JP6777382B2 - Building with solar cell module - Google Patents

Building with solar cell module Download PDF

Info

Publication number
JP6777382B2
JP6777382B2 JP2015142916A JP2015142916A JP6777382B2 JP 6777382 B2 JP6777382 B2 JP 6777382B2 JP 2015142916 A JP2015142916 A JP 2015142916A JP 2015142916 A JP2015142916 A JP 2015142916A JP 6777382 B2 JP6777382 B2 JP 6777382B2
Authority
JP
Japan
Prior art keywords
space
building
electrical wiring
solar cell
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015142916A
Other languages
Japanese (ja)
Other versions
JP2017025510A (en
Inventor
将巳 浅野
将巳 浅野
明良 上田
明良 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015142916A priority Critical patent/JP6777382B2/en
Publication of JP2017025510A publication Critical patent/JP2017025510A/en
Application granted granted Critical
Publication of JP6777382B2 publication Critical patent/JP6777382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、太陽電池モジュールを搭載した建物に関する。 The present invention relates to a building equipped with a solar cell module.

太陽電池モジュールを搭載した屋根構造を有する建物に火災等の災害が発生した場合、放水による消火活動のために消防隊員等の作業者が屋根構造に接近するが、火災により太陽電池モジュールの配線が断線すると作業者が感電するおそれがあるため、これを防ぐため太陽電池モジュールを停止する必要がある。 When a disaster such as a fire occurs in a building with a roof structure equipped with a solar cell module, workers such as firefighters approach the roof structure to extinguish the fire by discharging water, but the wiring of the solar cell module is broken due to the fire. If the wire is broken, the operator may get an electric shock. To prevent this, it is necessary to stop the solar cell module.

例えば特許文献1−3にはスイッチによる太陽光発電システムまたは装置の運転を停止できる太陽光発電システムまたは装置について記載している。 For example, Patent Document 1-3 describes a photovoltaic power generation system or device capable of stopping the operation of the photovoltaic power generation system or device by a switch.

実用新案登録第3189106号Utility model registration No. 3189106 特開2014-207857JP 2014-207857 特開2015-5624JP 2015-5624

上記のような太陽光発電システムまたは装置の電気回路の接続を遮断する構成の代わりにまたは加えて、屋内で発生した火災が屋根構造に搭載された太陽電池パネルに至るまでの時間を稼げれば、作業者の安全性がより長時間確保され、有益である。 Instead of or in addition to the configuration that disconnects the electrical circuits of the PV system or device as described above, if the time it takes for an indoor fire to reach the solar panels mounted on the roof structure is gained. Worker safety is ensured for a longer period of time, which is beneficial.

本発明の目的は、火災時における屋根構造に搭載された太陽電池モジュールの配線の断線による感電の危険性を下げることにある。 An object of the present invention is to reduce the risk of electric shock due to disconnection of wiring of a solar cell module mounted on a roof structure in the event of a fire.

本発明者らは、上記の目的を達成すべく、(a)太陽電池モジュールの電気配線から貫通空間までの間の屋外の空間、(b)貫通空間、(c)建物の内部空間から貫通空間までの間の屋内の空間、のうちの少なくとも一つに、熱膨張性黒鉛を含有する耐火性材料からなる封止部材を配置することにより、簡単な構成で火災の太陽光発電システムまたは装置の電気配線への延焼を遅らせることができることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventors have (a) an outdoor space between the electrical wiring of the solar cell module and the penetrating space, (b) a penetrating space, and (c) a penetrating space from the internal space of the building. By arranging a sealing member made of a fire-resistant material containing heat-expandable graphite in at least one of the indoor spaces between the two, the solar power generation system or device for fire with a simple configuration. We have found that it is possible to delay the spread of fire to electrical wiring, and have completed the present invention.

すなわち、本発明は以下の通りである。
項1.太陽電池モジュールの電気配線を建物の内部空間から屋上へつなぐ貫通空間を有し、太陽電池モジュールを屋根構造に搭載した建物において、
(a)前記太陽電池モジュールの電気配線から貫通空間までの間の屋外の空間、(b)貫通空間、(c)建物の内部空間から貫通空間までの間の屋内の空間、のうちの少なくとも一つの少なくとも一部を覆う熱膨張性黒鉛を含有する耐火性材料からなる封止部材を有する太陽電池を搭載した建物。
項2.前記封止部材は加熱時に膨張して、貫通空間を封止するか、または貫通空間に隣接する屋外の空間および屋内の空間の少なくとも一方において貫通空間の端部を封止するか、またはそれらの両方である項1に記載の建物。
項3.前記封止部材は前記貫通空間内に配置されている項1または2に記載の建物。
項4.前記封止部材は電気配線の周囲を覆うように配置されている項1〜3のいずれか一項に記載の建物。
項5.建物の屋根構造に搭載された太陽電池モジュールの電気配線への延焼を遅らせる方法であって、建物は太陽電池モジュールの電気配線を建物の内部空間から屋上へつなぐ貫通空間を有し、
熱膨張性黒鉛を含有する耐火性材料からなる封止部材を、(a)前記太陽電池モジュールの電気配線から貫通空間までの間の屋外の空間、(b)貫通空間、および(c)建物の内部空間から貫通空間までの間の屋内の空間、のうちの少なくとも一つの少なくとも一部に配置することからなる方法。
That is, the present invention is as follows.
Item 1. In a building that has a through space that connects the electrical wiring of the solar cell module from the internal space of the building to the rooftop, and the solar cell module is mounted on the roof structure.
At least one of (a) an outdoor space between the electrical wiring of the solar cell module and the penetrating space, (b) a penetrating space, and (c) an indoor space between the internal space of the building and the penetrating space. A building equipped with a solar cell having a sealing member made of a fire-resistant material containing heat-expandable graphite covering at least one of them.
Item 2. The sealing member expands upon heating to seal the penetration space, or seals the ends of the penetration space in at least one of the outdoor space and the indoor space adjacent to the penetration space, or theirs. The building according to Item 1, which is both.
Item 3. Item 2. The building according to Item 1 or 2, wherein the sealing member is arranged in the through space.
Item 4. Item 3. The building according to any one of Items 1 to 3, wherein the sealing member is arranged so as to cover the periphery of the electrical wiring.
Item 5. It is a method of delaying the spread of fire to the electrical wiring of the solar cell module mounted on the roof structure of the building, and the building has a through space that connects the electrical wiring of the solar cell module from the internal space of the building to the rooftop.
A sealing member made of a fire-resistant material containing heat-expandable graphite can be used in (a) an outdoor space between the electrical wiring of the solar cell module and a penetrating space, (b) a penetrating space, and (c) a building. A method consisting of arranging in at least a part of at least one of indoor spaces between an internal space and a penetrating space.

本発明によれば、簡単な構成で火災の太陽光発電システムまたは装置の電気配線への延焼を遅らせることができ、作業者の感電の危険性を下げることが可能となる。 According to the present invention, it is possible to delay the spread of fire to the electrical wiring of a photovoltaic power generation system or device with a simple configuration, and it is possible to reduce the risk of electric shock to the operator.

本発明の第1実施形態の屋根構造を示す略斜視図。The schematic perspective view which shows the roof structure of 1st Embodiment of this invention. 図1の屋根構造の拡大断面図。An enlarged cross-sectional view of the roof structure of FIG. 本発明の第2実施形態の屋根構造を示す拡大断面図。The enlarged sectional view which shows the roof structure of the 2nd Embodiment of this invention. 図2の別例を示す拡大断面図。An enlarged cross-sectional view showing another example of FIG. 図2の別例を示す拡大断面図。An enlarged cross-sectional view showing another example of FIG. 図2の別例を示す拡大断面図。An enlarged cross-sectional view showing another example of FIG. 図2の別例を示す拡大断面図。An enlarged cross-sectional view showing another example of FIG.

(第一実施形態)
本発明を木造家屋の屋根構造に具体化した第一実施形態について図1および図2に従って説明する。
(First Embodiment)
The first embodiment in which the present invention is embodied in the roof structure of a wooden house will be described with reference to FIGS. 1 and 2.

図1を参照すると、建物としての木造家屋1は、屋根3に太陽電池モジュール4が搭載された屋根構造2を備えている。屋根3は木造家屋1の場合、通常、下から上に棟木、野地板、雨漏り用のルーフィング、ならびに瓦またはスレート等の屋根材が積層された構成となっており、屋根材の上に太陽電池モジュール4が設置される。太陽電池モジュール4の電気配線5は、本実施形態では太陽電池モジュール4の下方から延び、図2に示すように、屋根3の端まで延びて折り返し、屋根3を支持する2つの垂直壁9に貫通形成された貫通空間8を通り、屋根3の下かつ天井11の上の、建物1の内部空間13としての屋根裏6まで延びている。つまり、電気配線5は貫通空間8を介して木造家屋1の屋根裏6から屋上7までつながれている。貫通空間8は建物に設けられた建物の屋内と屋外の間を連通する空間である。 Referring to FIG. 1, the wooden house 1 as a building has a roof structure 2 in which a solar cell module 4 is mounted on a roof 3. In the case of a wooden house 1, the roof 3 usually has a structure in which purlins, field boards, roofing for rain leaks, and roofing materials such as roof tiles or slate are laminated from the bottom to the top, and a solar cell is used on the roofing material. Module 4 is installed. In the present embodiment, the electrical wiring 5 of the solar cell module 4 extends from below the solar cell module 4, extends to the end of the roof 3 and folds back to form two vertical walls 9 that support the roof 3. It passes through the penetrating space 8 formed through and extends to the attic 6 as the internal space 13 of the building 1 under the roof 3 and above the ceiling 11. That is, the electrical wiring 5 is connected from the attic 6 to the roof 7 of the wooden house 1 via the through space 8. The penetration space 8 is a space provided in the building that communicates between the inside and the outside of the building.

2つの垂直壁9は貫通空間8の位置において、貫通空間8を区画形成する屋根構造部分9aを構成する。電気配線5と貫通空間8を区画形成する屋根構造部分9aとの間には熱膨張性黒鉛を含有する耐火性材料からなる封止部材10が配置されている。本実施形態では、封止部材10は貫通空間8の位置において、電気配線5の周囲を覆うように屋根構造部分9aに接触した状態で屋根構造部分9aの周方向全周に中空略円筒形に配置されている。 The two vertical walls 9 form a roof structure portion 9a that partitions the through space 8 at the position of the through space 8. A sealing member 10 made of a refractory material containing heat-expandable graphite is arranged between the electrical wiring 5 and the roof structure portion 9a that partitions the through space 8. In the present embodiment, the sealing member 10 has a hollow substantially cylindrical shape in the entire circumferential direction of the roof structure portion 9a in a state of being in contact with the roof structure portion 9a so as to cover the periphery of the electrical wiring 5 at the position of the through space 8. Have been placed.

封止部材10は加熱時に膨張して、貫通空間8を封止または閉塞する。加熱により封止部材10が貫通空間8の断面を少なくとも部分的に、好ましくは完全に埋めることで、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。このため、簡便な構成で消防作業員等の作業者の感電の危険性を下げることができる。 The sealing member 10 expands when heated to seal or close the through space 8. By heating, the sealing member 10 fills the cross section of the through space 8 at least partially, preferably completely, thereby delaying the arrival of fire generated from indoors through the through space 8 to the electrical wiring 5. .. Therefore, it is possible to reduce the risk of electric shock of workers such as firefighters with a simple configuration.

封止部材10を構成する耐火性材料について以下に説明する。 The refractory material constituting the sealing member 10 will be described below.

耐火性材料は、樹脂成分に熱膨張性黒鉛と無機充填材とを含む樹脂組成物である。封止部材10は、樹脂組成物の各成分を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拌機等公知の装置を用いて混練し、公知の成形方法で成形することにより得ることができる。 The refractory material is a resin composition containing a heat-expandable graphite and an inorganic filler as resin components. The sealing member 10 is known by kneading each component of the resin composition using a known device such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader mixer, a kneading roll, a raikai machine, or a planetary stirrer. It can be obtained by molding by the molding method of.

樹脂成分としては、熱可塑性樹脂、熱硬化性樹脂、ゴム物質、およびそれらの組み合わせが挙げられる。 Examples of the resin component include a thermoplastic resin, a thermosetting resin, a rubber substance, and a combination thereof.

熱可塑性樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリ(1−)ブテン系樹脂、ポリペンテン系樹脂等のポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、(メタ)アクリル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ポリイソブチレン等の合成樹脂類が挙げられる。 Examples of the thermoplastic resin include polyolefin resins such as polypropylene resins, polyethylene resins, poly (1-) butene resins, and polypentene resins, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, and polycarbonates. Examples thereof include synthetic resins such as based resins, polyphenylene ether-based resins, (meth) acrylic resins, polyamide-based resins, polyvinyl chloride-based resins, phenol-based resins, polyurethane-based resins, and polyisobutylene.

熱硬化性樹脂としては、例えば、ポリウレタン、ポリイソシアネート、ポリイソシアヌレート、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド等が挙げられる。 Examples of the thermosetting resin include polyurethane, polyisocyanate, polyisocyanurate, phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, and polyimide.

ゴム物質としては、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、エチレン−プロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多加硫ゴム、非加硫ゴム、シリコンゴム、フッ素ゴム、ウレタンゴム等のゴム物質等が挙げられる。 Examples of rubber substances include natural rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, ethylene-propylene rubber, chlorosulfonated polyethylene, and acrylic rubber. , Epichlorohydrin rubber, polyvulverable rubber, non-vulture rubber, silicon rubber, fluororubber, urethane rubber and other rubber substances.

これらの合成樹脂類及び/又はゴム物質は、一種もしくは二種以上を使用することができる。 As these synthetic resins and / or rubber substances, one kind or two or more kinds can be used.

これらの合成樹脂類及び/又はゴム物質の中でも、柔軟でゴム的性質を持っているものが好ましい。この様な性質を持つものは無機充填材を高充填することが可能であり、得られる樹脂組成物が柔軟で扱い易いものとなる。より柔軟で扱い易い樹脂組成物を得るためには、ブチル等の非加硫ゴムやポリエチレン系樹脂が好適に用いられる。代わりに、樹脂自体の難燃性を上げて防火性能を向上させるという観点からは、エポキシ樹脂が好ましい。 Among these synthetic resins and / or rubber substances, those having flexible and rubber-like properties are preferable. Those having such properties can be highly filled with an inorganic filler, and the obtained resin composition becomes flexible and easy to handle. In order to obtain a more flexible and easy-to-handle resin composition, a non-vulcanized rubber such as butyl or a polyethylene-based resin is preferably used. Instead, an epoxy resin is preferable from the viewpoint of increasing the flame retardancy of the resin itself and improving the fireproof performance.

熱膨張性黒鉛は加熱時に膨張する従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたものであり、炭素の層状構造を維持したままの結晶化合物の一種である。 Thermally expandable graphite is a conventionally known substance that expands when heated. Powders such as natural scaly graphite, thermally decomposed graphite, and kiss graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid and perchloric acid. , Perchlorate, permanganate, dichromate, dichromate, hydrogen peroxide and other strong oxidizing agents to form graphite interlayer compounds, which form a layered structure of carbon. It is a type of crystalline compound that remains maintained.

上記のように酸処理して得られた熱膨張性黒鉛は、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等でさらに中和してもよい。熱膨張性黒鉛の粒度は、20〜200メッシュが好ましい。粒度が200メッシュかそれより大きいと、黒鉛の膨張度が膨張断熱層が得るのに十分であり、また粒度が20メッシュかそれより小さいと、樹脂に配合する際の分散性が良く、物性が良好である。熱膨張性黒鉛の市販品としては、例えば、東ソー社製「GREP−EG」、GRAFTECH社製「GRAFGUARD」等が挙げられる。 The heat-expandable graphite obtained by acid treatment as described above may be further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound or the like. The particle size of the heat-expandable graphite is preferably 20 to 200 mesh. If the particle size is 200 mesh or larger, the degree of expansion of graphite is sufficient for the expanded heat insulating layer, and if the particle size is 20 mesh or smaller, the dispersibility when blended in the resin is good and the physical properties are poor. It is good. Examples of commercially available products of heat-expandable graphite include "GREP-EG" manufactured by Tosoh Corporation and "GRAFGUARD" manufactured by GRAFTECH.

無機充填剤は、膨張断熱層が形成される際、熱容量を増大させ伝熱を抑制するとともに、骨材的に働いて膨張断熱層の強度を向上させる。無機充填剤としては特に限定されず、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩等が挙げられる。 When the expanded heat insulating layer is formed, the inorganic filler increases the heat capacity and suppresses heat transfer, and also acts as an aggregate to improve the strength of the expanded heat insulating layer. The inorganic filler is not particularly limited, and for example, metal oxides such as alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide, magnesium hydroxide. , Hydroinorganic substances such as aluminum hydroxide and hydrotalcite; metal carbonates such as basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate and barium carbonate can be mentioned.

また、無機充填剤としては、これらの他に、硫酸カルシウム、石膏繊維、ケイ酸カルシウム等のカルシウム塩;シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」(商品名)、チタン酸ジルコン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が挙げられる。これらの無機充填剤は単独で用いても、2種以上を併用してもよい。 In addition to these, as inorganic fillers, calcium salts such as calcium sulfate, gypsum fiber, calcium silicate; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, active white clay, sepiolite. , Imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate " MOS ”(trade name), lead zirconate titanate, zinc stearate, calcium stearate, aluminum borate, molybdenum sulfide, silicon carbide, stainless fiber, zinc borate, various magnetic powders, slag fibers, fly ash, dehydrated sludge, etc. Can be mentioned. These inorganic fillers may be used alone or in combination of two or more.

無機充填剤の粒径としては、0.5〜100μmが好ましく、より好ましくは1〜50μmである。無機充填剤は、添加量が少ないときは、分散性が性能を大きく左右するため、粒径の小さいものが好ましいが、0.5μm以上であると、分散性が良好である。添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることで樹脂組成物の粘度を低下させることができる点から、粒径の大きいものが好ましいが、100μm以下の粒径が成形体の表面性、樹脂組成物の力学的物性の点で望ましい。 The particle size of the inorganic filler is preferably 0.5 to 100 μm, more preferably 1 to 50 μm. When the amount of the inorganic filler added is small, the dispersibility greatly affects the performance, so that the inorganic filler has a small particle size, but when it is 0.5 μm or more, the dispersibility is good. When the amount added is large, the viscosity of the resin composition increases and the moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size. A large diameter is preferable, but a particle size of 100 μm or less is desirable from the viewpoint of the surface properties of the molded product and the mechanical properties of the resin composition.

無機充填剤としては、例えば、水酸化アルミニウムでは、粒径18μmの「ハイジライトH−31」(昭和電工社製)、粒径25μmの「B325」(ALCOA社製)、炭酸カルシウムでは、粒径1.8μmの「ホワイトンSB赤」(備北粉化工業社製)、粒径8μmの「BF300」(備北粉化工業社製)等が挙げられる。 Examples of the inorganic filler include "Heidilite H-31" (manufactured by Showa Denko) with a particle size of 18 μm for aluminum hydroxide, "B325" (manufactured by ALCOA) with a particle size of 25 μm, and calcium carbonate. Examples thereof include 1.8 μm “Whiten SB Red” (manufactured by Bikita Powder Industry Co., Ltd.) and “BF300” (manufactured by Bikita Powder Industry Co., Ltd.) having a particle size of 8 μm.

さらに、耐火材材料を構成する樹脂組成物は、膨張断熱層の強度を増加させ防火性能を向上させるために、前記の各成分に加えて、さらにリン化合物を含んでもよい。リン化合物としては、特に限定されず、例えば、赤リン;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム類;下記化学式(1)で表される化合物等が挙げられる。これらのうち、防火性能の観点から、赤リン、ポリリン酸アンモニウム類、及び、下記化学式(1)で表される化合物が好ましく、性能、安全性、コスト等の点においてポリリン酸アンモニウム類がより好ましい。 Further, the resin composition constituting the refractory material may further contain a phosphorus compound in addition to each of the above components in order to increase the strength of the expansion heat insulating layer and improve the fire protection performance. The phosphorus compound is not particularly limited, and for example, various phosphate esters such as red phosphorus; triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresil diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate, Metal phosphates such as potassium phosphate and magnesium phosphate; ammonium polyphosphates; compounds represented by the following chemical formula (1) can be mentioned. Of these, red phosphorus, ammonium polyphosphate, and the compound represented by the following chemical formula (1) are preferable from the viewpoint of fire prevention performance, and ammonium polyphosphate is more preferable from the viewpoint of performance, safety, cost, and the like. ..

化学式(1)中、R1及びR3は、水素、炭素数1〜16の直鎖状あるいは分岐状のアルキル基、または、炭素数6〜16のアリール基を表す。R2は、水酸基、炭素数1〜16の直鎖状あるいは分岐状のアルキル基、炭素数1〜16の直鎖状あるいは分岐状のアルコキシル基、炭素数6〜16のアリール基、または、炭素数6〜16のアリールオキシ基を表す。 In the chemical formula (1), R1 and R3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or a carbon number of carbon atoms. Represents 6 to 16 aryloxy groups.

赤リンとしては、市販の赤リンを用いることができるが、耐湿性、混練時に自然発火しない等の安全性の点から、赤リン粒子の表面を樹脂でコーティングしたもの等が好適に用いられる。ポリリン酸アンモニウム類としては特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられるが、取り扱い性等の点からポリリン酸アンモニウムが好適に用いられる。市販品としては、例えば、クラリアント社製「AP422」、「AP462」、Budenheim Iberica社製「FR CROS 484」、「FR CROS 487」等が挙げられる。 As the red phosphorus, commercially available red phosphorus can be used, but from the viewpoint of moisture resistance and safety such as not spontaneously igniting during kneading, those in which the surface of the red phosphorus particles is coated with a resin are preferably used. The ammonium polyphosphates are not particularly limited, and examples thereof include ammonium polyphosphate and melamine-modified ammonium polyphosphate. Ammonium polyphosphate is preferably used from the viewpoint of handleability and the like. Examples of commercially available products include "AP422" and "AP462" manufactured by Clariant AG, "FR CROS 484" and "FR CROS 487" manufactured by Budenheim Ibica.

化学式(1)で表される化合物としては特に限定されず、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2−メチルプロピルホスホン酸、t−ブチルホスホン酸、2,3−ジメチル−ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4−メトキシフェニル)ホスフィン酸等が挙げられる。中でも、t−ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。前記のリン化合物は、単独で用いても、2種以上を併用してもよい。 The compound represented by the chemical formula (1) is not particularly limited, and for example, methylphosphonate, dimethyl methylphosphonate, diethylmethylphosphonate, ethylphosphonate, propylphosphonate, butylphosphonic acid, 2-methylpropylphosphonate, t- Butylphosphonic acid, 2,3-dimethyl-butylphosphonate, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphonic acid, methylethylphosphonate, methylpropylphosphinic acid, diethylphosphonic acid, dioctylphosphonic acid, phenylphosphinate Examples thereof include acids, diethylphenylphosphonates, diphenylphosphonates, and bis (4-methoxyphenyl) phosphonates. Among them, t-butylphosphonic acid is preferable in terms of high flame retardancy, although it is expensive. The phosphorus compounds may be used alone or in combination of two or more.

前記樹脂組成物は、前記熱可塑性樹脂やエポキシ樹脂等の樹脂成分100重量部に対し、前記熱膨張性黒鉛を10〜350重量部及び前記無機充填材を30〜400重量部の範囲で含むものが好ましい。 The resin composition contains 10 to 350 parts by weight of the heat-expandable graphite and 30 to 400 parts by weight of the inorganic filler with respect to 100 parts by weight of the resin component such as the thermoplastic resin or the epoxy resin. Is preferable.

また、前記熱膨張性黒鉛および前記無機充填材の合計は、樹脂成分100重量部に対し、50〜600重量部の範囲が好ましい。 The total amount of the heat-expandable graphite and the inorganic filler is preferably in the range of 50 to 600 parts by weight with respect to 100 parts by weight of the resin component.

かかる樹脂組成物は加熱によって膨張し耐火断熱層を形成する。この配合によれば、前記耐火性材料は火災等の加熱によって膨張し、必要な体積膨張率を得ることができ、膨張後は所定の断熱性能を有すると共に所定の強度を有する残渣を形成することもでき、安定した防火性能を達成することができる。 Such a resin composition expands by heating to form a refractory heat insulating layer. According to this formulation, the refractory material expands by heating such as a fire to obtain a required volume expansion coefficient, and after expansion, a residue having a predetermined heat insulating performance and a predetermined strength is formed. It is also possible to achieve stable fire protection performance.

前記樹脂組成物における熱膨張性黒鉛及び無機充填材の合計量は、50重量部以上では燃焼後の残渣量を満足して十分な耐火性能が得られ、600重量部以下であると機械的物性が維持される。 When the total amount of the heat-expandable graphite and the inorganic filler in the resin composition is 50 parts by weight or more, sufficient fire resistance is obtained by satisfying the residual amount after combustion, and when it is 600 parts by weight or less, the mechanical properties Is maintained.

さらに本発明に使用する前記樹脂組成物は、それぞれ本発明の目的を損なわない範囲で、必要に応じて、フェノール系、アミン系、イオウ系等の酸化防止剤の他、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂、成型補助材等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。 Further, the resin composition used in the present invention is, if necessary, an antioxidant such as a phenol-based, amine-based or sulfur-based antioxidant, a metal damage inhibitor, and an antistatic agent, as long as the object of the present invention is not impaired. It can contain additives such as inhibitors, stabilizers, cross-linking agents, lubricants, softeners, pigments, tackifier resins, molding aids, and tackifiers such as polybutene and petroleum resins.

耐火性材料は市販品として入手可能であり、例えば、住友スリーエム社製のファイアバリア(クロロプレンゴムとバーミキュライトを含有する樹脂組成物からなる耐火性材料、膨張率:3倍、熱伝導率:0.20kcal/m・h・℃)、三井金属塗料社のメジヒカット(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなる耐火性材料、膨張率:4倍、熱伝導率:0.21kcal/m・h・℃)、積水化学工業社製フィブロック等の耐火性材料等も挙げられる。 The refractory material is available as a commercial product. For example, a fire barrier manufactured by Sumitomo 3M Co., Ltd. (a refractory material composed of a resin composition containing chloropurene rubber and vermiculite, expansion coefficient: 3 times, thermal conductivity: 0. 20 kcal / m · h · ° C), Mijihikat (a refractory material consisting of a resin composition containing polyurethane resin and heat-expandable graphite, expansion coefficient: 4 times, thermal conductivity: 0.21 kcal / m) · H · ° C), refractory materials such as fiblocks manufactured by Sekisui Chemical Industry Co., Ltd.

前記耐火性材料は、火災時などの高温にさらされた際にその膨張層により断熱し、かつその膨張層の強度があるものであれば特に限定されないが、50kW/m2の加熱条件下で30分間加熱した後の体積膨張率が3〜50倍のものであれば好ましい。前記体積膨張率が3倍以上であると、膨張体積が前記樹脂成分の焼失部分を十分に埋めることができ、また50倍以下であると、膨張層の強度が維持され、火炎の貫通を防止する効果が保たれる。 The refractory material is not particularly limited as long as it is insulated by the expansion layer when exposed to a high temperature such as in a fire and has the strength of the expansion layer, but under a heating condition of 50 kW / m 2. It is preferable that the volume expansion rate after heating for 30 minutes is 3 to 50 times. When the volume expansion coefficient is 3 times or more, the expansion volume can sufficiently fill the burned portion of the resin component, and when the expansion volume is 50 times or less, the strength of the expansion layer is maintained and the penetration of flame is prevented. The effect is maintained.

(第二実施形態)
次に、本発明の屋根構造の第二実施形態について図3に従って説明する。なお、第一実施形態と同じ部材については説明を省略する。
(Second Embodiment)
Next, a second embodiment of the roof structure of the present invention will be described with reference to FIG. The description of the same members as those in the first embodiment will be omitted.

図3を参照すると、貫通空間8は図2の垂直壁9の代わりに、屋根3に設けられている。屋根3は貫通空間8の位置において、貫通空間8を区画形成する屋根構造部分3aを構成する。太陽電池モジュール4の電気配線5は、太陽電池モジュール4から延びて屋根3に貫通形成された貫通空間8を通り、屋根3の下の空間である屋根裏6まで延びている。つまり、電気配線5は貫通空間8を介して木造家屋1の屋根裏6から屋上7までつながれている。電気配線5と貫通空間8を区画形成する屋根構造部分3aとの間には熱膨張性黒鉛を含有する耐火性材料からなる封止部材10が配置されている。封止部材10は貫通空間8の位置において、電気配線5の周囲を覆うように屋根構造部分3aに接触した状態で屋根構造部分9aの周方向全周に中空略円筒形に配置されている。 Referring to FIG. 3, the penetration space 8 is provided on the roof 3 instead of the vertical wall 9 of FIG. The roof 3 constitutes a roof structure portion 3a that partitions the through space 8 at the position of the through space 8. The electrical wiring 5 of the solar cell module 4 extends from the solar cell module 4 through a penetrating space 8 formed through the roof 3 and extends to the attic 6, which is a space under the roof 3. That is, the electrical wiring 5 is connected from the attic 6 to the roof 7 of the wooden house 1 via the through space 8. A sealing member 10 made of a refractory material containing heat-expandable graphite is arranged between the electrical wiring 5 and the roof structure portion 3a that partitions the through space 8. At the position of the through space 8, the sealing member 10 is arranged in a hollow substantially cylindrical shape around the entire circumference of the roof structure portion 9a in a state of being in contact with the roof structure portion 3a so as to cover the periphery of the electrical wiring 5.

封止部材10は加熱時に膨張して、貫通空間8を封止または閉塞する。加熱により封止部材10が貫通空間8の断面を少なくとも部分的に、好ましくは完全に埋めることで、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。このため、第二実施形態の構成であっても、簡便な構成で消防作業員等の作業者の感電の危険性を下げることができる。 The sealing member 10 expands when heated to seal or close the through space 8. By heating, the sealing member 10 fills the cross section of the through space 8 at least partially, preferably completely, thereby delaying the arrival of fire generated from indoors through the through space 8 to the electrical wiring 5. .. Therefore, even with the configuration of the second embodiment, the risk of electric shock of workers such as firefighters can be reduced with a simple configuration.

ここまで、本発明を第一実施形態および第二実施形態を例にとって説明してきたが、本発明はこれに限られず、以下のような種々の変形が可能である。
○図4に示すように、図2の第一実施形態で封止部材10が垂直壁9の屋根構造部分9aに配置される代わりに、封止部材10は電気配線5に貼り付けられていてもよい。この場合でも、火災時の加熱により封止部材10が貫通空間8の断面を少なくとも部分的に埋めることで、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。
○図5に示すように、図2の第一実施形態で貫通空間8が天井11の上の屋根裏6に通じるように設けられる代わりに、貫通空間8は天井11よりも下の垂直壁9の部分(例えば戸建ての場合、2階の壁等)に設けられていてもよい。この場合、電気配線5は、貫通空間8を通り、天井11よりも下の建物1の内部空間13まで延びる。
Up to this point, the present invention has been described by taking the first embodiment and the second embodiment as examples, but the present invention is not limited to this, and various modifications such as the following are possible.
○ As shown in FIG. 4, instead of the sealing member 10 being arranged on the roof structure portion 9a of the vertical wall 9 in the first embodiment of FIG. 2, the sealing member 10 is attached to the electrical wiring 5. May be good. Even in this case, the sealing member 10 at least partially fills the cross section of the through space 8 due to heating during a fire, thereby delaying the arrival of fire generated from indoors through the through space 8 to the electrical wiring 5. Can be done.
○ As shown in FIG. 5, instead of providing the penetration space 8 so as to communicate with the attic 6 above the ceiling 11 in the first embodiment of FIG. 2, the penetration space 8 is a vertical wall 9 below the ceiling 11. It may be provided on a part (for example, in the case of a detached house, the wall on the second floor, etc.). In this case, the electrical wiring 5 passes through the through space 8 and extends to the internal space 13 of the building 1 below the ceiling 11.

○図6に示すように、図2の第一実施形態で2つの垂直壁9を横切る貫通空間8を設ける代わりに、2つの垂直壁9のうちの外側の垂直壁9に開ける孔8aと、2つの垂直壁9のうちの内側の垂直壁9に開ける孔8bとに高低差を設け、孔8a、孔8b、2つの垂直壁9の間に生じる空間12のうち孔8aと孔8bの間の空間8cを通って電気配線5が延びるようにしてもよい。孔8a、孔8b、および空間8cは貫通空間8を形成する。また、
孔8a、孔8b、および空間8cの周囲において熱膨張性黒鉛を含有する耐火性材料からなる封止部材10を垂直壁9に貼付する。封止部材10は加熱時に膨張して、2つの垂直壁9の間に形成された空間12を封止する。加熱により封止部材10が空間12の断面を少なくとも部分的に、好ましくは完全に埋めることで、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。このため、簡便な構成で消防作業員等の作業者の感電の危険性を下げることができる。このような別例の屋根構造2の構成でも、図2に示した第一実施形態と同様の効果を奏する。
○図7に示すように、封止部材10の代わりに、太陽電池モジュール4の電気配線5から貫通空間8までの間の屋外の空間に、熱膨張性黒鉛を含有する耐火性材料からなる封止部材10aを配置してもよい。封止部材10aの組成は封止部材10に説明した通りである。好ましくは、封止部材10aを、貫通空間8に隣接する屋外の空間に配置する。封止部材10aを外側の垂直壁9に接して貼付し、加熱時に膨張して貫通空間8の端部において貫通空間8の断面を少なくとも部分的に、好ましくは完全に側方から封止するようにすれば、延焼防止の効果に優れ、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。
○ As shown in FIG. 6, instead of providing the through space 8 that crosses the two vertical walls 9 in the first embodiment of FIG. 2, a hole 8a to be formed in the outer vertical wall 9 of the two vertical walls 9 and A height difference is provided in the hole 8b formed in the inner vertical wall 9 of the two vertical walls 9, and the space 12 between the holes 8a and 8b and the space 12 formed between the two vertical walls 9 is between the holes 8a and 8b. The electrical wiring 5 may extend through the space 8c. The holes 8a, 8b, and space 8c form a through space 8. Also,
A sealing member 10 made of a refractory material containing heat-expandable graphite is attached to the vertical wall 9 around the holes 8a, 8b, and the space 8c. The sealing member 10 expands during heating to seal the space 12 formed between the two vertical walls 9. By heating, the sealing member 10 fills the cross section of the space 12 at least partially, preferably completely, so that the fire generated from the room can be delayed from reaching the electrical wiring 5 through the through space 8. Therefore, it is possible to reduce the risk of electric shock of workers such as firefighters with a simple configuration. Even with such a configuration of the roof structure 2 of another example, the same effect as that of the first embodiment shown in FIG. 2 can be obtained.
○ As shown in FIG. 7, instead of the sealing member 10, the outdoor space between the electrical wiring 5 and the through space 8 of the solar cell module 4 is sealed with a refractory material containing heat-expandable graphite. The stop member 10a may be arranged. The composition of the sealing member 10a is as described in the sealing member 10. Preferably, the sealing member 10a is arranged in an outdoor space adjacent to the through space 8. The sealing member 10a is attached in contact with the outer vertical wall 9 so as to expand during heating and seal the cross section of the penetrating space 8 at least partially, preferably completely laterally, at the end of the penetrating space 8. If it is set to, the effect of preventing the spread of fire is excellent, and it is possible to delay the arrival of the fire generated from indoors through the through space 8 to the electric wiring 5.

また、屋根裏6から貫通空間8までの間の屋内の空間に、熱膨張性黒鉛を含有する耐火性材料からなる封止部材10bを配置してもよい。封止部材10bの組成は封止部材10に説明した通りである。好ましくは、封止部材10bを、貫通空間8に隣接する屋内の空間に配置する。封止部材10aを内側の垂直壁9に接して貼付し、加熱時に膨張して貫通空間8の端部において貫通空間8の断面を少なくとも部分的に、好ましくは完全に側方から封止するようにすれば、延焼防止の効果に優れ、屋内から発生した火が貫通空間8を通って電気配線5へ到達するのを遅らせることができる。 Further, a sealing member 10b made of a refractory material containing heat-expandable graphite may be arranged in an indoor space between the attic 6 and the through space 8. The composition of the sealing member 10b is as described in the sealing member 10. Preferably, the sealing member 10b is arranged in an indoor space adjacent to the through space 8. The sealing member 10a is attached in contact with the inner vertical wall 9 so as to expand during heating and seal the cross section of the penetrating space 8 at least partially, preferably completely from the side at the end of the penetrating space 8. If it is set to, the effect of preventing the spread of fire is excellent, and it is possible to delay the arrival of the fire generated from indoors through the through space 8 to the electric wiring 5.

封止部材10aおよび封止部材10bは、両方が配置されてもよいし、片方のみ配置されてもよい。
○図2に示した第一実施形態、図3に示した第二実施例、図4に示した別例、図5に示した別例または図6に示した別例と、図7に示した別例とが組み合わされてもよい。つまり、封止部材10,10a,10bは同一または異なる組成とし、連続的にまたは不連続に(a)太陽電池モジュール4の電気配線5から貫通空間8までの間の屋外の空間、(b)貫通空間8、(c)内部空間13から貫通空間8までの間の屋内の空間、のうちの少なくとも一つに設けてもよい。
○図1では建物として木造家屋1を示したが、本発明の屋根構造は、コンクリートの建物等、任意の建物の屋根構造であってよい。
○貫通空間8を設ける位置は、垂直壁9(図2,図5)と屋根3(図3)に設けた例を示したが、これらに限定されず、屋根構造の任意の位置に設けてもよい。
Both the sealing member 10a and the sealing member 10b may be arranged, or only one of them may be arranged.
○ The first embodiment shown in FIG. 2, the second embodiment shown in FIG. 3, another example shown in FIG. 4, another example shown in FIG. 5, another example shown in FIG. 6, and another example shown in FIG. It may be combined with another example. That is, the sealing members 10, 10a, 10b have the same or different composition, and (a) an outdoor space between the electrical wiring 5 and the through space 8 of the solar cell module 4 continuously or discontinuously, (b). It may be provided in at least one of the penetration space 8 and (c) the indoor space between the internal space 13 and the penetration space 8.
○ Although the wooden house 1 is shown as a building in FIG. 1, the roof structure of the present invention may be the roof structure of any building such as a concrete building.
○ The position where the penetration space 8 is provided is shown in the example where it is provided on the vertical wall 9 (FIGS. 2 and 5) and the roof 3 (FIG. 3), but the position is not limited to these and is provided at an arbitrary position of the roof structure. May be good.

本明細書中に引用されているすべての特許出願および文献の開示は、それらの全体が参照により本明細書に組み込まれるものとする。 Disclosures of all patent applications and documents cited herein are incorporated herein by reference in their entirety.

1・・・屋根構造、3a,9a…屋根構造部分、4…太陽電池モジュール、5…電気配線、6…内部空間としての屋根裏、7…屋上、8,8a,8b,8c…貫通空間、10,10a,10b…封止部材、13…内部空間。 1 ... Roof structure, 3a, 9a ... Roof structure part, 4 ... Solar cell module, 5 ... Electrical wiring, 6 ... Attic as internal space, 7 ... Rooftop, 8,8a, 8b, 8c ... Penetration space, 10 , 10a, 10b ... Sealing member, 13 ... Internal space.

Claims (5)

太陽電池モジュールの電気配線を建物の内部空間から屋上へつなぐ貫通空間を有し、太陽電池モジュールを屋根構造に搭載した建物において、
前記建物は垂直壁を有するとともに、前記貫通空間は前記垂直壁に設けられ、前記貫通空間は前記建物の屋内と屋外との間を連通する空間であり
前記貫通空間には、前記太陽電池モジュールの電気配線が挿通され、前記電気配線の一端部は前記太陽電池モジュールから延び、前記電気配線の他端部は前記建物の内部空間に位置しており、
(a)前記太陽電池モジュールから貫通空間までの間の屋外の空間において前記電気配線の少なくとも一部の周囲を覆う熱膨張性黒鉛を含有する耐火性材料からなる封止部材を有するか又は
(b)貫通空間において、前記貫通空間に挿通された前記電気配線の少なくとも一部の周囲を覆う熱膨張性黒鉛を含有する耐火性材料からなる封止部材を有する建物。
In a building that has a through space that connects the electrical wiring of the solar cell module from the internal space of the building to the rooftop, and the solar cell module is mounted on the roof structure.
The building has a vertical wall, the penetrating space is provided in the vertical wall, and the penetrating space is a space communicating between the indoor and outdoor parts of the building .
The electrical wiring of the solar cell module is inserted into the penetrating space, one end of the electrical wiring extends from the solar cell module, and the other end of the electrical wiring is located in the internal space of the building.
(A) or with a sealing member made of a refractory material containing heat-expandable graphite for covering around at least a portion of the electrical wiring in the outdoor space until the solar cell modules or et through space, Or (b) a building having a sealing member made of a refractory material containing heat-expandable graphite that covers at least a part of the electrical wiring inserted into the through space in the through space .
前記封止部材は加熱時に膨張して、貫通空間を封止するか、または貫通空間に隣接する屋外の空間および屋内の空間の少なくとも一方において貫通空間の端部を封止するか、またはそれらの両方である請求項1に記載の建物。 The sealing member expands upon heating to seal the penetration space, or seals the ends of the penetration space in at least one of the outdoor space and the indoor space adjacent to the penetration space, or theirs. The building according to claim 1, which is both. 前記封止部材は前記貫通空間内に配置されている請求項1または2に記載の建物。 The building according to claim 1 or 2, wherein the sealing member is arranged in the through space. 前記封止部材は電気配線の周囲を覆うように配置されている請求項1〜3のいずれか一項に記載の建物。 The building according to any one of claims 1 to 3, wherein the sealing member is arranged so as to cover the periphery of the electrical wiring. 建物の屋根構造に搭載された太陽電池モジュールの電気配線への延焼を遅らせる方法であって、建物は太陽電池モジュールの電気配線を建物の内部空間から屋上へつなぐ貫通空間を有し、
前記建物は垂直壁を有するとともに、前記貫通空間は前記垂直壁に設けられ、前記貫通空間は前記建物の屋内と屋外との間を連通する空間であり
前記貫通空間には、前記太陽電池モジュールの電気配線が挿通され、前記電気配線の一端部は前記太陽電池モジュールから延び、前記電気配線の他端部は前記建物の内部空間に位置しており、
熱膨張性黒鉛を含有する耐火性材料からなる封止部材を、
(a)前記太陽電池モジュールから貫通空間までの間の屋外の空間において前記電気配線の少なくとも一部の周囲を覆うように配置するか、又は
(b)貫通空間において、挿通された前記電気配線の少なくとも一部の周囲を覆うように配置する方法。
It is a method of delaying the spread of fire to the electrical wiring of the solar cell module mounted on the roof structure of the building, and the building has a through space that connects the electrical wiring of the solar cell module from the internal space of the building to the rooftop.
The building has a vertical wall, the penetrating space is provided in the vertical wall, and the penetrating space is a space communicating between the indoor and outdoor parts of the building .
The electrical wiring of the solar cell module is inserted into the penetrating space, one end of the electrical wiring extends from the solar cell module, and the other end of the electrical wiring is located in the internal space of the building.
A sealing member made of a refractory material containing heat-expandable graphite,
(A) the solar cell module or found through space to the outdoor or arranged so as to cover at least a part the periphery of the electrical wiring in the space between the, or in (b) through space, inserted through said electrical at least a portion of arranging so as to cover the periphery, the method of wiring.
JP2015142916A 2015-07-17 2015-07-17 Building with solar cell module Active JP6777382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142916A JP6777382B2 (en) 2015-07-17 2015-07-17 Building with solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142916A JP6777382B2 (en) 2015-07-17 2015-07-17 Building with solar cell module

Publications (2)

Publication Number Publication Date
JP2017025510A JP2017025510A (en) 2017-02-02
JP6777382B2 true JP6777382B2 (en) 2020-10-28

Family

ID=57945503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142916A Active JP6777382B2 (en) 2015-07-17 2015-07-17 Building with solar cell module

Country Status (1)

Country Link
JP (1) JP6777382B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846654B2 (en) * 1997-10-06 2006-11-15 大和ハウス工業株式会社 Roof panel with solar cell and roof structure
JP4590052B2 (en) * 1998-12-04 2010-12-01 キヤノン株式会社 Solar cell roof structure, solar power generation device and building
JP2002227325A (en) * 2000-05-19 2002-08-14 Sekisui Chem Co Ltd Construction method and structure for fire compartment penetration part
US6641143B2 (en) * 2002-01-18 2003-11-04 The Metraflex Company Multi-linked seal assembly having material that swells when exposed to fire
JP3817532B2 (en) * 2003-01-10 2006-09-06 積水化学工業株式会社 Fireproof compartment penetration structure
US20090014058A1 (en) * 2007-07-13 2009-01-15 Miasole Rooftop photovoltaic systems
JP6159141B2 (en) * 2013-05-09 2017-07-05 大和ハウス工業株式会社 Wiring pull-in structure and wiring pull-in method
JP6296592B2 (en) * 2013-05-29 2018-03-20 国立研究開発法人情報通信研究機構 Translation word order information output device, machine translation device, learning device, translation word order information output method, learning method, and program

Also Published As

Publication number Publication date
JP2017025510A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP3838780B2 (en) Refractory sheet-like molded body and sheet laminate
JP6837736B2 (en) Through-hole cover and fireproof structure of compartment through-hole
EP3406439A1 (en) Refractory multilayer sheet
JP6791618B2 (en) Sleeve and compartment penetration structure
JP6777427B2 (en) Fire protection material and fire protection structure of compartment penetration
JP6683519B2 (en) Fireproof structure of the fireproof cover and compartment penetration
JP2018044356A (en) Sleeve provided in floor of architectural structure or section penetration part of wall body
JP6491567B2 (en) Bus duct for power cable
JP6777382B2 (en) Building with solar cell module
JP2016191209A (en) Cover member for section penetration part, and section penetration part structure
JP6941662B2 (en) Coating material, piping, and fireproof structure
JP6357437B2 (en) Covering material, piping, and fireproof structure
JP6901527B2 (en) Cover member and compartment penetration structure for compartment penetration
JP6769762B2 (en) Piping system in compartment penetration structure
JP2018044361A (en) Fireproof packing structure and construction method for the same
JP2020182375A (en) Protective tube for cable, and fire resistant structure
JP6713744B2 (en) Fireproof structure, construction method of fireproof structure
JP4137285B2 (en) Fireproof / firewall construction
JP2016183508A (en) Fireproof structure for beam
JP6546499B2 (en) Fireproof structure of building compartments
JP2017227111A (en) Sleeve for forming section through-hole on floor or wall body of architectural structure
JP6813633B2 (en) Fireproof structure
JP6832055B2 (en) Thermally expandable bushing
JP6641417B2 (en) Coating materials, piping, and fire-resistant structures
JP2017066851A (en) Fireproof structure of penetration part in division body of hollow structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R151 Written notification of patent or utility model registration

Ref document number: 6777382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250