JP2017066851A - Fireproof structure of penetration part in division body of hollow structure - Google Patents

Fireproof structure of penetration part in division body of hollow structure Download PDF

Info

Publication number
JP2017066851A
JP2017066851A JP2016023605A JP2016023605A JP2017066851A JP 2017066851 A JP2017066851 A JP 2017066851A JP 2016023605 A JP2016023605 A JP 2016023605A JP 2016023605 A JP2016023605 A JP 2016023605A JP 2017066851 A JP2017066851 A JP 2017066851A
Authority
JP
Japan
Prior art keywords
floor
ceiling
hole
expandable refractory
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023605A
Other languages
Japanese (ja)
Inventor
英祐 栗山
Eisuke Kuriyama
英祐 栗山
明良 上田
Akira Ueda
明良 上田
智之 石黒
Tomoyuki Ishiguro
智之 石黒
要一 五十里
Yoichi Isori
要一 五十里
敦史 荻野
Atsushi Ogino
敦史 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2017066851A publication Critical patent/JP2017066851A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fireproof structure of a penetration part in a division body of a building capable of exhibiting favorable fireproof performance with simple construction work, and capable of reducing construction cost.SOLUTION: A division body 2 includes: a floor material 5 for constituting a floor of an upper layer floor; a ceiling material 6 for constituting a ceiling of a lower layer floor which is provided at an interval with the floor material 5. Thermal expansion fire-resistant materials 8, 10 are provided at one of the periphery of a pipe body 4 of the floor material 5, the periphery of the pipe body 4 under the ceiling material 6, the outer peripheral surface of the pipe body 4 protruding above the floor material 5, and the outer peripheral surface of the pipe body 4 protruding under the ceiling material 6. Also, at a through-hole 30 of the floor material 5 and/or a through-hole 31 of the ceiling material 6, a sealing material 9 is provided so as to conceal a gap with the pipe body 4.SELECTED DRAWING: Figure 16

Description

本発明は、建築物の中空構造の区画体における貫通部の防火構造に関する。   The present invention relates to a fire prevention structure of a penetrating portion in a partition having a hollow structure of a building.

複層建築物内に水平に設けられた中空構造の区画体において、ケーブルや給水管などの管体を階上から階下又はその逆に通すためには、区画体に貫通部を形成して、この貫通部に管体を挿通する必要がある。ただし、この区画体の貫通部に防火性能を与えるためには、建築基準法施工令第129条の2の5第1項第七号のイにおいて規定されているように、例えば貫通部に鋼製スリーブなどの不燃材を挿通したうえで貫通部の防火措置を行い、管体を鋼管スリーブの中を通して貫通部を貫通させる必要があった。   In a compartment of a hollow structure provided horizontally in a multi-layered building, in order to pass pipes such as cables and water supply pipes from the upper floor to the lower floor or vice versa, a through portion is formed in the compartment, It is necessary to insert a tubular body through this penetration. However, in order to give fireproof performance to the penetrating part of this partition body, as specified in the item (b) of Paragraph 1 of Article 5 of Article 129-2 of the Building Standards Act, for example, the penetrating part is made of steel. It was necessary to insert a non-combustible material such as a sleeve and to take fire prevention measures for the penetration portion, and to penetrate the penetration portion through the steel tube sleeve.

しかし、上記した防火構造では、鋼製スリーブを所定の長さにするために鋼管を切断加工したり、鋼製スリーブを中空構造の区画体の貫通部に固定したりする必要があるなど、施工作業が煩雑である。また、鋼管を切断加工する必要があるため、不要な鋼管の残り屑を廃棄するための費用が嵩むという課題もある。   However, in the fire prevention structure described above, it is necessary to cut the steel pipe in order to make the steel sleeve a predetermined length, or to fix the steel sleeve to the through portion of the hollow structure compartment. Work is complicated. Moreover, since it is necessary to cut a steel pipe, there also exists a subject that the expense for discarding the remaining scraps of an unnecessary steel pipe increases.

さらに上記した防火構造では、鋼製スリーブを中空構造の区画体の貫通部に挿通する必要があるが、鋼製スリーブは、中空構造の区画体を構成する床材と天井材とにそれぞれ形成された貫通孔の位置がずれていて一致していないと、貫通部に挿通することができないことから、床材及び天井材に形成される貫通孔の位置精度が要求され、貫通部に対して確実に施工するのが困難でもあった。   Further, in the above-described fire prevention structure, it is necessary to insert the steel sleeve into the penetrating portion of the partition member having the hollow structure. However, the steel sleeve is formed respectively on the floor material and the ceiling material constituting the partition member having the hollow structure. If the positions of the through-holes are shifted and do not match, the through-holes cannot be inserted, so the positional accuracy of the through-holes formed in the flooring and ceiling material is required, and the through-holes are reliably It was also difficult to construct.

本発明は、上記課題に着目してなされたもので、簡易な施工作業で確実に貫通部に施工でき、良好な防火性能を発現でき、施工コストを低減できる建築物の区画体における貫通部の防火構造を提供することを目的とする。   The present invention has been made by paying attention to the above-mentioned problems, and can be reliably applied to the penetrating part by a simple construction work, can exhibit good fire prevention performance, and can reduce the construction cost. The object is to provide a fire prevention structure.

本発明の上記目的は、複層建築物内に水平に設けられた中空構造の区画体を貫通しかつ管体が挿通される貫通部の防火構造であって、前記区画体は、上層階の床を構成する床材と、前記床材と間隔をあけて設けられる下層階の天井を構成する天井材と、を備えており、前記床材上の前記管体の周囲、前記天井材下の前記管体の周囲、前記床材上に突き出る前記管体の外周面及び前記天井材下に突き出る前記管体の外周面のいずれかに、熱膨張性耐火材が設けられている防火構造によって達成される。   The above-mentioned object of the present invention is a fire prevention structure of a penetrating portion that penetrates a hollow structural body horizontally provided in a multi-layered building and through which a tubular body is inserted. A floor material that constitutes a floor, and a ceiling material that constitutes a ceiling of a lower floor provided with a space from the floor material, and the periphery of the pipe body on the floor material, below the ceiling material Achieved by a fireproof structure in which a thermally expandable refractory material is provided on any of the periphery of the tube, the outer peripheral surface of the tube protruding above the flooring, and the outer peripheral surface of the tube protruding below the ceiling material Is done.

上記構成の防火構造において、記床材の貫通孔及び/又は前記天井材の貫通孔には、前記管体との間の隙間を隠すように、シーリング材が設けられていることが好ましく、前記床材の貫通孔及び前記天井材の貫通孔と前記管体との間の隙間に、シーリング材が充填されていることがさらに好ましい。   In the fire prevention structure having the above-described structure, it is preferable that a sealing material is provided in the through hole of the flooring material and / or the through hole of the ceiling material so as to hide a gap between the tube body, It is further preferable that a sealing material is filled in a gap between the through hole of the flooring material and the through hole of the ceiling material and the tubular body.

また、上記構成の防火構造において、前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材の貫通孔内及び前記天井材の貫通孔内まで延びていることが好ましい。   Further, in the fire prevention structure having the above-described configuration, the thermally expandable refractory material provided on the outer peripheral surface of the tube projecting on the floor material and the thermal expandability provided on the outer peripheral surface of the tube projecting under the ceiling material. It is preferable that the refractory material extends into the through hole of the floor material and into the through hole of the ceiling material.

また、上記構成の防火構造において、前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材の貫通孔及び前記天井材の貫通孔を閉塞していることが好ましい。   Further, in the fire prevention structure having the above-described configuration, the thermally expandable refractory material provided on the outer peripheral surface of the tube projecting on the floor material and the thermal expandability provided on the outer peripheral surface of the tube projecting under the ceiling material. It is preferable that the refractory material closes the through hole of the floor material and the through hole of the ceiling material.

また、上記構成の防火構造において、前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材と前記天井材との間の中空空間まで延びて一体化されていることが好ましい。   Further, in the fire prevention structure having the above-described configuration, the thermally expandable refractory material provided on the outer peripheral surface of the tube projecting on the floor material and the thermal expandability provided on the outer peripheral surface of the tube projecting under the ceiling material. It is preferable that the refractory material extends and is integrated into a hollow space between the floor material and the ceiling material.

また、上記構成の防火構造において、前記天井材下の前記管体の周囲及び/又は前記天井材下に突き出る前記管体の外周面に前記熱膨張性耐火材が設けられ、前記床材の貫通孔には、前記管体との間の隙間を隠すように、シーリング材が設けられていることが好ましい。   Further, in the fireproof structure configured as described above, the thermally expandable refractory material is provided around the tube body under the ceiling material and / or the outer peripheral surface of the tube body projecting under the ceiling material, and penetrates the floor material. It is preferable that a sealing material is provided in the hole so as to hide a gap between the tube body and the hole.

本発明の建築物の区画体における貫通部の防火構造によれば、簡易な施工作業で良好な防火性能を発現できる防火構造を貫通部に対して確実に施工できるうえ、施工コストを低減できる。   According to the fire-proof structure of the penetration part in the partition of the building of the present invention, it is possible to reliably construct a fire-proof structure capable of expressing good fire-proof performance with a simple construction work on the penetration part, and to reduce the construction cost.

本発明の一実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on one Embodiment of this invention. 火災発生時の図1の防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure of FIG. 1 at the time of a fire outbreak. 図1の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 図1の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 図1の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 図1の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 火災発生時の図7の防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure of FIG. 7 at the time of a fire outbreak. 図7の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 図7の防火構造の変形例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modification of the fire prevention structure of FIG. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る防火構造の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fire prevention structure which concerns on other embodiment of this invention.

以下、本発明の実施形態について添付図面を参照して説明する。本発明の防火構造は、複層建築物の床や天井などの水平な区画体に施工され、区画体に形成された貫通部から火災時に炎や熱が漏洩することを防止するためのものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The fire prevention structure of the present invention is applied to a horizontal partition such as a floor or a ceiling of a multi-layer building, and prevents flames and heat from leaking from a through-hole formed in the partition during a fire. .

図1は、本発明の一実施形態に係る防火構造1を示しており、区画体2に設けられた貫通部3に配管やケーブルなどの管体4が挿通された状態を説明するための模式部分断面図である。区画体2は、上層階の床を構成する床材5と、下層階の天井を構成する天井材6と、を備えている。床材5としては、ALC板、プレキャストコンクリート板などの耐火性の高い素材を用いることができる。天井材6としては、強化石膏ボード、ケイ酸カルシウム板、石膏ボード又はケイ酸カルシウム板にセラミックブランケットやロックウールフェルトを積層させた積層板などを用いることができる。なお、床材5及び天井材6は、図示は省略しているが、複数の根太、梁、野縁、野縁受けなどにより支持されている。   FIG. 1 shows a fire prevention structure 1 according to an embodiment of the present invention, and is a schematic diagram for explaining a state where a pipe body 4 such as a pipe or a cable is inserted into a through portion 3 provided in a partition body 2. It is a fragmentary sectional view. The partition body 2 includes a floor material 5 that constitutes the floor of the upper floor and a ceiling material 6 that constitutes the ceiling of the lower floor. As the flooring 5, a material having high fire resistance such as an ALC plate or a precast concrete plate can be used. As the ceiling material 6, a reinforced gypsum board, a calcium silicate board, a gypsum board, a laminated board in which a ceramic blanket or rock wool felt is laminated on a calcium silicate board, or the like can be used. The flooring 5 and the ceiling 6 are not shown in the figure but are supported by a plurality of joists, beams, field edges, field edges, and the like.

区画体2は、床材5及び天井材6の間に、図示しない左右の壁材とで囲まれる中空空間7を有する中空構造である。床材5及び天井材6には、管体4を挿通するための貫通孔30及び貫通孔31がそれぞれ形成されており、両貫通孔30,31及び中空空間7により、貫通部3が構成されている。   The partition body 2 has a hollow structure having a hollow space 7 surrounded by a left and right wall material (not shown) between the floor material 5 and the ceiling material 6. A through hole 30 and a through hole 31 for inserting the pipe body 4 are formed in the floor material 5 and the ceiling material 6, respectively, and the through part 3 is configured by the through holes 30 and 31 and the hollow space 7. ing.

貫通部3に挿通される管体4としては、例えば、冷媒管、熱媒管、水道管、下水管、注排水管、ガス管、暖冷房用媒体移送管、通気管、電線ケーブル、光ファイバーケーブルなどが挙げられる。   Examples of the pipe body 4 inserted through the penetration part 3 include a refrigerant pipe, a heat medium pipe, a water pipe, a sewage pipe, an injection / drain pipe, a gas pipe, a heating / cooling medium transfer pipe, a vent pipe, an electric cable, and an optical fiber cable. Etc.

床材5上の管体4の周囲、天井材6下の管体4の周囲、床材5上に突き出る管体4の外周面及び天井材6下に突き出る管体4の外周面のいずれかに、熱膨張性耐火材8が設けられている。本実施形態では、床材5上に突き出る管体4の外周面に、管体4の床材5から室内空間側に露出した根元に、熱膨張性耐火材8が設けられている。   Any of the circumference of the pipe body 4 on the floor material 5, the circumference of the pipe body 4 below the ceiling material 6, the outer peripheral surface of the pipe body 4 protruding above the floor material 5, and the outer peripheral surface of the pipe body 4 protruding below the ceiling material 6. In addition, a thermally expandable refractory material 8 is provided. In this embodiment, the thermally expandable refractory material 8 is provided on the outer peripheral surface of the tube body 4 protruding on the floor material 5 at the root exposed from the floor material 5 of the tube body 4 to the indoor space side.

熱膨張性耐火材8は、本実施形態では所定の厚み(例えば0.1mm〜7.0mm)を有するシート状であり、粘着テープを予め熱膨張性耐火材8に貼り付けておき、管体4の外周面に一重又は幾重にも巻き付けて被覆することで、管体4の外周面に固定することができる。この熱膨張性耐火材8による被覆は、床材5の表面から所定長さ(例えば30cm以内)の位置まで施される。管体4に巻かれた熱膨張性耐火材8の外径は、貫通孔30の外径と比べて、同じであっても大きくてもよく、また小さくてもよい。つまり、上方から床材5を視認した際に、貫通孔30が熱膨張性耐火材8に隠されていてもよいし、隠されていなくてもよい。   The heat-expandable refractory material 8 is in the form of a sheet having a predetermined thickness (for example, 0.1 mm to 7.0 mm) in the present embodiment, and an adhesive tape is pasted on the heat-expandable refractory material 8 in advance. The outer peripheral surface of the tube 4 can be fixed to the outer peripheral surface of the tube body 4 by covering the outer peripheral surface of the tube body 4 in a single or multiple layers. The coating with the heat-expandable refractory material 8 is applied from the surface of the floor material 5 to a position of a predetermined length (for example, within 30 cm). The outer diameter of the heat-expandable refractory material 8 wound around the tubular body 4 may be the same as or larger than the outer diameter of the through hole 30 and may be smaller. That is, when the flooring 5 is viewed from above, the through hole 30 may or may not be hidden by the thermally expandable refractory material 8.

熱膨張性耐火材8は、例えば、樹脂成分に熱膨張性層状無機物と無機充填剤とを含有させた熱膨張性耐火材料(樹脂組成物)により形成される。   The heat-expandable refractory material 8 is formed of, for example, a heat-expandable refractory material (resin composition) in which a resin component contains a heat-expandable layered inorganic material and an inorganic filler.

樹脂成分としては、熱可塑性樹脂、熱硬化性樹脂、ゴム物質、およびそれらの組み合わせが挙げられる。熱可塑性樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリ(1−)ブテン系樹脂、ポリペンテン系樹脂などのポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ポリイソブチレンなどの合成樹脂類が挙げられる。   Examples of the resin component include thermoplastic resins, thermosetting resins, rubber substances, and combinations thereof. Examples of the thermoplastic resin include polypropylene resins, polyethylene resins, poly (1-) butene resins, polyolefin resins such as polypentene resins, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, and polycarbonates. And synthetic resins such as polyresin, polyphenylene ether resin, acrylic resin, polyamide resin, polyvinyl chloride resin, phenol resin, polyurethane resin, and polyisobutylene.

熱硬化性樹脂としては、例えば、ポリウレタン、ポリイソシアネート、ポリイソシアヌレート、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミドなどが挙げられる。   Examples of the thermosetting resin include polyurethane, polyisocyanate, polyisocyanurate, phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polyimide, and the like.

ゴム物質としては、天然ゴム、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、エチレン−プロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多加硫ゴム、非加硫ゴム、シリコンゴム、フッ素ゴム、ウレタンゴムなどのゴム物質などが挙げられる。   Rubber materials include natural rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, ethylene-propylene rubber, chlorosulfonated polyethylene, acrylic rubber , Rubber materials such as epichlorohydrin rubber, polyvulcanized rubber, non-vulcanized rubber, silicon rubber, fluorine rubber, urethane rubber, and the like.

これらの合成樹脂類及び/又はゴム物質は、一種もしくは二種以上を使用することができる。これらの合成樹脂類及び/又はゴム物質の中でも、柔軟でゴム的性質を持っているものが好ましい。このような性質を持つものは無機充填剤を高充填することが可能であり、得られる樹脂組成物が柔軟で扱い易いものとなる。より柔軟で扱い易い樹脂組成物を得るためには、ブチルなどの非加硫ゴムやポリエチレン系樹脂が好適に用いられる。さらに、樹脂自体の難燃性を上げて防火性能を向上させるという観点からは、エポキシ樹脂が好ましい。   These synthetic resins and / or rubber substances can be used alone or in combination of two or more. Among these synthetic resins and / or rubber substances, those having flexible and rubbery properties are preferable. Those having such properties can be highly filled with an inorganic filler, and the resulting resin composition is flexible and easy to handle. In order to obtain a resin composition that is more flexible and easy to handle, a non-vulcanized rubber such as butyl or a polyethylene resin is preferably used. Furthermore, an epoxy resin is preferable from the viewpoint of improving the fire resistance by increasing the flame retardancy of the resin itself.

次に、熱膨張性層状無機物は、加熱時に膨張するものであるが、かかる熱膨張性層状無機物は特に限定されるものではなく、例えば、バーミキュライト、カオリン、マイカ、熱膨張性黒鉛などを挙げることができる。熱膨張性黒鉛は、従来から公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイトなどの粉末を、濃硫酸、硝酸、セレン酸などの無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、重クロム酸塩、過酸化水素などの強酸化剤とで処理してグラファイト層間化合物を生成させたものであり、炭素の層状構造を維持したままの結晶化合物の一種である。   Next, the heat-expandable layered inorganic material expands upon heating, but such heat-expandable layered inorganic material is not particularly limited, and examples thereof include vermiculite, kaolin, mica, and heat-expandable graphite. Can do. Thermally expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite and quiche graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, A graphite intercalation compound was produced by treatment with a strong oxidant such as chlorate, permanganate, dichromate, dichromate, hydrogen peroxide, etc., and the layered structure of carbon was maintained. It is a kind of crystalline compound as it is.

上記のように酸処理して得られた熱膨張性黒鉛は、さらにアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物などで中和したものを使用するのが好ましい。   The heat-expandable graphite obtained by acid treatment as described above is preferably further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.

熱膨張性黒鉛の粒度は、20メッシュ〜200メッシュが好ましい。粒度が200メッシュより小さくなると、黒鉛の膨張度が小さく、十分な膨張断熱層が得られず、また粒度が20メッシュより大きくなると、黒鉛の膨張度が大きいという利点はあるが、樹脂に配合する際に分散性が悪くなり、物性が低下する。熱膨張性黒鉛の市販品としては、例えば、東ソー社製「GREP−EG」、GRAFTECH社製「GRAFGUARD」などが挙げられる。   The particle size of the thermally expandable graphite is preferably 20 mesh to 200 mesh. If the particle size is smaller than 200 mesh, the degree of expansion of graphite is small, and a sufficient expanded heat insulating layer cannot be obtained. If the particle size is larger than 20 mesh, there is an advantage that the degree of expansion of graphite is large. At the same time, dispersibility deteriorates and physical properties deteriorate. Examples of commercially available products of thermally expandable graphite include “GREP-EG” manufactured by Tosoh Corporation, “GRAFGUARD” manufactured by GRAFTECH, and the like.

次に、無機充填剤は、膨張断熱層が形成される際、熱容量を増大させ伝熱を抑制するとともに、骨材的に働いて膨張断熱層の強度を向上させるものである。かかる無機充填剤としては特に限定されるものではなく、例えば、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類などの金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイトなどの含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウムなどの金属炭酸塩などが挙げられる。   Next, the inorganic filler increases the heat capacity and suppresses heat transfer when the expanded heat insulating layer is formed, and works as an aggregate to improve the strength of the expanded heat insulating layer. The inorganic filler is not particularly limited, and examples thereof include metal oxides such as alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, and ferrites; calcium hydroxide And water-containing inorganic substances such as magnesium hydroxide, aluminum hydroxide and hydrotalcite; metal carbonates such as basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate and barium carbonate.

また、無機充填剤としては、上記した他に、硫酸カルシウム、石膏繊維、ケイ酸カルシウムなどのカルシウム塩;シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」(商品名)、チタン酸ジルコン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥などが挙げられる。これらの無機充填剤は単独で用いても、2種以上を併用してもよい。   In addition to the above, inorganic fillers include calcium salts such as calcium sulfate, gypsum fiber, calcium silicate; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite. , Imogolite, sericite, glass fiber, glass beads, silica balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate MOS ”(trade name), lead zirconate titanate, zinc stearate, calcium stearate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders, slag fiber, fly ash, dehydrated sludge, etc. All It is. These inorganic fillers may be used alone or in combination of two or more.

無機充填剤の粒径としては、0.5μm〜100μmが好ましく、より好ましくは1μm〜50μmである。無機充填剤は、添加量が少ないときは、分散性が性能を大きく左右するため、粒径の小さいものが好ましいが、0.5μm未満になると二次凝集が起こり、分散性が悪くなる。添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることで樹脂組成物の粘度を低下させることができる点から、粒径の大きいものが好ましい。粒径が100μmを超えると、成形体の表面性、樹脂組成物の力学的物性が低下する。   As a particle size of an inorganic filler, 0.5 micrometer-100 micrometers are preferable, More preferably, they are 1 micrometer-50 micrometers. When the addition amount of the inorganic filler is small, the dispersibility largely affects the performance, so that the particle size is preferably small. However, when it is less than 0.5 μm, secondary aggregation occurs and the dispersibility deteriorates. When the addition amount is large, the viscosity of the resin composition increases and moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size. A thing with a large diameter is preferable. When the particle size exceeds 100 μm, the surface properties of the molded body and the mechanical properties of the resin composition are lowered.

なお、無機充填剤としては、例えば、水酸化アルミニウムでは、粒径18μmの「ハイジライトH−31」(昭和電工社製)、粒径25μmの「B325」(ALCOA社製)、炭酸カルシウムでは、粒径1.8μmの「ホワイトンSB赤」(備北粉化工業社製)、粒径8μmの「BF300」(備北粉化工業社製)などが挙げられる。   As the inorganic filler, for example, in aluminum hydroxide, “Hijilite H-31” (manufactured by Showa Denko) having a particle size of 18 μm, “B325” (manufactured by ALCOA) having a particle size of 25 μm, and calcium carbonate, Examples thereof include “Whiteon SB Red” having a particle size of 1.8 μm (manufactured by Bihoku Flour Industry Co., Ltd.), “BF300” having a particle size of 8 μm (manufactured by Bihoku Powder Company).

さらに、熱膨張性耐火材8を構成する樹脂組成物は、膨張断熱層の強度を増加させて防火性能を向上させるために、上述した各成分に加えて、さらにリン化合物を含んでもよい。リン化合物としては、特に限定されず、例えば、赤リン;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェートなどの各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウムなどのリン酸金属塩;ポリリン酸アンモニウム類;下記化学式(1)で表される化合物などが挙げられる。これらのうち、防火性能の観点から、赤リン、ポリリン酸アンモニウム類、及び、下記化学式(1)で表される化合物が好ましく、性能、安全性、コストなどの点においてポリリン酸アンモニウム類がより好ましい。   Furthermore, the resin composition constituting the thermally expandable refractory material 8 may further contain a phosphorus compound in addition to the above-described components in order to increase the strength of the expanded heat insulating layer and improve the fireproof performance. The phosphorus compound is not particularly limited. For example, red phosphorus; various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate, Examples thereof include metal phosphates such as potassium phosphate and magnesium phosphate; ammonium polyphosphates; compounds represented by the following chemical formula (1), and the like. Among these, from the viewpoint of fire prevention performance, red phosphorus, ammonium polyphosphates, and compounds represented by the following chemical formula (1) are preferable, and ammonium polyphosphates are more preferable in terms of performance, safety, cost, and the like. .

化学式(1)中、R1及びR3は、水素、炭素数1〜16の直鎖状あるいは分岐状のアルキル基、又は、炭素数6〜16のアリール基を表す。R2は、水酸基、炭素数1〜16の直鎖状あるいは分岐状のアルキル基、炭素数1〜16の直鎖状あるいは分岐状のアルコキシル基、炭素数6〜16のアリール基、又は、炭素数6〜16のアリールオキシ基を表す。   In chemical formula (1), R1 and R3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or a carbon number Represents 6 to 16 aryloxy groups.

赤リンとしては、市販の赤リンを用いることができるが、耐湿性、混練時に自然発火しないなどの安全性の点から、赤リン粒子の表面を樹脂でコーティングしたものなどが好適に用いられる。ポリリン酸アンモニウム類としては特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウムなどが挙げられるが、取り扱い性などの点からポリリン酸アンモニウムが好適に用いられる。市販品としては、例えば、クラリアント社製「AP422」、「AP462」、Budenheim Iberica社製「FR CROS 484」、「FR CROS 487」などが挙げられる。   As red phosphorus, commercially available red phosphorus can be used, but from the viewpoint of safety such as moisture resistance and not spontaneous ignition during kneading, a material in which the surface of red phosphorus particles is coated with a resin is preferably used. The ammonium polyphosphates are not particularly limited, and examples thereof include ammonium polyphosphate and melamine-modified ammonium polyphosphate. Ammonium polyphosphate is preferably used from the viewpoint of handleability. Examples of commercially available products include “AP422” and “AP462” manufactured by Clariant, “FR CROS 484” and “FR CROS 487” manufactured by Budenheim Iberica.

化学式(1)で表される化合物としては特に限定されず、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2−メチルプロピルホスホン酸、t−ブチルホスホン酸、2,3−ジメチル−ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4−メトキシフェニル)ホスフィン酸などが挙げられる。中でも、t−ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。前記のリン化合物は、単独で用いても、2種以上を併用してもよい。   The compound represented by the chemical formula (1) is not particularly limited. For example, methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t- Butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphine Examples include acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like. Among them, t-butylphosphonic acid is preferable in terms of high flame retardancy although it is expensive. The above phosphorus compounds may be used alone or in combination of two or more.

また、熱膨張性耐火材8を構成する樹脂組成物には、その物性を損なわない範囲で、さらにフェノール系、アミン系、イオウ系などの酸化防止剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料などが添加されてもよい。また、一般的な難燃剤を添加してもよく、難燃剤による燃焼抑制効果により防火性能を向上させることができる。   In addition, the resin composition constituting the heat-expandable refractory material 8 has a phenolic, amine-based, sulfur-based antioxidant, metal harm-preventing agent, antistatic agent, stable, etc. as long as its physical properties are not impaired. An agent, a crosslinking agent, a lubricant, a softener, a pigment, and the like may be added. Moreover, a general flame retardant may be added and fire prevention performance can be improved by the combustion suppression effect by a flame retardant.

熱膨張性耐火材8を構成する樹脂組成物は、熱可塑性樹脂やエポキシ樹脂などの樹脂成分100重量部に対し、熱膨張性層状無機物を10〜350重量部及び無機充填材を30〜400重量部の範囲で含むものが好ましい。   The resin composition constituting the thermally expandable refractory material 8 is 10 to 350 parts by weight of the thermally expandable layered inorganic material and 30 to 400 parts by weight of the inorganic filler with respect to 100 parts by weight of the resin component such as thermoplastic resin or epoxy resin. What is contained in the range of a part is preferable.

また、前記熱膨張性層状無機物及び前記無機充填剤の合計は、樹脂成分100重量部に対し、50重量部〜600重量部の範囲が好ましい。   The total of the thermally expandable layered inorganic material and the inorganic filler is preferably in the range of 50 to 600 parts by weight with respect to 100 parts by weight of the resin component.

かかる樹脂組成物は加熱によって膨張し耐火断熱層を形成する。この配合によれば、熱膨張性耐火材は火災などの加熱によって膨張し、必要な体積膨張率を得ることができ、膨張後は所定の断熱性能を有するとともに所定の強度を有する残渣を形成することもでき、安定した防火性能を達成することができる。   Such a resin composition expands by heating to form a refractory heat insulating layer. According to this composition, the heat-expandable refractory material expands by heating such as a fire, and can obtain a necessary volume expansion coefficient. After expansion, a residue having a predetermined heat insulation performance and a predetermined strength is formed. It is possible to achieve stable fireproof performance.

上記樹脂組成物における熱膨張性層状無機物及び無機充填材の合計量は、50重量部以上では燃焼後の残渣量を満足して十分な耐火性能が得られ、600重量部以下であると機械的物性が維持される。   When the total amount of the thermally expandable layered inorganic material and the inorganic filler in the resin composition is 50 parts by weight or more, a sufficient amount of fire resistance can be obtained by satisfying the amount of residue after combustion. Physical properties are maintained.

さらに、熱膨張性耐火材8を構成する樹脂組成物は、必要に応じて、フェノール系、アミン系、イオウ系などの酸化防止剤の他、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂、成型補助材などの添加剤、ポリブテン、石油樹脂などの粘着付与剤を含むことができる。   Furthermore, the resin composition constituting the heat-expandable refractory material 8 is made of, as necessary, an antioxidant such as phenol, amine or sulfur, a metal damage inhibitor, an antistatic agent, a stabilizer, a crosslink Additives such as agents, lubricants, softeners, pigments, tackifier resins, molding aids, and tackifiers such as polybutenes and petroleum resins.

上記樹脂組成物の各成分を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拌機など公知の装置を用いて混練することにより、樹脂組成物を得ることができる。   By kneading each component of the resin composition using a known apparatus such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader mixer, a kneading roll, a reiki machine, and a planetary stirrer, the resin composition is obtained. Can be obtained.

熱膨張性耐火材料は、市販品として入手可能であり、例えば、住友スリーエム社製のファイアバリア(クロロプレンゴムとバーミキュライトを含有する樹脂組成物からなる熱膨張性耐火材、膨張率:3倍、熱伝導率:0.20kcal/m・h・℃)、三井金属塗料社のメジヒカット(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなる熱膨張性耐火材、膨張率:4倍、熱伝導率:0.21kcal/m・h・℃)、積水化学工業社製フィブロックなどを挙げることができる。   The heat-expandable refractory material is available as a commercial product. For example, a fire barrier manufactured by Sumitomo 3M Limited (a heat-expandable refractory material composed of a resin composition containing chloroprene rubber and vermiculite, expansion coefficient: 3 times, heat Conductivity: 0.20 kcal / m · h · ° C., Mitsui Metal Paint Co., Ltd., Medihicut (thermally expandable refractory material comprising a resin composition containing polyurethane resin and thermally expandable graphite, expansion coefficient: 4 times, thermal conductivity Rate: 0.21 kcal / m · h · ° C.), Sekisui Chemical Co., Ltd. fibroc.

熱膨張性耐火材料は、火災時などの高温にさらされた際にその膨張層により断熱し、かつその膨張層の強度があるものであれば特に限定されないが、好ましくは、50kW/mの加熱条件下で30分間加熱した後の体積膨張率が3倍〜50倍の範囲であり、より好ましくは、体積膨張率が5倍〜40倍の範囲であり、さらに好ましくは8倍〜35倍の範囲である。 The heat-expandable refractory material is not particularly limited as long as it is insulated by the expansion layer when exposed to a high temperature such as a fire, and has the strength of the expansion layer, but preferably 50 kW / m 2 . The volume expansion coefficient after heating for 30 minutes under heating conditions is in the range of 3 to 50 times, more preferably the volume expansion coefficient is in the range of 5 to 40 times, and more preferably 8 to 35 times. Range.

床材5の貫通孔30と管体4との間の隙間には、弾性を有するシーリング材9が充填されている。シーリング材9は、粘性を有するシーリング剤(コーキング剤)により床材5の貫通孔30と管体4との間の隙間を埋めることで形成される。シーリング剤(コーキング剤)としては、耐火パテ、セメントモルタルなどの不燃材、石膏ボード用目地処理材などを挙げることができる。なお、シーリング材9は、床材5の貫通孔30と管体4との間の隙間に加えて、天井材6の貫通孔31と管体4との間の隙間にも充填されていることが好ましいが、天井材6の貫通孔31と管体4との間の隙間にだけ充填されていてもよい。   A clearance between the through hole 30 of the flooring 5 and the tubular body 4 is filled with a sealing material 9 having elasticity. The sealing material 9 is formed by filling a gap between the through hole 30 of the flooring 5 and the tubular body 4 with a viscous sealing agent (caulking agent). Examples of the sealing agent (caulking agent) include non-combustible materials such as fire-resistant putty and cement mortar, and joint treatment materials for gypsum boards. The sealing material 9 is filled in the gap between the through hole 31 of the ceiling material 6 and the pipe body 4 in addition to the gap between the through hole 30 of the floor material 5 and the pipe body 4. However, it may be filled only in the gap between the through hole 31 of the ceiling member 6 and the tube body 4.

なお、図示例では、床材5や天井材6の貫通孔30,31と管体4との間の隙間を隠すために、シーリング材9を貫通孔30,31に充填して上記隙間を埋めているが、必ずしもシーリング材9を貫通孔30,31に充填する必要はなく、貫通孔30上の管体4の周囲や貫通孔31下の管体4の周囲に設けることで、貫通孔30,31と管体4との間の上記隙間を隠すようにしてもよい。   In the illustrated example, in order to conceal the gap between the through holes 30 and 31 of the floor material 5 and the ceiling material 6 and the pipe body 4, the sealing material 9 is filled into the through holes 30 and 31 to fill the gap. However, the sealing material 9 is not necessarily filled in the through holes 30 and 31. By providing the sealing material 9 around the tube body 4 above the through hole 30 and around the tube body 4 below the through hole 31, the through hole 30 is provided. , 31 and the tube 4 may be hidden.

上述した熱膨張性耐火材8を用いた区画体2の防火構造1では、床上側の室内空間に露出する管体4の根元が熱膨張性耐火材8によって被覆されているので、例えば床上側の室内空間で火災が発生して、図2に示すように、管体4が溶融・焼失したとしても、熱膨張性耐火材8が火災時の熱によってその厚さ方向である管体4の径方向に熱膨張して、管体4の溶融・焼失によりできる空間が閉塞される。また、熱膨張した熱膨張性耐火材8によって、貫通孔30が遮蔽されるうえ、貫通孔30と管体4との間の隙間はシーリング材9により埋められている。よって、区画体2の貫通孔30及び管体4を完全に閉塞できるため、火炎や熱が貫通孔30や管体4から天井下側の室内空間に侵入して、延焼することを防ぐことができる。   In the fire prevention structure 1 of the division body 2 using the above-described thermally expandable refractory material 8, since the root of the tubular body 4 exposed to the indoor space above the floor is covered with the thermally expandable refractory material 8, for example, the floor upper side As shown in FIG. 2, even if a fire occurs in the indoor space of the tube 4 and the tube 4 is melted and burnt down, the heat-expandable refractory material 8 is heated in the thickness direction of the tube 4 in the thickness direction. Thermal expansion in the radial direction closes the space formed by melting and burning of the tube body 4. In addition, the through hole 30 is shielded by the thermally expanded heat-expandable refractory material 8, and the gap between the through hole 30 and the tube body 4 is filled with the sealing material 9. Therefore, since the through hole 30 and the tube body 4 of the partition 2 can be completely closed, it is possible to prevent the flame and heat from entering the indoor space below the ceiling from the through hole 30 and the tube body 4 and spreading the fire. it can.

また、シーリング材9により、床材5の貫通孔30及び/又は天井材6の貫通孔31と管体4との間の隙間が隠されるので、上記隙間を通して床上や天井下から他方側を見えないようにすることができる。   Moreover, since the clearance between the through hole 30 of the flooring 5 and / or the through hole 31 of the ceiling material 6 and the tubular body 4 is hidden by the sealing material 9, the other side can be seen from above the floor or under the ceiling through the clearance. Can not be.

さらに、熱膨張性耐火材8は、床上の室内空間側から管体4の外周面に巻き付けることで容易に設けることができるうえに、管体4の形状が複雑であったり、複数の管体4が貫通部3に挿通されていたとしても、管体4の形状などに合わせて熱膨張性耐火材8を設けることができるので、従来の鋼製スリーブを用いる場合と比べて、簡易な施工作業で良好な防火性能を発現できる防火構造1を貫通部3に対して確実に施工することができる。加えて、鋼製スリーブを用いないので、切断加工した後の不要な鋼管の残り屑を廃棄する必要がなく、施工コストも低減できる。なお、複数の管体4が貫通部3に挿通されている場合には、複数の管体4をまとめて熱膨張性耐火材8で被覆してもよいし、複数の管体4をそれぞれ個別に熱膨張性耐火材8で被覆してもよい。   Furthermore, the heat-expandable refractory material 8 can be easily provided by wrapping around the outer peripheral surface of the tubular body 4 from the indoor space side on the floor, and the tubular body 4 has a complicated shape or a plurality of tubular bodies. Even if 4 is inserted through the through-hole 3, the heat-expandable refractory material 8 can be provided in accordance with the shape of the tubular body 4, etc., so that the construction is simpler than when a conventional steel sleeve is used. The fire prevention structure 1 that can express good fire prevention performance in the work can be reliably applied to the penetration part 3. In addition, since the steel sleeve is not used, it is not necessary to discard unnecessary scraps of the steel pipe after cutting, and the construction cost can be reduced. In addition, when the several pipe body 4 is penetrated by the penetration part 3, you may coat | cover the several pipe body 4 collectively with the heat-expandable refractory material 8, and each several pipe body 4 is each separately. Alternatively, it may be covered with a thermally expandable refractory material 8.

また、例えば天井下側の室内空間で火災が発生した場合でも、熱膨張性耐火材8により、床材5の貫通孔30及び管体4が閉塞されるので、貫通孔30や管体4を通じて火炎や熱が床上側の室内空間に侵入して、延焼することを防ぐことができる。   For example, even when a fire occurs in the indoor space below the ceiling, the heat-expandable refractory material 8 blocks the through-hole 30 and the pipe body 4 of the flooring 5. Flames and heat can be prevented from entering the indoor space above the floor and spreading.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning of this invention.

例えば、上記実施形態の防火構造1において、床材5上に突き出る管体4の外周面に熱膨張性耐火材8を設けているが、天井材6下に突き出る管体4の外周面に熱膨張性耐火材8を設けても、床材5上に突き出る管体4の外周面に熱膨張性耐火材8を設けた場合と同様の効果を奏する。このように、本発明に係る防火構造では、床材5上に突き出る管体4の外周面及び天井材6下に突き出る管体4の外周面のいずれか一方に、熱膨張性耐火材8を設けることで、良好な防火性能を発現できるが、図3に示すように、床材5上に突き出る管体4の外周面及び天井材6下に突き出る管体4の外周面のいずれに対しても熱膨張性耐火材8を設けることもできる。これにより、より確実な防火性能を発現することができる。   For example, in the fire prevention structure 1 of the above embodiment, the thermally expandable refractory material 8 is provided on the outer peripheral surface of the tubular body 4 protruding on the floor material 5, but the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6 is heated. Even if the expandable refractory material 8 is provided, the same effect as when the thermally expandable refractory material 8 is provided on the outer peripheral surface of the tubular body 4 protruding on the flooring 5 is produced. Thus, in the fireproof structure according to the present invention, the thermally expandable refractory material 8 is provided on either the outer peripheral surface of the tubular body 4 protruding above the flooring 5 or the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6. By providing, good fireproof performance can be expressed, but as shown in FIG. 3, for any of the outer peripheral surface of the tube body 4 protruding above the flooring 5 and the outer peripheral surface of the tube body 4 protruding below the ceiling material 6. Also, a heat-expandable refractory material 8 can be provided. Thereby, more reliable fireproof performance can be expressed.

なお、図3においては、シーリング材9が、床材5の貫通孔30及び天井材6の貫通孔31に設けられているが、どちらか一方の貫通孔30,31にだけ設けられていてもよい。   In FIG. 3, the sealing material 9 is provided in the through hole 30 of the flooring 5 and the through hole 31 of the ceiling material 6, but may be provided only in one of the through holes 30 and 31. Good.

また、上記実施形態では、床材5の貫通孔30と管体4との間の隙間がシーリング材9により埋められているが、シーリング材9を用いることなく、図4に示すように、床材5上に突き出る管体4の外周面に設けられる熱膨張性耐火材8の端部を貫通孔30の下端まで延ばして、貫通孔30内に入り込ませるようにしてもよい。この実施形態では、熱膨張性耐火材8が火災時の熱によって熱膨張することで、貫通孔30と管体4との間の隙間が埋められる。なお、この実施形態においては、平常時に床材5の貫通孔30と熱膨張性耐火材8との間に隙間が生じていてもよいが、図5に示すように、隙間が生じることなく、熱膨張性耐火材8により、床材5の貫通孔30が閉塞されることが好ましい。また、天井材6下に突き出る管体4の外周面に熱膨張性耐火材8を設ける場合においても、同様にして、天井材6の貫通孔31と管体4との間の隙間をシーリング材9により埋めることなく、天井材6下に突き出る管体4の外周面に設けられる熱膨張性耐火材8の端部を貫通孔31の上端まで延ばして、貫通孔31内に入り込ませるようにしてもよい。   Moreover, in the said embodiment, although the clearance gap between the through-hole 30 of the flooring 5 and the pipe body 4 is filled with the sealing material 9, as shown in FIG. The end portion of the thermally expandable refractory material 8 provided on the outer peripheral surface of the tubular body 4 protruding on the material 5 may be extended to the lower end of the through hole 30 so as to enter the through hole 30. In this embodiment, the thermally expansible refractory material 8 is thermally expanded by the heat at the time of the fire, so that the gap between the through hole 30 and the tubular body 4 is filled. In this embodiment, there may be a gap between the through hole 30 of the flooring 5 and the thermally expandable refractory material 8 in normal times, but as shown in FIG. It is preferable that the through hole 30 of the flooring 5 is closed by the thermally expandable refractory material 8. Similarly, when the thermally expandable refractory material 8 is provided on the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, the gap between the through hole 31 of the ceiling material 6 and the tubular body 4 is similarly sealed. 9, the end portion of the thermally expandable refractory material 8 provided on the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6 is extended to the upper end of the through hole 31 so as to enter the through hole 31. Also good.

また、図3に示すように、床材5上に突き出る管体4の外周面及び天井材6下に突き出る管体4の外周面のいずれに対しても熱膨張性耐火材8を設ける場合には、図6に示すように、床材5上に突き出る管体4の外周面に設けられる熱膨張性耐火材8及び天井材6下に突き出る管体4の外周面に設けられる熱膨張性耐火材8を、ともに床材5と天井材6との間の中空空間7まで延ばして一体化してもよい。   In addition, as shown in FIG. 3, when the thermally expandable refractory material 8 is provided on both the outer peripheral surface of the tube body 4 protruding above the flooring 5 and the outer peripheral surface of the tube body 4 protruding below the ceiling material 6. As shown in FIG. 6, the thermally expandable refractory material 8 provided on the outer peripheral surface of the tubular body 4 projecting on the flooring 5 and the thermal expandable fireproof material provided on the outer peripheral surface of the tubular body 4 projecting under the ceiling material 6. The material 8 may be integrated by extending to the hollow space 7 between the floor material 5 and the ceiling material 6.

なお、図6においては、床材5の貫通孔30及び天井材6の貫通孔31の少なくとも一方に、シーリング材9を貫通孔30,31と管体4との隙間を隠すように設けてもよい。   In FIG. 6, the sealing material 9 may be provided in at least one of the through hole 30 of the floor material 5 and the through hole 31 of the ceiling material 6 so as to hide the gap between the through holes 30 and 31 and the tubular body 4. Good.

また、上記実施形態では、床材5上に突き出る管体4の外周面及び/又は天井材6下に突き出る管体4の外周面にシート状の熱膨張性耐火材8を巻き付けているが、図7に示すように、例えば、床材5上の管体4の周囲に熱膨張性耐火材10を設けてもよい。なお、管体4の周囲に設けられる熱膨張性耐火材10も、管体4の外周面に設けられる熱膨張性耐火材8と同じ材料で形成することができる。   Moreover, in the said embodiment, although the sheet-like thermally expansible refractory material 8 is wound around the outer peripheral surface of the tubular body 4 protruding on the flooring 5 and / or the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, As shown in FIG. 7, for example, a thermally expandable refractory material 10 may be provided around the tubular body 4 on the flooring 5. The thermally expandable refractory material 10 provided around the tube body 4 can also be formed of the same material as the thermally expandable refractory material 8 provided on the outer peripheral surface of the tube body 4.

熱膨張性耐火材10は、所定の厚みを有するシート状ないしは板状(例えば0.1mm〜7.0mm)であり、管体4を挿通できる大きさの開口11が形成されている。熱膨張性耐火材10は、床材5の貫通孔30よりも一回り大きく形成されており、その形状は、正方形状や円形状など、種々の形状とすることができる。熱膨張性耐火材10は、床材5の貫通孔30を遮蔽するように床材5の表面に敷設され、粘着剤、接着剤の他、ねじなどの物理的な固定手段を用いて床材5上に固定される。また、熱膨張性耐火材10には、開口11から外周縁に達する切れ込み(図示せず)が設けられている。これにより、区画体2の貫通部3に挿通されている管体4の周囲に対して熱膨張性耐火材10を設置できる。つまり、管体4が区画体2の貫通部3に既に挿通されている場合に、熱膨張性耐火材10を開いた状態として、管体4を開口11に位置させ、その後、熱膨張性耐火材10を閉じて、床材5上に固定することで、管体4の周囲に熱膨張性耐火材10を設けることができる。   The heat-expandable refractory material 10 has a sheet shape or plate shape (for example, 0.1 mm to 7.0 mm) having a predetermined thickness, and has an opening 11 having a size that allows the tube body 4 to be inserted. The heat-expandable refractory material 10 is formed to be slightly larger than the through hole 30 of the flooring 5, and the shape thereof can be various shapes such as a square shape and a circular shape. The heat-expandable refractory material 10 is laid on the surface of the flooring 5 so as to shield the through-holes 30 of the flooring 5, and uses a physical fixing means such as an adhesive, an adhesive, and a screw. 5 is fixed. Further, the thermally expandable refractory material 10 is provided with a cut (not shown) reaching the outer peripheral edge from the opening 11. Thereby, the thermally expansible refractory material 10 can be installed with respect to the circumference | surroundings of the pipe body 4 penetrated by the penetration part 3 of the division body 2. FIG. That is, when the tubular body 4 has already been inserted through the penetrating portion 3 of the partition body 2, the tubular body 4 is positioned in the opening 11 with the thermally expandable refractory material 10 opened, and then the thermally expandable fireproof material. The thermally expandable refractory material 10 can be provided around the tubular body 4 by closing the material 10 and fixing it on the floor material 5.

上述した熱膨張性耐火材10を用いた区画体2の防火構造1においても、床上側の室内空間に露出する管体4の周囲に熱膨張性耐火材10が設けられているので、例えば床上側の室内空間で火災が発生して、図8に示すように、管体4が溶融・焼失したとしても、熱膨張性耐火材10が火災時の熱によってその厚さ方向である管体4の径方向に熱膨張して、管体4の溶融・焼失によりできる空間が閉塞される。また、熱膨張した熱膨張性耐火材10によって、貫通孔30が遮蔽されるうえ、貫通孔30と管体4との間の隙間はシーリング材9により埋められている。よって、区画体2の貫通孔30及び管体4を完全に閉塞できるため、火炎や熱が貫通孔30や管体4から天井下側の室内空間に侵入して、延焼することを防ぐことができる。   Also in the fire prevention structure 1 of the division body 2 using the above-described thermally expandable refractory material 10, since the thermally expandable refractory material 10 is provided around the tubular body 4 exposed in the indoor space above the floor, for example, on the floor As shown in FIG. 8, even if a fire occurs in the indoor space on the side, and the tubular body 4 is melted and burnt out, the thermally expandable refractory material 10 is in the thickness direction due to heat at the time of the fire. The space formed by melting and burning of the tube body 4 is closed. In addition, the through-hole 30 is shielded by the thermally expandable refractory material 10 that has been thermally expanded, and the gap between the through-hole 30 and the tubular body 4 is filled with the sealing material 9. Therefore, since the through hole 30 and the tube body 4 of the partition 2 can be completely closed, it is possible to prevent the flame and heat from entering the indoor space below the ceiling from the through hole 30 and the tube body 4 and spreading the fire. it can.

また、シーリング材9により、床材5の貫通孔30及び/又は天井材6の貫通孔31と管体4との間の隙間が隠されるので、上記隙間を通して床上や天井下から他方側を見えないようにすることができる。   Moreover, since the clearance between the through hole 30 of the flooring 5 and / or the through hole 31 of the ceiling material 6 and the tubular body 4 is hidden by the sealing material 9, the other side can be seen from above the floor or under the ceiling through the clearance. Can not be.

さらに、熱膨張性耐火材10は、床上の室内空間側から管体4の周囲に配置することで容易に設けることができるうえに、管体4の形状が複雑であったり、複数の管体4が貫通部3に挿通されていたとしても、管体4の形状などに合わせて開口11を形成すれば、熱膨張性耐火材10を管体4の周囲に設けることができるので、従来の鋼製スリーブを用いる場合と比べて、簡易な施工作業で良好な防火性能を発現できる防火構造1を貫通部3に対して確実に施工することができる。加えて、鋼製スリーブを用いないので切断加工した後の不要な鋼管の残り屑を廃棄する必要がないため、施工コストも低減できる。   Furthermore, the heat-expandable refractory material 10 can be easily provided by arranging it around the tubular body 4 from the indoor space side on the floor, and the shape of the tubular body 4 is complicated, or a plurality of tubular bodies Even if 4 is inserted through the through-hole 3, if the opening 11 is formed in accordance with the shape of the tube 4 or the like, the thermally expandable refractory material 10 can be provided around the tube 4, so that the conventional Compared to the case where a steel sleeve is used, the fire prevention structure 1 that can express good fire prevention performance with a simple construction work can be reliably applied to the penetration part 3. In addition, since the steel sleeve is not used, it is not necessary to discard unnecessary scraps of the steel pipe after cutting, so that the construction cost can be reduced.

また、例えば天井下側の室内空間で火災が発生した場合でも、熱膨張性耐火材10により、床材5の貫通孔30及び管体4が閉塞されるので、貫通孔30や管体4を通じて火炎や熱が床上側の室内空間に侵入して、延焼することを防ぐことができる。   For example, even when a fire occurs in the indoor space below the ceiling, the heat-expandable refractory material 10 closes the through hole 30 and the tube body 4 of the flooring 5, so that the through hole 30 and the tube body 4 can be used. Flames and heat can be prevented from entering the indoor space above the floor and spreading.

なお、図7に示す実施形態の防火構造1においても、天井材6下に突き出る管体4の周囲にだけ熱膨張性耐火材10を設けてもよいし、図9に示すように、床材5上に突き出る管体4の周囲及び天井材6下に突き出る管体4の周囲のいずれに対しても熱膨張性耐火材10を設けてもよい。   In the fire prevention structure 1 of the embodiment shown in FIG. 7, the thermally expandable refractory material 10 may be provided only around the tubular body 4 protruding below the ceiling material 6, and as shown in FIG. The heat-expandable refractory material 10 may be provided on both the periphery of the tube body 4 protruding above 5 and the periphery of the tube body 4 protruding below the ceiling material 6.

また、図7や図9では、シーリング材9が、床材5の貫通孔30及び天井材6の貫通孔31に設けられているが、どちらか一方の貫通孔30,31にだけ設けられていてもよい。   In FIGS. 7 and 9, the sealing material 9 is provided in the through hole 30 of the flooring 5 and the through hole 31 of the ceiling material 6, but is provided only in one of the through holes 30 and 31. May be.

また、図7に示す実施形態の防火構造1において、熱膨張性耐火材10はシート状ないしは板状であるが、図10に示すように、管体4の周囲を囲む筒状であってもよい。なお、図10では、熱膨張性耐火材10はフランジ部10Aを有しており、フランジ部10Aにて床材5の表面に、粘着剤、接着剤の他、ねじなどの物理的な固定手段を用いて固定されるが、フランジ部10Aは必ずしも設ける必要はない。   Further, in the fire prevention structure 1 of the embodiment shown in FIG. 7, the thermally expandable refractory material 10 is in the form of a sheet or a plate, but as shown in FIG. Good. In FIG. 10, the thermally expandable refractory material 10 has a flange portion 10 </ b> A, and a physical fixing means such as a screw, in addition to an adhesive and an adhesive, is provided on the surface of the flooring 5 at the flange portion 10 </ b> A. The flange portion 10A is not necessarily provided.

また、図10では、シーリング材9が、床材5の貫通孔30及び天井材6の貫通孔31に設けられているが、どちらか一方の貫通孔30,31にだけ設けられていてもよい。   In FIG. 10, the sealing material 9 is provided in the through hole 30 of the floor material 5 and the through hole 31 of the ceiling material 6, but may be provided only in one of the through holes 30 and 31. .

また、図11に示すように、床材5上に突き出る管体4の外周面に熱膨張性耐火材8を巻き付け、天井材6下の管体4の周囲に熱膨張性耐火材10を敷設したり、図12に示すように、天井材6下に突き出る管体4の外周面に熱膨張性耐火材8を巻き付け、床材5上の管体4の周囲に熱膨張性耐火材10を敷設してもよい。また、図13に示すように、床材5上に突き出る管体4の外周面、天井材6下に突き出る管体4の外周面、床材5上の管体4の周囲、及び、天井材6下の管体4の周囲のいずれに対しても熱膨張性耐火材8,10を設けてもよい。また、図13において、床材5上に突き出る管体4の外周面、天井材6下に突き出る管体4の外周面、床材5上の管体4の周囲、及び、天井材6下の管体4の周囲のいずれかの熱膨張性耐火材8,10を省略してもよい。つまり、床材5上に突き出る管体4の外周面、天井材6下に突き出る管体4の外周面、床材5上の管体4の周囲、及び、天井材6下の管体4の周囲、の中から任意の3か所に熱膨張性耐火材8,10を設けてもよい。例えば、図14に示すように、床材5上に突き出る管体4の外周面及び天井材6下に突き出る管体4の外周面に熱膨張性耐火材8を巻き付け、天井材6下の管体4の周囲に熱膨張性耐火材10を敷設したり、図15に示すように、天井材6下に突き出る管体4の外周面に熱膨張性耐火材8を巻き付け、床材5上の管体4の周囲及び天井材6下の管体4の周囲に熱膨張性耐火材10を敷設してもよい。   As shown in FIG. 11, a heat-expandable refractory material 8 is wrapped around the outer peripheral surface of the tube body 4 protruding on the floor material 5, and a heat-expandable refractory material 10 is laid around the tube body 4 under the ceiling material 6. As shown in FIG. 12, a thermally expandable refractory material 8 is wrapped around the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, and a thermally expandable refractory material 10 is wrapped around the tubular body 4 on the flooring 5. May be laid. Moreover, as shown in FIG. 13, the outer peripheral surface of the tubular body 4 projecting on the flooring 5, the outer circumferential surface of the tubular body 4 projecting below the ceiling member 6, the periphery of the tubular body 4 on the flooring 5, and the ceiling material The heat-expandable refractory materials 8 and 10 may be provided on any of the surroundings of the lower tube body 6. Further, in FIG. 13, the outer peripheral surface of the tubular body 4 protruding above the flooring 5, the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, the periphery of the tubular body 4 on the flooring 5, and the bottom of the ceiling material 6. Any of the thermally expandable refractory materials 8 and 10 around the tube body 4 may be omitted. That is, the outer peripheral surface of the tubular body 4 protruding above the flooring 5, the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, the periphery of the tubular body 4 on the flooring 5, and the tubular body 4 below the ceiling material 6. You may provide the thermally expansible refractory materials 8 and 10 in arbitrary three places out of circumference | surroundings. For example, as shown in FIG. 14, a heat-expandable refractory material 8 is wound around the outer peripheral surface of the tubular body 4 protruding above the flooring 5 and the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6, and the tube below the ceiling material 6. A heat-expandable refractory material 10 is laid around the body 4, or a heat-expandable refractory material 8 is wound around the outer peripheral surface of the tubular body 4 protruding below the ceiling material 6 as shown in FIG. A thermally expandable refractory material 10 may be laid around the tube body 4 and around the tube body 4 below the ceiling material 6.

また、図11〜図15では、シーリング材9が、床材5の貫通孔30及び天井材6の貫通孔31に設けられているが、どちらか一方の貫通孔30,31にだけ設けられていてもよい。   11 to 15, the sealing material 9 is provided in the through hole 30 of the flooring 5 and the through hole 31 of the ceiling material 6, but is provided only in one of the through holes 30 and 31. May be.

また、上述したいずれの実施形態においても、シーリング材9は、必ずしも設ける必要はない。   In any of the above-described embodiments, the sealing material 9 is not necessarily provided.

以上、本発明の防火構造について種々の実施形態を説明したが、より好ましい実施形態を図16に示す。図16の実施形態では、天井材6下に突き出る管体4の外周面に、予め粘着テープが貼り付けられたシート状の熱膨張性耐火材8を一重又は幾重に巻き付けることで、熱膨張性耐火材8が設けられている。また、図16の実施形態では、天井材6下の管体4の周囲に、所定の厚みを有するシート状ないしは板状の熱膨張性耐火材10が、天井床6の貫通孔31を遮蔽するようにして設けられている。この熱膨張性耐火材10は、天井材6下に粘着剤、接着剤の他、ねじなどの物理的な固定手段を用いて固定される。   As mentioned above, although various embodiment was described about the fire prevention structure of this invention, more preferable embodiment is shown in FIG. In the embodiment of FIG. 16, the sheet-like thermally expandable refractory material 8 with the adhesive tape attached in advance is wound around the outer peripheral surface of the tubular body 4 projecting under the ceiling material 6 in a single layer or multiple layers, thereby expanding the thermal expansion property. A refractory material 8 is provided. In the embodiment of FIG. 16, a sheet-like or plate-like thermally expandable refractory material 10 having a predetermined thickness shields the through hole 31 of the ceiling floor 6 around the tube body 4 below the ceiling material 6. It is provided as such. This heat-expandable refractory material 10 is fixed below the ceiling material 6 by using a physical fixing means such as a screw in addition to an adhesive and an adhesive.

一方で、床材5の貫通孔30には、管体4との間の隙間を隠すように、弾性を有するシーリング材9が設けられている。このシーリング材9は、床材5上から粘性を有するシーリング剤(コーキング剤)を貫通孔30上の管体4の周囲に塗布することで、設けられる。なお、シーリング材9は、床材5の貫通孔30上の管体4の周囲だけでなく、図17に示すように、貫通孔30内の管体4との間の隙間にも設けられていてもよく、また、図示は省略するが、貫通孔30内の管体4との間の隙間にだけ設けられていてもよい。   On the other hand, a sealing material 9 having elasticity is provided in the through hole 30 of the flooring 5 so as to hide the gap between the tubular body 4. The sealing material 9 is provided by applying a viscous sealing agent (caulking agent) around the pipe body 4 on the through hole 30 from the floor material 5. The sealing material 9 is provided not only around the tube body 4 on the through hole 30 of the flooring 5 but also in a gap between the tube body 4 in the through hole 30 as shown in FIG. Moreover, although illustration is abbreviate | omitted, you may provide only in the clearance gap between the pipe bodies 4 in the through-hole 30. FIG.

この実施形態によると、まず、例えば天井下側の室内空間で火災が発生したとしても、熱膨張性耐火材8,10が火災時の熱によって熱膨張して、管体4の溶融・焼失によりできる空間が閉塞されるうえ、熱膨張した熱膨張性耐火材8,10によって天井材6の貫通孔31が遮蔽される。さらに、床材5の貫通孔30と管体4との間の隙間はシーリング材9により塞がれている。そのため、火炎や熱が貫通孔30,31や管体4から床上側の室内空間に侵入して、延焼することを防ぐことができる。また、例えば床上側の室内空間で火災が発生した場合でも、熱膨張性耐火材8,10により、天井材6の貫通孔31及び管体4が閉塞されるので、貫通孔30や管体4を通じて火炎や熱が床上側の室内空間に侵入して、延焼することを防ぐことができる。本発明者による実験によれば、このように、床材5の貫通孔30及び天井材6の貫通孔31の少なくともどちらか一方に、火災時に熱膨張して貫通孔を閉塞できる熱膨張性耐火材を設けるだけで、他方の貫通孔に熱膨張性耐火材ではなく耐火性の劣るシーリング材を設けても、火災時の延焼を防止できる十分な防火性能を発現できることを見出した。よって、この実施形態では、さらに簡易かつ短時間の施工作業で十分な防火性能を有する防火構造を確実に構築でき、施工コストもさらに低減できる。   According to this embodiment, for example, even if a fire occurs in the indoor space below the ceiling, for example, the thermally expandable refractory materials 8 and 10 are thermally expanded due to the heat at the time of the fire, and the tubular body 4 is melted and burned out. The space that can be formed is closed, and the through-hole 31 of the ceiling member 6 is shielded by the thermally expandable refractory materials 8 and 10 that have been thermally expanded. Further, the gap between the through hole 30 of the flooring 5 and the tube body 4 is closed by the sealing material 9. Therefore, it is possible to prevent flames and heat from entering the indoor space above the floor from the through holes 30 and 31 and the pipe body 4 and spreading the fire. Further, for example, even when a fire occurs in the indoor space above the floor, the through-holes 31 and the tubular body 4 of the ceiling material 6 are closed by the thermally expandable refractory materials 8 and 10, so the through-hole 30 and the tubular body 4. It is possible to prevent flames and heat from entering the indoor space above the floor and spreading fire. According to the experiments by the present inventors, in this way, at least one of the through-hole 30 of the flooring 5 and the through-hole 31 of the ceiling material 6 is thermally expandable refractory that can be thermally expanded in the event of a fire and close the through-hole. It has been found that even if a material is provided, a sufficient fire-proof performance capable of preventing the spread of fire at the time of fire can be exhibited even if a sealing material having a poor fire resistance is provided in the other through-hole instead of a heat-expandable fire-resistant material. Therefore, in this embodiment, a fire prevention structure having sufficient fire prevention performance can be reliably constructed with a simpler and shorter construction work, and the construction cost can be further reduced.

また、床材5の貫通孔30に設けたシーリング材9により、床材5の貫通孔30と管体4との間の隙間が隠されるので、上記隙間を通して床上や天井下から他方側を見えないようにすることができる。   Further, since the gap between the through hole 30 of the flooring 5 and the tubular body 4 is hidden by the sealing material 9 provided in the through hole 30 of the flooring 5, the other side can be seen from above the floor or under the ceiling through the gap. Can not be.

また、天井材6の貫通孔31にシーリング材9を設けていないので、さらに施工作業を簡易かつ短時間にすることができる。すなわち、シーリング材9を例えば天井材6の貫通孔31に設ける場合には、粘性を有するシーリング剤(コーキング剤)を貫通孔31下の管体4の周囲に塗布することになるが、これでは、シーリング剤(コーキング剤)が自重で垂れるために施工しにくく、かつ、このような貫通孔30,31は室内空間の隅の位置にある場合が多いので、シーリング材9を天井下から貫通孔31に設けるのは尚更施工しにくいが、この実施形態のように、床上から貫通孔30にシーリング材9を設けることで、シーリング剤(コーキング剤)が自重で垂れるなどの問題を解消でき、施工作業を簡易にすることができる。   Moreover, since the sealing material 9 is not provided in the through hole 31 of the ceiling material 6, the construction work can be further simplified and shortened. That is, when the sealing material 9 is provided in the through hole 31 of the ceiling material 6, for example, a viscous sealing agent (caulking agent) is applied around the tube body 4 below the through hole 31. Since the sealing agent (caulking agent) hangs down due to its own weight, it is difficult to install the sealant and the through holes 30 and 31 are often located at the corners of the indoor space. Although it is still difficult to install in 31, as in this embodiment, by providing the sealing material 9 in the through hole 30 from the floor, problems such as dripping of the sealing agent (caulking agent) by its own weight can be solved. Work can be simplified.

なお、図16では、天井材6下に突き出る管体4の外周面及び天井材6下の管体4の周囲に熱膨張性耐火材8,10が設けられているが、図18に示すように、天井材6下に突き出る管体4の外周面にだけ熱膨張性耐火材8が設けられていてもよく、また、図19に示すように、天井材6下の管体4の周囲にだけ熱膨張性耐火材10が設けられていてもよい。さらに図18及び図19の実施形態ともに、シーリング材9は、床材5の貫通孔30上の管体4の周囲だけでなく、図20及び図21に示すように、貫通孔30内の管体4との間の隙間にも設けられていてもよく、また、図示は省略するが、貫通孔30内の管体4との間の隙間にだけ設けられていてもよい。   In FIG. 16, the thermally expandable refractory materials 8 and 10 are provided on the outer peripheral surface of the tube body 4 protruding below the ceiling material 6 and around the tube body 4 below the ceiling material 6, but as shown in FIG. 18. Further, the heat-expandable refractory material 8 may be provided only on the outer peripheral surface of the tubular body 4 projecting under the ceiling material 6, and as shown in FIG. 19, around the tubular body 4 under the ceiling material 6. Only the thermally expandable refractory material 10 may be provided. Further, in both the embodiments of FIGS. 18 and 19, the sealing material 9 is not only around the tube body 4 on the through hole 30 of the flooring 5, but also as shown in FIGS. 20 and 21. It may also be provided in the gap between the body 4 and may be provided only in the gap between the pipe body 4 in the through hole 30 although illustration is omitted.

1 防火構造
2 区画体
3 貫通部
4 管体
5 床材
6 天井材
8 熱膨張性耐火材
9 シーリング材
10 熱膨張性耐火材
30 床材の貫通孔
31 天井材の貫通孔
DESCRIPTION OF SYMBOLS 1 Fire prevention structure 2 Compartment 3 Penetration part 4 Tube 5 Floor material 6 Ceiling material 8 Thermal expansion fireproof material 9 Sealing material 10 Thermal expansion fireproof material 30 Floor material through-hole 31 Ceiling material through-hole

Claims (7)

複層建築物内に水平に設けられた中空構造の区画体を貫通しかつ管体が挿通される貫通部の防火構造であって、
前記区画体は、上層階の床を構成する床材と、前記床材と間隔をあけて設けられる下層階の天井を構成する天井材と、を備えており、
前記床材上の前記管体の周囲、前記天井材下の前記管体の周囲、前記床材上に突き出る前記管体の外周面及び前記天井材下に突き出る前記管体の外周面のいずれかに、熱膨張性耐火材が設けられている防火構造。
It is a fire prevention structure of a penetrating part that penetrates a hollow structure section horizontally provided in a multi-layered building and through which a tubular body is inserted,
The partition body includes a floor material constituting a floor of an upper floor, and a ceiling material constituting a ceiling of a lower floor provided at an interval from the floor material,
Any of the periphery of the tube on the floor, the periphery of the tube under the ceiling, the outer peripheral surface of the tube protruding above the floor, and the outer periphery of the tube protruding below the ceiling And a fire-proof structure provided with a heat-expandable refractory material.
前記床材の貫通孔及び/又は前記天井材の貫通孔には、前記管体との間の隙間を隠すように、シーリング材が設けられている請求項1に記載の防火構造。   The fireproof structure according to claim 1, wherein a sealing material is provided in the through hole of the floor material and / or the through hole of the ceiling material so as to hide a gap between the pipe body. 前記床材の貫通孔及び/又は前記天井材の貫通孔と前記管体との間の隙間に前記シーリング材が充填されている請求項2に記載の防火構造。   The fireproof structure according to claim 2, wherein the sealing material is filled in a gap between the through hole of the floor material and / or the through hole of the ceiling material and the pipe body. 前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材の貫通孔内及び前記天井材の貫通孔内まで延びている請求項1に記載の防火構造。   The thermally expandable refractory material provided on the outer peripheral surface of the tubular body projecting on the floor material and the thermally expandable refractory material provided on the outer peripheral surface of the tubular body projecting under the ceiling material penetrate the floor material. The fireproof structure according to claim 1, which extends into the hole and into the through hole of the ceiling material. 前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材の貫通孔及び前記天井材の貫通孔を閉塞している請求項4に記載の防火構造。   The thermally expandable refractory material provided on the outer peripheral surface of the tubular body projecting on the floor material and the thermally expandable refractory material provided on the outer peripheral surface of the tubular body projecting under the ceiling material penetrate the floor material. The fireproof structure according to claim 4, wherein the hole and the through hole of the ceiling material are closed. 前記床材上に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材及び前記天井材下に突き出る前記管体の外周面に設けられる前記熱膨張性耐火材が、前記床材と前記天井材との間の中空空間まで延びて一体化されている請求項4又は5に記載の防火構造。   The thermally expandable refractory material provided on the outer peripheral surface of the tube projecting on the floor material and the thermally expandable refractory material provided on the outer peripheral surface of the tube projecting under the ceiling material are the floor material and the The fireproof structure according to claim 4 or 5, wherein the fireproof structure extends to a hollow space between the ceiling material and is integrated. 前記天井材下の前記管体の周囲及び/又は前記天井材下に突き出る前記管体の外周面に前記熱膨張性耐火材が設けられ、
前記床材の貫通孔には、前記管体との間の隙間を隠すように、シーリング材が設けられている請求項1に記載の防火構造。
The thermally expandable refractory material is provided around the tube body under the ceiling material and / or the outer peripheral surface of the tube body protruding below the ceiling material,
The fireproof structure according to claim 1, wherein a sealing material is provided in the through hole of the floor material so as to hide a gap between the floor material and the pipe body.
JP2016023605A 2015-10-01 2016-02-10 Fireproof structure of penetration part in division body of hollow structure Pending JP2017066851A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195682 2015-10-01
JP2015195682 2015-10-01

Publications (1)

Publication Number Publication Date
JP2017066851A true JP2017066851A (en) 2017-04-06

Family

ID=58494333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023605A Pending JP2017066851A (en) 2015-10-01 2016-02-10 Fireproof structure of penetration part in division body of hollow structure

Country Status (1)

Country Link
JP (1) JP2017066851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188480A (en) * 2020-06-04 2021-12-13 積水化学工業株式会社 Section penetration processing structure, section penetration processing material and construction method of section penetration processing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030172603A1 (en) * 2001-12-19 2003-09-18 Mckesson William S. Fire collar
JP2011052448A (en) * 2009-09-01 2011-03-17 Sekisui Chem Co Ltd Fire-resistive division penetrating-section structure
JP2012237185A (en) * 2011-04-27 2012-12-06 Sekisui Chem Co Ltd Pass-through structure across fire compartment
WO2015041345A1 (en) * 2013-09-19 2015-03-26 積水化学工業株式会社 Thermally expansive elongated member able to be disposed in through hole of fireproof compartment, method for producing fireproof structure of compartment penetrating section, and fireproof structure of compartment penetrating section
JP2015166605A (en) * 2014-03-03 2015-09-24 未来工業株式会社 Penetration part formation device and fire compartment wall structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030172603A1 (en) * 2001-12-19 2003-09-18 Mckesson William S. Fire collar
JP2011052448A (en) * 2009-09-01 2011-03-17 Sekisui Chem Co Ltd Fire-resistive division penetrating-section structure
JP2012237185A (en) * 2011-04-27 2012-12-06 Sekisui Chem Co Ltd Pass-through structure across fire compartment
WO2015041345A1 (en) * 2013-09-19 2015-03-26 積水化学工業株式会社 Thermally expansive elongated member able to be disposed in through hole of fireproof compartment, method for producing fireproof structure of compartment penetrating section, and fireproof structure of compartment penetrating section
JP2015166605A (en) * 2014-03-03 2015-09-24 未来工業株式会社 Penetration part formation device and fire compartment wall structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188480A (en) * 2020-06-04 2021-12-13 積水化学工業株式会社 Section penetration processing structure, section penetration processing material and construction method of section penetration processing structure
JP7150782B2 (en) 2020-06-04 2022-10-11 積水化学工業株式会社 Compartment penetration treatment structure, compartment penetration treatment material, and partition penetration treatment structure construction method
JP7354372B2 (en) 2020-06-04 2023-10-02 積水化学工業株式会社 Compartment penetration treatment structure, division penetration treatment material, and construction method of division penetration treatment structure

Similar Documents

Publication Publication Date Title
JP3148209U (en) Penetration through structure of compartment
JP6837736B2 (en) Through-hole cover and fireproof structure of compartment through-hole
JP2007312599A (en) Penetrating structure of compartment piece
JP2003148658A (en) Construction method of fire control partition penetration part and structure of the part
JP6791618B2 (en) Sleeve and compartment penetration structure
JP6588722B2 (en) Fireproof structure
JP6683519B2 (en) Fireproof structure of the fireproof cover and compartment penetration
JP6737569B2 (en) Cable protection tube and fireproof structure
JP6553913B2 (en) Cover member for compartment penetration part and compartment penetration part structure
JP2017207155A (en) Fire protection material and fire protection structure for partition penetration part
JP2018044356A (en) Sleeve provided in floor of architectural structure or section penetration part of wall body
JP2017096013A (en) Building member
JP2016189954A (en) Fire protection construction for architectural structure
JP6357437B2 (en) Covering material, piping, and fireproof structure
JP6941662B2 (en) Coating material, piping, and fireproof structure
JP2017066851A (en) Fireproof structure of penetration part in division body of hollow structure
JP6553902B2 (en) Fireproof structure of penetration part in section of building and its construction method
JP2018044361A (en) Fireproof packing structure and construction method for the same
JP2020182375A (en) Protective tube for cable, and fire resistant structure
JP2016183508A (en) Fireproof structure for beam
JP6505485B2 (en) Fire protection device, fire protection structure of building and construction method of fire protection structure
JP6832055B2 (en) Thermally expandable bushing
JP6901527B2 (en) Cover member and compartment penetration structure for compartment penetration
JP6641417B2 (en) Coating materials, piping, and fire-resistant structures
JP2002227325A (en) Construction method and structure for fire compartment penetration part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200618

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200821

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200825

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210209

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210302

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210601

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210706

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210706