JP6778472B2 - Platinum alloy powder and its manufacturing method - Google Patents

Platinum alloy powder and its manufacturing method Download PDF

Info

Publication number
JP6778472B2
JP6778472B2 JP2015025219A JP2015025219A JP6778472B2 JP 6778472 B2 JP6778472 B2 JP 6778472B2 JP 2015025219 A JP2015025219 A JP 2015025219A JP 2015025219 A JP2015025219 A JP 2015025219A JP 6778472 B2 JP6778472 B2 JP 6778472B2
Authority
JP
Japan
Prior art keywords
platinum
alloy powder
catalyst
acid treatment
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025219A
Other languages
Japanese (ja)
Other versions
JP2016148078A (en
Inventor
山口 猛央
猛央 山口
孝敬 田巻
孝敬 田巻
山田 祐介
祐介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Tokyo Institute of Technology NUC
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Noritake Co Ltd
Tokyo Institute of Technology NUC
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Tokyo Institute of Technology NUC, Kanagawa Institute of Industrial Science and Technology filed Critical Noritake Co Ltd
Priority to JP2015025219A priority Critical patent/JP6778472B2/en
Publication of JP2016148078A publication Critical patent/JP2016148078A/en
Application granted granted Critical
Publication of JP6778472B2 publication Critical patent/JP6778472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、白金合金粉末及びその製造方法に関するものであり、特にアルカリ燃料電池の電極触媒に用いられる白金合金粉末及びその製造方法に関するものである。 The present invention relates to a platinum alloy powder and a method for producing the same, and more particularly to a platinum alloy powder used for an electrode catalyst of an alkaline fuel cell and a method for producing the same.

燃料電池は、水素やメタノールなどの燃料を酸化し、酸素を還元することにより発電する電池であり、理論エネルギー変換効率が高いことから地球環境保護の観点から非常に有用な電源である。 A fuel cell is a cell that generates electricity by oxidizing fuel such as hydrogen or methanol and reducing oxygen, and is a very useful power source from the viewpoint of protecting the global environment because of its high theoretical energy conversion efficiency.

燃料電池の中でも、全固体アルカリ燃料電池は、アニオン伝導性ポリマーを電解質に用い、電極雰囲気がアルカリ性となることから、白金以外の遷移金属も溶出せず、多様な金属触媒を利用できること、また多様な燃料を使用可能であることという点で他の燃料電池よりも優れた性質を有する。 Among fuel cells, all-solid-state alkaline fuel cells use an anionic conductive polymer as an electrolyte and the electrode atmosphere becomes alkaline, so transition metals other than platinum do not elute, and various metal catalysts can be used. It has superior properties to other fuel cells in that it can use various fuels.

特開2010−131581号公報JP-A-2010-131581

しかしながら、白金は高価であることから白金のみの触媒はアルカリ燃料電池の価格を向上させるため好ましくなく、一方、非白金触媒は白金と比べて活性が低く、また系統的な触媒開発が行われていない。 However, since platinum is expensive, a catalyst containing only platinum is not preferable because it increases the price of an alkaline fuel cell. On the other hand, a non-platinum catalyst has lower activity than platinum, and systematic catalyst development has been carried out. Absent.

そのため、白金以外のニッケルやコバルトのみからなる触媒では、触媒機能が十分ではないため、白金を含有させつつも、高価な白金の使用量を低減し、白金とニッケルやコバルト等の他の金属との合金で活性が高い触媒が求められている。 Therefore, a catalyst consisting only of nickel or cobalt other than platinum does not have a sufficient catalytic function. Therefore, while containing platinum, the amount of expensive platinum used can be reduced, and platinum and other metals such as nickel and cobalt can be used. There is a demand for a highly active catalyst in the above alloy.

そこで、本発明は、高い触媒機能を有する電極触媒として使用可能な白金合金粉末の製造方法及びその製造方法により得られた白金合金粉末を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a platinum alloy powder that can be used as an electrode catalyst having a high catalytic function, and a platinum alloy powder obtained by the method for producing the platinum alloy powder.

上述した目的を達成する本発明に係る白金合金粉末の製造方法は、白金と、鉄を除く遷移金属との合金粉末を酸処理して、該合金粉末の表面に白金を露出させる白金合金粉末の製造方法であって、上記遷移金属は、ニッケル又はコバルトであり、当該白金合金粉末中の白金の含有量は、0.99mol%以上6.25mol%以下である。 The method for producing a platinum alloy powder according to the present invention that achieves the above-mentioned object is a platinum alloy powder in which an alloy powder of platinum and a transition metal other than iron is acid-treated to expose platinum on the surface of the alloy powder. In the production method, the transition metal is nickel or cobalt, and the content of platinum in the platinum alloy powder is 0.99 mol% or more and 6.25 mol% or less.

また、上述した目的を達成する本発明に係る白金合金粉末は、白金と、鉄を除く遷移金属とからなり、表面に該白金が露出している白金合金粉末であって、上記遷移金属は、ニッケル又はコバルトであり、上記白金の含有量は、0.99mol%以上6.25mol%以下である。 Further, the platinum alloy powder according to the present invention that achieves the above-mentioned object is a platinum alloy powder composed of platinum and a transition metal other than iron, and the platinum is exposed on the surface. It is nickel or cobalt, and the content of the platinum is 0.99 mol% or more and 6.25 mol% or less.

本発明では、表面に白金を露出させることで、白金の触媒機能をより有効に利用し、高い触媒機能を有する白金合金粉末を得ることができる。 In the present invention, by exposing platinum to the surface, it is possible to more effectively utilize the catalytic function of platinum and obtain a platinum alloy powder having a high catalytic function.

本発明の酸処理を行ったPtNi触媒のCV測定結果を示す。The CV measurement result of the PtNi 3 catalyst subjected to the acid treatment of this invention is shown. 本発明の酸処理を行ったPtCo触媒のCV測定結果を示す。The CV measurement result of the PtCo 3 catalyst subjected to the acid treatment of this invention is shown. PtNi触媒の酸処理前後のLSV測定結果を示す。The LSV measurement results before and after the acid treatment of the PtNi 3 catalyst are shown. PtCo触媒の酸処理前後のLSV測定結果を示す。The LSV measurement results before and after the acid treatment of the PtCo 3 catalyst are shown. PtNi触媒及びPtCo触媒の酸処理前後の質量活性を示す。The mass activity of the PtNi 3 catalyst and the PtCo 3 catalyst before and after the acid treatment is shown. サンプル1〜6の全金属重量あたりの質量活性と、白金重量あたりの質量活性を示す。The mass activity per total metal weight of Samples 1 to 6 and the mass activity per platinum weight are shown. 白金に対するニッケル比率の違いによる全金属重量あたりの質量活性と、白金重量あたりの質量活性を示し、図7(A)は、PtNiの質量活性を示し、図7(B)は、PtNi15の質量活性を示す。The mass activity per total metal weight and the mass activity per platinum weight due to the difference in the nickel ratio to platinum are shown. FIG. 7 (A) shows the mass activity of PtNi 7 , and FIG. 7 (B) shows the mass activity of PtNi 15 . Shows mass activity. PtNi(x=0、3、7、15)の酸処理前後における白金重量あたりの質量活性を示す。The mass activity per platinum weight before and after the acid treatment of PtNi x (x = 0, 3, 7, 15) is shown. PtNiの酸処理条件の違いによるX線回折結果を示す。The X-ray diffraction result by the difference of the acid treatment condition of PtNi 3 is shown. PtNiの酸処理条件の違いによる全金属重量あたりの質量活性と、白金重量あたりの質量活性を示す。The mass activity per total metal weight and the mass activity per platinum weight due to the difference in acid treatment conditions of PtNi 3 are shown.

以下に、本発明を適用した白金合金粉末の製造方法及びその製造方法により得られた白金合金粉末について図面を参照して詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。以下では、白金合金粉末を電極触媒に適用する場合(以下、白金合金触媒という。)について説明する。
1.白金合金触媒
2.白金合金触媒の製造方法
Hereinafter, a method for producing a platinum alloy powder to which the present invention is applied and the platinum alloy powder obtained by the production method will be described in detail with reference to the drawings. The present invention is not limited to the following detailed description unless otherwise specified. Hereinafter, a case where the platinum alloy powder is applied to the electrode catalyst (hereinafter, referred to as a platinum alloy catalyst) will be described.
1. 1. Platinum alloy catalyst 2. Manufacturing method of platinum alloy catalyst

<1.白金合金触媒>
白金合金触媒は、例えばアルカリ燃料電池のカソードやアノードの触媒に用いられる。白金合金触媒は、白金と、鉄を除く遷移金属(以下、単に遷移金属という。)からなる。この白金合金触媒は、後述する酸処理により白金と遷移金属との合金粉末の表面に存在する遷移金属を溶出させることで、表面に白金が露出している。白金の露出は、白金合金触媒の表面の一部又は全体である。
<1. Platinum alloy catalyst >
Platinum alloy catalysts are used, for example, as catalysts for cathodes and anodes of alkaline fuel cells. The platinum alloy catalyst is composed of platinum and a transition metal excluding iron (hereinafter, simply referred to as a transition metal). In this platinum alloy catalyst, platinum is exposed on the surface by eluting the transition metal existing on the surface of the alloy powder of platinum and the transition metal by an acid treatment described later. The exposure of platinum is part or all of the surface of the platinum alloy catalyst.

遷移金属としては、特に限定されないが、クロム、マンガン、コバルト、ニッケル、銅、モリブデン、ルテニウム、ロジウム、パラジウム、銀、タングステン、イリジウム、金、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子であって、2元系に限らず、3元系以上であってもよい。遷移金属としては、これらの中でもコバルトや安価なニッケル等が好ましい。したがって、白金合金触媒は、2元系に限らず、3元系以上であってもよい。 The transition metal is not particularly limited, but chromium, manganese, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, silver, tungsten, iridium, gold, these metal compounds, and two or more of these metals are used. It is a fine particle made of an alloy containing the mixture, and is not limited to a binary system but may be a ternary system or more. Among these, cobalt, inexpensive nickel, and the like are preferable as the transition metal. Therefore, the platinum alloy catalyst is not limited to the binary system, and may be a ternary system or more.

白金の含有量は、得られた白金合金触媒全体に対して25mol%以下である。白金合金触媒は、白金の含有量が25mol%以下と少なくても、触媒機能を十分に発揮することができる。即ち、この白金合金触媒は、白金の使用量が少ないため、触媒の低コスト化を実現でき、アルカリ燃料電池の低コスト化も実現できる。 The platinum content is 25 mol% or less based on the total platinum alloy catalyst obtained. The platinum alloy catalyst can sufficiently exert its catalytic function even if the platinum content is as small as 25 mol% or less. That is, since this platinum alloy catalyst uses a small amount of platinum, the cost of the catalyst can be reduced, and the cost of the alkaline fuel cell can also be reduced.

白金合金触媒の粒径は、20nm以下であり、10nm以下が好ましく、5nm以下であることが更に好ましい。 The particle size of the platinum alloy catalyst is 20 nm or less, preferably 10 nm or less, and more preferably 5 nm or less.

この白金合金触媒は、従来の触媒と同様に、カーボンブラック等の一般的な触媒担持体に対して高い分散性をもって吸着できる。 This platinum alloy catalyst can be adsorbed to a general catalyst carrier such as carbon black with high dispersibility like a conventional catalyst.

以上のような白金合金触媒は、アルカリ溶液中で白金及び遷移金属が溶出せず、かつ白金と遷移金属との合金であり、表面に白金が露出しているため、白金単体や白金が露出していない白金合金触媒に比べて活性が高く、触媒としての機能が優れている。また、白金合金触媒は、白金の含有量が少なくても活性が高いため、低コストでアルカリ燃料電池の電池特性を向上させることができる。 The platinum alloy catalyst as described above is an alloy of platinum and a transition metal in which platinum and a transition metal are not eluted in an alkaline solution, and platinum is exposed on the surface, so that platinum alone or platinum is exposed. It has higher activity than the platinum alloy catalyst that has not been used, and has an excellent function as a catalyst. Further, since the platinum alloy catalyst has high activity even if the platinum content is small, the battery characteristics of the alkaline fuel cell can be improved at low cost.

<2.白金合金触媒の製造方法>
白金合金触媒の製造方法は、白金と、遷移金属とからなり、この白金と遷移金属との合金粉末の表面に存在する遷移金属を溶出させることで、合金粉末の表面に遷移金属で覆われていた白金を露出させて白金合金触媒を作製することができる。
<2. Platinum alloy catalyst manufacturing method>
The method for producing a platinum alloy catalyst consists of platinum and a transition metal, and the surface of the alloy powder is covered with the transition metal by eluting the transition metal existing on the surface of the alloy powder of the platinum and the transition metal. A platinum alloy catalyst can be produced by exposing the platinum.

(合金粉末)
合金粉末は、白金と遷移金属との合金である。この合金粉末は、白金の一部が遷移金属で覆われ、その他の部分は白金が露出して合金化している。合金粉末は、白金と遷移金属とを所定の割合で混合し、電気炉を用いて、不活性雰囲気下で所定の温度まで昇温し、所定時間、加熱した後、放冷して得られる。触媒担持体に吸着した合金粉末を得るには、白金と、遷移金属と、触媒担持体を混合して、同様に加熱することで得られる。
(Alloy powder)
The alloy powder is an alloy of platinum and a transition metal. In this alloy powder, a part of platinum is covered with a transition metal, and the other part is exposed and alloyed with platinum. The alloy powder is obtained by mixing platinum and a transition metal in a predetermined ratio, raising the temperature to a predetermined temperature under an inert atmosphere using an electric furnace, heating for a predetermined time, and then allowing to cool. To obtain the alloy powder adsorbed on the catalyst carrier, platinum, the transition metal, and the catalyst carrier are mixed and similarly heated.

白金と遷移金属とを混合する際、又は白金と遷移金属と触媒担持体とを混合する際には、イソプロピルアルコール等のアルコールを添加してもよい。アルコールを添加し、ペースト状にすることで、均一に混合することができる。不活性雰囲気は、水素や窒素、又はこれらの混合ガス等の不活性ガスを反応槽に吹き込んで作製する。白金と遷移金属との混合物、又は白金と遷移金属と触媒担持体との混合物の加熱温度は、500℃〜1000℃程度である。加熱時間は、白金と遷移金属との混合割合等によって異なるが、例えば10分〜12時間程度である。 An alcohol such as isopropyl alcohol may be added when the platinum and the transition metal are mixed, or when the platinum, the transition metal and the catalyst carrier are mixed. By adding alcohol to make a paste, it can be mixed uniformly. The inert atmosphere is created by blowing an inert gas such as hydrogen, nitrogen, or a mixed gas thereof into the reaction vessel. The heating temperature of the mixture of platinum and the transition metal or the mixture of platinum, the transition metal and the catalyst carrier is about 500 ° C. to 1000 ° C. The heating time varies depending on the mixing ratio of platinum and the transition metal, etc., but is, for example, about 10 minutes to 12 hours.

白金と遷移金属との混合比は、特に限定されないが、1:3〜1:100である。白金と遷移金属との混合比を1:3〜1:100の範囲とすることによって、白金の含有量を抑えつつも、触媒としての機能を発揮することができる。 The mixing ratio of platinum and the transition metal is not particularly limited, but is 1: 3 to 1: 100. By setting the mixing ratio of platinum and the transition metal in the range of 1: 3 to 1: 100, the function as a catalyst can be exhibited while suppressing the content of platinum.

(酸処理)
酸処理の目的は、白金を覆っている遷移金属を溶出させることである。酸処理は、白金と遷移金属との合金粉末の表面に存在する遷移金属を溶出させることで、合金粉末の表面に白金を露出させて、白金の触媒機能を有効に利用し、合金化による白金間距離の変化及び/または電子状態の変化により、得られた白金合金触媒の触媒機能を向上させる。白金の露出は、後述する酸処理の条件や合金粉末の状態により異なるため、これらの条件や状態によって、酸処理後に露出している白金の割合は異なる。白金合金触媒は、白金合金触媒の表面全体に白金が露出していることに限らず、表面の一部が遷移金属で覆われ、その他の部分に白金が露出している場合も含まれる。
(Acid treatment)
The purpose of the acid treatment is to elute the transition metal covering the platinum. The acid treatment exposes platinum on the surface of the alloy powder by eluting the transition metal existing on the surface of the alloy powder of platinum and the transition metal, effectively utilizing the catalytic function of platinum, and platinum by alloying. The catalytic function of the obtained platinum alloy catalyst is improved by changing the distance and / or the electronic state. Since the exposure of platinum differs depending on the acid treatment conditions and the state of the alloy powder described later, the proportion of platinum exposed after the acid treatment differs depending on these conditions and conditions. The platinum alloy catalyst is not limited to the case where platinum is exposed on the entire surface of the platinum alloy catalyst, but also includes a case where a part of the surface is covered with a transition metal and platinum is exposed on other parts.

酸処理は、合金粉末を単独、又は合金粉末を炭素等の触媒担持体に吸着させた状態で酸性溶液に浸漬させる方法、合金粉末を単独、又は合金粉末を炭素等の触媒担持体に吸着させた後、グラッシーカーボン電極等の電極へ塗布し、RDE(Rotating Disk Electrode)装置にセットした状態で酸性溶液に浸漬させて電位掃引を行い、電気化学処理を行う方法等がある。 The acid treatment is a method in which the alloy powder is immersed alone or in an acidic solution with the alloy powder adsorbed on a catalyst carrier such as carbon, the alloy powder alone or the alloy powder is adsorbed on a catalyst carrier such as carbon. After that, there is a method of applying it to an electrode such as a glassy carbon electrode, immersing it in an acidic solution in a state of being set in an RDE (Rotating Disk Electrode) device, performing potential sweep, and performing an electrochemical treatment.

酸性溶液としては、特に限定されないが、過塩素酸溶液、硫酸溶液、硝酸溶液、塩酸溶液、酢酸溶液等の一般的な酸性溶液を用いることができる。酸性溶液は、pHが1〜3の範囲が好ましく、pH1程度とすることが更に好ましい。 The acidic solution is not particularly limited, but a general acidic solution such as a perchloric acid solution, a sulfuric acid solution, a nitric acid solution, a hydrochloric acid solution, or an acetic acid solution can be used. The pH of the acidic solution is preferably in the range of 1 to 3, and more preferably about pH 1.

酸性溶液中に浸漬させて酸処理を行う場合には、処理時間は、酸性溶液のpHや撹拌条件等により異なることから特に限定されない。 When the acid treatment is carried out by immersing in an acidic solution, the treatment time is not particularly limited because it varies depending on the pH of the acidic solution, stirring conditions and the like.

電位掃引の条件としては、特に限定されないが、例えば、可逆水素電極に対して0.05V〜1.2Vの範囲で、適宜決定した掃引速度やサイクル数で行う。 The conditions for the potential sweep are not particularly limited, but are, for example, performed in the range of 0.05 V to 1.2 V with respect to the reversible hydrogen electrode at an appropriately determined sweep rate and number of cycles.

酸処理では、酸性溶液を撹拌することが好ましい。撹拌方法は、撹拌機を用いたり、電極自体を回転させて撹拌してもよい。回転速度は、特に限定されない。酸処理では、撹拌することにより、遷移金属の溶解速度を制御できる。 In the acid treatment, it is preferable to stir the acidic solution. As the stirring method, a stirrer may be used, or the electrode itself may be rotated to stir. The rotation speed is not particularly limited. In the acid treatment, the dissolution rate of the transition metal can be controlled by stirring.

酸処理は、水素ガスや窒素ガス等を通気して不活性ガス雰囲気で行うことが好ましい。なお、酸処理方法や条件は、白金を覆っている遷移金属を溶出させることができれば上述した方法に限定されない。 The acid treatment is preferably carried out in an inert gas atmosphere by aerating hydrogen gas, nitrogen gas or the like. The acid treatment method and conditions are not limited to the above-mentioned methods as long as the transition metal covering platinum can be eluted.

以上の白金合金触媒の製造方法では、白金と遷移金属との合金粉末又は合金粉末を触媒担持体に担持した状態で酸性溶液に浸漬し、又は酸性溶液に浸漬させた状態で電気化学処理を行うことで、合金粉末の表面の遷移金属の一部を溶出させて内部の白金が露出した白金合金触媒を得ることができる。得られた白金合金触媒は、白金と遷移金属との合金であり、白金が表面に露出しているため、白金単体や白金が露出していない白金合金触媒に比べて、含有された白金の触媒機能を有効に利用でき、合金化による白金間距離の変化及び/または電子状態の変化により高い触媒活性を有する。したがって、得られた白金合金触媒をアルカリ燃料電池の触媒に用いることで、低コストで良好な電池特性を有するアルカリ燃料電池を得ることができる。 In the above method for producing a platinum alloy catalyst, an alloy powder of platinum and a transition metal or an alloy powder is immersed in an acidic solution while being supported on a catalyst carrier, or an electrochemical treatment is performed in a state of being immersed in the acidic solution. This makes it possible to obtain a platinum alloy catalyst in which a part of the transition metal on the surface of the alloy powder is eluted and the platinum inside is exposed. The obtained platinum alloy catalyst is an alloy of platinum and a transition metal, and since platinum is exposed on the surface, a catalyst of platinum contained is compared with platinum alone or a platinum alloy catalyst in which platinum is not exposed. It can effectively utilize its function and has high catalytic activity due to changes in the distance between platinum due to alloying and / or changes in the electronic state. Therefore, by using the obtained platinum alloy catalyst as a catalyst for an alkaline fuel cell, it is possible to obtain an alkaline fuel cell having good battery characteristics at low cost.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[実施例1]
<酸処理による白金の露出>
白金とニッケルの合金(PtNi)、白金とコバルトの合金(PtCo)について、酸処理前のものと、酸処理後のものとを比較して、酸処理による白金の露出が触媒活性へ与える影響の有無を評価した。
[Example 1]
<Exposure of platinum by acid treatment>
Regarding the platinum-nickel alloy (PtNi 3 ) and the platinum-cobalt alloy (PtCo 3 ), the one before the acid treatment and the one after the acid treatment are compared, and the exposure of platinum by the acid treatment gives catalytic activity. The presence or absence of impact was evaluated.

まず、次のようにして白金とニッケルの合金粉末を担持したカーボンブラック粒子、及び白金とコバルトの合金粉末を担持したカーボンブラック粒子を作製した。なお、以下では、白金とニッケルの合金粉末又は白金とコバルトの合金粉末を担持したカーボンブラック粒子を触媒という。 First, carbon black particles supporting a platinum-nickel alloy powder and carbon black particles supporting a platinum-cobalt alloy powder were produced as follows. In the following, carbon black particles carrying platinum-nickel alloy powder or platinum-cobalt alloy powder will be referred to as a catalyst.

触媒の作製方法は、先ず、触媒量0.5g(内金属0.2g、カーボンブラック0.3g)、Pt:M(ニッケル又はコバルト)=1:3になるように、前駆体とカーボンブラック粒子を瑪瑙乳鉢で混合した。途中、イソプロピルアルコール(IPA)1.5mLを加えて、さらに混合した。次に、電気炉(ファーネス)で、Hガス及びNガスを供給して不活性雰囲気下で2時間かけて800℃に昇温した。2時間、温度を一定に保った。そして、Hガスを止めてNガスを供給したまま室温まで放冷して、触媒を得た。 The method for producing the catalyst is as follows: First, the precursor and carbon black particles so that the amount of catalyst is 0.5 g (inner metal 0.2 g, carbon black 0.3 g) and Pt: M (nickel or cobalt) = 1: 3. Was mixed in an agate mortar. On the way, 1.5 mL of isopropyl alcohol (IPA) was added and further mixed. Next, in an electric furnace (furness), H 2 gas and N 2 gas were supplied and the temperature was raised to 800 ° C. over 2 hours in an inert atmosphere. The temperature was kept constant for 2 hours. Then, the H 2 gas was stopped and the mixture was allowed to cool to room temperature while supplying the N 2 gas to obtain a catalyst.

得られた触媒を透過型電子顕微鏡(TEM:Transmission Electron Microscope)により評価したところ、約3nmの金属粒子が高分散にカーボンブラック上に担持されていることを確認した。 When the obtained catalyst was evaluated by a transmission electron microscope (TEM), it was confirmed that metal particles having a diameter of about 3 nm were highly dispersed and supported on carbon black.

次に、酸処理を行った。先ず、触媒をRDE装置のグラッシーカーボン電極に塗布し、グラッシーカーボンに触媒が担持された電極を得る。具体的には、アルミニウムで磨いたグラッシーカーボン(幾何学的領域:0.196cm)電極を用いた。触媒の分散液は、24%のイソプロピルアルコール溶液12.5mLに10mgの触媒を分散させたものと、50μLのパーフルオロカーボン材料(SIGMA-ALDRICH社製 商品名 ナフィオン、5wt%)とを混合して作製した。そして、10μLの触媒の分散液をグラッシーカーボン電極の表面に塗布し、室温で乾燥した。これにより、グラッシーカーボンに触媒が担持された電極を得た。 Next, acid treatment was performed. First, the catalyst is applied to the glassy carbon electrode of the RDE apparatus to obtain an electrode in which the catalyst is supported on the glassy carbon. Specifically, a glassy carbon (geometric region: 0.196 cm 2 ) electrode polished with aluminum was used. The catalyst dispersion was prepared by mixing 10 mg of the catalyst in 12.5 mL of a 24% isopropyl alcohol solution and 50 μL of a perfluorocarbon material (trade name Nafion manufactured by SIGMA-ALDRICH, 5 wt%). did. Then, 10 μL of the dispersion liquid of the catalyst was applied to the surface of the glassy carbon electrode and dried at room temperature. As a result, an electrode in which a catalyst was supported on glassy carbon was obtained.

次に、グラッシーカーボンに触媒が担持された電極をRDE装置にセットした。RDE装置にセットした状態で電極を、Nを通気した0.1Mの過塩素酸溶液(HClOaq)に浸漬させ、可逆水素電極に対して、0.05V〜1.2Vの範囲を掃引速度100mV/sec、50mV/sec、20mV/secでCV測定により酸処理を行った。次に、Nを0.1Mの水酸化ナトリウム水溶液(NaOHaq)に通気後、水酸化ナトリウム水溶液に酸処理後の電極を浸漬させ、水酸化ナトリウム水溶液中で掃引速度20mV/secでCV測定を行った。 Next, an electrode in which a catalyst was supported on glassy carbon was set in the RDE apparatus. The electrode was immersed in a 0.1 M perchloric acid solution (HClO 4 aq) in which N 2 was aerated while being set in the RDE device, and swept in the range of 0.05 V to 1.2 V with respect to the reversible hydrogen electrode. Acid treatment was performed by CV measurement at a speed of 100 mV / sec, 50 mV / sec, and 20 mV / sec. Next, after aerating N 2 into a 0.1 M sodium hydroxide aqueous solution (NaOHaq), the electrode after acid treatment is immersed in the sodium hydroxide aqueous solution, and CV measurement is performed in the sodium hydroxide aqueous solution at a sweep rate of 20 mV / sec. went.

PtNiのCV測定結果を図1に示し、PtCoのCV測定結果を図2に示す。図1及び図2に示す結果から、酸処理後では、0.1〜0.3V付近のピーク面積が増加していることから、酸処理により露出している白金の表面積が増加していることがわかる。即ち、酸処理により白金合金触媒の表面に白金の一部が露出していることがわかる。 The CV measurement result of PtNi 3 is shown in FIG. 1, and the CV measurement result of PtCo 3 is shown in FIG. From the results shown in FIGS. 1 and 2, since the peak area around 0.1 to 0.3 V increases after the acid treatment, the surface area of platinum exposed by the acid treatment increases. I understand. That is, it can be seen that a part of platinum is exposed on the surface of the platinum alloy catalyst by the acid treatment.

また、グラッシーカーボンに触媒が担持された電極について回転速度1600rpmで、Hg/HgO(水銀/酸化水銀)電極に対して、−0.85Vから0.4Vまで、20mV/sで掃引することにより、LSV測定を行った。回転速度1600rpmでのPtNiのLSV測定結果を図3に示し、PtCoのLSV測定結果を図4に示す。LSV測定では、可逆水素電極に対して0.8〜1V付近の還元電流密度が増加する領域が反応活性と関連しており、貴な電位で電流密度の絶対値が高いほど、酸素還元活性が高いことになる。図3及び図4に示す結果から、PtNi、PtCoともに、酸処理により貴な電位から酸素還元電流が立ち上がっており、また、0.8〜1.0V付近の領域において、特定の電位で比較すると酸処理後の方が電流密度が高いことから、酸処理により酸素還元活性が増加したことが分かる。 Further, the electrode on which the catalyst is supported on glassy carbon is swept at a rotation speed of 1600 rpm and the Hg / HgO (mercury / mercury oxide) electrode is swept from −0.85 V to 0.4 V at 20 mV / s. LSV measurement was performed. The LSV measurement result of PtNi 3 at a rotation speed of 1600 rpm is shown in FIG. 3, and the LSV measurement result of PtCo 3 is shown in FIG. In the LSV measurement, the region where the reduction current density increases around 0.8 to 1V with respect to the reversible hydrogen electrode is related to the reaction activity, and the higher the absolute value of the current density at the noble potential, the higher the oxygen reduction activity. It will be expensive. From the results shown in FIGS. 3 and 4, both PtNi 3 and PtCo 3 have an oxygen reduction current rising from a noble potential due to acid treatment, and at a specific potential in the region near 0.8 to 1.0 V. By comparison, the current density was higher after the acid treatment, indicating that the acid treatment increased the oxygen reduction activity.

PtNi、PtCoに対して、LSV測定結果から白金重量あたりの質量活性を求めた結果を図5に示す。図5に示す結果から、PtNi、PtCoは、Ptをカーボンブラックに吸着させた触媒(田中貴金属社製:TKK)に比べて、酸処理前はほとんど質量活性が同じか少し高いが、酸処理後では非常に高くなることがわかる。 FIG. 5 shows the results of determining the mass activity per platinum weight from the LSV measurement results for PtNi 3 and PtCo 3 . From the results shown in FIG. 5, PtNi 3 and PtCo 3 have almost the same or slightly higher mass activity before the acid treatment than the catalyst in which Pt is adsorbed on carbon black (manufactured by Tanaka Kikinzoku Co., Ltd .: TKK), but the acid. It can be seen that it becomes very high after processing.

[実施例2]
<酸処理条件の違い(電気化学処理、撹拌との関係)>
白金とニッケルの合金(PtNi)について、表1に示す酸処理条件で酸処理を行い、得られた白金合金触媒について質量活性を評価した。なお、サンプル1は、酸処理を行っていないものである。酸溶液含浸とは、触媒(合金粉末を担持したカーボンブラック粒子)をグラッシーカーボン電極に塗布し乾燥して、グラッシーカーボンに触媒が担持された電極を0.1Mの過塩素酸水溶液(HClOaq)に入れて、表1に記載の条件で触媒を酸処理したということである。サンプル2の電気化学処理は、電位掃引を、掃引速度100mV/sで20cycle、50mV/sで5cycle、20mV/sで5cycleの順に行ったものである。
[Example 2]
<Differences in acid treatment conditions (relationship with electrochemical treatment and stirring)>
The platinum-nickel alloy (PtNi 3 ) was subjected to acid treatment under the acid treatment conditions shown in Table 1, and the mass activity of the obtained platinum alloy catalyst was evaluated. Note that sample 1 is not subjected to acid treatment. Acid solution impregnation means that a catalyst (carbon black particles carrying alloy powder) is applied to a glassy carbon electrode and dried, and the electrode on which the catalyst is supported on glassy carbon is coated with a 0.1 M perchloric acid aqueous solution (HClO 4 aq). ), The catalyst was acid-treated under the conditions shown in Table 1. In the electrochemical treatment of sample 2, the potential sweep was performed in the order of 20 cycles at a sweep rate of 100 mV / s, 5 cycles at 50 mV / s, and 5 cycles at 20 mV / s.

また、図6に、サンプル1〜サンプル6の全金属重量あたりの質量活性と、白金重量あたりの質量活性を示す。質量活性は、各サンプルについてLSV測定を行い、LSV測定結果から算出した。LSV測定条件は、上述した実施例1の<酸処理による白金の露出>において行ったLSV測定と同様である。 Further, FIG. 6 shows the mass activity of Samples 1 to 6 per total metal weight and the mass activity per platinum weight. The mass activity was calculated from the LSV measurement results by performing LSV measurement on each sample. The LSV measurement conditions are the same as those of the LSV measurement performed in <Exposure of platinum by acid treatment> of Example 1 described above.

図6に示す結果から、酸処理を行っていないサンプル1に比べて、酸処理を行ったサンプル2、4〜6は、質量活性が増加している。特に、サンプル5では、電気化学処理を行ったサンプル2と同等の活性が得られた。したがって、図6に示す結果から、酸処理の方法によらず白金を露出した構造が形成できれば高い活性が得られることがわかる。 From the results shown in FIG. 6, the mass activity of the acid-treated samples 2, 4 to 6 is increased as compared with the acid-treated sample 1. In particular, in Sample 5, the same activity as that of Sample 2 subjected to the electrochemical treatment was obtained. Therefore, from the results shown in FIG. 6, it can be seen that high activity can be obtained if a structure in which platinum is exposed can be formed regardless of the acid treatment method.

[実施例3]
<Ptに対するNi比率の違い>
白金に対するニッケル比率の違いによる質量活性を評価した。図7(A)には、PtNiについて、表1のサンプル2、5と同じ条件で酸処理を行ったもの、及び酸処理を行っていないPtNi(サンプル1)の質量活性の比較を示す。図7(B)には、PtNi15について、表1のサンプル2、5と同じ条件で酸処理を行ったもの、及び酸処理を行っていないPtNi15(サンプル1)の質量活性の比較を示す。質量活性は、各サンプルについてLSV測定を行い、LSV測定結果から算出した。LSV測定条件は、上述した実施例1の<酸処理による白金の露出>において行ったLSV測定と同様である。
[Example 3]
<Difference in Ni ratio to Pt>
The mass activity due to the difference in the nickel ratio to platinum was evaluated. FIG 7 (A), shows the PtNi 7, which the acid treatment was conducted under the same conditions as sample 2 and 5 of Table 1, and the comparison of the mass activity of PtNi 7 not subjected to acid treatment (Sample 1) .. The FIG. 7 (B), the show for PtNi 15, having been subjected to the acid treatment under the same conditions as sample 2 and 5 of Table 1, and PtNi 15 not subjected to acid treatment comparisons of the mass activity (Sample 1) .. The mass activity was calculated from the LSV measurement results by performing LSV measurement on each sample. The LSV measurement conditions are the same as those of the LSV measurement performed in <Exposure of platinum by acid treatment> of Example 1 described above.

図7に示す結果から、ニッケル比率によらず、酸処理を行うことで質量活性が増加しており、PtNi15では、サンプル2、5と同様の酸処理を行ったものは共に高い質量活性が得られることがわかる。 From the results shown in FIG. 7, the mass activity was increased by the acid treatment regardless of the nickel ratio, and in PtNi 15 , the ones subjected to the same acid treatment as the samples 2 and 5 had high mass activity. It turns out that it can be obtained.

図6及び図7に示す結果から、PtNi(x=0、3、7、15)の酸処理前後における白金重量あたりの質量活性を図8にまとめて示す。酸処理は、サンプル5と同様に行った場合である。 From the results shown in FIGS. 6 and 7, the mass activity per platinum weight of PtNi x (x = 0, 3, 7, 15) before and after the acid treatment is summarized in FIG. The acid treatment is the same as in Sample 5.

図8に示す結果から、Ni比率によらず酸処理後の白金合金触媒は活性が高くなっていることがわかる。また、酸処理した白金合金触媒は、酸処理前及び酸処理後の白金単独よりも活性が高く、活性が高いといわれている白金よりも触媒機能が高くなることがわかる。 From the results shown in FIG. 8, it can be seen that the platinum alloy catalyst after the acid treatment has high activity regardless of the Ni ratio. Further, it can be seen that the acid-treated platinum alloy catalyst has higher activity than platinum alone before and after acid treatment, and has higher catalytic function than platinum, which is said to have high activity.

[実施例4]
<酸処理条件の違い(合金粉末のみの酸処理)>
白金とニッケルの合金粉末(PtNi)を担持したカーボンブラック粒子を、酸溶液(0.1MのHClOaq)中で1時間又は3時間、室温又は60℃で撹拌することにより、酸処理を行った。そして、酸処理をしていない合金粉末と、酸処理を行った合金粉末について、X線回折(XRD:X‐ray diffraction)を行った。その結果を図9に示す。図9に示す結果から、ニッケル単体由来の面指数(111)、(200)におけるピーク強度が、酸処理を行っていないものと比べて、酸処理後のものは減少しており、酸処理時間及び温度の増加により、ピーク強度の減少幅が大きくなり、遷移金属の溶出量が多くなることがわかる。
[Example 4]
<Differences in acid treatment conditions (acid treatment of alloy powder only)>
Acid treatment is performed by stirring carbon black particles carrying an alloy powder of platinum and nickel (PtNi 3 ) in an acid solution (0.1 M HClO 4 aq) for 1 hour or 3 hours at room temperature or 60 ° C. went. Then, X-ray diffraction (XRD: X-ray diffraction) was performed on the alloy powder not treated with acid and the alloy powder treated with acid. The result is shown in FIG. From the results shown in FIG. 9, the peak intensities in the surface indices (111) and (200) derived from nickel alone are lower in those after acid treatment than those without acid treatment, and the acid treatment time. It can be seen that as the temperature increases, the amount of decrease in peak intensity increases and the amount of transition metal elution increases.

また、酸処理を行っていないものと、酸処理を行ったものについて、LSV測定を行い、測定結果から質量活性を求めた結果を図10に示す。LSV測定条件は、上述した実施例1の<酸処理による白金の露出>において行ったLSV測定と同様である。図10に示す結果から、合金粉末の状態で、酸処理によっても質量活性が増加すること、また1時間・室温での酸処理よりも過酷な条件、即ち、3時間・室温又は1時間・60℃の条件では、質量活性が減少するが、酸処理を行っていないものと比べて質量活性は高くなることがわかる。なお、図9中、hは時間であり、rtは室温を示す。 Further, LSV measurement was performed on the one not subjected to the acid treatment and the one subjected to the acid treatment, and the result of determining the mass activity from the measurement result is shown in FIG. The LSV measurement conditions are the same as those of the LSV measurement performed in <Exposure of platinum by acid treatment> of Example 1 described above. From the results shown in FIG. 10, in the state of the alloy powder, the mass activity is also increased by the acid treatment, and the conditions are more severe than the acid treatment at 1 hour / room temperature, that is, 3 hours / room temperature or 1 hour / 60. It can be seen that under the condition of ℃, the mass activity decreases, but the mass activity becomes higher than that without the acid treatment. In FIG. 9, h is time and rt is room temperature.

実施例1〜3の結果から、白金と遷移金属との合金粉末を酸処理して白金の一部を表面に露出させることにより、白金単独、又は酸処理を行っていない合金粉末に比べて、活性が高くなり、触媒機能を向上させることができることがわかる。 From the results of Examples 1 to 3, the alloy powder of platinum and the transition metal was acid-treated to expose a part of platinum to the surface, as compared with platinum alone or the alloy powder not subjected to acid treatment. It can be seen that the activity is increased and the catalytic function can be improved.

Claims (6)

白金と、鉄を除く遷移金属との合金粉末を酸処理して、該合金粉末の表面に白金を露出させる白金合金粉末の製造方法であって、
上記遷移金属は、ニッケル又はコバルトであり、
当該白金合金粉末中の白金の含有量は、0.99mol%以上6.25mol%以下である白金合金粉末の製造方法。
A method for producing a platinum alloy powder in which an alloy powder of platinum and a transition metal other than iron is acid-treated to expose platinum on the surface of the alloy powder.
The transition metal is nickel or cobalt.
A method for producing a platinum alloy powder, wherein the content of platinum in the platinum alloy powder is 0.99 mol% or more and 6.25 mol% or less.
上記酸処理は、上記合金粉末を酸性溶液に浸漬させて行う請求項1記載の白金合金粉末の製造方法。 The method for producing a platinum alloy powder according to claim 1, wherein the acid treatment is performed by immersing the alloy powder in an acidic solution. 上記酸処理は、更に電位掃引を行う請求項2記載の白金合金粉末の製造方法。 The method for producing a platinum alloy powder according to claim 2, wherein the acid treatment further performs potential sweep. 白金と、鉄を除く遷移金属とからなり、表面に該白金が露出している白金合金粉末であって、
上記遷移金属は、ニッケル又はコバルトであり、
当該白金合金粉末中の白金の含有量は、0.99mol%以上6.25mol%以下である白金合金粉末。
A platinum alloy powder composed of platinum and a transition metal other than iron, with the platinum exposed on the surface.
The transition metal is nickel or cobalt.
The platinum alloy powder has a platinum content of 0.99 mol% or more and 6.25 mol% or less.
表面の一部に上記白金が露出している請求項4記載の白金合金粉末。 The platinum alloy powder according to claim 4, wherein the platinum is exposed on a part of the surface. アルカリ燃料電池の電極触媒である請求項4又は5記載の白金合金粉末。 The platinum alloy powder according to claim 4 or 5, which is an electrode catalyst for an alkaline fuel cell.
JP2015025219A 2015-02-12 2015-02-12 Platinum alloy powder and its manufacturing method Active JP6778472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025219A JP6778472B2 (en) 2015-02-12 2015-02-12 Platinum alloy powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025219A JP6778472B2 (en) 2015-02-12 2015-02-12 Platinum alloy powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016148078A JP2016148078A (en) 2016-08-18
JP6778472B2 true JP6778472B2 (en) 2020-11-04

Family

ID=56691640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025219A Active JP6778472B2 (en) 2015-02-12 2015-02-12 Platinum alloy powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6778472B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201811895D0 (en) 2018-07-20 2018-09-05 Johnson Matthey Fuel Cells Ltd Nanoparticles and preparation Method
KR20210085605A (en) * 2019-12-31 2021-07-08 코오롱인더스트리 주식회사 Catalyst for Fuel Cell, Method for Manufacturing The Same, and Membrane-Electrode Assembly Comprising The Same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141233A (en) * 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst
JPH04141235A (en) * 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst for an anode pole
JPH06246160A (en) * 1993-02-22 1994-09-06 Tanaka Kikinzoku Kogyo Kk Production of alloy catalyst for fuel cell
JP2001052718A (en) * 1999-08-12 2001-02-23 Fuji Electric Co Ltd Manufacture of catalyst and fuel cell using catalyst
JP4025615B2 (en) * 2002-10-08 2007-12-26 勇 内田 Fuel cell capable of fuel regeneration, power generation method and fuel regeneration method
JP2005267854A (en) * 2004-03-16 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Electrode catalyst for polymer electrolyte fuel cell, manufacturing method, and polymer electrolyte fuel cell
JP2010027364A (en) * 2008-07-18 2010-02-04 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
US8557484B2 (en) * 2010-04-26 2013-10-15 3M Innovative Properties Company Platinum nickel catalyst alloy
GB201116713D0 (en) * 2011-09-28 2011-11-09 Johnson Matthey Plc Catalyst
JP5953575B2 (en) * 2012-03-15 2016-07-20 国立大学法人北海道大学 Electrolyte membrane for all solid alkaline fuel cells
JP5957789B2 (en) * 2012-05-11 2016-07-27 エルジー・ケム・リミテッド Method for producing core-shell particles supported on a carrier
JP5152942B1 (en) * 2012-06-25 2013-02-27 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
JP6172734B2 (en) * 2013-03-04 2017-08-02 国立大学法人電気通信大学 Catalyst for polymer electrolyte fuel cell cathode and method for producing such catalyst
JP2015032468A (en) * 2013-08-02 2015-02-16 スズキ株式会社 Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
JP5809307B2 (en) * 2014-03-14 2015-11-10 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Catalyst thin layer and method for producing the same

Also Published As

Publication number Publication date
JP2016148078A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
EP2917952B1 (en) Method for producing a catalyst for fuel cells
TWI415676B (en) Catalyst
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
US10263259B2 (en) Method for producing core-shell catalyst particles
Fox et al. Effect of pretreatment on Pt–Co/C cathode catalysts for the oxygen reduction reaction
JP2012529722A (en) Fuel cell electrode catalyst
JP2002289208A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2007012284A (en) Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
JP2015032468A (en) Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
JP2007194200A (en) Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly and fuel cell
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
JP6778472B2 (en) Platinum alloy powder and its manufacturing method
JP2005259557A (en) Anode catalyst for polymer electrolyte fuel cell
JP5601280B2 (en) Catalyst for polymer electrolyte fuel cell
US9972848B2 (en) Method for producing fine catalyst particles and method for producing carbon-supported catalyst
JP2014002981A (en) Method for producing electrode catalyst
JP2006236778A (en) Catalyst for fuel cell, membrane electrode complex, and solid polymer electrolyte fuel cell
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP6036748B2 (en) Method for producing core-shell catalyst
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
JP3890653B2 (en) Methanol fuel cell
JP2006302822A (en) Electrode catalyst for polymer electrolyte fuel cell
US9950314B2 (en) Method for producing fine catalyst particles and method for producing carbon-supported catalyst

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200511

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200619

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250