JP6780592B2 - X線位相差イメージング装置 - Google Patents

X線位相差イメージング装置 Download PDF

Info

Publication number
JP6780592B2
JP6780592B2 JP2017122276A JP2017122276A JP6780592B2 JP 6780592 B2 JP6780592 B2 JP 6780592B2 JP 2017122276 A JP2017122276 A JP 2017122276A JP 2017122276 A JP2017122276 A JP 2017122276A JP 6780592 B2 JP6780592 B2 JP 6780592B2
Authority
JP
Japan
Prior art keywords
grid
lattice
ray
holding portion
misalignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017122276A
Other languages
English (en)
Other versions
JP2019005048A (ja
Inventor
日明 堀場
日明 堀場
太郎 白井
太郎 白井
貴弘 土岐
貴弘 土岐
哲 佐野
哲 佐野
直樹 森本
森本  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017122276A priority Critical patent/JP6780592B2/ja
Priority to US16/002,517 priority patent/US10786217B2/en
Priority to EP18177512.3A priority patent/EP3417783B1/en
Priority to CN201810653082.8A priority patent/CN109106387B/zh
Publication of JP2019005048A publication Critical patent/JP2019005048A/ja
Application granted granted Critical
Publication of JP6780592B2 publication Critical patent/JP6780592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20075Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring interferences of X-rays, e.g. Borrmann effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線位相差イメージング装置に関し、特に、タルボ干渉計によって、吸収像、位相微分像、および、暗視野像を生成するX線位相差イメージング装置に関する。
従来、タルボ干渉計によって、吸収像、位相微分像、および、暗視野像を生成するX線位相差イメージング装置が知られている(たとえば、特許文献1参照)。
上記特許文献1に開示されているX線位相差イメージング装置は、X線源と、マルチスリットと、位相格子と、吸収格子と、検出器と、位相格子をステップ移動させるステッピングアレンジメントとを備える。上記特許文献1に開示されているX線位相差イメージング装置は、位相格子をステップ移動させて撮像することにより、吸収像以外に、位相微分像および暗視野像を生成することができる。なお、「位相微分像」とは、X線が被写体を通過した際に発生するX線の位相のずれをもとに画像化した像である。また、「暗視野像」とは、物体の小角散乱に基づくVisibilityの変化によって得られる、Visibility像のことである。また、暗視野像は、小角散乱像とも呼ばれる。「Visibility」とは、鮮明度のことである。
ここで、タルボ干渉計では、吸収格子の周期は、位相格子から所定距離(タルボ距離)離れた位置に形成される位相格子の自己像の周期と同一になるように設計されている。また、タルボ干渉計では、格子の初期位置の調整や、撮像時において格子を並進させるための移動機構を含む格子保持部によって、各格子が保持されている。そして、タルボ干渉計では、吸収格子を格子構成部分の延びる方向と直交する方向に所定距離ずつ並進させながら撮像することにより、位相微分像および暗視野像を生成することができる。なお、「格子構成部分」とは、格子のX線透過部およびX線遮蔽部(X線位相変化部)のことである。
タルボ干渉計では、位相格子または吸収格子をステップ移動させながら撮像することによって、検出されるX線の検出信号曲線(以下、「ステップカーブ」という)を検出器の各画素において取得する。そして、タルボ干渉計では、被写体を配置せずに撮像することにより取得したステップカーブと、被写体を配置して撮像することにより取得したステップカーブとに基づいて、位相微分像および暗視野像を生成することができる。
国際公開第2014/030115号
しかしながら、上記特許文献1に開示されているX線位相差イメージング装置は、撮像中において、格子を保持する格子保持部に起因して、各格子がX線の光軸方向と直交する面内において位置ずれを起こした場合、位相格子の自己像と吸収格子との相対位置にずれが生じる。位相格子の自己像と吸収格子との相対位置に格子の格子構成部分が延びる方向と直交する方向における位置ずれが生じた場合、取得するステップカーブの形状が変化してしまうので、生成する位相微分像および暗視野像の画質が劣化するという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、X線の光軸方向と直交する面内において、格子保持部に起因して格子が位置ずれを起こした場合でも、取得する画像の画質が劣化することを抑制することが可能なX線位相差イメージング装置を提供することである。
上記目的を達成するために、この発明の第1の局面におけるX線位相差イメージング装置は、X線源と、X線源から照射されたX線を検出する検出器と、X線源と検出器との間に配置された複数の格子と、複数の格子を通過し、検出器により検出されたX線の検出信号に基づいて、画像を生成する制御部と、複数の格子のそれぞれを保持する格子保持部とを備え、格子保持部は、複数の格子の相対位置を調整する格子位置調整機構を含み、複数の格子は、X線の光軸と直交する面内において、複数の格子の格子構成部分が延びる方向が、位置調整機構の総厚みが最大となる方向に沿うように配置されている。
ここで、タルボ干渉計において、格子保持部に起因して格子が位置ずれを起こした場合、格子の自己像も位置ずれを起こす。格子の格子構成部分が延びる方向と垂直な方向に格子保持部に起因する位置ずれが起きた場合、格子の自己像が格子の走査方向に対して位置ずれが起きる。したがって、ステップカーブの取得中に格子の位置ずれが生じると、ステップカーブの形状が変化する。一方で、格子の構成部分が延びる方向に沿う方向に格子保持部に起因する位置ずれが起きた場合、格子の格子構成部分が延びる方向と直交する方向には影響しないので、得られるステップカーブの形状は変化しない。そこで、本発明では、上記のように、格子の格子構成部分の延びる方向が、格子位置調整機構の総厚みが最大となる方向に沿うように配置することによって、X線の光軸方向と直交する面内において、格子保持部に起因する位置ずれが生じたとしても、位相格子の自己像と吸収格子の格子構成部分の延びる方向とが直交する方向における格子の位置関係が変化することを抑制することが可能となる。すなわち、格子位置調整機構が同一部材で構成されている場合、たとえば、格子位置調整機構の熱変形に起因して格子が位置ずれを起こした際の格子の位置ずれは、格子位置調整機構の厚みに依存すると考えられる。したがって、複数の格子の格子構成部分が延びる方向が格子位置調整機構の厚みが最大となる方向に沿うように配置するように構成すれば、取得するステップカーブの形状が変化することを抑制することができるので、X線の光軸方向と直交する面内において、格子保持部が含む格子位置調整機構に起因して格子が位置ずれを起こした場合でも、取得する画像の画質が劣化することを抑制することができる。また、格子位置調整機構に起因する位置ずれを測定しなくても、解析的に位置ずれの方向を決定することができる。
上記第1の局面におけるX線位相差イメージング装置において、好ましくは、制御部は、格子位置調整機構によって、複数の格子の相対位置を調整するように構成されており、格子位置調整機構は、撮像時において、格子位置調整機構の総厚みが最大となる方向と直交する方向に沿って複数の格子を相対移動させるように構成されている。このように構成すれば、複数の格子を相対移動させる方向と格子位置調整機構の総厚みが最大となる方向とを直交させることができるので、格子保持部が含む格子位置調整機構に起因する位置ずれが生じた場合でも、複数の格子を相対移動させる方向の位置ずれを抑制することができる。その結果、取得するステップカーブの形状の変化を抑制することが可能となり、生成する画像の画質が劣化することを抑制することができる。
この場合、好ましくは、格子位置調整機構は、それぞれ異なる方向に複数の格子を移動させる複数の位置決め機構を積層することによって構成されてい
上記格子位置調整機構の総厚みが最大となる方向と直交する方向に沿って複数の格子を相対移動させながら撮像する構成において、好ましくは、複数の格子は、X線源から照射されるX線の位相を変化させてタルボ干渉を生じさせる第1格子と、第1格子によるタルボ干渉により生じた像を構成するX線の一部を遮蔽する第2格子とを含み、X線の光軸と直交する面内において、第1格子および第2格子の両方の格子構成部分の延びる方向が、格子位置調整機構の総厚みが最大となる方向に沿うように、第1格子および第2格子が配置されている。このように構成すれば、第1格子と第2格子との位置関係を厳密に設定する必要があるタルボ干渉計において、格子保持部が含む格子位置調整機構に起因する第1格子および/または第2格子の位置ずれによる画像の画質が劣化することを抑制することができる。したがって、タルボ干渉計において、格子保持部が含む格子位置調整機構に起因する第1格子および/または第2格子の位置ずれによる画像の画質の劣化を抑制するために本願を用いることは好適である。
上記格子位置調整機構の総厚みが最大となる方向と直交する方向に沿って複数の格子を相対移動させながら撮像する構成において、好ましくは、複数の格子は、X線源から照射されるX線の一部を遮蔽する第3格子と、第3格子によってX線の一部が遮蔽されたことにより生じる像を構成するX線の一部を遮蔽する第4格子とを含み、X線の光軸と直交する面内において、第3格子および第4格子の両方の格子構成部分の延びる方向が、格子位置調整機構の総厚みが最大となる方向に沿うように、第3格子および第4格子が配置されている。このように構成すれば、干渉計において、格子保持部が含む格子位置調整機構の位置ずれに起因する画像の画質が劣化することを抑制することができる。したがって、干渉計において、格子保持部が含む格子位置調整機構に起因する第3格子および/または第4格子の位置ずれによる画像の画質が劣化することを抑制することができる。したがって、非干渉計において、格子保持部が含む格子位置調整機構に起因する第3格子および/または第4格子の位置ずれによる画像の画質の劣化を抑制するために本願を用いることは好適である。
この発明の第2の局面におけるX線位相差イメージング装置はX線源と、記X線源から照射されたX線を検出する検出器と、X線源と検出器との間に配置された複数の格子と、複数の格子を通過し、検出器により検出されたX線の検出信号に基づいて、画像を生成する制御部と、複数の格子のそれぞれを保持する格子保持部とを備え、複数の格子は、X線の光軸と直交する面内において、複数の格子の格子構成部分が延びる方向が、格子保持部に起因する位置ずれが最大となる方向に沿うように配置されており、格子保持部に起因する位置ずれは、少なくとも格子保持部の熱変形に起因する位置ずれを含む。このように構成すれば、X線位相差イメージング画像の撮像時に、格子保持部周辺において熱変動が生じることにより格子保持部が熱変形を起こした場合においても、格子保持部に起因する格子の位置ずれによって取得する画像の画質が劣化することを抑制することができる。
上記第2の局面におけるX線位相差イメージング装置において、好ましくは、格子保持部に起因する位置ずれの方向は、X線源から照射されるX線の光軸と直交する面内において、格子保持部の位置ずれ量をそれぞれ異なる2方向に分解した位置ずれ量のうち、位置ずれ量が大きい方向である。このように構成すれば、格子の位置ずれに最も影響する、格子保持部の位置ずれ量が大きい1方向を格子保持部の位置ずれの方向とみなすことが可能になる。その結果、格子の配置方向を容易に決定することができる。
この場合、好ましくは、X線源と、複数の格子と、検出器とが水平方向または鉛直方向に並べて配置されており、格子保持部に起因する位置ずれの方向は、X線源から照射されるX線の光軸と直交する面内において、検出器の縦方向または横方向の2方向のうち、格子保持部の位置ずれ量が大きい方向である。このように構成すれば、X線位相差イメージング装置を水平方向および鉛直方向のどちらに配置した場合においても、X線の光軸と直交する面内において、検出器の縦方向または横方向のどちらか一方に格子を移動させればよいので、格子位置調整機構による格子の移動を容易に行うことができる。
上記第1および第2の局面におけるX線位相差イメージング装置において、好ましくは、複数の格子は、X線源から照射されるX線の一部を遮蔽することにより、X線の空間的な可干渉性を高めるための第5格子をさらに含む。このように構成すれば、第5格子を用いて、X線源の可干渉性を向上させることができる。その結果、焦点距離が微小でないX線源を用いてX線位相差撮像を行うことが可能となるので、X線源の選択の自由度を向上させることができる。
本発明によれば、上記のように、X線の光軸方向と直交する面内において、格子保持部に起因して格子が位置ずれを起こした場合でも、取得する画像の画質が劣化することを抑制することが可能なX線位相差イメージング装置を提供することができる。
本発明の第1実施形態によるX線位相差イメージング装置の全体構造を示す図である。 本発明の第1実施形態によるX線位相差イメージング装置のX線源と、複数の格子と、検出器との配置を説明するための模式図である。 本発明の第1実施形態によるX線位相差イメージング装置の格子と格子保持部を拡大した模式図である。 本発明の第1実施形態によるX線位相差イメージング装置の格子位置調整機構が調整する格子の位置ずれ方向を説明するための模式図である。 本発明の第1実施形態によるX線位相差イメージング装置の格子位置調整機構の構成を説明するための模式図である。 本発明の第1実施形態によるX線位相差イメージング装置の格子保持機構が格子を保持する例を説明するための模式図(A)および(B)である。 タルボ干渉計における吸収像、位相微分像、および、暗視野像を生成する方法を説明するための模式図である。 タルボ干渉計におけるステップカーブを取得する方法を説明するための模式図である。 第1格子および第2格子の格子構成部分がX方向に延びるように配置した際の位置ずれを説明するための模式図(A)および(B)である。 第1格子および第2格子の格子構成部分がY方向に延びるように配置した際の位置ずれを説明するための模式図(A)および(B)である。 本発明の第2実施形態によるX線位相差イメージング装置の全体構造を示す図である。 本発明の第3実施形態によるX線位相差イメージング装置の全体構造を示す図である。 本発明の第1実施形態の第1変形例によるX線位相差イメージング装置の全体構造を示す図である。 本発明の第1実施形態の第2変形例によるX線位相差イメージング装置の全体構造を示す図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
[第1実施形態]
図1〜図10を参照して、本発明の第1実施形態によるX線位相差イメージング装置100の構成について説明する。
(X線位相差イメージング装置の構成)
まず、図1〜図6を参照して、第1実施形態によるX線位相差イメージング装置100の構成について説明する。
X線位相差イメージング装置100は、図1に示すように、被写体Tを通過したX線の拡散を利用して、被写体Tの内部を画像化する装置である。また、X線位相差イメージング装置100は、タルボ(Talbot)効果を利用して、被写体Tの内部を画像化する装置である。X線位相差イメージング装置100は、たとえば、非破壊検査用途では、物体としての被写体Tの内部の画像化に用いることが可能である。また、X線位相差イメージング装置100は、たとえば、医療用途では、生体としての被写体Tの内部の画像化に用いることが可能である。
図1は、X線位相差イメージング装置100の斜視図である。また、図2は、X線位相差イメージング装置100を上(Y1方向)から見た図である。図1に示すように、X線位相差イメージング装置100は、X線源1と、第3格子2と、第1格子3と、第2格子4と、検出器5と、制御部6と、格子保持部7とを備えている。なお、本明細書において、鉛直方向をY方向とし、鉛直上方向をY1方向とし、鉛直下方向をY2方向とする。また、Y方向と直交する水平面内の直交する2方向をそれぞれX方向、および、Z方向とする。X方向のうち、一方をX1方向とし、他方をX2方向とする。また、Z方向のうち、一方をZ1方向とし、他方をZ2方向とする。図1に示す例では、Z1方向にX線源1と複数の格子と検出器5とを並べて配置している。なお、Z方向とは、特許請求の範囲の「X線の光軸方向」の一例である。
X線源1は、高電圧が印加されることにより、X線を発生させるとともに、発生されたX線をZ1方向に向けて照射するように構成されている。
図2に示すように、第3格子2は、複数のX線透過部2aおよびX線遮蔽部2bを有している。各X線透過部2aおよびX線遮蔽部2bは、直線状に延びるように形成されている。また、X線透過部2aおよびX線遮蔽部2bは、X線透過部2aおよびX線遮蔽部2bが延びる方向と直交する方向に所定の周期(ピッチ)d3で配列される。なお、X線透過部2a、および、X線遮蔽部2bは、特許請求の範囲の「格子構成部分」の一例である。
第3格子2は、X線源1と第1格子3との間に配置されており、X線源1からX線が照射されるX線の一部を遮蔽することにより、X線の空間的な可干渉性を高める。第3格子2は、いわゆるマルチスリットである。なお、第3格子2は、特許請求の範囲の「第5格子」の一例である。
第1格子3は、複数のスリット3aおよびX線位相変化部3bを有している。各スリット3aおよびX線位相変化部3bは、それぞれ、直線状に延びるように形成されている。また、スリット3aおよびX線位相変化部3bは、スリット3aおよびX線位相変化部3bが延びる方向と直交する方向に所定の周期(ピッチ)d1で配列される。第1格子3は、いわゆる位相格子である。なお、スリット3a、および、X線位相変化部3bは、特許請求の範囲の「格子構成部分」の一例である。
第1格子3は、X線源1と、第2格子4との間に配置されている。第1格子3は、X線源1から照射されるX線の位相を変化させてタルボ干渉を生じさせる。タルボ干渉とは、可干渉性を有するX線が、スリットが形成された格子を通過すると、格子から所定の距離(タルボ距離Zp)離れた位置に、格子の像(自己像30(図7参照))が形成されることである。
第2格子4は、複数のX線透過部4aおよびX線遮蔽部4bを有している。各X線透過部4aおよびX線遮蔽部4bは、それぞれ、直線状に延びるように形成されている。また、X線透過部4aおよびX線遮蔽部4bは、X線透過部4aおよびX線遮蔽部4bが延びる方向と直交する方向に所定の周期(ピッチ)d2で配列される。第2格子4は、いわゆる、吸収格子である。第1格子3、第2格子4、第3格子2はそれぞれ異なる役割を持つ格子であるが、スリット3a、X線透過部4a、および、X線透過部2aはそれぞれX線を透過させる。また、X線遮蔽部4b、および、X線遮蔽部2bはそれぞれX線を遮蔽する役割を担っており、X線位相変化部3bはスリット3aとの屈折率の違いによってX線の位相を変化させる。なお、X線透過部4a、および、X線遮蔽部4bは、特許請求の範囲の「格子構成部分」の一例である。
第2格子4は、第1格子3と検出器5との間に配置されており、第1格子3を通過したX線が照射される。また、第2格子4は、第1格子3からタルボ距離Zp離れた位置に配置される。第2格子4は、第1格子3の自己像30(図7参照)と干渉して、検出器5の検出表面上にモアレ縞(図示せず)を形成する。
また、タルボ距離Zpは、以下の式(1)によって表される。
Figure 0006780592
ここで、d1は第1格子3の周期である。また、λはX線源1から照射されるX線の波長である。また、R1は第1格子3から第2格子4までの距離である。また、pは任意の整数である。
また、第2格子4の周期d2は、第1格子3の自己像30(図7参照)と同じ周期となるように設計されており、以下の式(2)によって表される。
Figure 0006780592
検出器5は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器5は、たとえば、FPD(Flat Panel Detector)である。検出器5は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、画素の配列方向がX方向およびY方向に一致するように検出器5が配置されている。また、検出器5は、取得した画像信号を、制御部6に出力するように構成されている。
制御部6は、検出器5から出力された画像信号に基づいて、吸収像、位相微分像、および、暗視野像を生成するように構成されている。制御部6は、たとえば、CPU(Central Processing Unit)およびGPU(Graphics Processing Unit)を含む。
なお、第1実施形態では、X線位相差イメージング装置100は、被写体Tを縞走査法によって取得するように構成されている。縞走査法とは、第1格子3または第2格子4を、X方向に所定のピッチで並進させながら撮像し、画素ごとに検出されたX線強度に基づいて強度変調信号を作成し、作成した強度変調に基づいて画像化する方法である。
次に、図3〜図5を参照して、第1実施形態によるX線位相差イメージング装置100の格子保持部7が格子を保持する構成、および、格子位置調整機構9が格子の位置を調整する構成について説明する。図3は、格子保持部7に保持された格子の拡大図である。図3に示すように、各格子は矩形形状であり、格子構成部分がu方向に延びるように配置されている。また、各格子の格子構成部分は、r方向に所定の周期(ピッチ)で配列されている。また、各格子は金属製の格子フレーム8に収容されており、格子保持部7は格子フレーム8を保持することにより各格子を保持している。格子フレーム8は、矩形の枠形状であり、たとえば、アルミで構成されている。また、格子保持部7は、金属性の部材で構成されており、複数の格子の位置を調整する格子位置調整機構9を含んでいる。格子位置調整機構9も格子保持部7と同様に、金属製の部材で構成されている。格子位置調整機構9は、各格子の相対位置を調整するように構成されている。また、格子位置調整機構9は、撮像時において、制御部6からの信号に基づいて、第2格子4を走査させるように構成されている。格子保持部7および格子位置調整機構9は、たとえば、アルミで構成されている。第1実施形態では、格子保持部7(格子位置調整機構9)は、第3格子2、第1格子3、および、第2格子4のそれぞれを保持するために各格子の配置場所に設けられている。また、図3に示す例では、格子保持部7は、格子位置調整機構9のうちY1方向の端面に設けられており、格子フレーム8をY1方向から保持するように構成されている。
(格子位置調整機構が格子の位置ずれを調整する構成)
次に、図4および図5を参照して、格子位置調整機構9が第1格子3および/または第2格子4の位置ずれを調整する構成について説明する。ここで、X線位相差イメージング装置100のようなタルボ・ロー干渉計では、第1格子3からタルボ距離Zp離れた位置に第2格子4を配置する。また、第1格子3および第2格子4の相対位置がずれている場合、意図しないモアレ縞が発生するため、生成する画像の画質が劣化するなどの問題が発生する。したがって、第1実施形態では、X線位相差イメージング装置100は、格子位置調整機構9によって、第1格子3、第2格子4、および、第3格子2の相対位置をあらかじめ調整するように構成されている。第1格子3、第2格子4、および、第3格子2の位置ずれには、図4に示すように、主に、X方向の位置ずれ、Y方向の位置ずれ、Z方向の位置ずれ、Z方向軸周りの回転方向Rzにおける位置ずれ、X方向の中心軸線周りの回転方向Rxにおける位置ずれおよびY方向の中心軸線周りの回転方向Ryにおける位置ずれがある。
図5に示すように、格子位置調整機構9は、それぞれ異なる方向に複数の格子を移動させる複数の位置決め機構を積層することによって構成されている。具体的には、格子位置調整機構9は、複数の位置決め機構をY方向に積層するように構成されており、格子位置調整機構9の総厚みの最大方向がY方向となるように構成されている。より具体的には、格子位置調整機構9は、基台部90と、ステージ支持部91と、格子を乗せるステージ92と、第1駆動部93と、第2駆動部94と、第3駆動部95と、第4駆動部96と、第5駆動部97とを含む。第1〜第5駆動部は、たとえば、それぞれモータなどを含む。また、ステージ92は、連結部92aと、Z方向軸周り回動部92bと、X軸方向周り回動部92cとによって構成されている。また、ステージ92は、各格子を保持する格子保持部7として構成されている。
第1駆動部93、第2駆動部94および第3駆動部95は、それぞれ、基台部90の上面に設けられている。第1駆動部93は、ステージ支持部91をZ方向に往復移動させるように構成されている。また、第2駆動部94は、ステージ支持部91をY軸方向周りに回動させるように構成されている。また、第3駆動部95は、ステージ支持部91をX方向に往復移動させるように構成されている。ステージ支持部91は、ステージ92の連結部92aと接続しており、ステージ支持部91の移動に伴って、ステージ92も移動する。
また、第4駆動部96は、Z方向軸周り回動部92bをX方向に往復移動させるように構成されている。Z方向軸周り回動部92bは、底面が連結部92aに向けて凸曲面状に形成されており、X方向に往復移動されることにより、ステージ92をZ方向の中心軸線周りに回動するように構成されている。また、第5駆動部97は、X軸方向周り回動部92cをZ方向に往復移動させるように構成されている。X軸方向周り回動部92cは、底面がZ方向軸周り回動部92bに向けて凸曲面状に形成されており、Z方向に往復移動されることにより、ステージ92をX方向の中心軸線周りに回動するように構成されている。
したがって、格子位置調整機構9は、第1駆動部93によって、格子をZ方向に位置調整可能に構成されている。また、格子位置調整機構9は、第2駆動部94によって、格子をY軸方向周りの回転方向(Ry方向)に位置調整可能に構成されている。また、格子位置調整機構9は、第3駆動部95によって、格子をX方向に位置調整可能に構成されている。また、格子位置調整機構9は、第4駆動部96によって、格子をZ方向軸周りの回転方向(Rz方向)に位置調整可能に構成されている。また、格子位置調整機構9は、第5駆動部97によって、格子をX軸方向周りの回転方向(Rx方向)に位置調整可能に構成されている。各軸方向の移動可能範囲は、たとえば、それぞれ数mmである。また、X軸方向周りの回転方向Rx、Y軸方向周りの回転方向RyおよびZ方向軸周りの回転方向Rzの回動可能角度は、たとえば、それぞれ数度である。
第1実施形態では、図5に示すように、格子位置調整機構9はステージ92に格子を乗せることによって格子の6軸方向の位置調整を行うように構成されているが、格子の位置調整をすることができればどのように構成されていてもよい。たとえば、図6(A)および図6(B)に示すように、格子を3方向から保持するように構成されていてもよい。図6(A)に示す例では、格子位置調整機構9は、第1調整機構9a、第2調整機構9b、および、第3調整機構9cを含んでいる。なお、図6(A)および図6(B)は、便宜上、第1〜第3調整機構を構成する位置決め機構を矩形形状で示しており、それぞれの位置決め機構は同じ厚みを有するものとして示した例である。
第1調整機構9aは、位置決め機構をY方向に3段積層した構造であり、格子をX方向、Y方向、および、Z方向に位置調整するように構成されている。また、第2調整機構9bは、位置決め機構をX方向に2段積層した構造であり、格子をRx方向およびRy方向に位置調整するように構成されている。また、第3調整機構9cは、1つの位置決め機構によってX方向から格子を保持する構成であり、格子をRz方向に位置調整するように構成されている。なお、第1実施形態では、図6(B)に示すように、第1調整機構9aと第2調整機構9bとが同じ総厚みとなるように構成されていてもよい。
(吸収像、位相微分像、および、暗視野像の生成)
次に、図7および図8を参照して、制御部6が吸収像、位相微分像、および、暗視野像を生成する構成について説明する。
図7は、第1格子3の自己像30に対して第2格子4を格子構成部分と直交する方向に並進させてステップカーブを取得する例を示す図である。図7(A)の状態では、第1格子3の自己像30と第2格子4のX線遮蔽部4bとが重なっているため、検出器5で検出されるX線の強度は小さくなる。しかし、第1格子3を走査させることによって、図7(B)の状態になると、第1格子3の自己像30が第2格子4のX線透過部4aにオーバーラップする領域が増加するため、検出器5で検出されるX線の強度が大きくなる。そして、図7(C)の状態まで第1格子3を走査させると、第1格子3の自己像30が第2格子4のX線透過部4aと重なるため、検出器5で検出されるX線の強度が最大となる。このようにして、検出器5の各画素においてステップカーブを取得する。なお、図7には、被写体Tを配置せずに取得したステップカーブ11の例、および、被写体Tを配置して取得したステップカーブ12の例を示している。
次に、図8を参照して、取得したステップカーブを用いて吸収像、位相微分像、および、暗視野像を生成する構成について説明する。図8に示すように、吸収像は、被写体Tを配置して撮像した際のX線の平均強度Csと、被写体Tを配置せずに撮像した際のX線の平均強度Crとの比によって生成することができる。また、位相微分像は、被写体Tを配置せずに撮像して取得したステップカーブ11と、被写体Tを配置せずに撮像して取得したステップカーブ12との位相差Δφを所定の算出によって求められた数を乗算することにより生成することができる。また、暗視野像は、被写体Tを配置せずに撮像した際のVisibility(Vr)と被写体Tを配置して撮像した際のVisibility(Vs)との比によって生成することができる。Vrは、ステップカーブ11の振幅Arと平均強度Crとの比によって求めることができる。また、Vsは、ステップカーブ12の振幅Asと平均強度Csとの比によって求めることができる。
(格子の位置ずれ)
ここで、縞走査法では、格子を走査させながら撮像することによって各画素のX線の強度変化を示すステップカーブを取得し、取得したステップカーブに基づいて画像を生成する。したがって、ステップカーブの取得中に格子保持部7に起因して第1格子3および/または第2格子4が位置ずれを起こした場合、第1格子3の自己像30と第2格子4との相対位置が変化し、検出器5で検出されるX線の強度が変化してしまう可能性がある。検出されるX線の強度が変化すると、取得されるステップカーブの形状が変化し、生成する画像の画質が劣化するなどの影響が発生する。
そこで、図9および図10を参照して、格子の位置ずれの方向と格子の走査方向との関係によって検出されるX線の強度に変化することによって、ステップカーブに影響を与える例、および、ステップカーブに影響を与えない例について説明する。なお、第1実施形態では、格子の位置ずれとは、X線の光軸と直交する面内(XY面内)において発生する格子の位置ずれのことである。
図9は、格子の走査方向に沿う方向に格子の位置ずれが起きた場合の例を示す図である。図9に示す例では、第1格子3および第2格子4の格子構成部分をX方向に向けて第1格子3および第2格子4を配置している。縞走査法においては、格子の走査方向は、格子構成部分と直交する方向であるので、格子の走査方向はY方向である。
図9(A)は、第1格子3および第2格子4が想定している適切な位置関係にある場合における、第1格子3の自己像30と第2格子4との位置関係を示す図である。図9(A)に示すように、格子の位置ずれが起きていない場合、第1格子3の自己像30と第2格子4のX線遮蔽部4bとの格子の走査方向(Y方向)における位置は一致している。したがって、この状態から第1格子3をY方向に走査させながら撮像して取得したステップカーブは被写体Tの形状を反映した形状となる。
図9(B)は、第1格子3がY1方向に位置ずれを起こした場合の第1格子3の自己像30と第2格子4との位置関係を示す図である。図9(B)に示すように、格子の走査方向に位置ずれが生じた場合、Y方向における第1格子3の自己像30と第2格子4のX線遮蔽部4bとの位置がずれるので、適切な位置関係に格子が配置されている場合と比較して、検出器5で検出されるX線の強度が変化する。したがって、ステップカーブの取得中に、第1格子3が、図9(B)に示すような位置ずれを起こした場合、検出器5で検出されるX線の強度が変化し、ステップカーブの形状が変化する。すなわち、被写体Tの形状によるX線強度変化以外のX線強度変化を含んだステップカーブとなる。
図10は、格子の走査方向と直交する方向に格子の位置ずれが起きた場合の例を示す図である。図10に示す例では、格子の格子構成部分をY方向に向けて第1格子3および第2格子4を配置している。したがって、図10に示す例では、格子の走査方向はX方向である。
図10(A)は、第1格子3および第2格子4が想定している適切な位置関係にある場合における、第1格子3の自己像30と第2格子4との位置関係を示す図である。図10(A)に示すように、格子の位置ずれが起きていない場合、第1格子3の自己像30と第2格子4のX線遮蔽部4bとの格子の走査方向(Y方向)における位置は一致している。したがって、この状態から第1格子3をX方向に走査させながら撮像して取得したステップカーブの形状は、被写体Tの形状を反映した形状となる。図10(B)は、第1格子3がY1方向に位置ずれを起こした場合の第1格子3の自己像30と第2格子4との位置関係を示す図である。図10(B)に示すように、格子の走査方向と直交する方向に位置ずれが生じた場合でも、X方向へ位置ずれしないため、適切な位置関係に格子が配置されている場合と比較して、格子面内の領域で検出されるX線の強度は変化しない。したがって、ステップカーブの形状は変化しない。
これらより、格子の構成部分が延びる方向が、格子保持部7に起因する位置ずれの方向と沿う方向に配置することにより、格子が位置ずれを起こした場合でも、取得するステップカーブの形状に影響を与えることを抑制することができる。そこで、第1実施形態では、複数の格子は、X線の光軸と直交する面内において、複数の格子の格子構成部分が延びる方向が、格子保持部7に起因する位置ずれが最大となる方向に配置する。その結果、最大の位置ずれ方向と走査方向とが図10(B)の関係となる。
ここで、格子保持部7に起因する位置ずれについて考える。撮像中の位置ずれ要因としては、様々な要因が考えられるが、少なくとも熱による位置ずれを含む。格子保持部7および格子位置調整機構9は、アルミなどの金属製の部材によって構成されている。また、格子位置調整機構9は、格子の位置調整を行うためにモータなどを含んでいるため、熱が発生することが考えられる。熱が発生した場合、アルミなどの金属製の部材によって構成されている格子保持部7および格子位置調整機構9は、熱変形を起こす場合がある。
たとえば、アルミの場合、1mあたりの熱膨張係数は23×10-6[/℃]なので、格子保持部7の厚みが10cmであり、全体が一様に温度変化すると仮定した場合、1℃あたり2.3μmの熱変形を起こすことになる。各格子の周期は、数μmから数十μmであるため、格子の位置が0.数μmから数μmずれると、ステップカーブの形状に影響が出ることになる。したがって、格子保持部7および格子位置調整機構9の温度が数℃変化しただけでもステップカーブに影響が生じる。このような格子保持部7および格子位置調整機構9の熱変形を抑えるためには、温度変化を0.数℃以下の範囲に抑える必要がある。しかし、周囲の温度変化に加え、格子位置調整機構9がモータなどを含んでおり、内部からも発熱するため、温度変化を0.数℃以下の範囲に抑えることは困難であると考えられる。
熱変形によって一様に位置ずれが起きると考えると、格子位置調整機構9は、第1実施形態における構成では、格子位置調整機構9の総厚みが最大の方向はY方向であるため、Y方向の位置ずれが最大となると考えられる。また、図6に示すように、格子の複数か所が格子位置調整機構9によって保持されている場合、各格子位置調整機構9の厚みが大きい方向の位置ずれが最大となると考えられる。したがって、図6(A)に示す例では、Y方向に位置ずれを起こす。また、図6(B)に示す例では、第1調整機構9aの厚みと第2調整機構9bの厚みとが同じなので、矢印10の方向(各位置ずれの合成方向)に格子保持部7に起因する位置ずれがおこる。
そこで、第1実施形態では、X線位相差イメージング装置100において、熱変形に起因する位置ずれなど、格子保持部7および格子位置調整機構9に起因する格子の位置ずれが発生した場合でも、取得するステップカーブの形状が変化しないように、複数の格子の格子構成部分が延びる方向が格子保持部7に起因する位置ずれの方向に沿う方向となるように、複数の格子を配置する。具体的には、複数の格子は、複数の格子の格子構成部分が延びる方向が、格子位置調整機構9の総厚みが最大となる方向(Y方向)に沿うように配置される。
また、格子保持部7および格子位置調整機構9に起因する位置ずれ方向は、図10(B)に示すように、各位置ずれの合成方向が斜め方向になることがある。その場合、格子を斜めに並進させなければならないため、格子位置調整機構9の構成が複雑になる。また、格子位置調整機構9を傾けて配置することにより、格子を斜めに並進させる構成も考えられる。しかし、格子位置調整機構9を微細な角度で正確に傾けるために、別途格子位置調整機構9を傾ける機構を設けるなど、装置構成がより複雑なものになる。ここで、格子保持部7および格子位置調整機構9の位置ずれは微細である。したがって、位置ずれの合成方向を2方向に分解し、2方向のうちの位置ずれ量が大きい方向を格子保持部7および格子位置調整機構9の位置ずれの方向とみなすことができる。
そこで、第1実施形態では、各位置ずれの合成方向を2方向に分解し、2方向のうち、一方を位置ずれ方向とみなして格子を配置するように構成されている。具体的には、格子保持部7に起因する位置ずれの方向は、X線源1から照射されるX線の光軸と直交する面内において、格子保持部7の位置ずれ量をそれぞれ異なる2方向に分解した位置ずれ量のうち、位置ずれ量が大きい方向である。さらに具体的には、第1実施形態では、格子位置調整機構9は、格子保持部7の位置ずれが最大となる方向と直交する方向に沿って複数の格子を相対移動させるように構成されている。また、第1実施形態では、複数の格子は、複数の格子の格子構成部分が延びる方向が格子位置調整機構9の総厚みが最大となる方向に沿うように配置する。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、X線位相差イメージング装置100は、X線源1と、X線源1から照射されたX線を検出する検出器5と、X線源1と検出器5との間に配置された複数の格子と、複数の格子を通過し、検出器5により検出されたX線の検出信号に基づいて、画像(吸収像と位相微分像と暗視野像との少なくとも1つを含む)を生成する制御部6と、複数の格子のそれぞれを保持する格子保持部7とを備え、複数の格子は、X線の光軸と直交する面内において、複数の格子の格子構成部分が延びる方向が、格子保持部7に起因する位置ずれが最大となる方向に沿うように配置されている。これにより、第1格子3および第2格子4の格子構成部分の延びる方向が、格子保持部7に起因する位置ずれの方向に沿うように配置することによって、X線の光軸方向と直交する面内において、格子保持部7に起因する位置ずれが生じたとしても、第1格子3の自己像30と第2格子4の格子構成部分の延びる方向とが直交する方向における格子の位置関係が変化することを抑制することが可能となる。その結果、取得するステップカーブの形状が変化することを抑制することができるので、X線の光軸方向と直交する面内において、格子保持部7に起因して格子が位置ずれを起こした場合でも、取得する画像の画質が劣化することを抑制することができる。
また、第1実施形態では、上記のように、格子保持部7は、複数の格子の相対位置を調整する格子位置調整機構9をさらに備え、制御部6は、格子位置調整機構9によって、複数の格子の相対位置を調整するように構成されており、格子位置調整機構9は、撮像時において、格子保持部7の位置ずれが最大となる方向と直交する方向に沿って複数の格子を相対移動させるように構成されている。これにより、複数の格子を相対移動させる方向と格子保持部7に起因する位置ずれの方向とを直交させることができるので、格子保持部7に起因する位置ずれが生じた場合でも、複数の格子を相対移動させる方向の位置ずれを抑制することができる。その結果、取得するステップカーブの形状の変化を抑制することが可能となり、生成する画像の画質が劣化することを抑制することができる。
また、第1実施形態では、上記のように、それぞれ異なる方向に複数の格子を移動させる複数の位置決め機構を積層することによって構成されており、複数の格子は、複数の格子の格子構成部分が延びる方向が格子位置調整機構9の総厚みが最大となる方向に沿うように配置されている。ここで、格子位置調整機構9が同一部材で構成されている場合、たとえば、格子位置調整機構9の熱変形に起因して格子が位置ずれを起こした際の格子の位置ずれは、格子位置調整機構9の厚みに依存すると考えられる。したがって、複数の格子の格子構成部分が延びる方向が格子位置調整機構9の厚みが最大となる方向に沿うように配置するように構成すれば、格子位置調整機構9に起因する位置ずれを測定しなくても、解析的に位置ずれの方向を決定することができる。
また、第1実施形態では、上記のように、複数の格子は、X線源1から照射されるX線の位相を変化させてタルボ干渉を生じさせる第1格子3と、第1格子3によるタルボ干渉により生じた像(自己像30)を構成するX線の一部を遮蔽する第2格子4とを含み、X線の光軸と直交する面内において、第1格子3および第2格子4の両方の格子構成部分の延びる方向が、格子保持部7に起因する位置ずれが最大となる方向に沿うように、第1格子3および第2格子4が配置されている。これにより、第1格子3と第2格子4との位置関係を厳密に設定する必要があるタルボ干渉計において、格子保持部7に起因する第1格子3の位置ずれによる画像の画質が劣化することを抑制することができる。したがって、タルボ干渉計において、格子保持部7に起因する第1格子3の位置ずれによる画像の画質の劣化を抑制するためにX線位相差イメージング装置100を用いることは好適である。
また、第1実施形態では、上記のように、格子保持部7に起因する位置ずれは、少なくとも格子保持部7の熱変形に起因する位置ずれを含む。これにより、X線位相差イメージング画像の撮像時に、格子保持部7周辺において熱変動が生じることにより格子保持部7が熱変形を起こした場合においても、格子保持部7に起因する格子の位置ずれによって取得する画像の画質が劣化することを抑制することができる。
また、第1実施形態では、上記のように、格子保持部7に起因する位置ずれの方向は、X線源1から照射されるX線の光軸と直交する面内において、格子保持部7の位置ずれ量をそれぞれ異なる2方向に分解した位置ずれ量のうち、位置ずれ量が大きい方向である。これにより、格子の位置ずれに最も影響する、格子保持部7の位置ずれ量が大きい1方向を格子保持部7の位置ずれの方向とみなすことが可能になる。その結果、格子の配置方向を容易に決定することができる。
また、第1実施形態では、上記のように、X線源1と、複数の格子と、検出器5とが水平方向に並べて配置されており、格子保持部7に起因する位置ずれの方向は、X線源1から照射されるX線の光軸と直交する面内において、検出器5の縦方向または横方向の2方向のうち、格子保持部7の位置ずれ量が大きい方向である。これにより、X線位相差イメージング装置100を水平方向配置した場合において、X線の光軸と直交する面内において、検出器5の縦方向または横方向のどちらか一方に格子を移動させればよいので、格子位置調整機構9による格子の移動を容易に行うことができる。
[第2実施形態]
次に、図11を参照して、本発明の第2実施形態によるX線位相差イメージング装置200について説明する。X線源1から照射されるX線の位相を変化させてタルボ干渉を生じさせる第1格子3と、第1格子3によるタルボ干渉により生じた像(自己像30)を構成するX線の一部を遮蔽する第2格子4とを含む第1実施形態とは異なり、第2実施形態では、X線源1から照射されるX線の一部を遮蔽する第3格子2と、第3格子2によってX線の一部が遮蔽されたことにより生じる像を構成するX線の一部を遮蔽する第4格子13とを含む。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
図11に示すように、第2実施形態におけるX線位相差イメージング装置200では、複数の格子は、X線源1から照射されるX線の一部を遮蔽する第4格子13と、第4格子13によってX線の一部が遮蔽されたことにより生じる像を構成するX線の一部を遮蔽する第5格子14とを含み、X線の光軸と直交する面内において、第4格子13および第5格子14の両方の格子構成部分の延びる方向が、格子保持部7に起因する位置ずれが最大となる方向に沿うように、第4格子13および第5格子14が配置されている。なお、第4格子13および第5格子14は、それぞれ、特許請求の範囲の「第3格子」および「第4格子」の一例である。
第4格子13および第5格子14は、第2格子4と同様の構成であり、いわゆる吸収格子である。
第2実施形態では、制御部6は、第4格子13を透過したX線の透過像を自己像30とみなして、吸収像、位相微分像、および、暗視野像を生成するように構成されている。
なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、上記のように、複数の格子は、X線源1から照射されるX線の一部を遮蔽する第4格子13と、第4格子13によってX線の一部が遮蔽されたことにより生じる像を構成するX線の一部を遮蔽する第5格子14とを含み、X線の光軸と直交する面内において、第4格子13および第5格子14の両方の格子構成部分の延びる方向が、格子保持部7に起因する位置ずれが最大となる方向に沿うように、第4格子13および第5格子14が配置されている。これにより、被干渉計において、格子保持部7の位置ずれに起因する画像の画質が劣化することを抑制することができる。したがって、被干渉計において、格子保持部7に起因する第4格子13および/または第5格子14の位置ずれによる画像の画質が劣化することを抑制することができる。したがって、非干渉計において、格子保持部7に起因する第4格子13および/または第5格子14の位置ずれによる画像の画質の劣化を抑制するために本願を用いることは好適である。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
[第3実施形態]
次に、図12を参照して、本発明の第3実施形態によるX線位相差イメージング装置300について説明する。X線源1と、複数の格子と、検出器5とが水平方向(Z方向)に並べて配置された第1実施形態とは異なり、X線源1と、複数の格子と、検出器5とが、鉛直方向(Y方向)に並べて配置されている。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
図11に示すように、第3実施形態におけるX線位相差イメージング装置300は、X線源1と、複数の格子と、検出器5とが鉛直方向(Y方向)に並べて配置されており、格子保持部7に起因する位置ずれの方向は、X線源1から照射されるX線の光軸と直交する面内(水平面内)において、検出器5の縦方向または横方向の2方向のうち、格子保持部7の位置ずれ量が大きい方向である。
なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
(第3実施形態の効果)
第3実施形態では、以下のような効果を得ることができる。
第3実施形態では、上記のように、X線源1と、複数の格子と、検出器5とが鉛直方向(Y方向)に並べて配置されており、格子保持部7に起因する位置ずれの方向は、X線源1から照射されるX線の光軸と直交する面内(水平面内)において、検出器5の縦方向または横方向の2方向のうち、格子保持部7の位置ずれ量が大きい方向である。これにより、X線位相差イメージング装置300を鉛直方向(Y方向)に配置した場合においても、X線の光軸と直交する面内において、検出器5の縦方向または横方向のどちらか一方に格子を移動させればよいので、格子位置調整機構9による格子の移動を容易に行うことができる。
なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
(変形例)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、複数の格子の格子構成部分が延びる方向をY方向に向けて配置する例を示したが、本発明はこれに限られない。たとえば、格子保持部7に起因する位置ずれ方向がX方向であれば、複数の格子の格子構成部分が延びる方向をX方向に向けて配置するように構成されていてもよい。
また、上記実施形態では、第3格子2を含む例を示したが、本発明はこれに限られない。たとえば、X線源1から照射されるX線の可干渉性が高い場合、図13に示すように、第3格子2を設けなくてもよい。
また、上記実施形態では、格子保持部7および格子位置調整機構9の位置ずれが熱変形に起因する例を示したが、本発明はこれに限られない。熱変形以外の要因で格子保持部7および格子位置調整機構9が位置ずれを起こしたとしても、位置ずれの方向と、複数の格子の格子構成部分が延びる方向とを沿わせるように格子を配置すればよい。
また、上記第1および第2実施形態では、格子保持部7が各格子を下方(Y1方向)から保持する例を示したが、本発明はこれに限られない。たとえば、格子保持部7を吊り下げ、各格子を上方(Y2方向)から保持するように構成されていてもよい。
また、上記実施形態では、格子の格子構成部分が格子位置調整機構9の厚みが最大となる方向に沿う方向に配置する例を示したが、本発明はこれに限られない。たとえば、X線位相差イメージング装置の設置環境温度を変化させて、格子の位置ずれを測定し、格子の位置ずれが最大となる方向を決定し、決定した方向に格子の格子構成部分が沿うように格子を配置してもよい。
また、上記実施形態では、第1格子3(第4格子13)と第2格子4(第5格子14)との間に被写体Tを配置する例を示したが、本発明はこれに限られない。たとえば、図14に示すように、第3格子2と第1格子3(第4格子13)との間に被写体Tを配置してもよい。しかし、第1格子3(第4格子13)と第2格子4(第5格子14)との間に被写体Tを配置して撮像した場合の方が、画質が高い画像を生成することができるので、第1格子3(第4格子13)と第2格子4(第5格子14)との間に被写体Tを配置する方が好ましい。
また、上記実施形態では、第2格子4(第5格子14)を含む例を示したが、本発明はこれに限られない。たとえば、検出器5の画素サイズが微細な場合、第1格子3の自己像30を直接検出することが可能となるため、第2格子4(第5格子14)を含まない構成でもよい。
1 X線源
2 第3格子(第5格子)
2a X線透過部(格子構成部分)
2b X線遮蔽部(格子構成部分)
3 第1格子
3a スリット(格子構成部分)
3b X線位相変化部(格子構成部分)
4 第2格子(第4格子)
4a X線透過部(格子構成部分)
4b X線遮蔽部(格子構成部分)
5 検出器
6 制御部
7 格子保持部
9 格子位置調整機構
13 第4格子(第3格子)
14 第5格子(第4格子)
30 自己像
100、200、300、400、500 X線位相差イメージング装置

Claims (9)

  1. X線源と、
    前記X線源から照射されたX線を検出する検出器と、
    前記X線源と前記検出器との間に配置された複数の格子と、
    前記複数の格子を通過し、前記検出器により検出されたX線の検出信号に基づいて、画像を生成する制御部と、
    前記複数の格子のそれぞれを保持する格子保持部とを備え、
    前記格子保持部は、前記複数の格子の相対位置を調整する格子位置調整機構を含み、
    前記複数の格子は、X線の光軸と直交する面内において、前記複数の格子の格子構成部分が延びる方向が、前記格子位置調整機構の総厚みが最大となる方向に沿うように配置されている、X線位相差イメージング装置。
  2. 記制御部は、前記格子位置調整機構によって、前記複数の格子の相対位置を調整するように構成されており、
    前記格子位置調整機構は、撮像時において、前記格子位置調整機構の総厚みが最大となる方向と直交する方向に沿って前記複数の格子を相対移動させるように構成されている、請求項1に記載のX線位相差イメージング装置。
  3. 前記格子位置調整機構は、それぞれ異なる方向に前記複数の格子を移動させる複数の位置決め機構を積層することによって構成されている、請求項1または2に記載のX線位相差イメージング装置。
  4. 前記複数の格子は、前記X線源から照射されるX線の位相を変化させてタルボ干渉を生じさせる第1格子と、前記第1格子によるタルボ干渉により生じた像を構成するX線の一部を遮蔽する第2格子とを含み、
    X線の光軸と直交する面内において、前記第1格子および前記第2格子の両方の格子構成部分の延びる方向が、前記格子位置調整機構の総厚みが最大となる方向に沿うように、前記第1格子および前記第2格子が配置されている、請求項1〜のいずれか1項に記載のX線位相差イメージング装置。
  5. 前記複数の格子は、前記X線源から照射されるX線の一部を遮蔽する第3格子と、前記第3格子によってX線の一部が遮蔽されたことにより生じる像を構成するX線の一部を遮蔽する第4格子とを含み、
    X線の光軸と直交する面内において、前記第3格子および前記第4格子の両方の格子構成部分の延びる方向が、前記格子位置調整機構の総厚みが最大となる方向に沿うように、前記第3格子および前記第4格子が配置されている、請求項1〜のいずれか1項に記載のX線位相差イメージング装置。
  6. X線源と、
    前記X線源から照射されたX線を検出する検出器と、
    前記X線源と前記検出器との間に配置された複数の格子と、
    前記複数の格子を通過し、前記検出器により検出されたX線の検出信号に基づいて、画像を生成する制御部と、
    前記複数の格子のそれぞれを保持する格子保持部とを備え、
    前記複数の格子は、X線の光軸と直交する面内において、前記複数の格子の格子構成部分が延びる方向が、前記格子保持部に起因する位置ずれが最大となる方向に沿うように配置されており、
    前記格子保持部に起因する位置ずれは、少なくとも前記格子保持部の熱変形に起因する位置ずれを含む、X線位相差イメージング装置。
  7. 前記格子保持部に起因する位置ずれの方向は、前記X線源から照射されるX線の光軸と直交する面内において、前記格子保持部の位置ずれ量をそれぞれ異なる2方向に分解した位置ずれ量のうち、位置ずれ量が大きい方向である、請求項6に記載のX線位相差イメージング装置。
  8. 前記X線源と、前記複数の格子と、前記検出器とが水平方向または鉛直方向に並べて配置されており、
    前記格子保持部に起因する位置ずれの方向は、前記X線源から照射されるX線の光軸と直交する面内において、前記検出器の縦方向または横方向の2方向のうち、前記格子保持部の位置ずれ量が大きい方向である、請求項7に記載のX線位相差イメージング装置。
  9. 前記複数の格子は、前記X線源から照射されるX線の一部を遮蔽することにより、X線の空間的な可干渉性を高めるための第5格子をさらに含む、請求項1〜8のいずれか1項に記載のX線位相差イメージング装置。
JP2017122276A 2017-06-22 2017-06-22 X線位相差イメージング装置 Active JP6780592B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017122276A JP6780592B2 (ja) 2017-06-22 2017-06-22 X線位相差イメージング装置
US16/002,517 US10786217B2 (en) 2017-06-22 2018-06-07 X-ray phase-contrast imaging apparatus
EP18177512.3A EP3417783B1 (en) 2017-06-22 2018-06-13 X-ray phase-contrast imaging apparatus
CN201810653082.8A CN109106387B (zh) 2017-06-22 2018-06-22 X射线相位差成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122276A JP6780592B2 (ja) 2017-06-22 2017-06-22 X線位相差イメージング装置

Publications (2)

Publication Number Publication Date
JP2019005048A JP2019005048A (ja) 2019-01-17
JP6780592B2 true JP6780592B2 (ja) 2020-11-04

Family

ID=62631000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122276A Active JP6780592B2 (ja) 2017-06-22 2017-06-22 X線位相差イメージング装置

Country Status (4)

Country Link
US (1) US10786217B2 (ja)
EP (1) EP3417783B1 (ja)
JP (1) JP6780592B2 (ja)
CN (1) CN109106387B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054151A1 (ja) * 2018-09-11 2020-03-19 株式会社島津製作所 X線位相イメージング装置
JP7188261B2 (ja) * 2019-04-24 2022-12-13 株式会社島津製作所 X線位相イメージング装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548085B2 (ja) * 2010-03-30 2014-07-16 富士フイルム株式会社 回折格子の調整方法
JP5731214B2 (ja) * 2010-08-19 2015-06-10 富士フイルム株式会社 放射線撮影システム及びその画像処理方法
JP2012095865A (ja) * 2010-11-02 2012-05-24 Fujifilm Corp 放射線撮影装置、放射線撮影システム
JP2012110606A (ja) * 2010-11-26 2012-06-14 Fujifilm Corp 放射線撮影装置及び放射線撮影システム
JP2012143550A (ja) * 2010-12-20 2012-08-02 Fujifilm Corp 放射線画像撮影装置および放射線画像取得方法
JP5804843B2 (ja) * 2011-08-22 2015-11-04 キヤノン株式会社 X線撮像装置
CN104582573B (zh) 2012-08-20 2018-09-28 皇家飞利浦有限公司 在微分相位对比成像中对齐源光栅到相位光栅距离以用于多阶相位调谐
WO2015176023A1 (en) * 2014-05-15 2015-11-19 Sigray, Inc. X-ray method for measurement, characterization, and analysis of periodic structures
JP2016050891A (ja) * 2014-09-01 2016-04-11 キヤノン株式会社 X線撮像装置
JP6515682B2 (ja) * 2015-05-28 2019-05-22 コニカミノルタ株式会社 X線タルボ撮影装置及び格子保持具
CN107072621A (zh) * 2015-08-26 2017-08-18 皇家飞利浦有限公司 双能量微分相衬成像
US11249034B2 (en) * 2015-12-02 2022-02-15 Konica Minolta, Inc. X-ray Talbot capturing apparatus
CN205958155U (zh) * 2016-08-03 2017-02-15 深圳市畅格光电有限公司 一种温度不敏感压力传感器

Also Published As

Publication number Publication date
US20180368795A1 (en) 2018-12-27
EP3417783B1 (en) 2020-04-15
CN109106387A (zh) 2019-01-01
CN109106387B (zh) 2022-03-15
EP3417783A1 (en) 2018-12-26
JP2019005048A (ja) 2019-01-17
US10786217B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
US10801971B2 (en) X-ray phase contrast imaging with fourier transform determination of grating displacement
JP5601909B2 (ja) X線撮像装置及びこれを用いるx線撮像方法
JP2014142338A (ja) 干渉計及び被検体情報取得システム
JP6780592B2 (ja) X線位相差イメージング装置
US11268916B2 (en) X-ray phase imaging system
JP6897799B2 (ja) X線位相撮像システム
JP2012020107A (ja) 放射線位相画像撮影装置
JP6743983B2 (ja) X線位相差撮像システム
EP3462166A2 (en) Radiation phase contrast imaging apparatus
JP7031371B2 (ja) X線位相差撮像システム
JP6813107B2 (ja) X線位相差撮像システム
JP7040625B2 (ja) X線位相撮像システム
JP5787597B2 (ja) 撮像装置
WO2019123758A1 (ja) X線位相差撮像システム
JP2012024554A (ja) 放射線位相画像撮影装置
JP7131625B2 (ja) X線位相イメージング装置
JP6958716B2 (ja) X線位相差撮像システム
JP2019072367A (ja) X線位相差撮影装置および位相コントラスト画像補正方法
JP7060090B2 (ja) 光イメージング装置および画像処理方法
WO2023223871A1 (ja) X線位相イメージング装置、x線画像処理装置、x線画像処理方法および補正曲線生成方法
WO2013084657A1 (ja) 放射線撮影装置
JP2021085829A (ja) X線位相イメージング装置
JP2013090920A (ja) 放射線撮影装置及び画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R151 Written notification of patent or utility model registration

Ref document number: 6780592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151