JP6781370B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP6781370B2
JP6781370B2 JP2016115698A JP2016115698A JP6781370B2 JP 6781370 B2 JP6781370 B2 JP 6781370B2 JP 2016115698 A JP2016115698 A JP 2016115698A JP 2016115698 A JP2016115698 A JP 2016115698A JP 6781370 B2 JP6781370 B2 JP 6781370B2
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetic
side member
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016115698A
Other languages
Japanese (ja)
Other versions
JP2017221065A (en
Inventor
瞬也 渡邉
瞬也 渡邉
守 小▲崎▼
守 小▲崎▼
信雄 有賀
信雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2016115698A priority Critical patent/JP6781370B2/en
Publication of JP2017221065A publication Critical patent/JP2017221065A/en
Application granted granted Critical
Publication of JP6781370B2 publication Critical patent/JP6781370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、コギングトルクに善処したモータに関するものである。 The present invention relates to a motor that has been subjected to cogging torque.

例えば、この種のモータとして特許文献1には、進行方向に沿って等間隔に歯部が形成された二次側部材と、この二次側部材の進行方向に対して自在に移動できるように配置された一次側部材と、この一次側部材に磁束を発生させるべく磁極部に巻装されたコイルとによって構成されたリニアモータが示されている。そして、一次側部材の磁極部と二次側部材の歯部との間に形成された各空隙に順次磁束を発生させることにより、一次側部材を二次側部材に対して相対移動させるようになっている。さらに、大きな推力を得るべく、一次側部材の各磁極部を複数の磁極から構成し、それぞれの磁極の各間隙に互いに逆極性となるように永久磁石を挿入している。磁極部は磁極と永久磁石とによって構成されている。 For example, as a motor of this type, Patent Document 1 states that a secondary side member having teeth formed at equal intervals along the traveling direction and a secondary side member that can freely move with respect to the traveling direction of the secondary side member. A linear motor composed of an arranged primary side member and a coil wound around a magnetic pole portion to generate a magnetic flux in the primary side member is shown. Then, by sequentially generating magnetic flux in each gap formed between the magnetic pole portion of the primary side member and the tooth portion of the secondary side member, the primary side member is moved relative to the secondary side member. It has become. Further, in order to obtain a large thrust, each magnetic pole portion of the primary side member is composed of a plurality of magnetic poles, and permanent magnets are inserted in the gaps of the respective magnetic poles so as to have opposite polarities. The magnetic pole portion is composed of a magnetic pole and a permanent magnet.

図20は、磁極部分の構成図である。進行方向に沿って磁性体の二次側部材1に均等に歯部1aが形成されている。一方、二次側部材1に対して所定のギャップ2を隔てた対向位置に一次側部材13が配置されている。一次側部材13は磁極部13a、磁極部13b、磁極部13cをヨーク13dで繋いでE字型に構成され、それぞれの磁極部13a,13b,13cには等間隔で磁極10が形成され、各空隙には隣り合う極性が逆極性となるように永久磁石14が挿入されている。また、磁極部13aにはコイル15aが巻装され、磁極部13bにはコイル15bが巻装され、磁極部13cにはコイル15cが巻装されている。 FIG. 20 is a block diagram of the magnetic pole portion. The tooth portions 1a are evenly formed on the secondary side member 1 of the magnetic material along the traveling direction. On the other hand, the primary side member 13 is arranged at a position facing the secondary side member 1 with a predetermined gap 2 in between. The primary side member 13 is formed in an E shape by connecting the magnetic pole portions 13a, the magnetic pole portions 13b, and the magnetic pole portions 13c with a yoke 13d, and the magnetic poles 10 are formed at equal intervals in the respective magnetic pole portions 13a, 13b, and 13c. A permanent magnet 14 is inserted in the gap so that adjacent polarities have opposite polarities. Further, a coil 15a is wound around the magnetic pole portion 13a, a coil 15b is wound around the magnetic pole portion 13b, and a coil 15c is wound around the magnetic pole portion 13c.

特開2006−109639号公報Japanese Unexamined Patent Publication No. 2006-109639

しかしながら、かかる構成において、磁極部13a−13b間、13b−13c間に着目すると、図21に示すように、隣り合う相の磁極10、10間に亘って磁束Hが漏れる経路が存在する。これに対して、左右の相における磁極部13a、13cの外側端の磁極10は隣り合う磁極部への漏れ磁束がなく、図22に示すように磁極面から二次側へ流れる磁束がより多くなる。 However, in such a configuration, focusing on the magnetic pole portions 13a-13b and 13b-13c, as shown in FIG. 21, there is a path through which the magnetic flux H leaks between the magnetic poles 10 and 10 of the adjacent phases. On the other hand, the magnetic poles 10 at the outer ends of the magnetic pole portions 13a and 13c in the left and right phases do not have leakage flux to the adjacent magnetic pole portions, and as shown in FIG. 22, the magnetic flux flowing from the magnetic pole surface to the secondary side is larger. Become.

これにより、一次側部材13の内、両端の磁極部3a、3bの外側端のみ二次側へ鎖交する磁束が増加するため、磁束のアンバランスが発生してコギングが増加することが新たに明らかとなった。 As a result, the magnetic flux interlinking to the secondary side only at the outer ends of the magnetic pole portions 3a and 3b at both ends of the primary side member 13 increases, so that an imbalance of the magnetic flux occurs and cogging increases. It became clear.

そこで、このような課題を解決するうえで、例えば特許文献2(特許第5418556号公報)に示すものを参照する。同文献は課題として、永久磁石を一次側部材である可動子側に配置した従来のリニアモータでは、可動子を二次側部材である固定子に沿って移動させる際に、推力変動の要因となるコギングや推力リップルが発生し、リニアモータの円滑な駆動が阻害される点を挙げている。そして、進行方向に沿って所定の間隔で歯部が形成された固定子と、前記固定子に対向して配置される可動子とを備え、可動子は、直線状に配列された複数の磁極のそれぞれにコイルが巻装され、異なる極性の主極磁石が磁極の配列方向に沿って交互に配列されて主極磁石列を構成したリニアモータに対して、主極磁石列の一端または両端に補極磁石を配置することとし、当該補極磁石は、磁極の配列方向において、複数の磁極のそれぞれに巻装されたコイルより可動子の端側に配置し、端部(後端部)での磁束密度の偏りを低減する旨を記している。 Therefore, in order to solve such a problem, for example, those shown in Patent Document 2 (Patent No. 5418556) are referred to. As an issue in this document, in a conventional linear motor in which a permanent magnet is arranged on the mover side which is a primary side member, when the mover is moved along a stator which is a secondary side member, it is a factor of thrust fluctuation. It is pointed out that the smooth driving of the linear motor is hindered due to the occurrence of cogging and thrust ripple. Then, a stator having teeth formed at predetermined intervals along the traveling direction and a mover arranged so as to face the stator are provided, and the mover has a plurality of magnetic poles arranged in a linear shape. A coil is wound around each of the main pole magnets, and main pole magnets of different polarities are arranged alternately along the arrangement direction of the magnetic poles to form a main pole magnet row. The auxiliary pole magnets are arranged, and the auxiliary pole magnets are arranged on the end side of the mover from the coil wound around each of the plurality of magnetic poles in the arrangement direction of the magnetic poles, and at the end portion (rear end portion). It is stated that the bias of the magnetic flux density is reduced.

すなわち、同文献のものは、両端コイルの外側に補極構造を作れば端効果により磁束密度を調整する手立てとなることを示している。 That is, the one in the same document shows that if a complementary pole structure is formed on the outside of the coils at both ends, the magnetic flux density can be adjusted by the end effect.

しかしながら、両端コイルの外側に補極磁石を設けると、その分、可動子が長くなる。このため、部品種類が増えるうえに、可動子の移動方向への大型、重量化が避けられないものとなる。しかも、端部の磁束密度をどこに準拠して変更すればよいかの基準がないために、補極をいかに構成するかについては思考錯誤を余儀なくされるおそれがある。 However, if the auxiliary pole magnets are provided on the outside of the coils at both ends, the mover becomes longer by that amount. For this reason, the number of types of parts increases, and the size and weight of the mover in the moving direction are inevitably increased. Moreover, since there is no standard as to where to change the magnetic flux density at the end, there is a risk of having to think and make mistakes about how to configure the auxiliary pole.

本発明は、以上のような問題点に鑑みてなされたものであって、コギング等の発生を一次側部材の大型重量化を招くことなく的確に解決し得る、新たな構成からなるモータを提供することを目的としている。 The present invention has been made in view of the above problems, and provides a motor having a new configuration capable of accurately solving the occurrence of cogging and the like without inviting a large weight of the primary side member. The purpose is to do.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。 The present invention has taken the following measures in order to achieve such an object.

すなわち、本発明のモータは、進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、前記各磁極が、前記二次側部材に対向する端部とは反対側の端部を当該磁極の進行方向に沿った幅よりも幅狭なブリッジを介してヨークに接続されており、前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極に接続されたブリッジのサイズと、それ以外の磁極に接続されたブリッジのサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とする。
具体的な実施の態様としては、前記磁束密度調整部が、端部に位置する磁極に接続されたブリッジのブリッジ幅又は当該ブリッジ幅と直交する方向のブリッジ長を前記相間の境界位置に存する磁極に接続されたブリッジのブリッジ幅又はブリッジ長よりも相対的に幅広又は短くすることにより構成されているものが挙げられる。
また、別の態様において、本発明のモータは、進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極のサイズと、それ以外の磁極のサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とする。
さらに別の態様において、本発明のモータは、進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極とその内側に位置する磁極との間に設けられた永久磁石のサイズと、それ以外の永久磁石のサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とする。
That is, the motor of the present invention can freely move relative to the traveling direction of the secondary side member made of a magnetic material in which tooth portions are formed at predetermined intervals along the traveling direction. A motor including an arranged primary side member, wherein each of the primary side members has a plurality of magnetic poles, and a plurality of magnetic pole portions arranged at intervals along the traveling direction, and a plurality of magnetic pole portions thereof. A plurality of permanent magnets provided along the arrangement direction of the magnetic poles of the above and sequentially arranged so as to have opposite polarities, and magnetic flux is generated in a direction intersecting the arrangement direction by being wound around each of the plurality of magnetic poles. and a coil for the coil while being wound over the one end and the other end of each of the plurality of magnetic pole portions constitute two or more different phases to said plurality of magnetic pole portions, each The magnetic pole is connected to the yoke at an end opposite to the end facing the secondary member via a bridge narrower than the width along the traveling direction of the magnetic pole, and the traveling direction end. By making the size of the bridge connected to the outer end magnetic pole, which is the magnetic pole located at one end of the magnetic pole portion located in the portion, and the size of the bridge connected to the other magnetic poles different from each other. and the magnetic flux density of the magnetic flux flowing into the secondary side member from the outer end magnetic pole, magnetic flux to substantially coincide with the magnetic flux of the magnetic flux density flowing in the secondary-side member from the magnetic pole existing in a boundary position between the phases located inside than It is characterized by providing a density adjusting unit.
As a specific embodiment, the magnetic flux density adjusting unit has a magnetic pole having a bridge width of a bridge connected to a magnetic pole located at an end or a bridge length in a direction orthogonal to the bridge width at a boundary position between the phases. Examples thereof include those configured by being wider or shorter than the bridge width or bridge length of the bridge connected to the bridge.
Further, in another aspect, the motor of the present invention can freely refer to a secondary side member made of a magnetic material in which tooth portions are formed at predetermined intervals along the traveling direction and the traveling direction of the secondary side member. A motor including a primary side member arranged so as to be able to move relative to each other, each of the primary side member having a plurality of magnetic poles, and a plurality of plurality of members arranged at intervals along the traveling direction. A magnetic pole portion, a plurality of permanent magnets provided along the arrangement direction of the magnetic pole portions and sequentially arranged so as to have opposite polarities, and wound around each of the plurality of magnetic pole portions to intersect the arrangement direction. With a coil that generates magnetic flux in the direction, the coil is wound over one end and the other end of each of the plurality of magnetic pole portions, and forms two or more different phases on the plurality of magnetic pole portions. By making the size of the outer pole, which is the magnetic pole located at one end of the magnetic pole located at the end in the traveling direction, and the size of the other magnetic poles different from each other, the outer end and the magnetic flux density of the magnetic flux flowing into the secondary side member from the magnetic pole, the phase between the magnetic flux density adjustment unit for substantially coincide with the magnetic flux density of the magnetic flux flowing in the secondary-side member from the magnetic pole existing in boundary position located inside than Is characterized by the provision of.
In still another embodiment, the motor of the present invention is freely relative to a secondary side member made of a magnetic material in which tooth portions are formed at predetermined intervals along the traveling direction and the traveling direction of the secondary side member. A motor including a primary side member arranged so as to be movable, the primary side member each having a plurality of magnetic poles, and a plurality of magnetic poles arranged at intervals along the traveling direction. A plurality of permanent magnets provided along the arrangement direction of the magnetic pole portions and sequentially arranged to have opposite polarities, and a direction in which the magnets are wound around each of the plurality of magnetic pole portions and intersect with the arrangement direction. The coil is wound around one end and the other end of each of the plurality of magnetic poles, and the plurality of magnetic poles form two or more different phases. The size of the permanent magnet provided between the outer end magnetic pole, which is the magnetic pole located at one end of the magnetic pole portion located at the end in the traveling direction, and the magnetic pole located inside the magnetic pole, and the other permanent magnets. By making the sizes of the magnets different from each other, the magnetic flux density of the magnetic flux flowing from the outer end magnetic pole to the secondary side member and the magnetic pole to the secondary side member existing at the boundary position between the phases located inside the outer end magnetic poles. characterized in that the magnetic flux density of the magnetic flux provided magnetic flux density adjuster to substantially coincide flowing into.

ここで、コイルが複数の磁極部の各々における一端および他端に亘り巻装されるとは、磁極部を構成する磁極のうち一端側の磁極と他端側の磁極を周回するようにコイルが巻装される態様のほか、磁極部を構成する各磁極ごとにそれぞれコイルが巻装される態様を含む。 Here, when the coil is wound around one end and the other end of each of the plurality of magnetic pole portions, the coil is wound so as to orbit the one end side magnetic pole and the other end side magnetic pole among the magnetic poles constituting the magnetic pole portion. In addition to the mode in which the coil is wound, the mode in which the coil is wound for each magnetic pole constituting the magnetic pole portion is included.

また、相間の境界位置に存する磁極とは、境界位置に臨む一方または他方の磁極、或いは双方の磁極を言う。 Further, the magnetic pole existing at the boundary position between the phases means one or the other magnetic pole facing the boundary position, or both magnetic poles.

このようにすれば、両端コイルの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、一次側部材を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。 In this way, since it is not necessary to newly provide the magnetic flux density adjusting portion at a position protruding to the outside of the coils at both ends, it is possible to avoid an increase in the number of parts and it is not necessary to widen the primary side member. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction.

前記磁束密度調整部を前記磁極部の一端に位置する磁極又は前記相間位置に存する磁極に設けるようにすれば、磁束密度調整部の調整基準が明確となり、コギング低減のための設計が容易となる。 If the magnetic flux density adjusting portion is provided on the magnetic pole located at one end of the magnetic pole portion or the magnetic pole located at the interphase position, the adjustment standard of the magnetic flux density adjusting portion becomes clear, and the design for reducing cogging becomes easy. ..

本発明のモータによれば、コギング等の発生を部品種類の増加や一次側部材の大型重量化を招くことなく解決した、新たな構成からなるモータを提供することができる。 According to the motor of the present invention, it is possible to provide a motor having a new configuration that solves the occurrence of cogging and the like without increasing the number of parts and increasing the weight of the primary side member.

本発明の第1実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 1st Embodiment of this invention. 図1の要部拡大図。Enlarged view of the main part of FIG. 同実施形態において発生する磁束の様子を示す図。The figure which shows the state of the magnetic flux generated in the same embodiment. 同実施形態によるコギング波形を示すグラフ。The graph which shows the cogging waveform by the same embodiment. 同モータの基本構成を説明するための斜視図。The perspective view for demonstrating the basic structure of the motor. 本発明の比較例として磁極部分が従来構造からなるモータの構成図。As a comparative example of the present invention, a configuration diagram of a motor in which the magnetic pole portion has a conventional structure. 同比較例において一次側が無限長であるときに発生する磁束の様子を示す図。The figure which shows the state of the magnetic flux generated when the primary side is infinite length in the same comparative example. 同比較例のごとく一次側が有限長であるときのコギング波形を示すグラフ。A graph showing a cogging waveform when the primary side has a finite length as in the comparative example. 同比較例によるコギング波形を示すグラフ。The graph which shows the cogging waveform by the same comparative example. 本発明の第2実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor which concerns on 7th Embodiment of this invention. 本発明の変形例を示す図。The figure which shows the modification of this invention. 本発明の他の適用例を示す図。The figure which shows the other application example of this invention. 同適用例におけるモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor in the same application example. 同適用例におけるモータの磁極部分の他の構成図。Another block diagram of the magnetic pole portion of the motor in the same application example. 従来例におけるモータの磁極部分の構成図。The block diagram of the magnetic pole part of the motor in the conventional example. 同従来例において中央相の磁極両端に発生する磁束の様子を示す図。The figure which shows the state of the magnetic flux generated at both ends of the magnetic pole of the central phase in the same conventional example. 同従来例において端部相の磁極外側端に発生する磁束の様子を示す図。The figure which shows the state of the magnetic flux generated at the magnetic pole outer end of the end phase in the same conventional example.

以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

尚、以下に説明する各実施の形態に用いる図面で略同一の構成要素は同一の符号を付し、かつ重複する説明は必要に応じて省略する。
<第1実施形態>
In the drawings used for each of the embodiments described below, substantially the same components are designated by the same reference numerals, and duplicate description will be omitted as necessary.
<First Embodiment>

図5〜図9は、HD(High Density:高力密度)型のリニアモータの前提となる基本構成と、本実施形態が解決しようとする課題を示したものである。 FIGS. 5 to 9 show a basic configuration that is a prerequisite for an HD (High Density) type linear motor, and a problem to be solved by this embodiment.

図5は磁極部分の斜視図、図6は模式的な断面図、図7は図6の模式的な拡大図である。図7(b)〜(d)中の矢視線は磁束の流れる方向をわかり易く示したもので、表記位置は必ずしも正確ではない。これらの図において、磁性材製の二次側部材1の進行方向に均等に歯部1aが形成されている。一方、二次側部材1に対して所定間隔のギャップ2を隔てた対向位置に一次側部材3が配置されている。一次側部材3は磁極部3a、磁極部3b、磁極部3cをヨーク30で繋いでE字型に構成され、それぞれの磁極部3a,3b,3cには所定間隔(この実施形態では等間隔)に磁極31が形成されており、各磁極31、31間の隙間には前記配列方向に磁化されかつ隣り合う磁極31、31の極性が逆極性となるように永久磁石4が挿入されている。二次側部材1に対面する側にも同じ極性が現われる。さらに、各磁極部3a,3b,3cの磁極31とヨーク30を接続する位置には、磁極31より幅狭なブリッジ32が形成され、ブリッジ32、32間に、磁極31とヨーク30の間を隔てる空隙(フラックスバリア)6が形成されている。そして、このように構成された磁極部3aにはコイル5aが巻装され、磁極部3bにはコイル5bが巻装され、磁極部3cにはコイル5cが巻装されて、例えば、三相交流を流すことで推力発生し、一次側部材3が二次側部材1に対して相対的に移動する。 5 is a perspective view of a magnetic pole portion, FIG. 6 is a schematic cross-sectional view, and FIG. 7 is a schematic enlarged view of FIG. The line of sight in FIGS. 7 (b) to 7 (d) clearly shows the direction in which the magnetic flux flows, and the notation position is not always accurate. In these figures, the tooth portions 1a are formed evenly in the traveling direction of the secondary side member 1 made of magnetic material. On the other hand, the primary side member 3 is arranged at a position facing the secondary side member 1 with a gap 2 at a predetermined interval. The primary side member 3 is formed in an E shape by connecting the magnetic pole portions 3a, the magnetic pole portions 3b, and the magnetic pole portions 3c with a yoke 30, and the respective magnetic pole portions 3a, 3b, and 3c have predetermined intervals (equal intervals in this embodiment). A magnetic pole 31 is formed in the magnetic pole 31, and a permanent magnet 4 is inserted into the gap between the magnetic poles 31 and 31 so that the magnetic poles 31 and 31 are magnetized in the arrangement direction and the polarities of the adjacent magnetic poles 31 and 31 are opposite to each other. The same polarity appears on the side facing the secondary member 1. Further, a bridge 32 narrower than the magnetic pole 31 is formed at a position where the magnetic poles 31 and the yoke 30 of the magnetic pole portions 3a, 3b, 3c are connected, and between the bridges 32 and 32, between the magnetic poles 31 and the yoke 30. A separating gap (flux barrier) 6 is formed. A coil 5a is wound around the magnetic pole portion 3a configured in this way, a coil 5b is wound around the magnetic pole portion 3b, and a coil 5c is wound around the magnetic pole portion 3c, for example, three-phase alternating current. Thrust is generated by flowing the magnet, and the primary side member 3 moves relative to the secondary side member 1.

一次側部材3の各磁極部3a,3b,3cをこのような構成にすることによって、各コイル5a,5b,5cに一定方向の電流を流した場合、たとえば二次側部材1の歯部1aから一端部の磁極部3aに流入した磁束が永久磁石4を通って隣接する磁極31に回り込み、ブリッジ32を経てヨーク30に出た後、他の磁極部3b及び磁極部3cから二次側部材1に流出する主磁束ループが形成される(図示省略)。 When the magnetic flux portions 3a, 3b, 3c of the primary side member 3 have such a configuration and a current is passed through the coils 5a, 5b, 5c in a certain direction, for example, the tooth portions 1a of the secondary side member 1 The magnetic flux that has flowed into the magnetic pole portion 3a at one end of the magnet wraps around the adjacent magnetic pole 31 through the permanent magnet 4 and exits to the yoke 30 via the bridge 32, and then from the other magnetic pole portions 3b and the magnetic pole portion 3c to the secondary side member. A main magnetic flux loop flowing out to 1 is formed (not shown).

その際、一次側部材3の各磁極部3a,3b,3cの内部に挿入された永久磁石4の上部に空隙6を設けることにより、各磁極部3a,3b,3cの内部の磁気抵抗を大きくして、各コイル5a,5b,5cのインダクタンスの値を低減させることができる。 At that time, the magnetic resistance inside each of the magnetic poles 3a, 3b, 3c is increased by providing a gap 6 in the upper part of the permanent magnet 4 inserted inside each of the magnetic poles 3a, 3b, 3c of the primary side member 3. Therefore, the value of the inductance of each coil 5a, 5b, 5c can be reduced.

ところで、無負荷において一次側部材3が移動する際、一次側部材3の各磁極部3a、3b、3cを構成する磁極31は二次側部材1の歯部1aから歯部1aへと移動する間に電気角−周期の推力変動がそれぞれ発生する。各磁極31の磁束密度がほぼ等しい場合、この推力変動は一次側部材が無限長であれば各磁極31の機械的な位置のずれにより相互に打ち消しあう。したがって、発生するコギングトルクも図8のように比較的小さい範囲に止どめることができる。 By the way, when the primary side member 3 moves under no load, the magnetic poles 31 constituting the magnetic pole portions 3a, 3b, and 3c of the primary side member 3 move from the tooth portion 1a of the secondary side member 1 to the tooth portion 1a. During that time, thrust fluctuations of electric angle-period occur. When the magnetic flux densities of the magnetic poles 31 are substantially equal, the thrust fluctuations cancel each other out due to the mechanical displacement of the magnetic poles 31 if the primary side member has an infinite length. Therefore, the generated cogging torque can be kept within a relatively small range as shown in FIG.

ところが、一次側部材が有限長である場合、磁束の漏れに着目すると、図7(c)に示すように相間は磁極部3a−3b、3b−3cが隣接しているが、端部相の磁極部3a(3c)の外側端(図7(b)、(d)参照)では隣り合う磁極部が無い為、図7(c)では相間に磁束Hが漏れるのに対して、図7(b)、(d)では漏れ磁束Hに相当する磁束Hは流れ易い二次側部材1に向かって流れる。このため、中央の相である磁極部3bの両端の二次側に面する磁束密度B1と、両端の相である磁極部3a、3cの外側端における二次側に面する磁束密度B2(B2>B1)に差が生じ、これがコギングの発生原因となって、図9に示すような大きなコギングが発生することとなる。 However, when the primary side member has a finite length, focusing on the leakage of magnetic flux, as shown in FIG. 7C, the magnetic pole portions 3a-3b and 3b-3c are adjacent to each other, but the end phase Since there are no adjacent magnetic poles at the outer ends of the magnetic poles 3a (3c) (see FIGS. 7 (b) and 7 (d)), the magnetic flux H leaks between the phases in FIG. 7 (c), whereas in FIG. 7 (c), the magnetic flux H leaks. In b) and (d), the magnetic flux H corresponding to the leakage flux H flows toward the secondary side member 1 which is easy to flow. Therefore, the magnetic flux density B1 facing the secondary side at both ends of the magnetic pole portion 3b, which is the central phase, and the magnetic flux density B2 (B2) facing the secondary side at the outer ends of the magnetic pole portions 3a, 3c, which are the phases at both ends. > B1) causes a difference, which causes cogging, and large cogging as shown in FIG. 9 occurs.

そこで、本実施形態の磁束密度調整部X1は、図1〜図4に示すように、磁極部の端部に位置する磁極31すなわち両端に位置する磁極部3a、3cの外側端の磁極31とヨーク30の間を繋ぐブリッジ32の幅W1(A部及びB部参照)をそれ以外のブリッジ32の幅W0(例えば、中央の磁極部3bの両側に位置するブリッジ32参照)に比べて幅広にしている。これにより、両端の磁極31からヨーク30への磁気抵抗が小さくなり、ヨーク30への短絡磁束が増加する。その結果、両端の磁極31の磁束密度が低下し、二次側に面する磁束密度がおおよそB1となって、図7(c)に示した中央側の相間位置に存する磁極31の二次側に面する磁束密度B1と略同一となるようにすることができる。 Therefore, as shown in FIGS. 1 to 4, the magnetic flux density adjusting unit X1 of the present embodiment has the magnetic poles 31 located at the ends of the magnetic poles, that is, the magnetic poles 31 at the outer ends of the magnetic poles 3a and 3c located at both ends. The width W1 of the bridge 32 connecting the yokes 30 (see parts A and B) is wider than the width W0 of the other bridges 32 (see, for example, the bridges 32 located on both sides of the central magnetic flux portion 3b). ing. As a result, the magnetic resistance from the magnetic poles 31 at both ends to the yoke 30 decreases, and the short-circuit magnetic flux to the yoke 30 increases. As a result, the magnetic flux densities of the magnetic poles 31 at both ends decrease, the magnetic flux density facing the secondary side becomes approximately B1, and the secondary side of the magnetic poles 31 existing at the interphase position on the central side shown in FIG. 7 (c). It can be made to be substantially the same as the magnetic flux density B1 facing the surface.

図4は、これによるコギング波形を図9のコギング波形と重畳した状態で示している。図8に示した無限長ほどは滑らかにはなっていないものの、図9に示した有限長の従来構造に比べればコギング波形は大きく改善されている。 FIG. 4 shows a state in which the cogging waveform resulting from this is superimposed on the cogging waveform of FIG. Although not as smooth as the infinite length shown in FIG. 8, the cogging waveform is greatly improved as compared with the conventional structure having a finite length shown in FIG.

このように、本実施形態によれば、両端のコイル5a、5cの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30も進行方向長さを長くする必要がない。このため、リニアモータの軸方向長さを短くでき、利用先の装置の小型・軽量、低コスト化に寄与する。しかも、端部の磁極31のブリッジ幅W1を広げるだけでよいので、磁束密度調整部X1の調整基準が明確となり、コギング低減のための設計や加工が容易となる。
<第2実施形態>
As described above, according to the present embodiment, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position where the coils 5a and 5c at both ends protrude to the outside, an increase in the number of component types can be avoided, and the yoke 30 also travels in the traveling direction. There is no need to increase the length. Therefore, the axial length of the linear motor can be shortened, which contributes to miniaturization, light weight, and cost reduction of the device to be used. Moreover, since it is only necessary to widen the bridge width W1 of the magnetic pole 31 at the end, the adjustment reference of the magnetic flux density adjusting unit X1 becomes clear, and the design and processing for reducing cogging become easy.
<Second Embodiment>

図10は、本発明の第2実施形態におけるモータの磁極部分の構成図である。 FIG. 10 is a block diagram of a magnetic pole portion of the motor according to the second embodiment of the present invention.

本実施形態の磁束密度調整部X2は、両端に位置する磁極部3a、3cにおいて外側端の磁極31の幅W2(C部及びD部参照)をそれ以外の磁極31の幅W3(例えば、中央の磁極部3bの両側に位置する磁極31参照)に比べて太くしている。このようにすると、両端の磁極31を流れる磁束が中央側の磁極31を流れる磁束と同じでも、磁束密度が低下する。その結果、両端の磁極31の二次側に面する磁束密度が図3と同様におおよそB1となって、図7(c)に示した中央側の相間位置に存する磁極31の二次側に面する磁束密度B7と略同一となるようにすることができる。 In the magnetic flux density adjusting unit X2 of the present embodiment, the width W2 of the magnetic poles 31 at the outer ends (see the parts C and D) of the magnetic poles 3a and 3c located at both ends is changed to the width W3 of the other magnetic poles 31 (for example, the center). It is thicker than the magnetic poles 31) located on both sides of the magnetic pole portion 3b. In this way, even if the magnetic flux flowing through the magnetic poles 31 at both ends is the same as the magnetic flux flowing through the magnetic poles 31 on the central side, the magnetic flux density decreases. As a result, the magnetic flux density facing the secondary side of the magnetic poles 31 at both ends becomes approximately B1 as in FIG. 3, and becomes the secondary side of the magnetic pole 31 existing at the interphase position on the central side shown in FIG. 7 (c). It can be made to be substantially the same as the facing magnetic flux density B7.

このように、本実施形態によれば、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、端部の磁極幅を広げるだけでよいので、磁束密度調整部X2の調整基準が明確となり、コギング低減のための設計や加工が容易となる。
<第3実施形態>
As described above, according to the present embodiment, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position where the coils 5a and 5b at both ends protrude to the outside, an increase in the number of component types can be avoided and the yoke 30 can be widened. You don't even have to. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to widen the magnetic pole width at the end portion, the adjustment standard of the magnetic flux density adjusting unit X2 becomes clear, and the design and processing for reducing cogging become easy.
<Third Embodiment>

図11は、本発明の第3実施形態におけるモータの磁極部分の構成図である。 FIG. 11 is a block diagram of a magnetic pole portion of the motor according to the third embodiment of the present invention.

本実施形態の磁束密度調整部X3は、両端に位置する磁極部3a、3cにおいて外側端の磁極31とその内側に位置する磁極31との隙間に挿入される磁石4の厚さW4(E部及びF部参照)をそれ以外の磁石4の厚さW5(中央の磁極部3bの両端側に位置する磁石4参照)に比べて薄くしている。このようにすると、磁石4の磁力が減り、両端の磁極31を流れる磁束が減る。その結果、両端の磁極31の二次側に面する磁束密度が図3と同様におおよそB1となって、図7に示した中央側の相間位置に存する磁極31の二次側に面する磁束密度B1と略同一となるようにすることができる。 The magnetic flux density adjusting unit X3 of the present embodiment has a thickness W4 (E portion) of a magnet 4 inserted in a gap between a magnetic pole 31 at the outer end and a magnetic pole 31 located inside the magnetic poles 3a and 3c located at both ends. And F part) is thinner than the other magnet 4 thickness W5 (see magnets 4 located on both ends of the central magnetic pole part 3b). In this way, the magnetic force of the magnet 4 is reduced, and the magnetic flux flowing through the magnetic poles 31 at both ends is reduced. As a result, the magnetic flux density facing the secondary side of the magnetic poles 31 at both ends becomes approximately B1 as in FIG. 3, and the magnetic flux facing the secondary side of the magnetic pole 31 existing at the interphase position on the central side shown in FIG. It can be made to be substantially the same as the density B1.

このようにしても、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、端部の磁極31に付帯する磁石4の厚みを薄くするだけでよいので、磁束密度調整部X3の調整基準が明確となり、コギング低減のための設計や加工が容易となる。勿論、磁石4の厚さを相対的に薄くする代わりに、磁石高さを相対的に低くすることによっても、同様の作用効果が奏される。
<第4実施形態>
Even in this case, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position protruding to the outside of the coils 5a and 5b at both ends, it is possible to avoid an increase in the number of component types and it is not necessary to widen the yoke 30. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to reduce the thickness of the magnet 4 attached to the magnetic pole 31 at the end, the adjustment standard of the magnetic flux density adjusting unit X3 becomes clear, and the design and processing for reducing cogging become easy. Of course, instead of making the thickness of the magnet 4 relatively thin, the same effect can be obtained by making the magnet height relatively low.
<Fourth Embodiment>

図12は、本発明の第4実施形態におけるモータの磁極部分の構成図である。 FIG. 12 is a block diagram of a magnetic pole portion of the motor according to the fourth embodiment of the present invention.

本実施形態の磁束密度調整部X4は、両端に位置する磁極部3a、3cにおいて外側端の磁極31の高さH2(G部及びH部参照)をそれ以外の磁極31の高さH3(例えば、中央の磁極部3bの両側に位置する磁極31参照)に比べて低くしている。このようにすると、対向する二次側とのギャップの増大により、両端の磁極31から二次側への磁気抵抗が大きくなり、磁束が二次側へと流れ難くなる。その結果、両端の磁極31の二次側に面する磁束密度が図3と同様におおよそB1となって、図7(c)に示した中央側の相間位置に存する磁極31の二次側に面する磁束密度B1と略同一となるようにすることができる。 In the magnetic flux density adjusting unit X4 of the present embodiment, the height H2 of the magnetic poles 31 at the outer ends of the magnetic poles 3a and 3c located at both ends (see G and H) is changed to the height H3 of the other magnetic poles 31 (for example, , Refer to the magnetic poles 31 located on both sides of the central magnetic pole portion 3b). In this way, the magnetic resistance from the magnetic poles 31 at both ends to the secondary side increases due to the increase in the gap with the opposite secondary side, and it becomes difficult for the magnetic flux to flow to the secondary side. As a result, the magnetic flux density facing the secondary side of the magnetic poles 31 at both ends becomes approximately B1 as in FIG. 3, and becomes the secondary side of the magnetic pole 31 existing at the interphase position on the central side shown in FIG. 7 (c). It can be made substantially the same as the facing magnetic flux density B1.

このようにしても、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、端部の磁極31の高さH2を低くしてギャップを大きくするだけでよいので、磁束密度調整部X4の調整基準が明確となり、コギング低減のための設計や加工が容易となる。
<第5実施形態>
Even in this case, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position protruding to the outside of the coils 5a and 5b at both ends, it is possible to avoid an increase in the number of component types and it is not necessary to widen the yoke 30. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to lower the height H2 of the magnetic pole 31 at the end to increase the gap, the adjustment standard of the magnetic flux density adjusting unit X4 becomes clear, and the design and processing for reducing cogging become easy.
<Fifth Embodiment>

図13は、本発明の第5実施形態におけるモータの磁極部分の構成図である。 FIG. 13 is a block diagram of a magnetic pole portion of the motor according to the fifth embodiment of the present invention.

本実施形態の磁束密度調整部X5は、両端に位置する磁極部3a、3cにおいて外側端の磁極31とヨーク30の間を繋ぐブリッジ高さH4(I部及びJ部参照)をそれ以外のブリッジ高さH5(例えば、中央の磁極部3bの両側に位置するブリッジ32参照)に比べて低く(すなわち、フラックスバリアを低く)している。これにより、両端の磁極31の一次側への磁気抵抗が小さくなる。その結果、漏れ磁束に相当する磁束Hが一次側のヨーク30へと流れ易くなり、短絡磁束が増大する。その結果、両端の磁極31の二次側に面する磁束密度がおおよそB1となって、図7(c)に示した中央側の相間位置に存する磁極31の二次側に面する磁束密度B1と略同一となるようにすることができる。 The magnetic flux density adjusting unit X5 of the present embodiment has a bridge height H4 (see parts I and J) that connects the magnetic poles 31 at the outer ends and the yoke 30 at the magnetic poles 3a and 3c located at both ends, and other bridges. The height is lower than the height H5 (see, for example, bridges 32 located on both sides of the central magnetic pole portion 3b) (that is, the flux barrier is lowered). As a result, the magnetic resistance of the magnetic poles 31 at both ends to the primary side is reduced. As a result, the magnetic flux H corresponding to the leakage flux easily flows to the yoke 30 on the primary side, and the short-circuit magnetic flux increases. As a result, the magnetic flux density facing the secondary side of the magnetic poles 31 at both ends becomes approximately B1, and the magnetic flux density B1 facing the secondary side of the magnetic pole 31 existing at the interphase position on the central side shown in FIG. 7C. Can be made to be substantially the same as.

このようにしても、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、ブリッジ32を低くするだけでよいので、磁束密度調整部X5の調整基準が明確となり、コギング低減のための設計や加工が容易となる。
<第6実施形態>
Even in this case, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position protruding to the outside of the coils 5a and 5b at both ends, it is not necessary to increase the number of parts and widen the yoke 30. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to lower the bridge 32, the adjustment reference of the magnetic flux density adjusting unit X5 becomes clear, and the design and processing for reducing cogging become easy.
<Sixth Embodiment>

図14は、本発明の第6実施形態におけるモータの磁極部分の構成図である。 FIG. 14 is a configuration diagram of a magnetic pole portion of the motor according to the sixth embodiment of the present invention.

本実施形態の磁束密度調整部X6は、両端に位置する磁極部3a、3cにおいて外側端の磁極31とヨーク30の間を繋ぐブリッジ32の幅W6に比して、中央側の磁極31のブリッジ32の幅W7(例えば、中央の磁極部3bの両側に位置する磁極31とヨーク30の間を繋ぐブリッジ32。K部およびL部参照)を幅狭にしている。これにより、中央側磁極31からヨーク30への磁気抵抗が大きくなり、磁束Hが一次側へ流れ難く、二次側へ流れ易くなる。その結果、中央の磁極31の二次側に面する磁束密度が逆におおよそB2となって、図7(a)、(c)に示した両端の磁極31の二次側に面する磁束密度B2と略同一となるようにすることができる。 The magnetic flux density adjusting unit X6 of the present embodiment is a bridge of the magnetic pole 31 on the central side as compared with the width W6 of the bridge 32 connecting the magnetic poles 31 at the outer ends and the yoke 30 at the magnetic poles 3a and 3c located at both ends. The width W7 of 32 (for example, the bridge 32 connecting the magnetic poles 31 located on both sides of the central magnetic pole portion 3b and the yoke 30; see the K portion and the L portion) is narrowed. As a result, the magnetic resistance from the central magnetic pole 31 to the yoke 30 increases, and the magnetic flux H does not easily flow to the primary side and easily flows to the secondary side. As a result, the magnetic flux density facing the secondary side of the central magnetic pole 31 becomes approximately B2, and the magnetic flux density facing the secondary side of the magnetic poles 31 at both ends shown in FIGS. 7 (a) and 7 (c). It can be made to be substantially the same as B2.

このようにしても、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、ブリッジ32を幅狭とするだけでよいので、磁束密度調整部X6の調整基準が明確となり、コギング低減のための設計や加工が容易となる。
<第7実施形態>
Even in this case, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position protruding to the outside of the coils 5a and 5b at both ends, it is possible to avoid an increase in the number of component types and it is not necessary to widen the yoke 30. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to narrow the width of the bridge 32, the adjustment reference of the magnetic flux density adjusting unit X6 becomes clear, and the design and processing for reducing cogging become easy.
<7th Embodiment>

図15は、本発明の第7実施形態におけるモータの磁極部分の構成図である。 FIG. 15 is a block diagram of a magnetic pole portion of the motor according to the seventh embodiment of the present invention.

本実施形態の磁束密度調整部X7は、両端に位置する磁極部3a、3cにおいて外側端の磁極31の幅W8に比して、中央の相間の境界位置に存する磁極31の幅W9(M部及びN部参照)を幅狭にしている。これにより、中央の磁極31に隣接する磁極間への磁気抵抗が大きくなり、図3に示すように二次側への磁束Hが増加する。その結果、中央の磁極31の二次側に面する磁束密度が逆におおよそB2となって、図7(a)、(c)に示した両端磁極31の二次側に面する磁束密度B2と略同一となるようにすることができる。 The magnetic flux density adjusting unit X7 of the present embodiment has a width W9 (M unit) of the magnetic poles 31 located at the boundary between the central phases, as compared with the width W8 of the magnetic poles 31 at the outer ends of the magnetic poles 3a and 3c located at both ends. And N part) is narrowed. As a result, the magnetic resistance between the magnetic poles adjacent to the central magnetic pole 31 increases, and the magnetic flux H to the secondary side increases as shown in FIG. As a result, the magnetic flux density facing the secondary side of the central magnetic pole 31 becomes approximately B2, and the magnetic flux density B2 facing the secondary side of the magnetic poles 31 at both ends shown in FIGS. 7 (a) and 7 (c). Can be made to be substantially the same as.

このようにしても、両端のコイル5a、5bの外側へはみ出した位置に新たに磁束密度調整部を設ける必要がないため、部品種類の増加が避けられ、ヨーク30を幅広にする必要もない。このため、一次側部材の移動方向への大型、重量化を避けつつ、磁束密度を的確に調整することができる。しかも、相間位置に存する磁極31を幅狭にするだけでよいので、磁束密度調整部X7の調整基準が明確となり、コギング低減のための設計や加工が容易となる。 Even in this case, since it is not necessary to newly provide the magnetic flux density adjusting portion at the position protruding to the outside of the coils 5a and 5b at both ends, it is possible to avoid an increase in the number of component types and it is not necessary to widen the yoke 30. Therefore, the magnetic flux density can be accurately adjusted while avoiding the increase in size and weight of the primary side member in the moving direction. Moreover, since it is only necessary to narrow the width of the magnetic pole 31 existing at the interphase position, the adjustment reference of the magnetic flux density adjusting unit X7 becomes clear, and the design and processing for reducing cogging become easy.

以上、本発明の幾つかの実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。 Although some embodiments of the present invention have been described above, the specific configuration of each part is not limited to the above-described embodiments.

例えば、上記実施形態のモータは複数の磁極31ごとにコイル4を巻装しているが、各磁極31ごとにコイル4が巻装された構造のモータにも適用することもできる。 For example, in the motor of the above embodiment, the coil 4 is wound around each of the plurality of magnetic poles 31, but it can also be applied to a motor having a structure in which the coil 4 is wound around each magnetic pole 31.

或いは、上記実施形態は二次側部材1の片側に一次側部材3を設けたモータについて説明したが、図16に示すように二次側部材1を挟み込むようにして両側に一次側部材3、3を設けたモータにおいても、上記各実施形態と同様に本発明を適用することができる。 Alternatively, in the above embodiment, the motor in which the primary side member 3 is provided on one side of the secondary side member 1 has been described, but as shown in FIG. 16, the primary side member 3 is sandwiched between the secondary side member 1 and both sides. The present invention can be applied to the motor provided with 3 in the same manner as in each of the above embodiments.

また、上記実施形態では磁束密度調整部は両端の2つの磁極、または中央の相間位置に存する2つの磁極に設けたが、一端側または他端側のみ、または中央2箇所の相間位置にそれぞれ存する2つの磁極の一方又は他方のみに設けても構わない。或いは、磁極間には全て永久磁石又はコイルが配置されている必要はなく、一部の磁極間は樹脂等の非磁性材が充填されていても構わない。 Further, in the above embodiment, the magnetic flux density adjusting portions are provided on the two magnetic poles at both ends or the two magnetic poles existing at the central interphase positions, but they exist only on one end side or the other end side, or at the two central interphase positions, respectively. It may be provided on only one or the other of the two magnetic poles. Alternatively, it is not necessary that all the permanent magnets or coils are arranged between the magnetic poles, and a non-magnetic material such as resin may be filled between some of the magnetic poles.

また、上記実施形態では磁石4が磁極31に埋設されているIPM型のHDモータについて説明したが、図17に示すように磁石4が磁極31の端部に設けられるSPM型のモータに対しても、同様に適用することができる。例えば、図18は端部の磁石の厚みT1を中央側の磁石の厚みT2よりも薄くして磁束密度調整部とした例であり、図19は端部の磁極31の幅W8を中央の磁極の幅W9よりも幅狭にして磁束密度調整部としたものである。 Further, in the above embodiment, the IPM type HD motor in which the magnet 4 is embedded in the magnetic pole 31 has been described, but as shown in FIG. 17, for the SPM type motor in which the magnet 4 is provided at the end of the magnetic pole 31. Can be applied in the same way. For example, FIG. 18 shows an example in which the thickness T1 of the magnet at the end is made thinner than the thickness T2 of the magnet on the center side to form a magnetic flux density adjusting portion, and FIG. 19 shows an example in which the width W8 of the magnetic pole 31 at the end is the central magnetic pole. The width is narrower than the width W9 of the magnetic flux density adjusting unit.

さらに、磁束密度調整部は、端部の磁極を構成する磁性材の磁気抵抗を相間の境界位置に存する磁極を構成する磁性材の磁気抵抗よりも相対的に大きくすることによっても構成することができる。すなわち、磁気抵抗を大きくすれば、端部に位置する磁極の磁束が通り難くなる。その結果、二次側へ流れる磁束の磁束密度が低下し、相間の境界位置に存する磁極から二次側へ流れる磁束の磁束密度と差がなくなる。しかも、磁極の材料を変更するだけでよいので、調整が簡単となる。 Further, the magnetic flux density adjusting unit can also be configured by making the reluctance of the magnetic material constituting the magnetic pole at the end relatively larger than the reluctance of the magnetic material constituting the magnetic pole existing at the boundary position between the phases. it can. That is, if the magnetic resistance is increased, it becomes difficult for the magnetic flux of the magnetic pole located at the end to pass through. As a result, the magnetic flux density of the magnetic flux flowing to the secondary side decreases, and there is no difference from the magnetic flux density of the magnetic flux flowing from the magnetic pole existing at the boundary position between the phases to the secondary side. Moreover, since it is only necessary to change the material of the magnetic pole, the adjustment becomes easy.

また、本発明の磁束密度調整部は、端部の磁極の磁束密度と中央側の相間位置に存する磁極の磁束密度を略一致させるために、一方の長さや幅等と他方の長さや幅等との間に相対的な大小関係を設けるものであるから、一方を変更するか他方を変更するかは適宜選択することができる。 また、上記第1実施形態では前記磁極の外側端のブリッジ幅に対してそれ以外のブリッジ幅を幅狭にしているが、磁極とヨークの間を繋ぐブリッジをなくしても構わない。すなわち、外側端にブリッジがあり、内側はブリッジレス構造にする態様である。 Further, in the magnetic flux density adjusting unit of the present invention, in order to substantially match the magnetic flux density of the magnetic poles at the ends and the magnetic flux density of the magnetic poles existing at the interphase position on the central side, one length, width, etc. and the other length, width, etc. Since a relative magnitude relationship is provided between the two, it is possible to appropriately select whether to change one or the other. Further, in the first embodiment, the other bridge widths are narrower than the bridge width at the outer end of the magnetic pole, but the bridge connecting the magnetic pole and the yoke may be eliminated. That is, there is a bridge at the outer end, and the inner side has a bridgeless structure.

さらにまた、本発明は一次側、二次側何れが固定側、可動側であってもよく、作動タイプもリニア型に限らず、回転型にも適用することができる。 Furthermore, the present invention may be on either the primary side or the secondary side on the fixed side or the movable side, and the operation type is not limited to the linear type, but can be applied to the rotary type as well.

その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 Other configurations can be modified in various ways without departing from the spirit of the present invention.

1…二次側部材
3…一次側部材
3a、3b、3c…磁極部
4…永久磁石
5a、5b、5c…コイル
31…磁極
32…ブリッジ
X1、X2、X3、X4、X5、X6、X7…磁束密度調整部

1 ... Secondary side member 3 ... Primary side member 3a, 3b, 3c ... Magnetic pole part 4 ... Permanent magnet 5a, 5b, 5c ... Coil 31 ... Magnetic pole 32 ... Bridge X1, X2, X3, X4, X5, X6, X7 ... Magnetic flux density adjustment unit

Claims (3)

進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、
前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、
前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、
前記各磁極が、前記二次側部材に対向する端部とは反対側の端部を当該磁極の進行方向に沿った幅よりも幅狭なブリッジを介してヨークに接続されており、
前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極に接続されたブリッジのサイズと、それ以外の磁極に接続されたブリッジのサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とするモータ。
A secondary side member made of a magnetic material having teeth formed at predetermined intervals along the traveling direction and a primary side member arranged so as to be freely relative to the traveling direction of the secondary side member. It is a equipped motor
Each of the primary side members has a plurality of magnetic poles, and the plurality of magnetic pole portions arranged at intervals along the traveling direction and the magnetic pole portions provided along the arrangement direction of the magnetic pole portions are sequentially provided with opposite polarities. A plurality of permanent magnets arranged in such a manner and a coil wound around each of the plurality of magnetic pole portions to generate magnetic flux in a direction intersecting the arrangement direction are provided.
The coil is wound over one end and the other end of each of the plurality of magnetic pole portions, and two or more different phases are formed on the plurality of magnetic pole portions.
Each of the magnetic poles is connected to the yoke at an end opposite to the end facing the secondary member via a bridge narrower than the width along the traveling direction of the magnetic pole.
The size of the bridge connected to the outer end magnetic pole, which is the magnetic pole located at one end of the magnetic pole portion located at the end in the traveling direction, and the size of the bridge connected to the other magnetic poles are different from each other. By doing so, the magnetic flux density of the magnetic field flowing from the outer end magnetic pole to the secondary side member and the magnetic flux density of the magnetic field flowing into the secondary side member from the magnetic pole existing at the boundary position between the phases located inside the outer end magnetic pole are abbreviated. motor, characterized in that a magnetic flux density adjustment unit to match.
進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、
前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、
前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、
前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極のサイズと、それ以外の磁極のサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とするモータ。
A magnetic material secondary side member having teeth formed at predetermined intervals along the traveling direction and a primary side member arranged so as to be able to freely move relative to the traveling direction of the secondary side member. It is a equipped motor
Each of the primary side members has a plurality of magnetic poles, and the plurality of magnetic pole portions arranged at intervals along the traveling direction and the magnetic pole portions provided along the arrangement direction of the magnetic pole portions are sequentially provided with opposite polarities. A plurality of permanent magnets arranged in such a manner and a coil wound around each of the plurality of magnetic pole portions to generate magnetic flux in a direction intersecting the arrangement direction are provided.
The coil is wound around one end and the other end of each of the plurality of magnetic pole portions, and two or more different phases are formed on the plurality of magnetic pole portions.
By making the size of the outer end magnetic pole, which is the magnetic pole located at one end of the magnetic pole portion located at the end portion in the traveling direction, and the size of the other magnetic poles different from each other, two from the outer end magnetic pole. and the magnetic flux density of the magnetic flux flowing into the next side member, provided with the magnetic flux density adjuster to substantially match the magnetic pole existing in the boundary position between the magnetic flux density of the magnetic flux flowing into the secondary side member between said phase located inside than A motor characterized by that.
進行方向に沿って所定間隔に歯部が形成された磁性材製の二次側部材と、この二次側部材の進行方向に対して自在に相対移動できるように配置された一次側部材とを備えたモータであって、
前記一次側部材は、各々が複数の磁極を有し、前記進行方向に沿って間隔を空けて配列された複数の磁極部と、それらの磁極部の配列方向に沿って設けられ順次逆極性となるように配置された複数の永久磁石と、前記複数の磁極部の各々に巻装されて前記配列方向と交叉する方向に磁束を発生させるコイルとを備えて、
前記コイルは、前記複数の磁極部の各々における一端および他端に亘り巻装されるとともに、前記複数の磁極部に2以上の異なる相を構成しており、
前記進行方向端部に位置する前記磁極部の一端に位置する前記磁極である外側端磁極とその内側に位置する磁極との間に設けられた永久磁石のサイズと、それ以外の永久磁石のサイズとを、互いに異なるものとすることによって、前記外側端磁極から二次側部材に流れ込む磁束の磁束密度と、それよりも内側に位置する前記相間の境界位置に存する磁極から二次側部材に流れ込む磁束の磁束密度とを略一致させる磁束密度調整部を設けたことを特徴とするモータ。
A magnetic material secondary side member having teeth formed at predetermined intervals along the traveling direction and a primary side member arranged so as to be able to freely move relative to the traveling direction of the secondary side member. It is a equipped motor
Each of the primary side members has a plurality of magnetic poles, and the plurality of magnetic pole portions arranged at intervals along the traveling direction and the magnetic pole portions provided along the arrangement direction of the magnetic pole portions are sequentially provided with opposite polarities. A plurality of permanent magnets arranged in such a manner and a coil wound around each of the plurality of magnetic pole portions to generate magnetic flux in a direction intersecting the arrangement direction are provided.
The coil is wound around one end and the other end of each of the plurality of magnetic pole portions, and two or more different phases are formed on the plurality of magnetic pole portions.
The size of the permanent magnet provided between the outer end magnetic pole, which is the magnetic pole located at one end of the magnetic pole portion located at the end in the traveling direction, and the magnetic pole located inside the magnetic pole, and the size of the other permanent magnets. By making them different from each other, the magnetic flux density of the magnetic flux flowing from the outer end magnetic pole to the secondary side member and the magnetic flux existing at the boundary position between the phases located inside the outer end magnetic poles flow into the secondary side member. motor, characterized in that a magnetic flux density adjustment unit for substantially coincide with the magnetic flux density of the magnetic flux.
JP2016115698A 2016-06-09 2016-06-09 motor Active JP6781370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016115698A JP6781370B2 (en) 2016-06-09 2016-06-09 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115698A JP6781370B2 (en) 2016-06-09 2016-06-09 motor

Publications (2)

Publication Number Publication Date
JP2017221065A JP2017221065A (en) 2017-12-14
JP6781370B2 true JP6781370B2 (en) 2020-11-04

Family

ID=60656358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115698A Active JP6781370B2 (en) 2016-06-09 2016-06-09 motor

Country Status (1)

Country Link
JP (1) JP6781370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008484B2 (en) * 2017-11-16 2022-01-25 株式会社藤商事 Pachinko machine

Also Published As

Publication number Publication date
JP2017221065A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US7839029B2 (en) Linear motor
JP5719369B2 (en) Multiphase stator device
EP3534496B1 (en) Permanent magnet motor
JP5232147B2 (en) Stator for drive motor
JP2008005665A (en) Cylindrical linear motor and vehicle using it
JP2010500860A5 (en)
JP5289799B2 (en) Linear motor
JP6128206B2 (en) Linear motor
JP4382437B2 (en) Linear motor
JP5184468B2 (en) Electromagnetic suspension and vehicle using the same
JP6781370B2 (en) motor
CN109149800B (en) 9n/10n pole segmented rotor switched reluctance motor
US20080290754A1 (en) AC Motor
KR102128715B1 (en) motor
US20020117905A1 (en) Linear actuator
JP5386925B2 (en) Cylindrical linear motor
JP5841885B2 (en) Linear motor
WO2018167970A1 (en) Linear motor
JP3855873B2 (en) Linear drive device and manufacturing apparatus using the same
JP2005185061A (en) Linear motor
JP2015089189A (en) Linear motor
JP2005210794A (en) Linear electromagnetic actuator
JP6841733B2 (en) Linear motor
JP4499536B2 (en) Synchronous motor
JP4475059B2 (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6781370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250