JP5381916B2 - Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam - Google Patents

Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam Download PDF

Info

Publication number
JP5381916B2
JP5381916B2 JP2010152290A JP2010152290A JP5381916B2 JP 5381916 B2 JP5381916 B2 JP 5381916B2 JP 2010152290 A JP2010152290 A JP 2010152290A JP 2010152290 A JP2010152290 A JP 2010152290A JP 5381916 B2 JP5381916 B2 JP 5381916B2
Authority
JP
Japan
Prior art keywords
sample
ion beam
focused ion
temperature
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010152290A
Other languages
Japanese (ja)
Other versions
JP2012013619A (en
Inventor
直義 久保田
林  俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010152290A priority Critical patent/JP5381916B2/en
Publication of JP2012013619A publication Critical patent/JP2012013619A/en
Application granted granted Critical
Publication of JP5381916B2 publication Critical patent/JP5381916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、集束イオンビームを用いる微細部位解析装置および集束イオンビームを用いる微細部位解析方法に関し、特に、試料の表面温度を変化させながら試料の微細部位を解析するために用いて好適なものである。   The present invention relates to a micro site analysis apparatus using a focused ion beam and a micro site analysis method using a focused ion beam, and is particularly suitable for analyzing a micro site of a sample while changing the surface temperature of the sample. is there.

材料の微細部位における元素組成や量などを測定することは、材料の特性を評価する上で重要であり、特に材料製造プロセスにおいては様々な温度域での元素の挙動を知ることが重要である。材料の微細部位の解析を行うためには、例えば、集束イオンビームを用いた2次イオン質量分析法(FIB-SIMS)、透過電子顕微鏡、電子線マイクロアナライザ、オージェ電子分光法(AES)、光電子分光法等を用いることができる。この様な分析手法を用いて高温時の材料中の元素の挙動を知るために、従来は、例えば所望の温度まで加熱した後、急速冷却したものを分析試料としていた。あるいは、真空容器内で試料台の温度を参照しながら試料を加熱し、十分な温度平衡が得られた後、その場でAESによる分析を行うことによって、試料の元素の組成を調べていた(特許文献1を参照)。   It is important to measure the elemental composition and amount at the minute part of the material in order to evaluate the characteristics of the material, especially in the material manufacturing process, it is important to know the behavior of the element in various temperature ranges. . In order to analyze the fine part of the material, for example, secondary ion mass spectrometry (FIB-SIMS) using a focused ion beam, transmission electron microscope, electron beam microanalyzer, Auger electron spectroscopy (AES), photoelectron Spectroscopy or the like can be used. In order to know the behavior of an element in a material at a high temperature using such an analysis technique, conventionally, for example, an analysis sample is heated to a desired temperature and then rapidly cooled. Alternatively, the sample was heated while referring to the temperature of the sample stage in the vacuum vessel, and after sufficient temperature equilibration was obtained, the elemental composition of the sample was examined by performing AES analysis in situ ( (See Patent Document 1).

しかしながら、急速冷却による試料の作製では、微細部位の結晶構造の変化速度や母材中の添加元素の拡散係数によっては、必ずしも所望の温度での状態を反映しない場合があった。また、試料台の温度の測定のみでは試料の表面が温度平衡に達するまで長時間必要であり、さらに温度平衡に達するまでの試料の表面温度を正確に測定することが困難であった。   However, in the preparation of a sample by rapid cooling, the state at a desired temperature may not necessarily be reflected depending on the change rate of the crystal structure of the fine part and the diffusion coefficient of the additive element in the base material. Further, only by measuring the temperature of the sample stage, it takes a long time until the surface of the sample reaches temperature equilibrium, and it is difficult to accurately measure the surface temperature of the sample until it reaches temperature equilibrium.

特開平6−308112号公報JP-A-6-308112

本発明は以上のような実情に鑑みてなされたものであり、試料表面の分析部位における元素の挙動を解析するに際し、試料表面の分析部位の温度を簡便に素早く、精度良く測定できるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and allows the temperature of an analysis site on a sample surface to be easily and quickly measured with high accuracy when analyzing the behavior of an element at the analysis site on the sample surface. For the purpose.

前述した目的を達成するために、本発明の集束イオンビームを用いる微細部位解析装置は、試料が置かれる試料台と、前記試料台に置かれた試料に対して集束イオンビームを照射する集束イオンビーム照射装置と、前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンを質量分析する分析装置と、前記試料の表面が作る平面に対して検出面が水平になるように配置された2次電子検出器と、前記試料台、前記集束イオンビーム照射装置、前記分析装置、および前記2次電子検出器が内部に設置される真空容器と、前記試料を加熱する試料加熱器と、前記試料の表面温度と、前記2次イオンの収量との関係を示す温度変換情報を予め記憶する記憶手段と、前記質量分析のために前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定する決定手段と、を具備し、前記分析装置は、前記試料加熱器により試料を常温以上に加熱しているときに、当該試料の表面から放出された2次イオンを質量分析することを特徴とする。   In order to achieve the above-described object, a micro site analysis apparatus using a focused ion beam according to the present invention includes a sample stage on which a sample is placed, and a focused ion that irradiates the sample placed on the sample stage with the focused ion beam. A beam irradiation device, an analysis device for mass spectrometry of secondary ions emitted from the surface of the sample by irradiating the sample with the focused ion beam from the focused ion beam irradiation device, and a plane formed by the surface of the sample A secondary electron detector arranged so that a detection surface is horizontal with respect to the sample table, the sample stage, the focused ion beam irradiation device, the analysis device, and a vacuum vessel in which the secondary electron detector is installed A sample heater for heating the sample, storage means for storing in advance temperature conversion information indicating the relationship between the surface temperature of the sample and the yield of the secondary ions, and the mass spectrometry Therefore, based on the measurement value of the yield of secondary ions emitted from the surface of the sample by irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus and the temperature conversion information, Determining means for determining the temperature of the analysis site on the surface, and the analyzer is adapted to release secondary ions released from the surface of the sample when the sample is heated to a room temperature or higher by the sample heater. Is characterized by mass spectrometry.

また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記温度変換情報は、前記集束イオンビーム照射装置から試料に集束イオンビームを前照射することによって当該試料の表面から放出された2次イオンの収量と、そのときの当該試料の温度とに基づいて得られた情報であり、前記集束イオンビーム照射装置は、前記前照射したときと同じ条件で集束イオンビームを試料に対して全照射し、前記決定手段は、前記全照射によって試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記前照射は、照射フルエンスが5.0×1015個/cm2以下の条件で集束イオンビームを連続照射することにより行われることを特徴とする。
In another embodiment of the microscopic region analysis apparatus using the focused ion beam of the present invention, the temperature conversion information is obtained from the surface of the sample by pre-irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus. This is information obtained based on the yield of the released secondary ions and the temperature of the sample at that time, and the focused ion beam irradiation apparatus applies the focused ion beam to the sample under the same conditions as the pre-irradiation. The determination means determines the analysis site of the surface of the sample based on the measurement value of the yield of secondary ions released from the surface of the sample by the total irradiation and the temperature conversion information. It is characterized by determining the temperature.
In another embodiment of the microscopic region analysis apparatus using the focused ion beam of the present invention, the pre-irradiation is performed by continuously irradiating the focused ion beam under the condition that the irradiation fluence is 5.0 × 10 15 ions / cm 2 or less. It is characterized by being performed.

また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記集束イオンビームが照射されることによって試料の表面から放出された2次イオンの収量が、当該試料の表面の分析部位の温度と比例関係を有することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記集束イオンビームのイオン種は、Gaイオンであり、当該集束イオンビームは、試料の表面においてビーム直径が50nm以下となるように集束されることを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記真空容器は、その内部を、10-6Pa以下の真空度に保持することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記試料加熱器により加熱される試料の最高温度が1000℃であることを特徴とする。
In another embodiment of the microscopic site analysis apparatus using the focused ion beam of the present invention, the yield of secondary ions emitted from the surface of the sample by irradiation with the focused ion beam is It has a proportional relationship with the temperature of the analysis site.
In another embodiment of the microscopic region analysis apparatus using the focused ion beam of the present invention, the ion species of the focused ion beam is Ga ion, and the focused ion beam has a beam diameter of 50 nm or less on the surface of the sample. It is characterized by being focused so that
In another embodiment of the microscopic region analysis apparatus using a focused ion beam according to the present invention, the inside of the vacuum vessel is maintained at a vacuum degree of 10 −6 Pa or less.
In another embodiment of the fine region analyzing apparatus using the focused ion beam of the present invention, the maximum temperature of the sample heated by the sample heater is 1000 ° C.

また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記試料加熱器は、抵抗加熱器を備えることを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記抵抗加熱器は、前記試料台に設置されていることを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析装置の他の態様例では、前記試料台における試料を固定するための冶具は、材質が窒化硼素であることを特徴とする。
According to another aspect of the fine region analyzing apparatus using a focused ion beam of the present invention, the sample heater includes a resistance heater.
According to another aspect of the fine region analyzing apparatus using a focused ion beam of the present invention, the resistance heater is installed on the sample stage.
In another embodiment of the microscopic region analysis apparatus using a focused ion beam according to the present invention, the jig for fixing the sample on the sample stage is made of boron nitride.

また、本発明の集束イオンビームを用いる微細部位解析方法は、試料台に置かれた試料に対して集束イオンビームを集束イオンビーム照射装置により照射する集束イオンビーム照射工程と、前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンを分析装置により質量分析する分析工程と、前記試料の表面が作る平面に対して検出面が水平になるように配置された2次電子検出器によって、前記集束イオンビーム照射装置により照射された集束イオンビームが試料の表面を衝撃するときに放出される2次電子を検出する2次電子検出工程と、前記試料台、前記集束イオンビーム照射装置、前記分析装置、および前記2次電子検出器を真空容器の内部に設置して、当該真空容器の内部を所定の真空度に保つ真空工程と、前記試料を試料加熱器により加熱する試料加熱工程と、前記2次イオンの収量と、前記試料の表面温度と、前記2次イオンの収量との関係を示す温度変換情報を予め記憶する記憶工程と、前記質量分析のために前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定する決定工程と、を具備し、前記分析工程は、前記試料加熱器により試料を常温以上に加熱しているときに、当該試料の表面から放出された2次イオンを質量分析することを特徴とする。   The fine region analysis method using a focused ion beam according to the present invention includes a focused ion beam irradiation step of irradiating a sample placed on a sample stage with a focused ion beam irradiation device by a focused ion beam irradiation device, and the focused ion beam irradiation. An analysis process in which a secondary ion emitted from the surface of the sample is irradiated by a focused ion beam to the sample from the apparatus is analyzed by the analyzer, and a detection surface is horizontal with respect to a plane formed by the surface of the sample A secondary electron detection step of detecting secondary electrons emitted when the focused ion beam irradiated by the focused ion beam irradiation device bombards the surface of the sample by a secondary electron detector arranged to be The sample stage, the focused ion beam irradiation device, the analysis device, and the secondary electron detector are installed inside a vacuum vessel, and the true A vacuum process for maintaining the inside of the container at a predetermined degree of vacuum, a sample heating process for heating the sample with a sample heater, a yield of the secondary ions, a surface temperature of the sample, and a yield of the secondary ions A storage step for preliminarily storing temperature conversion information indicating the relationship between the secondary ions emitted from the surface of the sample by irradiating the sample with the focused ion beam from the focused ion beam irradiation device for the mass analysis. And determining the temperature of the analysis site on the surface of the sample based on the measured value of the yield of the sample and the temperature conversion information. The secondary ion released from the surface of the sample is subjected to mass spectrometry while being heated.

また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記温度変換情報は、前記集束イオンビーム照射装置から試料に集束イオンビームを前照射することによって当該試料の表面から放出された2次イオンの収量と、そのときの当該試料の温度とに基づいて得られた情報であり、前記集束イオンビーム照射工程は、前記前照射したときと同じ条件で集束イオンビームを試料に対して全照射し、前記決定工程は、前記全照射によって試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記前照射は、照射フルエンスが5.0×1015個/cm2以下の条件で集束イオンビームを連続照射することにより行われることを特徴とする。
In another embodiment of the fine region analysis method using a focused ion beam of the present invention, the temperature conversion information is obtained from the surface of the sample by pre-irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus. This is information obtained based on the yield of the released secondary ions and the temperature of the sample at that time. In the focused ion beam irradiation step, the focused ion beam is sampled under the same conditions as in the pre-irradiation. The determination step is performed based on the measurement value of the yield of secondary ions released from the surface of the sample by the total irradiation and the temperature conversion information on the analysis site on the surface of the sample. It is characterized by determining the temperature.
In another embodiment of the fine region analysis method using a focused ion beam according to the present invention, the pre-irradiation is performed by continuously irradiating a focused ion beam under the condition that the irradiation fluence is 5.0 × 10 15 ions / cm 2 or less. It is characterized by being performed.

また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記集束イオンビームが照射されることによって試料の表面から放出された2次イオンの収量が、当該試料の表面の分析部位の温度と比例関係を有することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記集束イオンビームのイオン種は、Gaイオンであり、当該集束イオンビームは、試料の表面においてビーム直径が50nm以下となるように集束されることを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記真空工程は、前記真空容器の内部を、10-6Pa以下の真空度に保持することを特徴とする。
また、本発明の集束イオンビームを用いる微細部位解析方法の他の態様例では、前記試料加熱器により加熱される試料の最高温度が1000℃であることを特徴とする。
In another embodiment of the fine region analysis method using a focused ion beam of the present invention, the yield of secondary ions released from the surface of the sample by irradiation with the focused ion beam is It has a proportional relationship with the temperature of the analysis site.
In another embodiment of the fine region analysis method using the focused ion beam of the present invention, the ion species of the focused ion beam is Ga ion, and the focused ion beam has a beam diameter of 50 nm or less on the surface of the sample. It is characterized by being focused so that
In another embodiment of the fine region analysis method using a focused ion beam according to the present invention, the vacuum step maintains the inside of the vacuum vessel at a degree of vacuum of 10 −6 Pa or less.
In another embodiment of the fine region analysis method using a focused ion beam according to the present invention, the maximum temperature of the sample heated by the sample heater is 1000 ° C.

本発明によれば、試料の表面温度と、2次イオンの収量との関係を示す温度変換情報を予め記憶しておき、質量分析時に2次イオンの収量を測定し、測定した2次イオンの収量と温度変換情報とに基づいて、試料の表面の分析部位の温度を決定するようにした。したがって、温度変換情報を一度作成しておけば、高価で高精度な温度測定機器がなくとも、安価で簡便に素早く、精度よく、質量分析時の試料の表面温度を測定できる。これにより、急速冷却や温度平衡状態に達するまでの元素挙動の不確かさは解消され、母材の温度に対するより正確な元素の挙動を知ることができる。   According to the present invention, temperature conversion information indicating the relationship between the surface temperature of a sample and the yield of secondary ions is stored in advance, the yield of secondary ions is measured during mass analysis, and the measured secondary ions are measured. Based on the yield and temperature conversion information, the temperature of the analysis site on the surface of the sample was determined. Therefore, once the temperature conversion information is created, the surface temperature of the sample at the time of mass spectrometry can be measured inexpensively, simply, quickly, and accurately without an expensive and highly accurate temperature measuring device. Thereby, the uncertainty of the element behavior until reaching the rapid cooling or temperature equilibrium state is eliminated, and the more accurate behavior of the element with respect to the temperature of the base material can be known.

微細部位解析装置の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of a micro site | part analyzer. 試料(FeにAlを6.1原子%添加した2元合金多結晶試料)の表面温度と2次Gaイオンの収量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the surface temperature of the sample (Binary alloy polycrystal sample which added Al to 6.1 atomic% to Fe), and the yield of secondary Ga ion. 計算した試料の表面温度と熱電対による試料4表面温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the calculated surface temperature of a sample, and the sample 4 surface temperature by a thermocouple. 試料(細粒鋼試料)の表面温度と、2次Feイオン及び2次Alイオンとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the surface temperature of a sample (fine-grained steel sample), secondary Fe ion, and secondary Al ion.

以下、本発明を実施するための形態を図示例と共に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described together with illustrated examples. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態の微細部位解析装置の全体構成の一例の概略を概念的に示す図である。図1に示す通り、微細部位解析装置は、主に、集束イオンビーム照射装置2と、試料台5と、XYZステージ6と、試料加熱器7と、分析装置8と、2次電子検出器9と、これら全体を覆う真空容器(図示省略)とを備えて構成される。なお、試料台5の上には試料4が置かれるので、試料台5は、水平に保たれることが好ましい。真空容器内は10-6Pa以下の真空度に保たれることが好ましい。 FIG. 1 is a diagram conceptually illustrating an outline of an example of the entire configuration of the microscopic region analysis apparatus of the present embodiment. As shown in FIG. 1, the fine region analyzer mainly includes a focused ion beam irradiation device 2, a sample stage 5, an XYZ stage 6, a sample heater 7, an analyzer 8, and a secondary electron detector 9. And a vacuum vessel (not shown) that covers these components. Since the sample 4 is placed on the sample table 5, the sample table 5 is preferably kept horizontal. The inside of the vacuum vessel is preferably kept at a vacuum degree of 10 −6 Pa or less.

集束イオンビーム照射装置2から照射される集束イオンビームは、イオン種がGaであるGaイオンビームが好ましく、試料4の表面でビーム直径が50nm以下となるように集束されることが望ましい。すなわち、Gaは現在最も収束性の高いイオン源であり、微細部の解析に最も適している。また、Gaは液体金属であり、Fe中の固溶度も小さく、拡散速度が大きいため、試料温度における表面偏析が即座に平衡に達する。そのため、試料温度の目安に最適である。   The focused ion beam irradiated from the focused ion beam irradiation apparatus 2 is preferably a Ga ion beam whose ion species is Ga, and is preferably focused so that the beam diameter is 50 nm or less on the surface of the sample 4. That is, Ga is the ion source with the highest convergence at present, and is most suitable for the analysis of fine parts. Moreover, since Ga is a liquid metal and has a low solid solubility in Fe and a high diffusion rate, surface segregation at the sample temperature immediately reaches equilibrium. Therefore, it is optimal for the standard of sample temperature.

XYZステージ6は、試料台5をXYZの3軸方向に平行移動させるモーター等からなるものであり、試料4の位置を補正するためのものである。これら計3軸の調整はコンピュータ制御されることが好ましい。また、加熱時でもXYZステージ6が低温に保たれるよう、XYZステージ6に対して、冷却水等による積極的な冷却が行われる。   The XYZ stage 6 is composed of a motor or the like that translates the sample stage 5 in the three axis directions of XYZ, and corrects the position of the sample 4. These total three axis adjustments are preferably computer controlled. Further, the XYZ stage 6 is actively cooled with cooling water or the like so that the XYZ stage 6 is kept at a low temperature even during heating.

分析装置8は、集束イオンビーム照射装置2により照射された集束イオンビーム3が試料4の表面を衝撃するときに放出される2次イオン10を分析するために用いられる一般的な質量分析装置である。分析装置8としては、具体的には、四重極型2次イオン質量分析装置、飛行時間型2次イオン質量分析装置等、種々の装置が挙げられる。   The analyzer 8 is a general mass spectrometer used for analyzing secondary ions 10 emitted when the focused ion beam 3 irradiated by the focused ion beam irradiation device 2 bombards the surface of the sample 4. is there. Specific examples of the analyzer 8 include various devices such as a quadrupole secondary ion mass spectrometer and a time-of-flight secondary ion mass spectrometer.

2次電子検出器9は、集束イオンビーム照射装置2により照射された集束イオンビーム3が試料4の表面を衝撃するときに放出される2次電子11を検出し、2次電子像として試料4の表面を観測するために用いられる一般的な2次電子検出器である。2次電子検出器9としては、具体的には、シンチレータと光電子増倍管とを組み合わせた検出器等が挙げられる。ここで、高温になった試料4の表面からの輻射光が極力2次電子検出器9の視野に入らないように、試料4から2次電子検出器9の検出面までの最短距離を175mm以上とし、且つ、2次電子検出器9の検出面が試料4の表面が作る平面に対して水平となるようにする。   The secondary electron detector 9 detects the secondary electrons 11 emitted when the focused ion beam 3 irradiated by the focused ion beam irradiation device 2 bombards the surface of the sample 4 and detects the sample 4 as a secondary electron image. This is a general secondary electron detector used for observing the surface. Specific examples of the secondary electron detector 9 include a detector in which a scintillator and a photomultiplier tube are combined. Here, the shortest distance from the sample 4 to the detection surface of the secondary electron detector 9 is 175 mm or more so that radiant light from the surface of the sample 4 that has become hot does not enter the field of view of the secondary electron detector 9 as much as possible. In addition, the detection surface of the secondary electron detector 9 is made to be horizontal with respect to the plane formed by the surface of the sample 4.

試料加熱器7は、一般的に入手可能なものが利用でき、例えば窒化硼素でコーティングされた抵抗加熱器である。この試料加熱器7を用いて、常温から1000℃の範囲で試料4を所望の温度に加熱する。そして、本実施形態の微細部位解析装置では、試料加熱器7は板状になっており、その上に試料4を設置する。試料加熱器7の温度は、試料加熱器7の下面に設置した熱電対12で測定し、温度制御を行う。   As the sample heater 7, a generally available one can be used, for example, a resistance heater coated with boron nitride. Using this sample heater 7, the sample 4 is heated to a desired temperature in the range of room temperature to 1000 ° C. And in the micro site | part analyzer of this embodiment, the sample heater 7 is plate-shaped, and installs the sample 4 on it. The temperature of the sample heater 7 is measured by a thermocouple 12 installed on the lower surface of the sample heater 7, and temperature control is performed.

試料4の表面の分析部位(微細部位)の温度の測定では、集束イオンビーム3の前照射によって試料4の表面に注入された集束イオンを温度測定のための参照イオンとして用いる。最初に、あらかじめ適当な「試料4の表面温度」毎に集束イオンビーム3を、入射エネルギーが30keV、照射フルエンスが5.0×1015個/cm2以下の条件で一定量連続照射することにより前照射を行い、その直後に2次イオン10の収量を分析装置8で測定して、試料4の表面温度に対する2次イオンの収量の関係(変換関数)を得る。この変換関数は、例えば分析装置8が備えるコンピュータシステム内に記憶される。 In the measurement of the temperature of the analysis site (fine site) on the surface of the sample 4, focused ions injected onto the surface of the sample 4 by pre-irradiation with the focused ion beam 3 are used as reference ions for temperature measurement. First, a predetermined amount of the focused ion beam 3 is continuously irradiated for each appropriate “surface temperature of the sample 4” under a condition that the incident energy is 30 keV and the irradiation fluence is 5.0 × 10 15 ions / cm 2 or less. Pre-irradiation is performed, and immediately after that, the yield of the secondary ions 10 is measured by the analyzer 8 to obtain the relationship (conversion function) of the yield of the secondary ions with respect to the surface temperature of the sample 4. This conversion function is stored, for example, in a computer system included in the analysis device 8.

照射フルエンスを5.0×1015個/cm2以下とするのは、以下の理由による。高真空中の測定とはいえ、加熱された鉄の表面は、吸着水、残留酸素等の影響で酸化される。そのため、5×1015個/cm2以下のGaを照射して、表面の酸化膜を除去するとともに、Gaが十分に試料4に注入されるようにする。このような条件を満たす範囲で集束イオンビーム3の照射フルエンスが適宜選択される。
一方、5.0×1015個/cm2を超える照射フルエンスの収束イオンビーム3を照射すると、Gaによる試料表面の粗度の増大効果が出てしまうため、質量分析の再現性が得にくくなる。質量分析時には、変換関数を求めたときと同じ条件で集束イオンビーム3を全照射し、その直後に、質量分析と同時に、参照元素である2次イオン10の収量も測定し、試料4の表面温度を決定する。試料4の表面温度は、例えば分析装置8によって決定することができる。
The reason why the irradiation fluence is 5.0 × 10 15 pieces / cm 2 or less is as follows. Although measured in high vacuum, the heated iron surface is oxidized by the influence of adsorbed water, residual oxygen, and the like. Therefore, 5 × 10 15 atoms / cm 2 or less of Ga is irradiated to remove the oxide film on the surface and to sufficiently inject Ga into the sample 4. The irradiation fluence of the focused ion beam 3 is appropriately selected within a range satisfying such conditions.
On the other hand, when the focused ion beam 3 having an irradiation fluence exceeding 5.0 × 10 15 ions / cm 2 is irradiated, the effect of increasing the roughness of the sample surface by Ga appears, so that it becomes difficult to obtain reproducibility of mass spectrometry. . At the time of mass analysis, the focused ion beam 3 is completely irradiated under the same conditions as when the conversion function is obtained, and immediately after that, simultaneously with mass analysis, the yield of the secondary ion 10 as a reference element is also measured. Determine the temperature. The surface temperature of the sample 4 can be determined by the analyzer 8, for example.

(実施例1)
本実施例では、FeにAlを6.1原子%添加した2元合金多結晶試料を試料4として使用し、2次イオン10として2次Gaイオンの収量を試料4の表面温度に変換するための変換関数を作成した。そして、その妥当性が示された。
Example 1
In this example, a binary alloy polycrystal sample obtained by adding 6.1 atomic% of Al to Fe is used as sample 4, and the yield of secondary Ga ions as secondary ions 10 is converted to the surface temperature of sample 4. A conversion function was created. And the validity was shown.

まず、試料加熱器7として抵抗加熱器が設置された試料台5に試料4を載せ、窒化硼素製の試料固定冶具で試料4を試料台5に固定する。室温の状態で、試料4の高さ、分析装置8の各部印加電圧等、分析条件の最適化を行った。分析条件の最適化に使用した集束イオンビーム3は、入射エネルギーが30keV、電流値が1nAの、パルス化したGaイオンビームである(パルスモード)。パルス周波数は10kHz、パルス幅は200nsに設定した。集束イオンビーム3の照射により放出される2次イオン10を質量分析する分析装置8は、全長1.3mのリフレクトロン型飛行時間質量分析装置である。本実施例において、分析装置8への引込み電圧が−3kVの時、Gaの飛行時間はおよそ36μsである。   First, the sample 4 is placed on the sample table 5 on which a resistance heater is installed as the sample heater 7, and the sample 4 is fixed to the sample table 5 with a sample fixing jig made of boron nitride. In the state of room temperature, the analysis conditions such as the height of the sample 4 and the voltage applied to each part of the analyzer 8 were optimized. The focused ion beam 3 used for optimizing the analysis conditions is a pulsed Ga ion beam having an incident energy of 30 keV and a current value of 1 nA (pulse mode). The pulse frequency was set to 10 kHz and the pulse width was set to 200 ns. The analyzer 8 that performs mass analysis of the secondary ions 10 emitted by irradiation of the focused ion beam 3 is a reflectron type time-of-flight mass spectrometer having a total length of 1.3 m. In this example, when the voltage drawn into the analyzer 8 is −3 kV, the flight time of Ga is approximately 36 μs.

次に、従来の方法と同様に、あらかじめ熱電対12で測定して求めておいた試料4の表面温度と抵抗加熱器の下面温度との関係を参考にして、試料4の表面の温度を590℃に設定し、十分温度平衡に達するまで2時間程度、その状態を保持する。温度平衡に達したところで、前述した条件の集束イオンビーム3を使用して前照射を行った。集束イオンビーム3の視野を100μm四方に設定し、連続照射で照射フルエンスが3.6×1015個/cm2に達するまで1分間(min)前照射を行った。その後、パルスモードで照射し、2次Gaイオンの収量の測定を行った。同様の操作を試料4の表面の温度が660℃および735℃の場合について行い、試料4の表面温度と2次Gaイオンの収量との関係を座標にプロットした。図2は、その結果を示す図である。図2において、プロットした点21〜23に基づき、最小二乗法により直線を引き、各試料表面温度に対する2次Gaイオンの収量の対応関係(変換関数24)を得た。この結果から、590℃以上での試料4の表面温度Tと2次Gaイオンの収量Xとの関係(変換関数24)は、以下の(1)式のように一次関数で表すことができる。
T=aX+b ・・・(1)
図2に示す例では、直線の傾きaは−6.17×10-2℃/カウント、切片b(2次Gaイオンの収量Xが0となる試料4の表面温度)は800℃と決定できた。なお、「カウント」とは1次イオン一個当たりに発生する2次イオンの数を表す。
Next, similarly to the conventional method, the temperature of the surface of the sample 4 is changed to 590 with reference to the relationship between the surface temperature of the sample 4 and the lower surface temperature of the resistance heater, which are obtained by measuring with the thermocouple 12 in advance. Set to ° C. and hold for about 2 hours until sufficient temperature equilibrium is reached. When the temperature equilibrium was reached, pre-irradiation was performed using the focused ion beam 3 under the conditions described above. The field of view of the focused ion beam 3 was set to 100 μm square, and pre-irradiation was performed for 1 minute (min) until the irradiation fluence reached 3.6 × 10 15 pieces / cm 2 by continuous irradiation. Thereafter, irradiation was performed in a pulse mode, and the yield of secondary Ga ions was measured. The same operation was performed for the cases where the surface temperature of the sample 4 was 660 ° C. and 735 ° C., and the relationship between the surface temperature of the sample 4 and the yield of secondary Ga ions was plotted on the coordinates. FIG. 2 is a diagram showing the results. In FIG. 2, a straight line was drawn by the least square method based on the plotted points 21 to 23 to obtain the correspondence relationship (conversion function 24) of the yield of secondary Ga ions to each sample surface temperature. From this result, the relationship (conversion function 24) between the surface temperature T of the sample 4 and the yield X of secondary Ga ions at 590 ° C. or more can be expressed by a linear function as shown in the following equation (1).
T = aX + b (1)
In the example shown in FIG. 2, the slope a of the straight line can be determined to be −6.17 × 10 −2 ° C./count, and the intercept b (the surface temperature of the sample 4 where the yield X of secondary Ga ions is 0) can be determined to be 800 ° C. It was. The “count” represents the number of secondary ions generated per primary ion.

その後、求められた変換関数24が分析視野中の表面状態(結晶方位分布や結晶粒径の違い)に依存しないこと示すために、新しい未加熱のFe−Al2元合金多結晶試料(FeにAlを6.1原子%添加)に試料4を入れ換え、熱電対12による従来の方法で試料4の温度を測りながら、590℃以上の各温度におけるGaイオンビーム前照射後の2次Gaイオンの収量の測定を行った。図2で得られた変換関数24を用いて、2次Gaイオンの収量から試料4の表面温度を計算し、計算した試料4の表面温度と熱電対12による試料4表面温度との関係を座標にプロットした。図3は、その結果を示す図である。図3において、これらのプロットした点31〜38は、横軸をX、縦軸をYとして、Y=Xの直線39の近傍に位置し、2次Gaイオンの収量から計算した温度は試料4の表面状態に依存せず、熱電対12による実測で得られた温度と±3℃以内で一致していることが確認できた。すなわち、前照射によって試料4の表面に注入されたGaは、母材の格子間に補足されていないため表面結合エネルギーが小さく、試料4の表面状態に依存しない。よって、2次Gaイオンの収量は温度によってのみ決定される「分析部位からのGaの拡散速度」の違いに依存するため、試料4の表面温度を測定することができる。   Thereafter, in order to show that the obtained conversion function 24 does not depend on the surface condition (difference in crystal orientation distribution or crystal grain size) in the analytical field of view, a new unheated Fe—Al binary alloy polycrystalline sample (Al in Fe The amount of secondary Ga ions after pre-irradiation with a Ga ion beam at each temperature of 590 ° C. or higher is measured while the sample 4 is replaced by a conventional method using a thermocouple 12. Was measured. Using the conversion function 24 obtained in FIG. 2, the surface temperature of the sample 4 is calculated from the yield of secondary Ga ions, and the relationship between the calculated surface temperature of the sample 4 and the surface temperature of the sample 4 by the thermocouple 12 is coordinated. Plot to FIG. 3 is a diagram showing the results. In FIG. 3, these plotted points 31 to 38 are located in the vicinity of the line 39 of Y = X, where X is the horizontal axis and Y is the vertical axis, and the temperature calculated from the yield of secondary Ga ions is Sample 4 It was confirmed that the temperature was consistent with the temperature obtained by actual measurement with the thermocouple 12 within ± 3 ° C., regardless of the surface state of the film. That is, Ga implanted into the surface of the sample 4 by the pre-irradiation has a small surface binding energy because it is not captured between the lattices of the base material and does not depend on the surface state of the sample 4. Therefore, since the yield of secondary Ga ions depends on the difference in “Ga diffusion rate from the analysis site” determined only by temperature, the surface temperature of the sample 4 can be measured.

(実施例2)
本実施例では、細粒鋼試料を試料4として用いて高温下でのFIB-SIMS測定を行い、FeとAlの2次イオンの収量の温度依存性を調べた。
まず、較正用の細粒鋼試料を用いて、実施例1と同様の手順で求めた傾きaは−8.06×10-2℃/カウント、切片bは710℃であった。
(Example 2)
In this example, FIB-SIMS measurement was performed at a high temperature using a fine-grain steel sample as Sample 4, and the temperature dependency of the yield of secondary ions of Fe and Al was examined.
First, using a fine-grain steel sample for calibration, the slope a obtained by the same procedure as in Example 1 was −8.06 × 10 −2 ° C./count, and the intercept b was 710 ° C.

次に、分析用の細粒鋼試料を用いて、高温下でのFIB-SIMS測定を行った。図4に示すように、試料4の表面温度を上げていくと、鋼の変態温度前後の700℃から750℃の間で、鋼の変態に伴うFeとAlの表面濃度の変化の様子が観察できた。すなわち、D4の温度を上げていく過程では、相変態温度域41(グレーで表示している領域)で鋼がbcc構造からfcc構造へ変化することによって鋼の表面の状態が変化するため、2次Feイオンの収量は増加する(グラフ42を参照)。その後、試料4の温度を下げると、2次Feイオンの収量は減少し、ほぼbcc構造のときに得られた値にもどった(グラフ42を参照)。一方、鋼中のAlは、試料4の温度を上げていく過程で表面への拡散によって徐々に増加するが、相変態後の鋼の構造変化に起因するAlの固溶限界濃度の低下によって急激に減少し、その後、試料4の温度を下げると増加した(グラフ43を参照)。ここで、横軸の試料4の表面温度は本実施形態の手法で決定した温度であり、各温度において昇温から測定終了までに要した時間は15分(min)である。   Next, FIB-SIMS measurement was performed at a high temperature using a fine-grain steel sample for analysis. As shown in FIG. 4, when the surface temperature of the sample 4 is increased, the state of changes in the surface concentration of Fe and Al accompanying the steel transformation is observed between 700 ° C. and 750 ° C. before and after the steel transformation temperature. did it. That is, in the process of increasing the temperature of D4, the state of the surface of the steel changes due to the change of the steel from the bcc structure to the fcc structure in the phase transformation temperature range 41 (region shown in gray). The yield of secondary Fe ions increases (see graph 42). Thereafter, when the temperature of the sample 4 was lowered, the yield of secondary Fe ions decreased and returned to the value obtained in the case of the bcc structure (see graph 42). On the other hand, Al in the steel gradually increases due to diffusion to the surface in the process of raising the temperature of the sample 4, but suddenly decreases due to the decrease of the solid solution limit concentration of Al due to the structural change of the steel after the phase transformation. And then increased when the temperature of sample 4 was lowered (see graph 43). Here, the surface temperature of the sample 4 on the horizontal axis is the temperature determined by the method of this embodiment, and the time required from the temperature rise to the end of measurement at each temperature is 15 minutes (min).

以上のように本実施形態では、試料4の表面温度の測定に分析部位から放出される2次Gaイオンを用いているため、手早く簡便に精度良く分析時の試料4の表面温度を測定することが可能となる。すなわち、試料4の表面温度の測定のための参照元素であるGa(2次Gaイオンの収量)を、試料4の表面の元素の挙動の分析のときに測定するため、2次Gaイオンの収量と試料4の表面温度との相関関係を一度調べれば、高価で高精度な温度測定機器がなくとも、安価で簡便に素早く、精度よく、分析したその時の試料4の表面温度が測定できる。これにより、急速冷却や温度平衡状態に達するまでの元素の挙動の不確かさは解消され、母材の温度に対するより正確な元素挙動を知ることができる。   As described above, in the present embodiment, since the secondary Ga ions released from the analysis site are used for measuring the surface temperature of the sample 4, the surface temperature of the sample 4 at the time of analysis can be measured quickly and easily with high accuracy. Is possible. That is, since the reference element Ga (yield of secondary Ga ions) for measuring the surface temperature of the sample 4 is measured when analyzing the behavior of the elements on the surface of the sample 4, the yield of secondary Ga ions Once the correlation between the surface temperature of the sample 4 and the surface temperature of the sample 4 is examined, the surface temperature of the sample 4 at that time can be measured inexpensively, simply, quickly, and accurately, without an expensive and highly accurate temperature measuring device. Thereby, the uncertainty of the behavior of the element until the rapid cooling or the temperature equilibrium state is reached is eliminated, and the more accurate element behavior with respect to the temperature of the base material can be known.

尚、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々の形で実施することができる。   It should be noted that the embodiments of the present invention described above are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

2 集束イオンビーム照射装置
3 集束イオンビーム
4 試料
5 試料台
6 XYZステージ
7 試料加熱器
8 分析装置
9 2次電子検出器
10 2次イオン
11 2次電子
12 熱電対
2 Focused ion beam irradiation device
3 Focused ion beam
4 samples
5 Sample stage
6 XYZ stage
7 Sample heater
8 Analyzer
9 Secondary electron detector
10 Secondary ion 11 Secondary electron 12 Thermocouple

Claims (17)

試料が置かれる試料台と、
前記試料台に置かれた試料に対して集束イオンビームを照射する集束イオンビーム照射装置と、
前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンを質量分析する分析装置と、
前記試料の表面が作る平面に対して検出面が水平になるように配置された2次電子検出器と、
前記試料台、前記集束イオンビーム照射装置、前記分析装置、および前記2次電子検出器が内部に設置される真空容器と、
前記試料を加熱する試料加熱器と、
前記試料の表面温度と、前記2次イオンの収量との関係を示す温度変換情報を予め記憶する記憶手段と、
前記質量分析のために前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定する決定手段と、
を具備し、
前記分析装置は、前記試料加熱器により試料を常温以上に加熱しているときに、当該試料の表面から放出された2次イオンを質量分析することを特徴とする集束イオンビームを用いる微細部位解析装置。
A sample stage on which the sample is placed;
A focused ion beam irradiation apparatus for irradiating the sample placed on the sample stage with a focused ion beam;
An analyzer for mass-analyzing secondary ions emitted from the surface of the sample when the sample is irradiated with the focused ion beam from the focused ion beam irradiation device;
A secondary electron detector arranged such that a detection surface is horizontal with respect to a plane formed by the surface of the sample;
A vacuum vessel in which the sample stage, the focused ion beam irradiation device, the analysis device, and the secondary electron detector are installed;
A sample heater for heating the sample;
Storage means for preliminarily storing temperature conversion information indicating the relationship between the surface temperature of the sample and the yield of the secondary ions;
Based on the measurement value of the yield of secondary ions emitted from the surface of the sample by irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus for the mass analysis and the temperature conversion information. Determining means for determining the temperature of the analysis site on the surface of the sample;
Comprising
The analysis device performs mass analysis of secondary ions emitted from the surface of the sample when the sample is heated to a room temperature or higher by the sample heater, and performs a fine site analysis using a focused ion beam apparatus.
前記温度変換情報は、前記集束イオンビーム照射装置から試料に集束イオンビームを前照射することによって当該試料の表面から放出された2次イオンの収量と、そのときの当該試料の温度とに基づいて得られた情報であり、
前記集束イオンビーム照射装置は、前記前照射したときと同じ条件で集束イオンビームを試料に対して全照射し、
前記決定手段は、前記全照射によって試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定することを特徴とする請求項1に記載の集束イオンビームを用いる微細部位解析装置。
The temperature conversion information is based on the yield of secondary ions emitted from the surface of the sample by pre-irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus, and the temperature of the sample at that time. Information obtained,
The focused ion beam irradiation apparatus irradiates the sample with a focused ion beam under the same conditions as when the previous irradiation was performed,
The determining means determines the temperature of the analysis site on the surface of the sample based on the measurement value of the yield of secondary ions released from the surface of the sample by the total irradiation and the temperature conversion information. A fine region analyzing apparatus using the focused ion beam according to claim 1.
前記前照射は、照射フルエンスが5.0×1015個/cm2以下の条件で集束イオンビームを連続照射することにより行われることを特徴とする請求項2に記載の集束イオンビームを用いる微細部位解析装置。 The fineness using a focused ion beam according to claim 2, wherein the pre-irradiation is performed by continuously irradiating a focused ion beam under a condition that an irradiation fluence is 5.0 × 10 15 ions / cm 2 or less. Site analysis device. 前記集束イオンビームが照射されることによって試料の表面から放出された2次イオンの収量が、当該試料の表面の分析部位の温度と比例関係を有することを特徴とする請求項1〜3のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。   4. The yield of secondary ions emitted from the surface of the sample by irradiation with the focused ion beam has a proportional relationship with the temperature of the analysis site on the surface of the sample. A fine region analysis apparatus using the focused ion beam according to claim 1. 前記集束イオンビームのイオン種は、Gaイオンであり、当該集束イオンビームは、試料の表面においてビーム直径が50nm以下となるように集束されることを特徴とする請求項1〜4のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。   The ion species of the focused ion beam is Ga ion, and the focused ion beam is focused so that the beam diameter is 50 nm or less on the surface of the sample. The micro site | part analyzer using the focused ion beam of description. 前記真空容器は、その内部を、10-6Pa以下の真空度に保持することを特徴とする請求項1〜5のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。 The micro site analysis apparatus using a focused ion beam according to any one of claims 1 to 5, wherein the inside of the vacuum vessel is maintained at a degree of vacuum of 10 -6 Pa or less. 前記試料加熱器により加熱される試料の最高温度が1000℃であることを特徴とする請求項1〜6のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。   The fine region analysis apparatus using a focused ion beam according to any one of claims 1 to 6, wherein the maximum temperature of the sample heated by the sample heater is 1000 ° C. 前記試料加熱器は、抵抗加熱器を備えることを特徴とする請求項1〜7のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。   The microscopic site analysis apparatus using a focused ion beam according to any one of claims 1 to 7, wherein the sample heater includes a resistance heater. 前記抵抗加熱器は、前記試料台に設置されていることを特徴とする請求項8に記載の集束イオンビームを用いる微細部位解析装置。   The fine region analysis apparatus using a focused ion beam according to claim 8, wherein the resistance heater is installed on the sample stage. 前記試料台における試料を固定するための冶具は、材質が窒化硼素であることを特徴とする請求項1〜9のいずれか1項に記載の集束イオンビームを用いる微細部位解析装置。   The fine site analysis apparatus using a focused ion beam according to any one of claims 1 to 9, wherein the jig for fixing the sample on the sample stage is made of boron nitride. 試料台に置かれた試料に対して集束イオンビームを集束イオンビーム照射装置により照射する集束イオンビーム照射工程と、
前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンを分析装置により質量分析する分析工程と、
前記試料の表面が作る平面に対して検出面が水平になるように配置された2次電子検出器によって、前記集束イオンビーム照射装置により照射された集束イオンビームが試料の表面を衝撃するときに放出される2次電子を検出する2次電子検出工程と、
前記試料台、前記集束イオンビーム照射装置、前記分析装置、および前記2次電子検出器を真空容器の内部に設置して、当該真空容器の内部を所定の真空度に保つ真空工程と、
前記試料を試料加熱器により加熱する試料加熱工程と、
前記試料の表面温度と、前記2次イオンの収量との関係を示す温度変換情報を予め記憶する記憶工程と、
前記質量分析のために前記集束イオンビーム照射装置から試料に集束イオンビームが照射されることによって当該試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定する決定工程と、
を具備し、
前記分析工程は、前記試料加熱器により試料を常温以上に加熱しているときに、当該試料の表面から放出された2次イオンを質量分析することを特徴とする集束イオンビームを用いる微細部位解析方法。
A focused ion beam irradiation step of irradiating the sample placed on the sample stage with a focused ion beam irradiation device with a focused ion beam irradiation device;
An analysis step of performing mass analysis on the secondary ion emitted from the surface of the sample by irradiating the sample with the focused ion beam irradiation device from the focused ion beam irradiation device;
When the focused ion beam irradiated by the focused ion beam irradiation device bombards the surface of the sample by a secondary electron detector arranged so that the detection surface is horizontal with respect to a plane formed by the surface of the sample A secondary electron detection step of detecting the emitted secondary electrons;
A vacuum process in which the sample stage, the focused ion beam irradiation device, the analysis device, and the secondary electron detector are installed inside a vacuum vessel, and the inside of the vacuum vessel is maintained at a predetermined degree of vacuum;
A sample heating step of heating the sample with a sample heater;
A storage step for preliminarily storing temperature conversion information indicating the relationship between the surface temperature of the sample and the yield of the secondary ions;
Based on the measurement value of the yield of secondary ions emitted from the surface of the sample by irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus for the mass analysis and the temperature conversion information. A determination step for determining the temperature of the analysis site on the surface of the sample;
Comprising
The analysis step includes mass analysis of secondary ions emitted from the surface of the sample when the sample is heated to a room temperature or higher by the sample heater, and a fine region analysis using a focused ion beam Method.
前記温度変換情報は、前記集束イオンビーム照射装置から試料に集束イオンビームを前照射することによって当該試料の表面から放出された2次イオンの収量と、そのときの当該試料の温度とに基づいて得られた情報であり、
前記集束イオンビーム照射工程は、前記前照射したときと同じ条件で集束イオンビームを試料に対して全照射し、
前記決定工程は、前記全照射によって試料の表面から放出された2次イオンの収量の測定値と、前記温度変換情報とに基づいて、当該試料の表面の分析部位の温度を決定することを特徴とする請求項11に記載の集束イオンビームを用いる微細部位解析方法。
The temperature conversion information is based on the yield of secondary ions emitted from the surface of the sample by pre-irradiating the sample with the focused ion beam from the focused ion beam irradiation apparatus, and the temperature of the sample at that time. Information obtained,
The focused ion beam irradiation step irradiates the sample with the focused ion beam under the same conditions as the pre-irradiation,
The determining step determines the temperature of the analysis site on the surface of the sample based on the measurement value of the yield of secondary ions released from the surface of the sample by the total irradiation and the temperature conversion information. The fine site | part analysis method using the focused ion beam of Claim 11.
前記前照射は、照射フルエンスが5.0×1015個/cm2以下の条件で集束イオンビームを連続照射することにより行われることを特徴とする請求項12に記載の集束イオンビームを用いる微細部位解析方法。 13. The fine irradiation using a focused ion beam according to claim 12, wherein the pre-irradiation is performed by continuously irradiating a focused ion beam under a condition that an irradiation fluence is 5.0 × 10 15 ions / cm 2 or less. Site analysis method. 前記集束イオンビームが照射されることによって試料の表面から放出された2次イオンの収量が、当該試料の表面の分析部位の温度と比例関係を有することを特徴とする請求項11〜13のいずれか1項に記載の集束イオンビームを用いる微細部位解析方法。   14. The yield of secondary ions released from the surface of the sample by irradiation with the focused ion beam has a proportional relationship with the temperature of the analysis site on the surface of the sample. A method for analyzing a fine region using the focused ion beam according to claim 1. 前記集束イオンビームのイオン種は、Gaイオンであり、当該集束イオンビームは、試料の表面においてビーム直径が50nm以下となるように集束されることを特徴とする請求項11〜14のいずれか1項に記載の集束イオンビームを用いる微細部位解析方法。   The ion species of the focused ion beam is Ga ions, and the focused ion beam is focused so that the beam diameter is 50 nm or less on the surface of the sample. 4. A method for analyzing a fine region using the focused ion beam according to the item. 前記真空工程は、前記真空容器の内部を、10-6Pa以下の真空度に保持することを特徴とする請求項11〜15のいずれか1項に記載の集束イオンビームを用いる微細部位解析方法。 16. The method for analyzing a microscopic part using a focused ion beam according to claim 11, wherein the vacuum step maintains the inside of the vacuum vessel at a vacuum degree of 10 −6 Pa or less. . 前記試料加熱器により加熱される試料の最高温度が1000℃であることを特徴とする請求項11〜16のいずれか1項に記載の集束イオンビームを用いる微細部位解析方法。   The fine region analysis method using a focused ion beam according to any one of claims 11 to 16, wherein the maximum temperature of the sample heated by the sample heater is 1000 ° C.
JP2010152290A 2010-07-02 2010-07-02 Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam Expired - Fee Related JP5381916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152290A JP5381916B2 (en) 2010-07-02 2010-07-02 Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152290A JP5381916B2 (en) 2010-07-02 2010-07-02 Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam

Publications (2)

Publication Number Publication Date
JP2012013619A JP2012013619A (en) 2012-01-19
JP5381916B2 true JP5381916B2 (en) 2014-01-08

Family

ID=45600221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152290A Expired - Fee Related JP5381916B2 (en) 2010-07-02 2010-07-02 Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam

Country Status (1)

Country Link
JP (1) JP5381916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569014A (en) * 2014-10-27 2015-04-29 西安空间无线电技术研究所 Method and device for testing secondary electron emission coefficient of material under all incidence angles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123191A (en) * 1974-08-21 1976-02-24 Hitachi Ltd
JP3155570B2 (en) * 1991-09-20 2001-04-09 株式会社日立製作所 Focused ion beam mass analysis method and combined ion beam mass spectrometry device
JPH11168126A (en) * 1997-12-03 1999-06-22 Hitachi Ltd Manufacture of electronic device and foreign substance anyalyzer thereof
JP2000321224A (en) * 1999-05-10 2000-11-24 Nippon Steel Corp Method and device for dynamically observing change in crystal particle
JP3715956B2 (en) * 2001-10-05 2005-11-16 キヤノン株式会社 Information acquisition device, sample evaluation device, and sample evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569014A (en) * 2014-10-27 2015-04-29 西安空间无线电技术研究所 Method and device for testing secondary electron emission coefficient of material under all incidence angles
CN104569014B (en) * 2014-10-27 2017-01-25 西安空间无线电技术研究所 Method and device for testing secondary electron emission coefficient of material under all incidence angles

Also Published As

Publication number Publication date
JP2012013619A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
Manhard et al. Influence of the microstructure on the deuterium retention in tungsten
CN108508052B (en) X-ray fluorescence thin layer quality thickness measurement system and method based on reference element
Exertier et al. Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study
Axente et al. Accurate analysis of indium–zinc oxide thin films via laser-induced breakdown spectroscopy based on plasma modeling
Darbani et al. Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys
KR20160006780A (en) Method of reducing the thickness of a target sample
US10705036B2 (en) Method and system for analysis of objects
Kempenaers et al. The use of synchrotron micro-XRF for characterization of the micro-heterogeneity of heavy metals in low-Z reference materials
JP5381916B2 (en) Fine site analysis apparatus using focused ion beam and fine site analysis method using focused ion beam
US8567233B2 (en) Gas charge container, atom probe apparatus, and method for analyzing hydrogen position in material
Bleiner et al. Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling
Novák et al. MEMS-based Heating Element forin-situDynamical Experiments on FIB/SEM Systems
US10151718B2 (en) Quantitative analysis device for trace carbon and quantitative analysis method for trace carbon
Hamaji et al. Damage and deuterium retention of re-solidified tungsten following vertical displacement event-like heat load
Stevie Analysis of hydrogen in materials with and without high hydrogen mobility
Hugenschmidt et al. Surface investigation of Si (1 0 0), Cu, Cu on Si (1 0 0), and Au on Cu with positron annihilation induced Auger-electron spectroscopy
JP2018092866A (en) Atom probe analysis system and atom probe analysis method
Prasetyo et al. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)
Zhang et al. Energy dispersive spectroscopy analysis of aluminium segregation in silicon carbide grain boundaries
Zhu et al. Atomic Scale Debye-Waller Thermometry
JP2019045409A (en) Sample analysis method
Noakes et al. Commissioning of the SAPI for Operation with Metal Photocathodes
Adams et al. Electron-based imaging techniques
CN105588644A (en) Contactless Temperature Measurement In A Charged Particle Microscope
Torrisi et al. RBS analysis of ions implanted in light substrates exposed to hot plasmas laser-generated at PALS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees