturing method of flow path plate
JP4891770B2 (en) Process and apparatus for performing perfect binding
EP1706261B1 (en) Sandwich panel
WO2022034640A1 (en) Total heat exchange element and ventilation device
JP3731114B2 (en) Manufacturing method of heat exchanger
WO2018193849A1 (en) Flow channel plate, heat exchange element, heat exchange ventilation device, and method for producing flow channel plate
JP2008070070A (en) Total heat exchanger
JP2010519494A (en) Heat exchanger and manufacturing method thereof
US20160303819A1 (en) Load-bearing honeycomb structures made from folded multilayer corrugated cardboard
JPH03271696A (en) Manufacture of heat exchanging element
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP4305530B2 (en) Heat exchanger
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
JPH05157480A (en) Heat exchanging element
KR100540242B1 (en) Heat exchanger
CA3220744A1 (en) An evaporative cooling pad for an air treatment unit
KR101185918B1 (en) Manufacturing method of diagonal flow type heat-exchanging element
CZ155898A3 (en) Apparatus for producing heat and mass
TWI321530B (en) Apparatus and method for producing magnetic tape tickets

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250