JP6783569B2 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP6783569B2
JP6783569B2 JP2016134024A JP2016134024A JP6783569B2 JP 6783569 B2 JP6783569 B2 JP 6783569B2 JP 2016134024 A JP2016134024 A JP 2016134024A JP 2016134024 A JP2016134024 A JP 2016134024A JP 6783569 B2 JP6783569 B2 JP 6783569B2
Authority
JP
Japan
Prior art keywords
layer
substrate
optical
optical element
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016134024A
Other languages
Japanese (ja)
Other versions
JP2018006638A (en
Inventor
亮 中尾
亮 中尾
硴塚 孝明
孝明 硴塚
松尾 慎治
慎治 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016134024A priority Critical patent/JP6783569B2/en
Publication of JP2018006638A publication Critical patent/JP2018006638A/en
Application granted granted Critical
Publication of JP6783569B2 publication Critical patent/JP6783569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光送信器用光源などに利用される光半導体素子に関する。 The present invention relates to an optical semiconductor device used as a light source for an optical transmitter or the like.

半導体素子は、小型低消費電力な素子として広く普及している。特に、シリコン(Si)基板上に形成される電子素子は、エレクトロニクスを支える非常に重要な素子である。一方で、Siは間接遷移型の半導体であるため、直接遷移型の半導体に比べて発光効率が低い。このため、発光素子をはじめとする光素子の多くは、直接遷移型の化合物半導体により作製される。 Semiconductor devices are widely used as compact, low power consumption devices. In particular, an electronic element formed on a silicon (Si) substrate is a very important element that supports electronics. On the other hand, since Si is an indirect transition type semiconductor, its luminous efficiency is lower than that of a direct transition type semiconductor. For this reason, most optical devices such as light emitting devices are made of direct transition type compound semiconductors.

光通信用の光素子としては、直接遷移型の半導体基板としてInP基板が多く用いられる。しかしながら、InP基板は、Si基板に比べて大口径の基板作製が困難で基板が高価であり、またSi基板上で行われるCMOS作製プロセスに比べ加工精度や加工コストが劣る。 As an optical element for optical communication, an InP substrate is often used as a direct transition type semiconductor substrate. However, the InP substrate is more difficult to fabricate with a large diameter than the Si substrate, the substrate is expensive, and the processing accuracy and processing cost are inferior to the CMOS fabrication process performed on the Si substrate.

上記の問題を解決するため、近年ではSi基板上へ化合物光半導体素子を集積する技術が開発されてきている(非特許文献1,非特許文献2,非特許文献3参照)。特に、CMOS互換プロセスで光素子を作製し、製造コストを削減するためには、平面的に電極構造が作製され、基板面内方向に電流を注入するSi基板に貼り付けられた薄膜型の光素子が有望である(非特許文献2,非特許文献3)。 In order to solve the above problems, a technique for integrating a compound optical semiconductor device on a Si substrate has been developed in recent years (see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). In particular, in order to manufacture an optical element by a CMOS compatible process and reduce the manufacturing cost, a thin film type light is manufactured on a planar electrode structure and attached to a Si substrate that injects an electric current in the in-plane direction of the substrate. The device is promising (Non-Patent Document 2, Non-Patent Document 3).

A. Y. Liu et al., "High performance continuous wave 1.3m quantum dot lasers on silicon", Applied Physics Letters, vol.104, no.4, 041104, 2014.A. Y. Liu et al., "High performance continuous wave 1.3m quantum dot lasers on silicon", Applied Physics Letters, vol.104, no.4, 041104, 2014. T. Fujii et al., "Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon", IET Optoelectron., vol.9, no.4, pp.151-157, 2015.T. Fujii et al., "Epitaxial growth of InP to bury directly bonded thin active layer on SiO2 / Si substrate for epitaxial distributed feedback lasers on silicon", IET Optoelectron., Vol.9, no.4, pp.151-157 , 2015. T. Shindo et al., "Lateral-Current-Injection Type Membrane DFB Laser With Surface Grating", IEEE Photonics Technology Letters, vol.25, no.13, pp.1282-1285, 2013.T. Shindo et al., "Lateral-Current-Injection Type Membrane DFB Laser With Surface Grating", IEEE Photonics Technology Letters, vol.25, no.13, pp.1282-1285, 2013.

ところで、上述した光素子は、SiとInP系半導体との間の屈折率差の関係から、光素子をSi基板上に直接貼り付けた場合、Si基板側に大きく光が漏れ出し、素子として機能しない問題がある。このため、これらの技術では、Si基板の上にSiO2やベンゾシクロブテンなどの材料による層を挿入してSi基板から光素子を離間させ、光閉じ込めを確保することが行われている。 By the way, due to the difference in refractive index between Si and the InP semiconductor, the above-mentioned optical element functions as an element because when the optical element is directly attached to the Si substrate, light leaks to the Si substrate side. There is a problem that does not occur. For this reason, in these techniques, a layer made of a material such as SiO 2 or benzocyclobutene is inserted on the Si substrate to separate the optical element from the Si substrate, and light confinement is ensured.

しかし、このようなSiO2やベンゾシクロブテンなどの材料による層は、大きな熱抵抗率を有するために放熱効率が悪く、光素子の高電流注入動作領域においては、発熱により素子特性が大きく劣化するという問題があった。このため、光閉じ込めと高い放熱を両立する構造はこれまでに実現されていなかった。 However, such a layer made of a material such as SiO 2 or benzocyclobutene has a large thermal resistance, so that the heat dissipation efficiency is poor, and in the high current injection operation region of the optical device, the element characteristics are greatly deteriorated due to heat generation. There was a problem. For this reason, a structure that achieves both light confinement and high heat dissipation has not been realized so far.

本発明は、以上のような問題点を解消するためになされたものであり、Si基板上に配置されたIII−V族化合物半導体からなる光素子における光閉じ込めおよび高い放熱が両立できるようにすることを目的とする。 The present invention has been made to solve the above problems, and makes it possible to achieve both light confinement and high heat dissipation in an optical element made of a III-V compound semiconductor arranged on a Si substrate. The purpose is.

本発明に係る光半導体素子は、シリコンからなる基板と、基板の上に形成されたIII−V族化合物半導体からなる光導波路型の光素子と、光素子と基板との間に形成されて光素子を構成するコアより屈折率が低く、かつ熱伝導率が絶縁体より大きい中間層とを備え、コアは、コア層とコア層に埋め込まれた活性層とを有し、光素子は、活性層が形成されている部分において、基板面内方向にコア層を挟む状態に配置されたp型半導体層およびn型半導体層を有し、中間層は、光素子を導波する光のモードが基板にかからない厚さとされ、絶縁体は、酸化シリコン,窒化シリコン,ベンゾシクロブテンのいずれかである。 The optical semiconductor device according to the present invention is an optical waveguide type optical element made of a substrate made of silicon, a group III-V compound semiconductor formed on the substrate, and light formed between the optical element and the substrate. The core includes an intermediate layer having a refractive index lower than that of the core constituting the device and a thermal conductivity higher than that of the insulator, the core has a core layer and an active layer embedded in the core layer, and the optical device is active. In the portion where the layer is formed, it has a p-type semiconductor layer and an n-type semiconductor layer arranged so as to sandwich the core layer in the in-plane direction of the substrate, and the intermediate layer has a mode of light that waveguides an optical element. is a thickness not overlap the substrate, insulator, silicon oxide, silicon nitride, Ru der either benzocyclobutene.

上記光半導体素子において、中間層は、GaPx1-x(0<x≦1)またはAlPx1-x(0<x≦1)から構成されていればよい。 In the above-mentioned optical semiconductor device, the intermediate layer may be composed of GaP x N 1-x (0 <x ≦ 1) or AlP x N 1-x (0 <x ≦ 1).

上記光半導体素子において、中間層と光素子との間に形成された絶縁層を備え、絶縁層は、光素子が中間層に接して形成されている場合に比較して光素子から基板への熱伝導が変化しない範囲の厚さとされていてもよい。絶縁層は、酸化シリコンから構成され、厚さが100nm以下とされていればよい。 The optical semiconductor device includes an insulating layer formed between the intermediate layer and the optical element, and the insulating layer is from the optical element to the substrate as compared with the case where the optical element is formed in contact with the intermediate layer. The thickness may be set so that the heat conduction does not change. The insulating layer may be made of silicon oxide and have a thickness of 100 nm or less.

以上説明したように、本発明によれば、光素子と基板との間に形成されて光素子を構成するコアより屈折率が低く、かつ熱伝導率が絶縁体より大きい中間層とを備えるようにしたので、Si基板上に配置されたIII−V族化合物半導体からなる光素子における光閉じ込めおよび高い放熱が両立できるという優れた効果が得られる。 As described above, according to the present invention, an intermediate layer having a refractive index lower than that of the core formed between the optical element and the substrate and constituting the optical element and having a thermal conductivity larger than that of the insulator is provided. Therefore, it is possible to obtain an excellent effect that both light confinement and high heat dissipation can be achieved in the optical element made of the III-V compound semiconductor arranged on the Si substrate.

図1は、本発明の実施の形態における光半導体素子の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of an optical semiconductor device according to an embodiment of the present invention. 図2は、本発明の実施の形態における光半導体素子のより詳細な構成を示す斜視図である。FIG. 2 is a perspective view showing a more detailed configuration of the optical semiconductor device according to the embodiment of the present invention. 図3Aは、基板201の上に、厚さ2μmのGaPからなる中間層202を配置し、中間層202の上に、厚さ0.301μmのInPからなるコア層204を配置し、コア層204の中に、幅1μmの活性層203を配置した実施例1構成を示す構成図である。In FIG. 3A, an intermediate layer 202 made of GaP having a thickness of 2 μm is arranged on the substrate 201, and a core layer 204 made of InP having a thickness of 0.301 μm is arranged on the intermediate layer 202. It is a block diagram which shows the structure of Example 1 which arranged the active layer 203 of width 1 μm in. 図3Bは、基板201の上に、厚さ0.301μmのInPからなるコア層204を配置し、コア層204の中に、幅1μmの活性層203を配置した比較例1の構成を示す構成図である。FIG. 3B shows the configuration of Comparative Example 1 in which the core layer 204 made of InP having a thickness of 0.301 μm is arranged on the substrate 201, and the active layer 203 having a width of 1 μm is arranged in the core layer 204. It is a figure. 図3Cは、基板201の上に、厚さ1μmのSiO2からなる中間層202aを配置し、中間層202aの上に、厚さ0.301μmのInPからなるコア層204を配置し、コア層204の中に、幅1μmの活性層203を配置した比較例2の構成を示す構成図である。In FIG. 3C, an intermediate layer 202a made of SiO 2 having a thickness of 1 μm is arranged on the substrate 201, and a core layer 204 made of InP having a thickness of 0.301 μm is arranged on the intermediate layer 202a. It is a block diagram which shows the structure of the comparative example 2 which arranged the active layer 203 of the width 1 μm in 204. 図4は、比較例1の光強度の分布(a)および温度分布(b)のシミュレーション結果を示す説明図である。FIG. 4 is an explanatory diagram showing simulation results of the light intensity distribution (a) and the temperature distribution (b) of Comparative Example 1. 図5は、比較例2の光強度の分布(a)および温度分布(b)のシミュレーション結果を示す説明図である。FIG. 5 is an explanatory diagram showing simulation results of the light intensity distribution (a) and the temperature distribution (b) of Comparative Example 2. 図6は、実施例1の光強度の分布(a)および温度分布(b)のシミュレーション結果を示す説明図である。FIG. 6 is an explanatory diagram showing simulation results of the light intensity distribution (a) and the temperature distribution (b) of Example 1. 図7は、絶縁層の厚さと活性層における温度上昇との関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the thickness of the insulating layer and the temperature rise in the active layer.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における光半導体素子の構成を示す構成図である。この光半導体素子は、シリコン(Si)からなる基板101と、基板101の上に形成された光導波路型の光素子102と、光素子102と基板101との間に形成された中間層103とを備える。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a configuration of an optical semiconductor device according to an embodiment of the present invention. This optical semiconductor element includes a substrate 101 made of silicon (Si), an optical waveguide type optical element 102 formed on the substrate 101, and an intermediate layer 103 formed between the optical element 102 and the substrate 101. To be equipped.

光素子102は、III−V族化合物半導体から構成されている。中間層103は、光素子102を構成するコアより屈折率が低く、かつ熱伝導率が、酸化シリコン,窒化シリコン,ベンゾシクロブテンなどの絶縁材料(絶縁体)より大きい材料から構成されている。また、中間層103は、光素子102を導波する光のモードが基板101にかからない厚さとされている。光素子102を導波する光もモードが、基板101にかからない状態に、中間層103の層厚が設定されていればよい。 The optical element 102 is composed of a group III-V compound semiconductor. The intermediate layer 103 is made of a material having a refractive index lower than that of the core constituting the optical element 102 and having a thermal conductivity higher than that of an insulating material (insulator) such as silicon oxide, silicon nitride, or benzocyclobutene. Further, the thickness of the intermediate layer 103 is set so that the mode of light guided through the optical element 102 does not affect the substrate 101. The layer thickness of the intermediate layer 103 may be set so that the mode of the light guided through the optical element 102 does not affect the substrate 101.

中間層103は、例えば、単結晶シリコンからなる基板101の上に、直接エピタキシャル成長させることが可能なIII−V族化合物半導体から構成されているとよい。このような材料として、例えば、GaPx1-x(0<x≦1)またはAlPx1-x(0<x≦1)がある。これらの材料は、単結晶シリコンと格子定数がほぼ一致している(擬似格子整合している)。言い換えると、中間層103は、基板101に擬似格子整合または格子整合する材料から構成すればよい。特に、GaPは、単結晶シリコンとの間の格子定数差が0.35%と小さく、中間層103の材料として好適である。 The intermediate layer 103 may be composed of, for example, a group III-V compound semiconductor capable of being directly epitaxially grown on a substrate 101 made of single crystal silicon. Such materials include, for example, GaP x N 1-x (0 <x ≦ 1) or AlP x N 1-x (0 <x ≦ 1). These materials have almost the same lattice constant as single crystal silicon (pseudo-lattice matching). In other words, the intermediate layer 103 may be made of a material that is pseudo-lattice-matched or lattice-matched to the substrate 101. In particular, GaP has a small lattice constant difference of 0.35% from that of single crystal silicon, and is suitable as a material for the intermediate layer 103.

光半導体素子は、例えば、図2に示すような素子である。この素子は、シリコンからなる基板201の上に、GaPから構成された中間層202を備える。また、中間層202の上に、例えばInGaAsPなどのIII−V族化合物半導体からなる多重量子井戸構造の活性層203を備えている。活性層203は、例えば、InPなどのIII−V族化合物半導体からなるコア層204に埋め込まれている。 The optical semiconductor device is, for example, an element as shown in FIG. This element includes an intermediate layer 202 made of GaP on a substrate 201 made of silicon. Further, on the intermediate layer 202, an active layer 203 having a multiple quantum well structure made of a III-V compound semiconductor such as InGaAsP is provided. The active layer 203 is embedded in a core layer 204 made of a III-V compound semiconductor such as InP.

また、活性層203が形成されている部分においては、コア層204を挟む状態に、InPなどのIII−V族化合物半導体からなるp型半導体層205およびn型半導体層206が形成されている。また、p型半導体層205の上には、p型電極207が形成され、n型半導体層206の上には、n型電極208が形成されている。各電極は、コンタクト層(不図示)を介して形成されている。 Further, in the portion where the active layer 203 is formed, the p-type semiconductor layer 205 and the n-type semiconductor layer 206 made of a III-V compound semiconductor such as InP are formed so as to sandwich the core layer 204. Further, a p-type electrode 207 is formed on the p-type semiconductor layer 205, and an n-type electrode 208 is formed on the n-type semiconductor layer 206. Each electrode is formed via a contact layer (not shown).

例えば、まず、高抵抗InP基板などの半導体基板の上に、活性層203、コア層204、p型半導体層205およびn型半導体層206などの素子部を形成する。一方で、基板201の上に、GaPを直接成長することで中間層202を形成する。なお、直接成長に限らず、他の方法で中間層202を形成してもよい。次に、素子部と中間層202とを貼り合わせ、この後、素子部から半導体基板を除去する。次に、上述した各電極を形成すれば、光半導体素子が得られる。このような光半導体素子において、活性層203、コア層204より屈折率が低い材料から中間層202が構成されていればよい。また、中間層202は、酸化シリコン,窒化シリコン,ベンゾシクロブテンなどの絶縁材料より熱伝導率が大きい材料から構成されていればよい。 For example, first, element portions such as an active layer 203, a core layer 204, a p-type semiconductor layer 205, and an n-type semiconductor layer 206 are formed on a semiconductor substrate such as a high-resistance InP substrate. On the other hand, the intermediate layer 202 is formed by directly growing GaP on the substrate 201. The intermediate layer 202 may be formed by another method, not limited to direct growth. Next, the element portion and the intermediate layer 202 are bonded together, and then the semiconductor substrate is removed from the element portion. Next, if each of the electrodes described above is formed, an optical semiconductor device can be obtained. In such an optical semiconductor device, the intermediate layer 202 may be composed of a material having a refractive index lower than that of the active layer 203 and the core layer 204. Further, the intermediate layer 202 may be made of a material having a higher thermal conductivity than an insulating material such as silicon oxide, silicon nitride, or benzocyclobutene.

図2を用いて説明した光半導体素子について解析して効果を検証した。効果の検証では、実施例1として、図3Aに示すように、基板201の上に、厚さ2μmのGaPからなる中間層202を配置し、中間層202の上に、厚さ0.301μmのInPからなるコア層204を配置し、コア層204の中に、幅1μmの活性層203を配置した。また、比較例1として、図3Bに示すように、中間層を設けずに、基板201の上にコア層204を直接配置した。また、比較例2として、図3Cに示すように、厚さ1μmのSiO2からなる中間層202aを配置した。 The effect was verified by analyzing the optical semiconductor device described with reference to FIG. In the verification of the effect, as the first embodiment, as shown in FIG. 3A, an intermediate layer 202 made of GaP having a thickness of 2 μm is arranged on the substrate 201, and an intermediate layer 202 having a thickness of 0.301 μm is placed on the intermediate layer 202. A core layer 204 made of InP was arranged, and an active layer 203 having a width of 1 μm was arranged in the core layer 204. Further, as Comparative Example 1, as shown in FIG. 3B, the core layer 204 was directly arranged on the substrate 201 without providing the intermediate layer. Further, as Comparative Example 2, as shown in FIG. 3C, an intermediate layer 202a made of SiO 2 having a thickness of 1 μm was arranged.

また、効果検証では、光強度の分布、および活性層203の片側直横に0.5W/μm3の熱源が配置された場合の温度分布をシミュレーションした。 In the effect verification, the distribution of light intensity and the temperature distribution when a heat source of 0.5 W / μm 3 was arranged immediately beside one side of the active layer 203 were simulated.

なお、InPの熱伝導率は62×10-16W/m、波長1.3μmにおける屈折率は3.1679である。Siの熱伝導率は130×10-16W/m、波長1.3μmにおける屈折率は3.5016である。GaPの熱伝導率は101×10-16W/m、波長1.3μmにおける屈折率は3.0745である。活性層203における熱伝導率は4×10-16W/m、波長1.3μmにおける屈折率は3.4ある。酸化シリコンの熱伝導率は1×10-16W/m、波長1.3μmにおける屈折率は1.4469ある。空気の熱伝導率は0.024×10-16W/m、波長1.3μmにおける屈折率は1である。 The thermal conductivity of InP is 62 × 10 -16 W / m, and the refractive index at a wavelength of 1.3 μm is 3.1679. The thermal conductivity of Si is 130 × 10 -16 W / m, and the refractive index at a wavelength of 1.3 μm is 3.5016. The thermal conductivity of GaP is 101 × 10 -16 W / m, and the refractive index at a wavelength of 1.3 μm is 3.0745. The thermal conductivity of the active layer 203 is 4 × 10 -16 W / m, and the refractive index at a wavelength of 1.3 μm is 3.4. Silicon oxide has a thermal conductivity of 1 × 10 -16 W / m and a refractive index of 1.4469 at a wavelength of 1.3 μm. The thermal conductivity of air is 0.024 × 10 -16 W / m, and the refractive index at a wavelength of 1.3 μm is 1.

まず、図4に、比較例1の結果を示す。図4の(a)に示すように、光は基板201の側へ漏れ出し、活性層203に光を閉じ込めることができていない。なお、図4の(b)に示すように、温度上昇は11K程度と比較的小さい。 First, FIG. 4 shows the results of Comparative Example 1. As shown in FIG. 4A, the light leaks to the side of the substrate 201, and the light cannot be confined in the active layer 203. As shown in FIG. 4B, the temperature rise is relatively small, about 11K.

次に、図5に、比較例2の結果を示す。図5の(a)に示すように、光は、活性層203に強く閉じ込められている。一方、図5の(b)に示すように、温度上昇がおよそ47Kと非常に大きくなってしまう。 Next, FIG. 5 shows the results of Comparative Example 2. As shown in FIG. 5A, the light is strongly confined in the active layer 203. On the other hand, as shown in FIG. 5B, the temperature rise becomes very large, about 47K.

次に、図6に、実施例1の結果を示す。図6の(a)に示すように、光は、活性層203に強く閉じ込められている。加えて、図6の(b)に示すように、温度上昇もおよそ12Kと、比較例1の場合と遜色が無い。 Next, FIG. 6 shows the results of Example 1. As shown in FIG. 6A, the light is strongly confined in the active layer 203. In addition, as shown in FIG. 6B, the temperature rise is about 12K, which is comparable to that of Comparative Example 1.

上述したように、本発明の実施の形態によれば、Si基板上に配置されたIII−V族化合物半導体からなる光素子における光閉じ込めおよび高い放熱が両立できるようになる。 As described above, according to the embodiment of the present invention, both light confinement and high heat dissipation in an optical element made of a III-V compound semiconductor arranged on a Si substrate can be achieved.

ところで、前述したように、光半導体素子の作製において、活性層203、コア層204、p型半導体層205およびn型半導体層206などの素子部を中間層202に貼り付ける場合、これらの間に絶縁層を備えるようにしてもよい。例えば、SiO2からなる絶縁層を貼り付けそうとして用いることで、接着性を向上させることができる。 By the way, as described above, in the production of an optical semiconductor device, when element portions such as an active layer 203, a core layer 204, a p-type semiconductor layer 205 and an n-type semiconductor layer 206 are attached to an intermediate layer 202, they are sandwiched between them. An insulating layer may be provided. For example, the adhesiveness can be improved by using an insulating layer made of SiO 2 for sticking.

ただし、絶縁層は、光素子が中間層に接して形成されている場合に比較して光素子から基板への熱伝導が変化しない範囲の厚さとされていることが重要である。例えば、SiO2から絶縁層を構成した場合、図7に示すように、絶縁層の厚さが100nmを越えると、絶縁層を用いない場合に比較し、温度上昇が2倍以上となる。このため、放熱性を悪化させないためには、SiO2からなる絶縁層を介して貼り付ける場合、絶縁層の厚さは100nm以下であることが望ましい。 However, it is important that the insulating layer has a thickness within a range in which the heat conduction from the optical element to the substrate does not change as compared with the case where the optical element is formed in contact with the intermediate layer. For example, when the insulating layer is made of SiO 2 , when the thickness of the insulating layer exceeds 100 nm, the temperature rise is more than doubled as compared with the case where the insulating layer is not used, as shown in FIG. Therefore, in order not to deteriorate the heat dissipation property, it is desirable that the thickness of the insulating layer is 100 nm or less when it is attached via the insulating layer made of SiO 2 .

上述では、SiO2の熱伝導率を1×10-6K/mと仮定しており、SiO2からなる絶縁層の厚さを熱伝導率で割った値が100×10-32/K以下であれば、放熱性が確保されることを意味する。従って、SiO2以外の材料から絶縁層を構成する場合においても、絶縁層の厚さを熱伝導率で割った値が100×10-32/K以下とすることが重要である。 In the above, the thermal conductivity of SiO 2 is assumed to be 1 × 10 -6 K / m, and the value obtained by dividing the thickness of the insulating layer made of SiO 2 by the thermal conductivity is 100 × 10 -3 m 2 /. If it is K or less, it means that heat dissipation is ensured. Therefore, even when the insulating layer is composed of a material other than SiO 2 , it is important that the value obtained by dividing the thickness of the insulating layer by the thermal conductivity is 100 × 10 -3 m 2 / K or less.

なお、上述では、中間層をGaPから構成する場合を例に説明したが、これに限るものではなく、単結晶Siと完全に格子整合するGaPNなどをはじめ、他の材料から中間層を構成してもよい。 In the above description, the case where the intermediate layer is composed of GaP has been described as an example, but the present invention is not limited to this, and the intermediate layer is composed of other materials such as GaPN which is completely lattice-matched with the single crystal Si. You may.

以上に説明したように、本発明によれば、シリコンからなる基板の上に、光素子を構成するコアより屈折率が低くかつ熱伝導率が絶縁体より大きい中間層を介して光導波路型の光素子を配置したので、Si基板上に配置されたIII−V族化合物半導体からなる光素子における光閉じ込めおよび高い放熱が両立できるようになる。 As described above, according to the present invention, an optical waveguide type is provided on a substrate made of silicon via an intermediate layer having a lower refractive index than a core constituting an optical element and a higher thermal conductivity than an insulator. Since the optical element is arranged, it becomes possible to achieve both light confinement and high heat dissipation in the optical element made of the III-V compound semiconductor arranged on the Si substrate.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、各層の厚さや活性層の断面寸法などは上述した数値に限るものではない。 The present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear. For example, the thickness of each layer and the cross-sectional dimensions of the active layer are not limited to the above-mentioned numerical values.

101…基板、102…光素子、103…中間層。 101 ... substrate, 102 ... optical element, 103 ... intermediate layer.

Claims (4)

シリコンからなる基板と、
前記基板の上に形成されたIII−V族化合物半導体からなる光導波路型の光素子と、
前記光素子と前記基板との間に形成されて前記光素子を構成するコアより屈折率が低く、かつ熱伝導率が絶縁体より大きい中間層と
を備え、
前記コアは、コア層と前記コア層に埋め込まれた活性層とを有し、
前記光素子は、前記活性層が形成されている部分において、基板面内方向に前記コア層を挟む状態に配置されたp型半導体層およびn型半導体層を有し、
前記中間層は、前記光素子を導波する光のモードが前記基板にかからない厚さとされ
前記絶縁体は、酸化シリコン,窒化シリコン,ベンゾシクロブテンのいずれかであ
ことを特徴とする光半導体素子。
A substrate made of silicon and
An optical waveguide type optical element made of a III-V compound semiconductor formed on the substrate,
It is provided with an intermediate layer formed between the optical element and the substrate, which has a lower refractive index than the core constituting the optical element and has a higher thermal conductivity than the insulator.
The core has a core layer and an active layer embedded in the core layer.
The optical element has a p-type semiconductor layer and an n-type semiconductor layer arranged so as to sandwich the core layer in the in-plane direction of the substrate in a portion where the active layer is formed.
The intermediate layer has a thickness such that the mode of light that guides the optical element does not cover the substrate .
The insulator is silicon oxide, silicon nitride, an optical semiconductor element characterized by Ru der either benzocyclobutene.
請求項1記載の光半導体素子において、
前記中間層は、GaPx1-x(0<x≦1)またはAlPx1-x(0<x≦1)から構成されていることを特徴とする光半導体素子。
In the optical semiconductor device according to claim 1,
The optical semiconductor device is characterized in that the intermediate layer is composed of GaP x N 1-x (0 <x ≦ 1) or AlP x N 1-x (0 <x ≦ 1).
請求項1または2記載の光半導体素子において、
前記中間層と前記光素子との間に形成された絶縁層を備え、
前記絶縁層は、前記光素子が前記中間層に接して形成されている場合に比較して前記光素子から前記基板への熱伝導が変化しない範囲の厚さとされている
ことを特徴とする光半導体素子。
In the optical semiconductor device according to claim 1 or 2.
An insulating layer formed between the intermediate layer and the optical element is provided.
The insulating layer is characterized by having a thickness within a range in which the heat conduction from the optical element to the substrate does not change as compared with the case where the optical element is formed in contact with the intermediate layer. Semiconductor element.
請求項3記載の光半導体素子において、
前記絶縁層は、酸化シリコンから構成され、厚さが100nm以下とされていることを特徴とする光半導体素子。
In the optical semiconductor device according to claim 3,
The insulating layer is an optical semiconductor device characterized in that it is made of silicon oxide and has a thickness of 100 nm or less.
JP2016134024A 2016-07-06 2016-07-06 Optical semiconductor device Active JP6783569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016134024A JP6783569B2 (en) 2016-07-06 2016-07-06 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016134024A JP6783569B2 (en) 2016-07-06 2016-07-06 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2018006638A JP2018006638A (en) 2018-01-11
JP6783569B2 true JP6783569B2 (en) 2020-11-11

Family

ID=60949565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016134024A Active JP6783569B2 (en) 2016-07-06 2016-07-06 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP6783569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409137B1 (en) 2017-12-05 2022-06-16 다이니폰 인사츠 가부시키가이샤 Thermal transfer printer and thermal transfer sheet
JPWO2023276106A1 (en) * 2021-07-01 2023-01-05

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144983A (en) * 1988-11-25 1990-06-04 Agency Of Ind Science & Technol Semiconductor laser device with a plurality of active layers
JP4045639B2 (en) * 1997-10-24 2008-02-13 住友電気工業株式会社 Semiconductor laser and semiconductor light emitting device
US8559478B2 (en) * 2008-01-18 2013-10-15 The Regents Of The University Of California Hybrid silicon laser-quantum well intermixing wafer bonded integration platform for advanced photonic circuits with electroabsorption modulators
JP2011040632A (en) * 2009-08-13 2011-02-24 Sumitomo Electric Ind Ltd Semiconductor optical element
JP6267584B2 (en) * 2014-05-16 2018-01-24 日本電信電話株式会社 Semiconductor optical device

Also Published As

Publication number Publication date
JP2018006638A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
Van Campenhout et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks
JP2009212521A (en) Semiconductor laser with improved heat dissipation
JP2013149665A (en) Quantum cascade semiconductor laser
Sui et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array
CN110535033B (en) Surface emitting laser device of electro-excited photonic crystal
US11276988B2 (en) Semiconductor optical device
JPWO2013088490A1 (en) Semiconductor optical device
JP6783569B2 (en) Optical semiconductor device
JP2016072302A (en) Quantum cascade semiconductor laser
CN109586159B (en) On-chip integrated semiconductor laser structure and preparation method thereof
JP2018041957A (en) Photoelectric conversion device and method of controlling operation wavelength of the same
JP6588837B2 (en) Semiconductor optical device
US20140355634A1 (en) Quantum cascade laser
JP5918611B2 (en) Optical semiconductor device
Fan et al. Design of room temperature electrically pumped visible semiconductor nanolasers
JP6832936B2 (en) Light modulator
US20230139692A1 (en) Semiconductor Optical Device
JP6737158B2 (en) Quantum cascade semiconductor laser
JP2013182976A (en) Buried type optical semiconductor element
Hong et al. Characteristics improvement of surface-emitting distributed feedback lasers with ITO claddings
US20230009186A1 (en) Optical Device
JP6622152B2 (en) Optical element
Yeh et al. Defect‐Engineered Electrically‐Injected Germanium‐on‐Insulator Waveguide Light Emitters at Telecom Wavelengths
JP7147152B2 (en) semiconductor optical device
Takeda et al. Reduction of Cavity Length in λ-scale Embedded Active-region Photonic Crystal (LEAP) Lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150