JP6780848B2 - 方向別体幹安定性指標取得装置及び方法 - Google Patents

方向別体幹安定性指標取得装置及び方法 Download PDF

Info

Publication number
JP6780848B2
JP6780848B2 JP2016171597A JP2016171597A JP6780848B2 JP 6780848 B2 JP6780848 B2 JP 6780848B2 JP 2016171597 A JP2016171597 A JP 2016171597A JP 2016171597 A JP2016171597 A JP 2016171597A JP 6780848 B2 JP6780848 B2 JP 6780848B2
Authority
JP
Japan
Prior art keywords
center
gravity
sway
tilt
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171597A
Other languages
English (en)
Other versions
JP2018033825A (ja
Inventor
仁 村瀬
仁 村瀬
Original Assignee
アニマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アニマ株式会社 filed Critical アニマ株式会社
Priority to JP2016171597A priority Critical patent/JP6780848B2/ja
Publication of JP2018033825A publication Critical patent/JP2018033825A/ja
Application granted granted Critical
Publication of JP6780848B2 publication Critical patent/JP6780848B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、方向別体幹安定性指標取得装置及び方法に関するものである。
体幹の安定性が人間の様々な動作において重要なファクターであることは以前から知られている(例えば、Balance Evaluation Systems Test (BESTest)における垂直性安定限界の項や、予測的姿勢制御のつま先立ち、片足立ちのサブ項)。体幹の安定性を表す指標としては、静止立位における重心動揺計の速度や面積、手を前に伸ばすリーチテストの伸長距離、片足立ち検査の立位保持時間、クロステスト(姿勢を前後左右に動かして静止し重心動揺を計測)によって得られるIPS(Index of Postural Stability)、また、バランス関連動作を点数化して得点を求めるBBS(Berg Balance Scale)等が知られている。
その中で、クロステストを用いたIPSは、1分程度の検査時間でバランス能力を客観的に定量化でき、主に神経疾患によるバランス能力を評価出来ることが知られている。クロステストにおいて、重心動揺計のフォースプレート上で被験者が前後左右に身体を傾けた傾動静止時の重心座標の時系列データを取得し、取得した時系列データを用いてIPSを算出する。
非特許文献1、2では、log[(安定性限界面積+平均重心動揺面積)/平均重心動揺面積]で定義してなる姿勢安定度評価指標(IPS:Index of Postural Stability)が提案されている。安定性限界面積は前後、左右の重心移動位置における平均重心位置の距離を乗じた矩形面積として算出される。平均重心動揺面積は中央・前方・後方・右方・左方に重心移動した位置における所定秒間(例えば、10秒間や15秒間)の矩形重心動揺面積の平均値である。すなわち、一定の支持基底内で随意的に重心移動できる範囲を安定性限界と定義し、安定性限界が大きく重心動揺が小さいほど姿勢保持の安定性は高くなるという考えに基づき、安定性限界面積と重心動揺面積の比の対数値からIPSを算出している。IPSは非特許文献3においても採用されている。
クロステストを用いたIPSは、動的バランス能力についての総合評価を可能とするものではあるが、方向による体幹安定性が異なるような場面の評価では、方向性のパラメータを別に考慮する必要があり使用方法が煩雑になっている。例えば、左右の荷重バランスが悪くても、重心動揺面積が小さければIPSは正常値となり、骨関節疾患で異常が出にくい。また、支持基底面が広ければ、ある方向の重心動揺が悪くてもその異常が隠れてしまい、足指に痛みのあるリウマチ患者が、斜め前方方向に体幹の不安定な方向が有り、その方向に転倒しやすいといった現象はIPSでは出てこない。
望月久,峯島孝雄,重心動揺計を用いた姿勢安定度評価指標の信頼性および妥当性,理学療法学,2000;27:199-103. 望月久,立位姿勢の安定感と重心動揺計によるバランス能力評価指標との関連性,文京学院大学保健医療技術学部紀要 第2 巻 2009:55-60 鈴木康裕, 中田由夫, 加藤秀典, 田邉裕基, 岩渕慎也, 石川公久,重心動揺計を用いた動的バランス能力と年齢の関連,体力科学Vol. 64 (2015) No. 4 p. 419-425
本発明は、重心動揺計を用いたいわゆるクロステストにおいて、方向性を持った新たな体幹安定性のパラメータを提供することを目的とする。
本発明が採用した技術手段は、重心動揺計上の被験者が、予め決められた所定の方向に重心を移動させるように、直立姿勢から身体を所定の方向に傾動させた傾動姿勢を所定時間保持した時の重心動揺情報を取得する手段と、
前記重心動揺情報を用いて、方向別の重心動揺面積RAを取得する手段と、
前記重心動揺情報を用いて、方向別の代表重心位置を取得する手段と、
前記代表重心位置を用いて、直立姿勢から傾動姿勢までの距離の前記所定の方向の成分である方向別の可動距離Dを取得する手段と、
前記方向別の重心動揺面積RA、前記方向別の可動距離Dを用いて、方向別体幹安定性評価指標Iを、I=log[(D2+RA)/RA]を用いて取得する手段と、
を備えた方向別体幹安定性指標取得装置、である。
1つの態様では、前記重心動揺面積は外接矩形面積である。
1つの態様では、前記代表重心位置は、平均重心位置である。
1つの態様では、少なくとも方向別の可動距離Dは、重心動揺計上の被験者の左右の足底の幾何学的中心を重心動揺計の原点と一致させて算出される。ここで、左右の足底の幾何学的中心は、軽度開脚立位時の左右の足底の外接矩形の中心として捉えることができる。
1つの態様では、重心動揺情報の測定時に、重心動揺計上の被験者の左右の足底の幾何学的中心は、重心動揺計の原点と一致している。
1つの態様では、方向別体幹安定性評価指標の算出時に、重心動揺計上の被験者の左右の足底の幾何学的中心を重心動揺計の原点と一致させるように各座標値の補正が行われる。
1つの態様では、重心動揺計上の被験者の左右の足底の幾何学的中心座標を取得する手段を備え、
少なくとも方向別の可動距離Dの算出時には、取得された幾何学的中心座標が重心動揺計の原点となるように補正された代表重心位置が用いられる。
1つの態様では、前記可動距離Dは、重心動揺計上の原点座標から前記代表重心位置までの距離の前記所定の方向の成分である。
1つの態様では、前記所定の方向は、前方、後方、左方、右方の1つあるいは複数を含み、
前方への傾動及び前記後方への傾動は、Y軸上の傾動であり、前記可動距離Dは、前記代表重心位置のY成分の絶対値であり、
前記左方への傾動及び前記右方への傾動は、X軸上の傾動であり、前記可動距離Dは、前記代表重心位置のX成分の絶対値である。
1つの態様では、前記所定の方向は、右前方、左前方、右後方、左後方の1つあるいは複数を含み、
前記右前方への傾動及び前記左後方への傾動は、X軸に対して傾き45度の直線上の傾動であり、
前記左前方への傾動及び前記右後方への傾動は、X軸に対して傾き135度の直線上の傾動である。
1つの態様では、前記右前方への傾動、前記左後方への傾動、前記左前方への傾動、前記右後方への傾動の1つあるいは複数について取得した代表重心位置を、XY座標系を反時計周りに45度回転させた変換座標系の座標(X´,Y´)に変換する手段を備え、
前記右前方への傾動及び前記左後方への傾動における可動距離Aは、X´成分の絶対値であり、
前記左前方への傾動及び前記右後方への傾動における可動距離Aは、Y´成分の絶対値である。
なお、XY座標系を時計周りに45度回転させた変換座標系の座標(X´´,Y´´)として計算しても可動距離は同じである。この場合、前記右前方への傾動及び前記左後方への傾動における可動距離Aは、Y´´成分の絶対値であり、前記左前方への傾動及び前記右後方への傾動における可動距離Aは、X´´成分の絶対値である。
1つの態様では、前記装置は、表示部を備え、
各方向について算出された方向別体幹安定性評価指標Iが、前記表示部上にレーダーチャートとして表示される。
本発明は、重心動揺計上の被験者が、予め決められた所定の方向に重心を移動させるように、直立姿勢から身体を所定の方向に傾動させた傾動姿勢を所定時間保持した時の重心動揺情報を取得し、
前記重心動揺情報を用いて、方向別の重心動揺面積RAを取得し、
前記重心動揺情報を用いて、方向別の代表重心位置を取得し、
前記代表重心位置を用いて、直立姿勢から傾動姿勢までの距離の前記所定の方向の成分である方向別の可動距離Dを取得し、
前記方向別の重心動揺面積RA、前記方向別の可動距離Dを用いて、方向別体幹安定性評価指標Iを、I=log[(D2+RA)/RA]を用いて取得する、
方向別体幹安定性指標取得方法として規定することができる。
本発明は、方向性を持った新たな体幹安定性のパラメータ(DSBT)の取得装置及び方法に係り、これまで明確な指標が無かった「方向性を持つ体幹安定性」の指標を提供することができる。この方向性を考慮した方向別体幹安定性指標を用いることで、従来のバランス評価テスト(重心動揺検査、足踏み検査、クロステストのIPSなど)で把握できなかった方向性に特徴がある事象を評価し得る。例えば、股関節疾患に対する骨頭置換術の回復過程が明確化することができる(図11)。
本発明に係る方向別体幹安定性指標は、特に、前後左右方向の指標については、IPSのためのクロステストデータをそのまま用いて算出することができるので、被験者に別途テストを実行する必要がなく、また、IPS解析と同時にDSBT解析を行うこともできる。
方向別体幹安定性指標取得装置のハードウェア構成を示す図である。 非特許文献2から引用した図であって、姿勢安定度評価指標(IPS)の算出方法の説明図である。 本実施形態に係る方向別体幹安定性指標取得装置を示す図である。 クロステストにより得られた重心図(方向別重心動揺軌跡)を示し、本実施形態に係る方向別体幹安定性指標の算出を説明する図である。 クロステスト時における重心動揺計のプレート上の足底を示す図である。 8方向の傾動を行うクロステストを説明する図である。 8方向の傾動について取得した方向別体幹安定性指標を用いたレーダーチャートの概念図である。 8方向の傾動における斜め方向の体幹安定性指標の算出時の座標の回転を説明する図である。 従来のIPS指標による股関節の術後経過を示す図である。 右方向(健足側)DSBTによる股関節の術後経過を示す図である。 左方向(患足側)DSBTによる股関節の術後経過を示す図である。
[1]ハードウェア構成
図1に示すように、本発明に係る方向別体幹安定性指標取得装置は、重心動揺計から構成することができる。重心動揺計は、被験者が載る足載せ台と、足載せ台の所定の複数箇所に作用する荷重を検出する荷重検出手段と、を備えるフォースプレートと、前記荷重データを用いてXY平面上の重心座標の時系列データを取得する重心座標取得手段と、重心座標の時系列データを用いて各種計算を実行する演算処理手段と、からなる。重心座標取得手段、演算処理手段は、コンピュータから構成することができる。コンピュータは、入力部、出力部、演算部、記憶部、表示部等を備える汎用コンピュータから構成することができる。
荷重検出手段は、例えば、複数個のロードセルから構成されており、複数個のロードセルで取得された値から荷重の作用中心点(COP: Center of Pressure)が取得され、COPをXY座標上での重心位置とみなす。COPの座標は、足載せ台(床面)の面方向のXY平面として、XY座標で取得される。各ロードセルで取得される荷重情報は、逐次コンピュータに送信され、コンピュータの演算手段でCOPを所定の単位時間毎に逐次求めることで、COP(XY座標値)の時系列データを取得することができる。重心位置の計算に用いた荷重情報及び得られた重心位置のデータ(XY座標値)は、取得時間と共にコンピュータの記憶部に記憶され、測定開始時から測定終了時までの重心位置の経時的な移動軌跡が得られる。コンピュータの演算部(処理部)は、重心座標の時系列データを用いて、各種パラメータを算出する。算出されたパラメータは、コンピュータの記憶部に記憶され、また、適宜、コンピュータの表示部に表示可能である。
[2]クロステスト
クロステストでは、重心動揺計上の被験者が、所定の方向に重心を移動させるように、直立姿勢から身体を所定の方向に傾動させ、傾動姿勢を保って所定時間静止した時の方向別の重心動揺情報、すなわち方向別の重心座標の時系列データを取得する。典型的には、クロステストにおける前記所定の方向の傾動は、前傾、後傾、左傾、右傾を含む。
重心動揺計を用いたクロステスト自体は公知である。非特許文献1には、クロステストの手順及び条件として「開眼および足底内側を平行に10cmは離した軽度開脚立位とし、両上肢は下垂位とする。初期の大きな動揺がおさまった時点から10秒間の重心動揺を測定し、被験者に直立姿勢を変えないように体を傾けるように指示し、前方、後方、右方、左方の順で重心移動した位置における10秒間の重心動揺を測定する。」と記載されており、非特許文献2には、「IPSを求めるために、中央および前方・後方・右方・左方の順で重心移動した位置において、初期の大きな動揺がおさまった時点から重心動揺を測定した。重心動揺の測定時間は使用した重心動揺計の初期設定の最小値である15秒とした。被験者には、前方を向いたまま安定して立位を保てる範囲で、前方(つま先に体重がかかり踵が浮くような感じ)、後方(踵に体重がかかりつま先が浮くような感じ)、右方(左足が浮かない範囲で体重を右足にかける)、左方(右足が浮かない範囲で左足に体重をかける)に重心を移動し、その位置でなるべく静止するように指示した。」と記載されている。
なお、クロステストにおける被験者の姿勢は、前傾姿勢、後傾姿勢、左傾姿勢、右傾姿勢を含むが、傾動の順序は問わない。クロステストの条件は限定されず、開眼、閉眼、フォースプレート上のラバーマットの有無(硬面、軟面)等、を含む。また、後述するように、本実施形態に係るクロステストには8方向への傾動を行うテストが含まれる。
本実施形態では、クロステスト時の重心動揺計の計測値を用いて姿勢安定性評価指標であるIPS、及び、方向別体幹安定性指標であるDSBT(Directional Stability of Body Trunk)を算出する。共通のクロステストによって得られた計測値に基づいて算出されたIPSとDSBTを用いて被験者のバランス能力の評価を行うことができる。
クロステストにおいて、前後左右の4方向へ傾動する場合には、計測値として、傾動前の直立時の重心動揺情報、前傾時の重心動揺情報、左傾時の重心動揺情報、右傾時の重心動揺情報の方向別の5つの重心動揺情報が得られる(図3、図4参照)。これらの重心動揺情報は、各姿勢毎の重心動揺座標の時系列データである。後述するように、IPSの算出では、上記5つの重心動揺情報が用いられ、DSBTの算出では、前傾時の重心動揺情報、左傾時の重心動揺情報、右傾時の重心動揺情報の方向別の4つの重心動揺情報の各々が用いられる。
各重心動揺座標の時系列データを、XY平面上にプロットすると各姿勢毎の重心動揺軌跡が得られる(図2、図4参照)。各重心動揺軌跡の外接矩形の面積を算出して、各姿勢毎の重心動揺面積とする。具体的には、コンピュータの演算部において、各姿勢毎の重心動揺座標の時系列データを用いて、直立姿勢時の重心動揺面積RAc、前傾姿勢時の重心動揺面積RAf、後傾姿勢時の重心動揺面積RAb、左傾姿勢時の重心動揺面積RAr、右傾姿勢時の重心動揺面積RAlが算出され、算出された値はコンピュータの記憶部に記憶される(図3参照)。
各重心動揺座標の時系列データの座標値の平均から各姿勢毎の平均重心位置(座標)を算出する。具体的には、コンピュータの演算部において、前傾姿勢時の平均重心位置(xf,yf)、後傾姿勢時の平均重心位置(xb,yb)、左傾姿勢時の平均重心位置(xr,yr)、右傾姿勢時の平均重心位置(xl,yl)が算出され、算出された値はコンピュータの記憶部に記憶される(図3参照)。
[3]姿勢安定性評価指標(IPS:Index of Postural Stability)
IPSは、本発明の背景技術であると共に、本発明を理解する上で重要な技術である。IPSについては、非特許文献1〜3の記載を適宜参照することができるが、以下に簡単に説明する。IPSは望月らが考案した重心動揺計を用いたバランス能力の評価指標であり、Berg Balance Scale と強い相関をもち、被験者の歩行能力とも関連性を有している。IPSの基本的な考え方は、「一定の支持基底面内で重心移動できる範囲である安定性限界(stability limits)内に身体重心線が収まっていることが姿勢保持の要件であり、安定性限界が大きく重心動揺が小さいほど安定域から重心線の外れる確率が低くなり、姿勢保持の安定性は高くなる」というものであり、この考え方を数値化するために、安定性限界面積と重心動揺面積の比の対数値を用いている(非特許文献2参照)。
安定性限界面積は前後の重心動揺位置の平均重心位置(Yf,Yb)間の距離と、左右の重心動揺位置にの平均重心位置(Xr,Xl)間の距離と、を乗じた矩形面積として算出する。重心動揺面積は中央・前方・後方・右方・左方に重心移動した傾動位置における所定時間(例えば、10秒間や15秒間)の矩形重心動揺面積(RAc,RAf,RAb,RAr,RAl)の平均値を用いる。IPS はlog〔(安定性限界面積+平均重心動揺面積)/ 平均重心動揺面積〕として算出する。これらの値(安定性限界面積、重心動揺面積、IPS)は、フォースプレート上での被験者の前後左右の傾動時の重心座標の時系列データを用いてコンピュータの処理部によって算出することができる。
クロステストのIPSは、体幹の安定性を示すパラメータとしてその有効性が認知されているが、総合的な評価指標であり、方向による体幹安定性が異なるような場面の評価には不向きである。例えば、左右の荷重バランスが悪くても、重心動揺面積が小さければIPSは正常値となり、骨関節疾患で異常が出にくい。図9は従来のIPS指標による左股関節の術後経過を示す図であるが、バランスの総合評価であるIPSでは、術後の変化を捉えられていない。
[4]方向別体幹安定性(DSBT:Directional Stability of Body Trunk)
本実施形態で提案する方向別体幹安定性(DSBT)は、クロステストにおいて計測された各方向毎の重心動揺情報を用いて、その方向への可動距離D、その方向での重心動揺面積RAを算出し、その方向への可動距離の二乗D2とその方向での動揺面積RAの比の対数から方向別体幹安定性評価指標Iを、I=log[(D2+RA)/RA]として取得する。クロステストを用いたIPSが、支持基底面の大きさ(安定性限界面積)と重心動揺面積の代表値の比の対数を採用するのに対して、DSBTでは、方向別の可動距離(の二乗)という新しい概念を導入する。
本実施形態では、DSBTの算出(特に可動距離の計測)の再現性を高めるために、重心動揺計による重心の測定と同じように、足底形状の中心位置を極力重心動揺計の足載せ台(フォースプレート)上の原点に合わせることが重要である。クロステストにおける立位姿勢(軽度開脚立位時)には、左右の足底間の間隔を例えば平行状に10cmとし、左右の足底の前後方向及び左右方向の中央(いわば、左右の足底の幾何学的中心)をプレート原点に一致するように合わせる。このように、DSBTは、原点座標が重心動揺計のフォースプレート上の左右の足底の幾何学的な中心であるとみなして計算される。この中心は、直立時の平均重心位置とは異なる。図4に示すように、原点と直立時の重心動揺エリアとは異なる(被験者によっては、結果的に平均重心位置とほぼ一致する場合はあり得る)。これに対して、IPSの算出においては原点を基準とした距離を用いないので、フォースプレート上の足の位置と原点との位置関係は計算上は問題とならない。
クロステストにおける足底の幾何学的中心を重心動揺計のプレート原点と一致させる手段としては、幾つかの手法が例示されるが、大きく以下の2つに分けられる。(1)クロステスト時に、この足底の中心がフォースプレートの原点と一致するように足を載せて計測を行う。(2)クロステスト時の足底の幾何学的中心を取得する手段を備え、計測後に、足底の幾何学的中心がプレート原点と一致させるようにして、各重心座標を補正し、補正された重心座標を用いてDSBT(少なくとも方向別の可動距離D)を算出する。
(1)の手法としては、プレート上にマーカや治具を設けて、マーカや治具に合わせて足を載せると、幾何学的な中心が原点となるようにする。プレート上の原点位置と足底の幾何学的な中心を一致させる試みは、従来から重心計の測定等において行われている。例えば、現行の重心計で見られるように、足長が記入されたスケールをプレート面に印刷し、これに前足部を合わせて足を載せることで、プレート原点と足底の中心を一致させることができる。また、足の親指で踏む位置に足踏み検査で用いられるようなマーカを添付し、被験者にこれを踏んでもらうことで、左右の中心を合わせ、前後については足長に合わせてマーカを移動させる。あるいは、つま先、踵、内側、外側の位置決めを行う治具を用意し、治具に合わせて足を載せることで足底の中心がプレート原点と一致するように治具をプレート上に設置し、この治具を用いて足の位置を決定するようにしてもよい。このように、足の位置を決定した上で計測を行うことで、得られた座標値をそのまま用いて方向別の可動距離Dを得ることができる。
(2)の手法としては、足底の幾何学的中心が、足底の外接矩形の中心であるとみなして、クロステスト時の足底の位置から外接矩形を取得し、矩形中心を算出する。算出された矩形中心座標がプレート原点となるように、計測された座標値を補正する。具体的な例では、プレート上に圧力分布シートを載せて、全圧分の足型(図5参照)から矩形中心を算出する。シートによって計測された足型の矩形中心が座標原点となるよう補正して、DSBTの演算を行う。
前後左右の4方向においてDSBTを算出する場合には、現行のクロステストデータと同様の計測を行って、得られた計測値を用いてDSBTを算出することができる。計測条件は、例えば、中央の直立姿勢(DSBTの算出には用いられない)と各方向の傾動姿勢において10(または5)秒間の重心動揺を計測する(計測レートは、例えば20Hz)。各方向別に重心動揺計のプレート上のCOPを計測する。具体的には、前傾姿勢時の重心動揺座標の時系列データ、後傾姿勢時の重心動揺座標の時系列データ、左傾姿勢時の重心動揺座標の時系列データ、右傾姿勢時の重心動揺座標の時系列データを取得する。前傾姿勢時の重心動揺座標の時系列データを用いて、前傾姿勢時の重心動揺面積RAf、重心動揺領域の中心座標(Xf,Yf)を取得する。後傾姿勢時の重心動揺座標の時系列データを用いて、後傾姿勢時の重心動揺面積RAb、重心動揺領域の中心座標(Xb,Yb)を取得する。左傾姿勢時の重心動揺座標の時系列データを用いて、左傾姿勢時の重心動揺面積RAl、重心動揺領域の中心座標(Xl,Yl)を取得する。右傾姿勢時の重心動揺座標の時系列データを用いて、右傾姿勢時の重心動揺面積RAr、重心動揺領域の中心座標(Xr,Yr)を取得する。本実施形態では、方向別の重心動揺面積RAとして、各方向における重心動揺軌跡の外接矩形の面積を用いる。重心動揺領域の中心座標として、各方向における時系列の重心動揺座標の方向別の平均重心位置を用いる。
本実施形態では、所定の方向別の可動距離は、原点と平均重心位置の距離ではなく、原点と平均重心位置との距離における所定の方向の成分である。具体的には、前方への傾動及び後方への傾動は、Y軸上の傾動であり、可動距離Dは、平均重心位置のY成分(Y座標値の絶対値)であり、左方への傾動及び右方への傾動は、X軸上の傾動であり、可動距離Dは、平均重心位置のX成分(X座標値の絶対値)である。重心動揺計のプレート上の足の幾何学的な中心を重心動揺計のプレート原点と合わせて重心動揺座標を取得することで、前傾時の平均重心位置(Xf,Yf)から傾動方向(Y軸上に正方向)の可動距離Yfが得られ、後傾時の平均重心位置(Xb,Yb)から傾動方向(Y軸上に負方向)の可動距離|Yb|が得られ、右傾時の平均重心位置(Xr,Yr)から傾動方向(X軸上に正方向)の可動距離Xrが得られ、左傾時の平均重心位置(Xl,Yl)から傾動方向(X軸上に負方向)の可動距離| Yl |が得られる(図3、図4参照)。
クロステストの各方向で計測した重心動揺の中心座標が、右方向(Xr,Yr)、左方向(Xl,Yl)、前方向(Xf,Yf)、後方向(Xb,Yb)、また各方向での矩形面積を、RAr、RAl、RAf、RAbとすると、各方向のDSBTは、
となる。方向別のDSBTはクロステストにおける計測データを用いて、コンピュータの演算部によって算出することができ、算出されたDSBTはコンピュータの記憶部に記憶される。
方向性を持った新たな体幹安定性のパラメータ(DSBT)を用いることで、重心動揺検査、足踏み検査、クロステストのIPSなどでは表わせなかった股関節疾患に対する骨頭置換術の回復過程が明確化された。図9〜図11は、股関節手術を施行した症例の術前(0週)とその後の経過を、IPSと左右DSBTを用いて観察した結果を示す。図10、図11は、左右の方向性を考慮した指標で評価した例を示す。図10は、右方向DSBTによる股関節の術後経過を示す図である。健足側のDSBTにおいては、術後の変化は見られない。健常者とほぼ同じである。図11は、左方向DSBTによる股関節の術後経過を示す図である。患足側のDSBTにおいて、1週と3週で有意差(P<0.05)が見られる。術後、一旦不安定になった体幹バランスが3週後にはかなり健足側に近づく様子が観察される。既述の通り、図9は従来のIPS指標による股関節の術後経過を示す図であるが、バランスの総合評価では、術後の変化を捉えられていない。このように、IPSでは術後の回復過程が明確でないが、DSBTでは、患足側に回復過程が表れている。
従来のクロステストでは、身体を前後左右の4方向に傾動させることが一般的であったが、本発明の他の実施形態では、重心動揺計上で、体幹を前後左右及び斜め方向の8方向に対して体を傾斜させ、各方向の限界姿勢で重心動揺を測定する。すなわち、クロステストにおける身体の傾動方向は、前後左右に加えて、右前、左前、右後、左後となり、右前傾動時、左前傾動時、右後傾動時、左後傾動時のそれぞれの姿勢の所定時間の静止時において重心動揺情報(すなわち、重心の時系列データ)が重心動揺計及びコンピュータ(演算部)によって取得され、コンピュータの記憶部に記憶される。なお、身体の傾動の順序は限定されない。この斜め方向への重心移動は、右前方向を例にとると、右加重後に前方加重させるか前方加重後に右加重させるといった方法が選択的に採用し得る。
コンピュータの演算部において、各姿勢毎の重心動揺座標の時系列データを用いて、矩形重心動揺面積(RAc,RAf,RAb,RAr,RAl)に加えて、右前傾動時の矩形重心動揺面積RArf、左前傾動時の矩形重心動揺面積RAlf、右後傾動時の矩形重心動揺面積RArb、左後傾動時の矩形重心動揺面積RAlbが算出され、算出された値はコンピュータの記憶部に記憶される。
各重心動揺座標の時系列データの座標値の平均から各姿勢毎の平均重心位置(座標)を算出する。具体的には、コンピュータの演算部において、平均重心位置(xf,yf)、(xb,yb)、(xr,yr)、(xl,yl)に加えて、右前傾動時の平均重心位置(xrf,yrf)、左前傾動時の平均重心位置(xlf,ylf)、右後傾動時の平均重心位置(xrb,yrb)、左後傾動時の平均重心位置(xlb,ylb)が算出され、算出された値はコンピュータの記憶部に記憶される。
上述のように、前方及び後方への傾動がY軸上の傾動、左方及び右方への傾動がX軸上の傾動とすると、右前方への傾動及び左後方への傾動は、X軸に対して傾き45度の直線(XY座標系を反時計周りに45度回転させた時のX´軸)上の傾動であり、左前方への傾動及び右後方への傾動は、X軸に対して傾き135度の直線(XY座標系を反時計周りに45度回転させた時のY´軸)上の傾動である。8方向テストで計測した場合の斜め方向のDSBTは、各方向で得られた動揺の中心座標を、右前(xrf,yrf)、左前(xlf,ylf)、右後(xrb,yrb)、左後(xlb,ylb)、各方向での矩形面積をRArf、RAlf、RArb、RAlbとすると、先ず、各斜めの傾動方向の可動距離(予め決められた傾動方向の成分)を算出するために、各斜め方向で得られた中心座標を、45度回転させた座標系
X´=Xcos(45°)+Ysin(45°)
Y´=−Xsin(45°)+Ycos(45°)
に変換する(図8参照)。右前方への傾動及び左後方への傾動における可動距離Aは、X´成分の絶対値であり、左前方への傾動及び右後方への傾動における可動距離Aは、Y´成分の絶対値である。
そして、前後左右と同様、各斜め方向のDSBTは、
となる。方向別のDSBTはクロステストにおける計測データを用いて、コンピュータの演算部によって算出することができ、算出されたDSBTはコンピュータの記憶部に記憶される。
なお、斜め方向の可動距離について、XY座標系を時計周りに45度回転させた変換座標系の座標(X´´,Y´´)として計算しても可動距離は同じである(すなわち、斜め方向を変換後のX軸とするかY軸とするかの違い)。この場合、右前方への傾動及び左後方への傾動における可動距離Aは、Y´´成分の絶対値であり、左前方への傾動及び右後方への傾動における可動距離Aは、X´´成分の絶対値である。
このように、8方向に傾動した静止姿勢での各方向についての計測データ(重心動揺情報)を取得することで、計測データから各方向に対応した8個の体幹安定性のパラメータ(DSBT)を取得することができる。また、演算結果として得られた方向別の体幹安定性のパラメータを、レーダーチャートを用いて表記することで被験者のバランス能力の評価を行うことができる(図7参照)。図7に示すように、8方向に対応する8本の軸を放射状に等間隔(45度おき)で配置し、各軸上の方向別DSBTを隣位の軸間を直線で結ぶことでレーダーチャートが作成される。図7では8方向のレーダーチャートを示したが、4方向のレーダーチャートを作成してもよい。
なお、上記DSBTの算出式は、DSBTの基本的な考え方から逸脱することなく、改良ないし修正し得るものであり、そのような改良版ないし修正版も本明細書におけるDSBTに含まれる。
本発明に係る「方向性を持つ体幹安定性」の指標であるDSBTの算出手段は、重心動揺計を用いたバランス評価システム(検査、解析、レポートの各機能を備える)として実装することができ、このようなバランス評価システムは、リハビリ領域(脳血管障害や骨関節疾患、変性疾患等(疾患異常が特定方向であっても検出可能)、中枢性疾患(主に脳血管障害による片麻痺)、歩行動作の予測評価)、スポーツ領域(方向性のある体幹安定性が分かれば、競技による特異性の発見や選手の弱点補強のデータになり得る)、高齢者転倒予防(関節の局所的な変形や骨盤のゆがみ、視野や聴覚といった感覚障害の影響で特定の方向に対して体幹安定性が悪い場合)、耳鼻科領域(従来のめまい疾患に混在している可能性のある整形疾患や、脳梗塞等が原因のめまいは、片麻痺患者の体幹安定性に大きな偏埼が見られるなど方向による姿勢安定性が影響し得る)、歯科領域(歯の噛合と方向別体幹安定性との関係等)への利用が期待される。

Claims (9)

  1. 重心動揺計上の被験者が、予め決められた所定の方向に重心を移動させるように、直立姿勢から身体を所定の方向に傾動させた傾動姿勢を所定時間保持した時の重心動揺情報を取得する手段と、
    前記重心動揺情報を用いて、前記所定の方向への傾動姿勢を所定時間保持した時の方向別の重心動揺面積RAを取得する手段と、
    前記重心動揺情報を用いて、前記所定の方向への傾動姿勢を所定時間保持した時の方向別の重心動揺の中心座標を取得する手段と、
    前記中心座標を用いて、直立姿勢から傾動姿勢までの距離の前記所定の方向の成分である方向別の可動距離Dを取得する手段と、
    前記方向別の重心動揺面積RA、前記方向別の可動距離Dを用いて、方向別体幹安定性評価指標Iを、I=log[(D2+RA)/RA]を用いて取得する手段と、
    を備えた方向別体幹安定性指標取得装置。
  2. 前記方向別の重心動揺の中心座標は、前記所定の方向への傾動姿勢を所定時間保持した時の方向別の重心座標の平均である平均重心位置である、
    請求項1に記載の方向別体幹安定性指標取得装置。
  3. 少なくとも方向別の可動距離Dは、重心動揺計上の被験者の左右の足底の幾何学的中心を重心動揺計の原点と一致させて算出される、請求項1、2いずれか1項に記載の方向別体幹安定性指標取得装置。
  4. 前記可動距離Dは、重心動揺計上の原点座標から前記中心座標までの距離の前記所定の方向の成分である、請求項1〜3いずれか1項に記載の方向別体幹安定性指標取得装置。
  5. 前記所定の方向は、前方、後方、左方、右方の1つあるいは複数を含み、
    前記前方への傾動及び前記後方への傾動は、Y軸上の傾動であり、前記可動距離Dは、前記中心座標のY成分の絶対値であり、
    前記左方への傾動及び前記右方への傾動は、X軸上の傾動であり、前記可動距離Dは、前記中心座標のX成分の絶対値である、
    請求項1〜いずれか1項に記載の方向別体幹安定性指標取得装置。
  6. 前記所定の方向は、右前方、左前方、右後方、左後方の1つあるいは複数を含み、
    前記右前方への傾動及び前記左後方への傾動は、X軸に対して傾き45度の直線上の傾動であり、
    前記左前方への傾動及び前記右後方への傾動は、X軸に対して傾き135度の直線上の傾動である、
    請求項1〜いずれか1項に記載の方向別体幹安定性指標取得装置。
  7. 前記右前方への傾動、前記左後方への傾動、前記左前方への傾動、前記右後方への傾動の1つあるいは複数について取得した中心座標を、XY座標系を反時計周りに45度回転させた変換座標系の座標(X´,Y´)に変換する手段を備え、
    前記右前方への傾動及び前記左後方への傾動における可動距離Aは、X´成分の絶対値であり、
    前記左前方への傾動及び前記右後方への傾動における可動距離Aは、Y´成分の絶対値である、
    請求項に記載の方向別体幹安定性指標取得装置。
  8. 前記装置は、表示部を備え、
    各方向について算出された方向別体幹安定性評価指標Iが、前記表示部上にレーダーチャートとして表示される、
    請求項1〜いずれか1項に記載の方向別体幹安定性指標取得装置。
  9. 重心動揺計上の被験者が、予め決められた所定の方向に重心を移動させるように、直立姿勢から身体を所定の方向に傾動させた傾動姿勢を所定時間保持した時の重心動揺情報を取得し、
    前記重心動揺情報を用いて、前記所定の方向への傾動姿勢を所定時間保持した時の方向別の重心動揺面積RAを取得し、
    前記重心動揺情報を用いて、前記所定の方向への傾動姿勢を所定時間保持した時の方向別の重心動揺の中心座標を取得し、
    前記中心座標を用いて、直立姿勢から傾動姿勢までの距離の前記所定の方向の成分である方向別の可動距離Dを取得し、
    前記方向別の重心動揺面積RA、前記方向別の可動距離Dを用いて、方向別体幹安定性評価指標Iを、I=log[(D2+RA)/RA]を用いて取得する、
    方向別体幹安定性指標取得方法。
JP2016171597A 2016-09-02 2016-09-02 方向別体幹安定性指標取得装置及び方法 Active JP6780848B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171597A JP6780848B2 (ja) 2016-09-02 2016-09-02 方向別体幹安定性指標取得装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171597A JP6780848B2 (ja) 2016-09-02 2016-09-02 方向別体幹安定性指標取得装置及び方法

Publications (2)

Publication Number Publication Date
JP2018033825A JP2018033825A (ja) 2018-03-08
JP6780848B2 true JP6780848B2 (ja) 2020-11-04

Family

ID=61566677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171597A Active JP6780848B2 (ja) 2016-09-02 2016-09-02 方向別体幹安定性指標取得装置及び方法

Country Status (1)

Country Link
JP (1) JP6780848B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230281273A1 (en) * 2020-06-12 2023-09-07 Nippon Telegraph And Telephone Corporation Reliability judgment system, judgment device, method and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812384B2 (ja) * 1994-04-14 1998-10-22 アニマ株式会社 重心移動訓練装置
US6063046A (en) * 1997-04-11 2000-05-16 Allum; John H. Method and apparatus for the diagnosis and rehabilitation of balance disorders
JP4414739B2 (ja) * 2003-11-25 2010-02-10 アニマ株式会社 重心動揺計
JP4990719B2 (ja) * 2007-08-23 2012-08-01 パナソニック株式会社 健康測定装置
US20120094814A1 (en) * 2007-09-01 2012-04-19 Balancesense Llc Method and apparatus for vibrotactile motional training employing cognitive spatial activity
JPWO2009093632A1 (ja) * 2008-01-23 2011-05-26 パナソニック電工株式会社 重心バランス判定装置

Also Published As

Publication number Publication date
JP2018033825A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
Schache et al. Differences between the sexes in the three-dimensional angular rotations of the lumbo-pelvic-hip complex during treadmill running
JPH0355077A (ja) 足底圧検出装置
US20170296113A1 (en) Combined device that measures the body weight and balance index
Lin et al. Development of a quantitative assessment system for correlation analysis of footprint parameters to postural control in children
RU2665957C2 (ru) Способ повышения информативности стабилометрического исследования и аппаратный комплекс для его осуществления
Ridge et al. Contributions of intrinsic and extrinsic foot muscles during functional standing postures
EP3666245A1 (en) Method of assessing degree of rehabilitation using an active exoskeleton for patients with disorders of the musculoskeletal system
Chorin et al. Determination of reliable force platform parameters and number of trial to evaluate sit-to-stand movement
JP6780848B2 (ja) 方向別体幹安定性指標取得装置及び方法
Kejonen Body movements during postural stabilization: Measurements with a motion analysis system
JP2017176244A (ja) 動的バランス評価装置
Dodd et al. Retest reliability of dynamic balance during standing in older people after surgical treatment of hip fracture
JP5912807B2 (ja) 荷重計測システム
Yoon et al. Effects of body mass index on plantar pressure and balance
US20230218199A1 (en) A system for assessing human movement and balance
McKinon et al. The agreement between reaction-board measurements and kinematic estimation of adult male human whole body centre of mass location during running
TW201019906A (en) System and method for evaluation and rehabilitation of ankle proprioception
MOCANU et al. Investigation of plantar pressure and plantar imbalances in the static phase of karate do athletes
Wareńczak et al. Body balance a few years after total hip replacement
Clarke Validation of a novel 2D motion analysis system to the gold standard in 3D motion analysis for calculation of sagittal plane kinematics
CN112418110A (zh) 一种人体步态稳定性评估方法及装置
Handa et al. Examination of reliability and validity of walking speed, cadence, stride length-comparison of measurement with stopwatch and three-dimension motion analyzer
CN114305398B (zh) 一种用于检测待测对象的脊髓型颈椎病的系统
Morris et al. Use of Reactive Balance Assessments With Clinical Baseline Concussion Assessments in Collegiate Athletes
RU2323682C1 (ru) Способ определения функциональной несостоятельности сводов стопы

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6780848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250