JP6776917B2 - Method of analyzing elemental sulfur distribution - Google Patents

Method of analyzing elemental sulfur distribution Download PDF

Info

Publication number
JP6776917B2
JP6776917B2 JP2017016688A JP2017016688A JP6776917B2 JP 6776917 B2 JP6776917 B2 JP 6776917B2 JP 2017016688 A JP2017016688 A JP 2017016688A JP 2017016688 A JP2017016688 A JP 2017016688A JP 6776917 B2 JP6776917 B2 JP 6776917B2
Authority
JP
Japan
Prior art keywords
elemental sulfur
irradiation
sample
electron beam
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017016688A
Other languages
Japanese (ja)
Other versions
JP2017142242A (en
Inventor
上坂 昌弘
昌弘 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2017142242A publication Critical patent/JP2017142242A/en
Application granted granted Critical
Publication of JP6776917B2 publication Critical patent/JP6776917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、単体硫黄分布の分析方法に関する。 The present invention relates to a method for analyzing elemental sulfur distribution.

硫黄を使用する工業製品の製造工程において、硫黄は元素単体で存在する場合や、酸化されて硫黄酸化物で存在する場合がある。単体硫黄は活性の高い多孔質樹脂等に吸着することがあり、こういった試料中の単体硫黄の存在分布を把握することが重要となる。元素の分布を分析する方法としては、例えば、試料を真空中で電子線を照射し発生する特性X線を測定することにより含有元素の特定や分布の把握を行う電子線マイクロアナライザ(EPMA)がある。EPMAは、化学分析の様なバルク(試料全体)の元素を把握するのとは異なり、微小領域で元素がどのように分布しているかを把握することができる(例えば、特許文献1を参照)。 In the manufacturing process of industrial products using sulfur, sulfur may exist as an element alone or may be oxidized and exist as a sulfur oxide. Elemental sulfur may be adsorbed on highly active porous resins and the like, and it is important to understand the distribution of elemental sulfur in such samples. As a method for analyzing the distribution of elements, for example, an electron probe microanalyzer (EPMA) that identifies the contained elements and grasps the distribution by irradiating the sample with an electron beam in a vacuum and measuring the characteristic X-rays generated. is there. EPMA can grasp how elements are distributed in a minute region, unlike grasping bulk (whole sample) elements as in chemical analysis (see, for example, Patent Document 1). ..

特開2012−180263号公報Japanese Unexamined Patent Publication No. 2012-180263

しかしながら、EPMAを用いて試料における単体硫黄の分布を分析する場合、試料に真空中で電子線を照射することになるため、単体硫黄が昇華してしまうことがある。そのため、単体硫黄から発生する特性X線の強度が弱くなり、試料における単体硫黄の分布を精度よく分析することが困難となる。 However, when the distribution of elemental sulfur in a sample is analyzed using EPMA, the sample is irradiated with an electron beam in a vacuum, so that the elemental sulfur may sublimate. Therefore, the intensity of the characteristic X-rays generated from the elemental sulfur becomes weak, and it becomes difficult to accurately analyze the distribution of the elemental sulfur in the sample.

本発明は、昇華しやすい単体硫黄の分布を電子線の照射により分析する技術を提供することを目的とする。 An object of the present invention is to provide a technique for analyzing the distribution of elemental sulfur, which is easily sublimated, by irradiation with an electron beam.

本発明の第1の態様は、
試料に含まれる単体硫黄の分布を分析する単体硫黄分布の分析方法であって、
単体硫黄を含む試料に対し、照射電流量を2×10−8A以下として電子線を照射する照射工程と、
前記電子線の照射により前記試料から発生する特性X線を検出する検出工程と、
前記検出工程に基づいて、前記試料における前記単体硫黄の分布を分析する分析工程と、を有することを特徴とする、単体硫黄分布の分析方法が提供される。
The first aspect of the present invention is
It is an analysis method of elemental sulfur distribution that analyzes the distribution of elemental sulfur contained in a sample.
An irradiation step of irradiating a sample containing elemental sulfur with an electron beam with an irradiation current amount of 2 × 10-8 A or less,
A detection step of detecting characteristic X-rays generated from the sample by irradiation with the electron beam, and
Provided is a method for analyzing a simple substance sulfur distribution, which comprises an analysis step for analyzing the distribution of the elemental sulfur in the sample based on the detection step.

本発明の第2の態様は、第1の態様の単体硫黄分布の分析方法において、
前記照射工程および前記検出工程を電子線マイクロアナライザを用いて行う。
A second aspect of the present invention is the method for analyzing elemental sulfur distribution in the first aspect.
The irradiation step and the detection step are performed using an electron probe microanalyzer.

本発明の第3の態様は、第1又は第2の態様の単体硫黄分布の分析方法において、
前記試料が多孔質樹脂成形体である。
A third aspect of the present invention is the method for analyzing elemental sulfur distribution according to the first or second aspect.
The sample is a porous resin molded product.

本発明の第4の態様は、第1〜第3の態様のいずれか1つの単体硫黄分布の分析方法において、
前記照射工程では、前記電子線の照射電流量を2×10−10A以上とする。
A fourth aspect of the present invention is the method for analyzing elemental sulfur distribution in any one of the first to third aspects.
In the irradiation step, the irradiation current amount of the electron beam is set to 2 × 10 -10 A or more.

本発明の第5の態様は、第1〜第4の態様のいずれか1つの単体硫黄分布の分析方法において、
前記照射工程では、前記電子線の照射電流量をa[A]、前記電子線を照射する照射時間をb[msec]としたとき、その積算値である照射量a×bが1×10−6A・msec以上1×10−5A・msec以下となるように前記電子線を照射する。
A fifth aspect of the present invention is the method for analyzing the elemental sulfur distribution in any one of the first to fourth aspects.
In the irradiation step, when the irradiation current amount of the electron beam is a [A] and the irradiation time for irradiating the electron beam is b [msec], the integrated value of the irradiation amount a × b is 1 × 10 −. 6 Irradiate the electron beam so as to be A · msec or more and 1 × 10 -5 A · msec or less.

本発明によれば、昇華しやすい単体硫黄の分布を電子線の照射により分析することができる。 According to the present invention, the distribution of elemental sulfur, which is easily sublimated, can be analyzed by irradiation with an electron beam.

実施例1において、試料に対して低い照射電流量条件で電子線を照射したときの、EPMAの面分析結果を示す図である。It is a figure which shows the surface analysis result of EPMA when the sample was irradiated with an electron beam under the condition of a low irradiation current amount in Example 1. 比較例1において、試料に対して通常の照射電流量条件で電子線を照射したときの、EPMAの面分析結果を示す図である。In Comparative Example 1, it is a figure which shows the surface analysis result of EPMA when the sample was irradiated with the electron beam under the normal irradiation current amount condition.

例えば、工業製品の製造プロセスにおいて単体硫黄が残存する場合、環境への放出を防止する観点から製造プロセス中に単体硫黄がどの程度存在するのかを把握することが重要となる。 For example, when elemental sulfur remains in the manufacturing process of industrial products, it is important to understand how much elemental sulfur is present in the manufacturing process from the viewpoint of preventing release to the environment.

そこで、本発明者は、製造プロセスで採取した溶液を多孔質樹脂成形体(例えば、イオン交換樹脂膜など)に通過させ、このイオン交換樹脂膜に対して電子線を照射し、捕捉された単体硫黄から発生する特性X線を検出することにより、単体硫黄の分布を分析しようと試みた。 Therefore, the present inventor passes the solution collected in the manufacturing process through a porous resin molded body (for example, an ion exchange resin film), irradiates the ion exchange resin film with an electron beam, and captures the simple substance. An attempt was made to analyze the distribution of simple sulfur by detecting characteristic X-rays generated from sulfur.

しかし、上述したように、例えばEPMAにより、溶液を通過させたイオン交換樹脂膜(以下、試料という)に対して電子線を照射したところ、単体硫黄が昇華してしまうため、特性X線を十分に検出することができず、その分布を精度よく分析することができなかった。 However, as described above, when an ion exchange resin film (hereinafter referred to as a sample) through which a solution has passed is irradiated with an electron beam by, for example, EPMA, simple sulfur is sublimated, so that characteristic X-rays are sufficiently obtained. Could not be detected, and its distribution could not be analyzed accurately.

本発明者は、上記課題を解決すべく検討したところ、試料に電子線を照射するときの照射電流量を低くすることにより、試料に含まれる単体硫黄の昇華を抑制でき、その分布を分析できることを見出した。 As a result of studying to solve the above problems, the present inventor can suppress the sublimation of simple sulfur contained in the sample by lowering the irradiation current amount when irradiating the sample with an electron beam, and can analyze the distribution thereof. I found.

一般に、元素に電子線を照射して分析する場合、電子線の照射電流量が高いほど、電子線を照射したときに元素から発生する特性X線の強度が大きくなり、元素の検出感度がよくなる。例えば、鉱石中の金属の分布を分析する場合、照射電流量を2×10−7Aとする。しかし、本発明者の検討によると、単体硫黄では、照射電流量が2×10−7Aのように高いと昇華してしまうので、分析することが困難である。 In general, when an element is analyzed by irradiating it with an electron beam, the higher the irradiation current amount of the electron beam, the greater the intensity of the characteristic X-ray generated from the element when the element is irradiated, and the better the detection sensitivity of the element. .. For example, when analyzing the distribution of metals in ore, the irradiation current amount is 2 × 10-7 A. However, according to the study of the present inventor, it is difficult to analyze elemental sulfur because it sublimates when the irradiation current amount is as high as 2 × 10-7 A.

このことから、本発明者は照射電流量を適宜変更して検討したところ、照射電流量を2×10−8A以下とするとよいことを見出した。このような照射電流量で電子線を照射すると、EPMAにて分析するのに問題とならない程度まで単体硫黄の昇華を抑制することができ、試料における単体硫黄の分布を分析することが可能となる。 From this, the present inventor found that the irradiation current amount should be 2 × 10-8 A or less as a result of examining by appropriately changing the irradiation current amount. When the electron beam is irradiated with such an irradiation current amount, the sublimation of elemental sulfur can be suppressed to the extent that it does not pose a problem for analysis by EPMA, and the distribution of elemental sulfur in the sample can be analyzed. ..

本発明は、上記知見に基づいて成されたものである。 The present invention has been made based on the above findings.

以下、本発明の一実施形態にかかる単体硫黄分布の分析方法について説明する。以下では、電子線マイクロアナライザ(EPMA)を用いて分析する場合について説明する。 Hereinafter, a method for analyzing the elemental sulfur distribution according to the embodiment of the present invention will be described. In the following, a case of analysis using an electron probe microanalyzer (EPMA) will be described.

本実施形態の分析方法において、評価対象となる試料は、単体硫黄を含むものであり、例えばイオン交換樹脂膜などの多孔質樹脂成形体であって、製造プロセスで採取された溶液を通過させ、単体硫黄が吸着したものである。 In the analysis method of the present embodiment, the sample to be evaluated contains elemental sulfur, for example, a porous resin molded body such as an ion exchange resin film, and is passed through a solution collected in the manufacturing process. Elemental sulfur is adsorbed.

本実施形態では、まず、試料として、単体硫黄を含む多孔質樹脂成形体を準備する。この試料にエポキシ系の樹脂(例えば、エポフィックス樹脂)を含浸させて固結させ、空孔に樹脂性分が充填された固結試料を得る。続いて、この固結試料の表面を研磨することにより、試料面を作製する。 In the present embodiment, first, a porous resin molded product containing elemental sulfur is prepared as a sample. This sample is impregnated with an epoxy resin (for example, epofix resin) and solidified to obtain a solidified sample in which the pores are filled with a resinous component. Subsequently, the surface of the consolidated sample is polished to prepare a sample surface.

続いて、EPMAにて、固結試料の試料面に対して電子線を照射する。このとき、単体硫黄が昇華しないように、電子線の照射電流量を2×10−8A以下とする。このような照射電流量であれば、特性X線の検出に問題とならない程度まで単体硫黄の昇華を抑制することができる。 Subsequently, the sample surface of the consolidated sample is irradiated with an electron beam by EPMA. At this time, the amount of irradiation current of the electron beam is set to 2 × 10-8 A or less so that elemental sulfur does not sublimate. With such an irradiation current amount, sublimation of elemental sulfur can be suppressed to the extent that there is no problem in detecting characteristic X-rays.

照射電流量の下限値は特に限定されないが、2×10−10A以上とすることが好ましい。このような照射電流量とすることにより、ノイズの影響を低減して鮮明な画像データを得ることができ、単体硫黄の分布をより精度良く分析することができる。 The lower limit of the irradiation current amount is not particularly limited, but is preferably 2 × 10 -10 A or more. By setting such an irradiation current amount, the influence of noise can be reduced and clear image data can be obtained, and the distribution of elemental sulfur can be analyzed more accurately.

また、本実施形態では、照射電流量を低くする分、試料に電子線を照射する照射時間を長くするとよい。一般に、照射電流量を低くすると、単体硫黄から発生する特性X線の強度が低くなり、得られる画像データが不鮮明となるおそれがあるが、照射時間を長くすることで、単体硫黄が受ける電子線の照射量を所定値以上として、鮮明な画像データを得ることができる。照射量とは、照射電流量をa[A]、照射時間をb[msec]としたとき、その積算値a×bを示す。鮮明な画像データを得る観点からは、照射量が1×10−6A・msec以上1×10−5A・msec以下となるように、照射電流量および照射時間を設定することが好ましい。このような照射量となるように電子線を照射することで、単体硫黄の昇華を抑制しつつ、単体硫黄からの特性X線の強度をノイズの影響を受けないレベルまで高めて鮮明な画像データを得ることができる。 Further, in the present embodiment, it is preferable to lengthen the irradiation time for irradiating the sample with the electron beam by the amount of lowering the irradiation current amount. Generally, when the amount of irradiation current is low, the intensity of characteristic X-rays generated from simple sulfur is low, and the obtained image data may be unclear. However, by lengthening the irradiation time, the electron beam received by single sulfur is received. Clear image data can be obtained by setting the irradiation amount of the above to a predetermined value or more. The irradiation amount indicates an integrated value a × b when the irradiation current amount is a [A] and the irradiation time is b [msec]. From the viewpoint of obtaining clear image data, it is preferable to set the irradiation current amount and the irradiation time so that the irradiation amount is 1 × 10 -6 A · msec or more and 1 × 10 -5 A · msec or less. By irradiating an electron beam with such an irradiation amount, the sublimation of elemental sulfur is suppressed, and the intensity of characteristic X-rays from elemental sulfur is increased to a level that is not affected by noise, resulting in clear image data. Can be obtained.

なお、照射時間としては、照射量が上記範囲となるように照射電流量に応じて適宜変更するとよく、例えば50msec〜50000msecとするとよい。 The irradiation time may be appropriately changed according to the amount of irradiation current so that the irradiation amount falls within the above range, and may be, for example, 50 msec to 50,000 msec.

続いて、電子線の照射により、単体硫黄から発生する特性X線を検出する。本実施形態では、単体硫黄が昇華しないように電子線を照射しているので、検出するのに十分な強度を得ることができる。 Subsequently, characteristic X-rays generated from elemental sulfur are detected by irradiation with an electron beam. In the present embodiment, since the electron beam is irradiated so that the elemental sulfur does not sublimate, sufficient intensity for detection can be obtained.

続いて、検出した特性X線から、電子線を照射した試料面に分布する単体硫黄を分析する。本実施形態では、単体硫黄からの特性X線の強度が高いので、単体硫黄の分布を精度よく分析することができる。 Subsequently, the elemental sulfur distributed on the sample surface irradiated with the electron beam is analyzed from the detected characteristic X-rays. In the present embodiment, since the intensity of characteristic X-rays from elemental sulfur is high, the distribution of elemental sulfur can be analyzed with high accuracy.

本実施形態によれば、電子線の照射により昇華しやすい単体硫黄に、照射電流量を2×10−8A以下として電子線を照射している。これにより、単体硫黄からの特性X線の強度を高く維持しつつ、測定できるので、試料における単体硫黄の分布を精度よく分析することができる。 According to this embodiment, elemental sulfur, which is easily sublimated by irradiation with an electron beam, is irradiated with an electron beam with an irradiation current amount of 2 × 10-8 A or less. As a result, measurement can be performed while maintaining high intensity of characteristic X-rays from elemental sulfur, so that the distribution of elemental sulfur in the sample can be analyzed accurately.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

上記では、EPMAを用いて分析する場合を例として説明したが、本発明は、これに限定されず、例えば、透過型電子顕微鏡(TEM)やエネルギー分散型X線分光法(EDX)などを用いて分析することも可能である。 In the above, the case of analysis using EPMA has been described as an example, but the present invention is not limited to this, and for example, a transmission electron microscope (TEM), an energy dispersive X-ray spectroscopy (EDX), or the like is used. It is also possible to analyze.

上記では、試料として単体硫黄を含む多孔質樹脂成形体を例として説明したが、本発明の分析対象はこれに限定されず、単体硫黄を含む試料であれば限定されない。 In the above, a porous resin molded product containing elemental sulfur has been described as an example, but the analysis target of the present invention is not limited to this, and the sample containing elemental sulfur is not limited.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

試料として、多孔質樹脂成形体内に単体硫黄が入り込んだものを準備した。この試料にエポフィックス冷間固結樹脂(丸本ストルアス株式会社製)を含浸させ、脱泡した後、12時間硬化させることにより、固結試料を得た。その後、固結試料の表面を研磨することにより、電子線を照射する試料面を作製した。続いて、この試料面にカーボン蒸着を施し、EPMA(日本電子株式会社製造のJXA8100)にて、試料面の面分析を行った。このときの測定条件としては、加速電圧を15kV、照射電流量を2×10−9A、照射時間を2000msec、照射量を4×10−6A・msec、測定元素をS(単体硫黄)とした。EPMAによる面分析結果を図1に示す。図1は、EPMAの面分析結果であり、本来赤色で示される硫黄の分布を黒で示したものである。 As a sample, a sample in which elemental sulfur had entered the porous resin molded body was prepared. This sample was impregnated with an Epofix cold-consolidating resin (manufactured by Marumoto Struas Co., Ltd.), defoamed, and then cured for 12 hours to obtain a consolidated sample. Then, the surface of the consolidated sample was polished to prepare a sample surface to be irradiated with an electron beam. Subsequently, carbon vapor deposition was performed on the sample surface, and the surface analysis of the sample surface was performed by EPMA (JXA8100 manufactured by JEOL Ltd.). The measurement conditions at this time were an accelerating voltage of 15 kV, an irradiation current amount of 2 × 10-9 A, an irradiation time of 2000 msec, an irradiation amount of 4 × 10-6 A · msec, and an element of measurement of S (elemental sulfur). did. The surface analysis result by EPMA is shown in FIG. FIG. 1 shows the results of surface analysis of EPMA, and the distribution of sulfur, which is originally shown in red, is shown in black.

比較例1では、EPMAにて面分析を行う際に、照射量が実施例1と同じになるように照射電流量を2×10−7A、照射時間を20msecに変更した以外は、実施例1と同様に行った。つまり、比較例1では、実施例1と比べて照射電流量を大きく、かつ照射時間を短くしてEPMAによる面分析を行った。EPMAによる面分析結果を図2に示す。 In Comparative Example 1, when performing surface analysis by EPMA, except that the amount of irradiation was changed in Example 1 the emission current amount to be the same as 2 × 10 -7 A, irradiation time 20 msec, Example The procedure was the same as in 1. That is, in Comparative Example 1, the surface analysis by EPMA was performed with a larger irradiation current amount and a shorter irradiation time as compared with Example 1. The results of surface analysis by EPMA are shown in FIG.

図1によれば、多孔質樹脂成形体に単体硫黄が分布している様子を確認することができた。
これに対して、図2では、硫黄の存在を示す黒部分がない。このことから、樹脂成形体内に分布している単体硫黄が、電子線の照射により昇華したものと思われる。
According to FIG. 1, it was possible to confirm that elemental sulfur was distributed in the porous resin molded body.
On the other hand, in FIG. 2, there is no black portion indicating the presence of sulfur. From this, it is considered that the elemental sulfur distributed in the resin molding body was sublimated by irradiation with an electron beam.

また、本発明者は、単体硫黄からなる試料片に対して、通常条件である、2×10−7Aの照射電流量で電子線を照射したところ、昇華により試料片が大きく縮むことが分かった。多孔質樹脂成形体に入り込んだ微細な単体硫黄は、比較例1のように通常条件の照射電流量で電子線を照射すると、昇華して消失しやすいものと考えられる。一方、実施例1のように照射電流量を小さくすれば、昇華したとしても縮みを抑制できるので、微細な単体硫黄を消失させることなく、分析できるものと考えられる。 Further, the present inventor found that when a sample piece made of elemental sulfur was irradiated with an electron beam under a normal condition of an irradiation current amount of 2 × 10 -7 A, the sample piece shrank significantly due to sublimation. It was. It is considered that the fine elemental sulfur that has entered the porous resin molded body is likely to sublimate and disappear when the electron beam is irradiated with the irradiation current amount under normal conditions as in Comparative Example 1. On the other hand, if the irradiation current amount is reduced as in Example 1, shrinkage can be suppressed even if sublimated, so it is considered that analysis can be performed without eliminating fine elemental sulfur.

このように、照射電流量を小さくすることにより、単体硫黄の昇華を、分析する際に問題とならない程度に抑制でき、試料に含まれる単体硫黄を精度よく分析できることが分かった。 As described above, it was found that by reducing the irradiation current amount, the sublimation of elemental sulfur can be suppressed to the extent that it does not cause a problem in the analysis, and the elemental sulfur contained in the sample can be analyzed accurately.

Claims (1)

試料に含まれる単体硫黄の分布を分析する単体硫黄分布の分析方法であって、
単体硫黄を含む試料に対し、照射電流量を2×10 −10 A以上2×10−8A以下として電子線を照射する照射工程と、
前記電子線の照射により前記試料から発生する特性X線を検出する検出工程と、
前記検出工程に基づいて、前記試料における前記単体硫黄の分布を分析する分析工程と、を有し、
前記単体硫黄を含む試料は、前記単体硫黄が吸着する多孔質樹脂成形体であり、
前記照射工程および前記検出工程では電子線マイクロアナライザを使用し、
前記照射工程では、前記電子線の照射電流量をa[A]、前記電子線を照射する照射時間をb[msec]としたとき、その積算値である照射量a×bが1×10 −6 A・msec以上1×10 −5 A・msec以下となるように前記電子線を照射する、単体硫黄分布の分析方法。
It is an analysis method of elemental sulfur distribution that analyzes the distribution of elemental sulfur contained in a sample.
An irradiation step of irradiating a sample containing elemental sulfur with an electron beam with an irradiation current amount of 2 × 10 -10 A or more and 2 × 10 -8 A or less.
A detection step of detecting characteristic X-rays generated from the sample by irradiation with the electron beam, and
On the basis of the detection process, have a, an analysis step of analyzing the distribution of the elemental sulfur in said sample,
The sample containing elemental sulfur is a porous resin molded product to which the elemental sulfur is adsorbed.
An electron probe microanalyzer was used in the irradiation step and the detection step.
In the irradiation step, when the irradiation current amount of the electron beam is a [A] and the irradiation time for irradiating the electron beam is b [msec], the integrated value of the irradiation amount a × b is 1 × 10 −. 6 A method for analyzing a single sulfur distribution, which irradiates the electron beam so as to be 1 × 10-5 A ・ msec or more and 1 × 10-5 A ・ msec or less .
JP2017016688A 2016-02-05 2017-02-01 Method of analyzing elemental sulfur distribution Expired - Fee Related JP6776917B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020503 2016-02-05
JP2016020503 2016-02-05

Publications (2)

Publication Number Publication Date
JP2017142242A JP2017142242A (en) 2017-08-17
JP6776917B2 true JP6776917B2 (en) 2020-10-28

Family

ID=59629091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016688A Expired - Fee Related JP6776917B2 (en) 2016-02-05 2017-02-01 Method of analyzing elemental sulfur distribution

Country Status (1)

Country Link
JP (1) JP6776917B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032584A (en) * 2019-08-19 2021-03-01 株式会社島津製作所 Electron probe micro analyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199164A (en) * 1981-06-03 1982-12-07 Hitachi Ltd Sample image observation unit
JPS646751A (en) * 1987-02-28 1989-01-11 Nippon Steel Corp Quantification of inclusion and deposit
JP2005326206A (en) * 2004-05-13 2005-11-24 Jeol Ltd Analyzing condition sheet, analyzing condition recording medium and sample analyzer
JP2006105883A (en) * 2004-10-08 2006-04-20 Sumitomo Bakelite Co Ltd Method for analyzing pore distribution in molding
JP2009047450A (en) * 2007-08-14 2009-03-05 Jeol Ltd Sample analyzing method and sample analyzer
CA2713984C (en) * 2008-02-06 2016-06-07 Fei Company A method and system for spectrum data analysis
JP5429741B2 (en) * 2009-08-03 2014-02-26 岡山県 Cleaning method for molded products made of magnesium alloy
JP6467921B2 (en) * 2012-12-27 2019-02-13 株式会社村田製作所 Electrode material for secondary battery, method for producing the same, and secondary battery

Also Published As

Publication number Publication date
JP2017142242A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5142580B2 (en) Surface analysis method and surface analysis apparatus
Bassim et al. Recent advances in focused ion beam technology and applications
US8653457B2 (en) Spectroscopy technique using merged spectral data
JP6776917B2 (en) Method of analyzing elemental sulfur distribution
JP2010286406A (en) X-ray transmission inspection apparatus and x-ray transmission inspection method
EP3633359B1 (en) Method for measuring pore distribution in electrode for secondary battery
Alix et al. Gentle quantitative measurement of helium density in nanobubbles in silicon by spectrum imaging
JP2014066586A (en) Method for preparing analysis sample and analysis method using the analysis sample
US11498122B2 (en) Pure copper powder having Si coating and production method thereof, and additive manufactured object using said pure copper powder
Egerton Electron energy-loss spectroscopy for elemental analysis
JP2009139109A (en) Inspection method of foreign matter in solution, and filter membrane for inspecting foreign matter in solution
JP2011185881A (en) Layer thickness measuring device
JP2007333614A (en) Analyzing method of gas phase substance in metal
Lutter et al. XRM-II nanoCT–SEM based computed tomography
Yamagishi et al. A method for visualizing cesium ions adsorbed on wood charcoal using SEM–EDX
JP5225207B2 (en) Method and apparatus for analyzing nitrogen concentration of metal sample
Wang et al. Self‐consistent absorption correction for quantifying very noisy X‐ray maps: group III nitride nanowires as an example
JP2010256095A (en) Sample analysis method
JP5381916B2 (en) Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam
JP2010025833A (en) Method of measuring coverage of iron-based powder
KR102020380B1 (en) Apparatus for measuring component of coating
Sakamae Electron Probe Microanalysis
Schmal et al. Electronic Microscopy: General and Specific Notions
Kiani et al. Beam interactions with materials and atoms
JP2023066470A (en) Evaluation method using transmission electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6776917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees