JP2000321224A - Method and device for dynamically observing change in crystal particle - Google Patents

Method and device for dynamically observing change in crystal particle

Info

Publication number
JP2000321224A
JP2000321224A JP11128619A JP12861999A JP2000321224A JP 2000321224 A JP2000321224 A JP 2000321224A JP 11128619 A JP11128619 A JP 11128619A JP 12861999 A JP12861999 A JP 12861999A JP 2000321224 A JP2000321224 A JP 2000321224A
Authority
JP
Japan
Prior art keywords
sample
cooling
secondary electron
change
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11128619A
Other languages
Japanese (ja)
Inventor
Naoki Maruyama
直紀 丸山
Masaaki Sugiyama
昌章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11128619A priority Critical patent/JP2000321224A/en
Publication of JP2000321224A publication Critical patent/JP2000321224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To observe the dynamic change in micro organization and a sample in a park shape by dynamically observing the change in a crystal particle in such state as heating and cooling with a secondary electron image or a reflection electron image from the sample where a condensation ion beam is applied. SOLUTION: The acceleration ion of a Ga ion source 1 scans a sample 5 by a deflection coil 2 after condensation. A sample surface is subjected to sputtering by the ion beam, and a secondary electron and a reflection electron being generated due to the collision of the ion against the sample 5 are detected by a secondary electron detector 3 and a reflection electron detector 4, respectively. A heating/cooling holder 6 for fixing the sample 5 can heat or cool the sample 5 indirectly up to 1,500 deg.C. The secondary electron detector 3 that is located at the upper portion of the sample 5 is positioned at an area that is not subjected to direct sunlight in observation where temperature is equal to or more than 1,000 deg.C since image quality deteriorates at 1,000 deg.C or higher due to directly sunlight caused by the temperature increase of the sample, thus bending the secondary electron and capturing it by the gradient of an electric field. Then, the change in the crystal particle is dynamically observed during heating, cooling, or the like by the detected secondary electron image or the reflection electron image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、顕微鏡技術に関す
るもので、従来困難であった加熱中、冷却中あるいは高
温での等温保持中の材料のミクロ組織の変化、特に結晶
粒の変化およびその結晶粒の方位をその場観察する方法
を与え、材料中で起こる相変態、再結晶、結晶粒成長等
を動的に連続的に観察することを可能とするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope technique, and more particularly to a change in a microstructure of a material during heating, cooling or isothermal holding at a high temperature, particularly a change in crystal grains and its crystal, which has been difficult in the past. The present invention provides a method for in-situ observation of grain orientation, and enables dynamic and continuous observation of phase transformation, recrystallization, crystal grain growth, etc. occurring in a material.

【0002】[0002]

【従来の技術】材料の機械的性質や物理的性質は、材料
中の結晶粒径や集合組織と極めて密接な関係があること
が知られている。例えば、多結晶材料の強度や靭性は結
晶粒の大きさに反比例して向上し、また電磁鋼板の磁気
特性は磁区の大きさ( 結晶粒の大きさ) や集合組織に依
存して変化する。このため、結晶粒のサイズや方位の制
御は材料設計上極めて重要であり、これらの制御指針を
得るために様々な研究がなされてきている。定量的な制
御指針を得るための最も直接的方法は、加熱中や冷却中
に起こる相変態・再結晶等に伴う結晶粒の動きやミクロ
組織の変化、さらにはその結晶方位をその場(in-situ)
観察し、その挙動を把握することである。
2. Description of the Related Art It is known that the mechanical and physical properties of a material have an extremely close relationship with the crystal grain size and texture in the material. For example, the strength and toughness of a polycrystalline material increase in inverse proportion to the size of crystal grains, and the magnetic properties of an electrical steel sheet change depending on the size of magnetic domains (size of crystal grains) and texture. For this reason, control of crystal grain size and orientation is extremely important in material design, and various studies have been made to obtain such control guidelines. The most direct method for obtaining a quantitative control guideline is to determine the movement of crystal grains and the change in microstructure due to phase transformation and recrystallization during heating and cooling, and the crystal orientation in situ (in -situ)
Observe and understand its behavior.

【0003】加熱中および冷却中における材料のミクロ
組織変化をその場観察できうる手法および装置として
は、特開平5-114377、特開平6-096709で開示されている
ように加熱機構を備えた試料ホールダを使用し電子顕微
鏡で観察する装置が考案されている。しかしながら、こ
れらの方法は電子顕微鏡の種類が走査型の場合、透過型
の場合それぞれに対し以下の欠点を抱えていた。すなわ
ち、走査型電子顕微鏡(SEM) の場合には、材料のミクロ
組織を観察するのに好適な数百倍から数万倍の観察倍率
が得られる利点がある一方で、結晶粒界の動きやミクロ
組織の変化を「動的」に観察ができないという問題点が
あった。この原因は、(1) 高温において試料表面に酸化
層や合金層が形成されるために酸化層・合金層直下のバ
ルク内部の情報が得られないためであり、(2) 1次プロ
ーブ( 入射ビーム) が電子線であるために平滑面内に存
在する結晶粒のコントラストを視覚的に明瞭に判別する
ことができないためである。
As a method and an apparatus capable of in-situ observation of a microstructure change of a material during heating and cooling, a sample having a heating mechanism as disclosed in JP-A-5-114377 and JP-A-6-096709 is disclosed. An apparatus for observing with an electron microscope using a holder has been devised. However, these methods have the following disadvantages when the electron microscope is of a scanning type or a transmission type. That is, the scanning electron microscope (SEM) has the advantage of obtaining an observation magnification of several hundred to several tens of thousands times, which is suitable for observing the microstructure of a material, but has the advantage that the movement of crystal grain boundaries and There has been a problem that changes in the microstructure cannot be observed “dynamically”. This is because (1) the oxide layer or alloy layer is formed on the sample surface at high temperature, and information inside the bulk immediately below the oxide layer or alloy layer cannot be obtained. This is because the contrast of crystal grains existing in a smooth surface cannot be visually and clearly distinguished because the beam is an electron beam.

【0004】また透過型電子顕微鏡(TEM) の場合には、
SEM と異なり結晶粒界を明瞭に観察できる特徴がある一
方で、観察可能な領域は表面積で高々0.005mm2程度しか
ないという問題点があった。さらに、試料の膜厚は電子
を透過させる必要上0.5 μm以下に薄膜化する必要があ
り、このため実用材料の典型的な結晶粒径である数μm
から数mmのオーダーの結晶粒の変化を観察できないとい
う問題点もあった。
In the case of a transmission electron microscope (TEM),
Unlike SEM, it has the feature that crystal grain boundaries can be clearly observed, but there is a problem that the observable region has a surface area of only about 0.005 mm 2 at most. Furthermore, the thickness of the sample must be reduced to 0.5 μm or less in order to allow electrons to pass through, so that the typical crystal grain size of practical materials is several μm.
There is also a problem that a change in crystal grains on the order of several millimeters cannot be observed.

【0005】(1) の課題を解決する方法としては、特開
平7-92062 に開示されているように集束イオンビームで
微細加工しながらTEM で観察する装置および方法が利用
可能である。すなわち、加熱中に試料表層に生じる酸化
層を集束イオンビームで削る方法が有効であると考えら
れる。しかしながら、上記発明方法は良質なTEM 薄膜を
提供することを目的としており、粒界等のミクロ組織を
観察することを目的とはしていない。さらにこの方法は
加熱中、冷却中あるいは等温保持中のミクロ組織の動的
変化を観察することを目的としておらず、TEM 法が本質
的に抱える狭視野の問題や薄膜化効果の問題も解決する
ことができていない。
As a method for solving the problem (1), an apparatus and a method for observing with a TEM while performing fine processing with a focused ion beam as disclosed in JP-A-7-92062 can be used. That is, it is considered effective to use a focused ion beam to remove an oxide layer generated on the surface of the sample during heating. However, the method of the present invention aims at providing a high-quality TEM thin film, and does not aim at observing a microstructure such as a grain boundary. Furthermore, this method does not aim at observing dynamic changes in the microstructure during heating, cooling or isothermal holding, and solves the problems of the narrow field of view and the thinning effect inherent to the TEM method. I can't do that.

【0006】このように、(1) 加熱中、冷却中あるいは
高温での等温保持中さらには高温での加工後において、
(2) ミクロ組織観察に好適な100 倍程度から10万倍程度
の観察倍率で、(3) 高温観察時に問題となる試料表面の
酸化を回避でき、(4) 結晶粒の動きやミクロ組織の動的
変化を鮮明に観察でき、(5) 薄膜化せずバルクままの試
料を観察できる方法の発明が望まれていた。
As described above, (1) during heating, during cooling, during isothermal holding at a high temperature, and after processing at a high temperature,
(2) With an observation magnification of about 100 to 100,000 times suitable for microstructure observation, (3) oxidation of the sample surface which is a problem during high temperature observation can be avoided, and (4) movement of crystal grains and microstructure There has been a demand for an invention of a method capable of clearly observing a dynamic change and (5) observing a sample in a bulk state without forming a thin film.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述した現状
に鑑み開発されたもので、加熱中、冷却中あるいは高温
での等温保持中、さらには高温での加工中あるいは加工
後において、ミクロ組織観察に好適な100 倍程度から10
万倍程度の観察倍率で、高温観察時に問題となる試料表
面の酸化を回避でき、結晶粒の動きやミクロ組織の動的
変化を鮮明に観察でき、薄膜ではなくバルク形状の試料
を観察できる方法を提供することを目的としたものであ
る。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned situation, and has a microstructure during heating, cooling, or isothermal holding at a high temperature, and furthermore, during or after processing at a high temperature. About 100x to 10 suitable for observation
With a magnification of about 10,000 times, it is possible to avoid oxidation of the sample surface, which is a problem during high-temperature observation, to clearly observe the movement of crystal grains and dynamic changes in microstructure, and to observe a bulk sample instead of a thin film. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するために次の手段を講じた。すなわち、本発明の第
一の特徴は、集束イオンビームを試料に照射した際に発
生する2次電子像あるいは反射電子像により、加熱中、
冷却中及び等温保持中の少なくとも1つの状態中での結
晶粒変化を動的観察する方法である。
According to the present invention, the following means are provided to solve the above-mentioned problems. That is, the first feature of the present invention is that during heating, a secondary electron image or a reflected electron image generated when the sample is irradiated with the focused ion beam is used.
This is a method of dynamically observing a crystal grain change in at least one state during cooling and holding at the same temperature.

【0009】第二の特徴は、各結晶粒の結晶方位をその
場測定することを特徴とする、請求項1記載の結晶粒変
化を動的観察する方法である。高温とは、試料中の結晶
粒の動き(変化)が観察されうる温度を指し、試料種に
より異なる。例えば、鉄系材料ならば300 ℃以上を指
し、アルミニウム材料ならば100 ℃以上を指す。
A second feature is the method for dynamically observing a change in crystal grain according to claim 1, wherein the crystal orientation of each crystal grain is measured in-situ. High temperature refers to a temperature at which movement (change) of crystal grains in a sample can be observed, and differs depending on the sample type. For example, iron-based materials indicate temperatures of 300 ° C or higher, and aluminum materials indicate temperatures of 100 ° C or higher.

【0010】各結晶粒の結晶方位の測定には、試料に集
束した電子線を当て、そこから発生する電子線後方散乱
パターン(Electron Back Scattering Pattern;EBSP) を
検出し、パターン解析する方法が好適であり、集束イオ
ンビームを照射する機能、および前記照射による試料か
らの2次電子及び反射電子の少なくとも1種の電子を検
出する機能を備えた電子線後方散乱パターン解析装置を
用いる。また、試料の温度を変化させるためには試料ホ
ルダーに加熱、冷却機構を内蔵させておくか、冷却用の
ガスを試料表面に噴射させる機構を採用する。更に、本
発明方法の派生形態として、試料ステージに引張あるい
は圧縮機構を付属的に設けることにより、高温変形中あ
るいは高温変形直後の結晶粒界の動きあるいはミクロ組
織の変化の観察が可能となる。
In order to measure the crystal orientation of each crystal grain, it is preferable to apply a focused electron beam to the sample, detect an electron back scattering pattern (EBSP) generated from the sample, and analyze the pattern. An electron beam backscattering pattern analyzer having a function of irradiating a focused ion beam and a function of detecting at least one kind of secondary electron and reflected electron from a sample by the irradiation is used. Further, in order to change the temperature of the sample, a heating and cooling mechanism is built in the sample holder, or a mechanism for injecting a cooling gas to the sample surface is adopted. Further, as a derivative of the method of the present invention, by additionally providing a tension or compression mechanism on the sample stage, it becomes possible to observe the movement of the grain boundaries or the change of the microstructure during or immediately after the high-temperature deformation.

【0011】[0011]

【発明の実施の形態】上記構成によると、試料表層に生
じた酸化層を集束したイオンビームで連続的にスパッタ
リングできるために、高温においても常にバルク表面の
新生面を観察することができる。さらにその集束イオン
ビームを2次電子あるいは反射電子を発生させるための
1次プローブ( 入射ビーム) として同時に用いるので、
電子線を1次プローブとして用いた場合と異なり、イオ
ンのチャネリング効果によりバルク試料でも結晶粒界を
明瞭に観察することができる。また試料を薄膜化せずバ
ルクままで、しかも広い領域を観察できることから、真
のバルク中の結晶粒の動きあるいはミクロ組織の変化を
観察することができる。また本発明では、電子線の発生
・集束装置とEBSPの検出機構からなる電子線後方散乱パ
ターン解析装置に、集束イオンビームを照射する機能、
および前記照射による試料からの2次電子あるいは反射
電子を検出する機能を組み込むことにより、結晶粒の動
的観察と同時に、観察している結晶粒の方位解析をする
ことも可能である。観察可能な倍率はミクロ組織観察に
好適な100 倍程度から10万倍程度まで可能である。
According to the above structure, an oxide layer formed on the surface of a sample can be continuously sputtered by a focused ion beam, so that a new surface of a bulk surface can be always observed even at a high temperature. Furthermore, since the focused ion beam is used at the same time as a primary probe (incident beam) for generating secondary electrons or reflected electrons,
Unlike the case where an electron beam is used as a primary probe, crystal grain boundaries can be clearly observed even in a bulk sample due to the channeling effect of ions. In addition, since a wide area can be observed in a bulk state without thinning the sample, it is possible to observe the movement of crystal grains in the true bulk or the change in microstructure. Further, in the present invention, a function of irradiating a focused ion beam to an electron beam backscattering pattern analysis device comprising an electron beam generation / focusing device and an EBSP detection mechanism,
In addition, by incorporating a function of detecting secondary electrons or reflected electrons from the sample due to the irradiation, it is possible to simultaneously perform dynamic observation of the crystal grains and analyze the orientation of the crystal grains being observed. Observable magnification can be from about 100 times to about 100,000 times suitable for microstructure observation.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。発明者ら
はまず第一に、Gaをイオン源として用いる集束イオンビ
ーム(FIB) 加工装置にSEM 用およびTEM 用の試料加熱冷
却ホルダーを装着することにより、結晶粒の動的観察を
試みた。図1にその概略図を示す。
Embodiments of the present invention will be described below. The inventors first attempted dynamic observation of crystal grains by mounting sample heating and cooling holders for SEM and TEM on a focused ion beam (FIB) processing apparatus using Ga as an ion source. FIG. 1 shows a schematic diagram thereof.

【0013】Gaイオン源1から加速されたイオンは、集
束の後、偏向コイル2により試料上で走査される。この
イオンビームにより試料表面をスパッタリングすると同
時に、イオンが試料に当たることにより発生した2次電
子を2次電子検出器3で、反射電子を反射電子検出器4
により検出する。試料観察プローブとして用いる集束イ
オンビームのビーム種としては、FIB 加工装置として既
に実用化がなされているGaの他に、低融点金属であるA
s、Bi、Cs、Ga、In、Li、Mg、Sb、Sn、Znが使用可能で
ある。
The ions accelerated from the Ga ion source 1 are scanned on the sample by the deflection coil 2 after focusing. At the same time that the sample surface is sputtered by the ion beam, secondary electrons generated by the impact of ions on the sample are reflected by the secondary electron detector 3 and reflected electrons are reflected by the reflected electron detector 4.
Is detected by The beam type of the focused ion beam used as the sample observation probe is Ga, which has already been put into practical use as an FIB processing device, and A, which is a low melting point metal.
s, Bi, Cs, Ga, In, Li, Mg, Sb, Sn, Zn can be used.

【0014】試料5は加熱冷却ホルダー6により固定さ
れる。加熱冷却ホルダー6において、試料は試料下部に
置かれたタングステンフィラメントにより間接的に加熱
され、試料の周囲に配置された水冷管により間接的に冷
却される。このような間接的な試料加熱方法では、1500
℃までの加熱が可能であるが、さらに高温の加熱を行う
ためには直接試料に通電する方法が好ましい。
The sample 5 is fixed by a heating / cooling holder 6. In the heating / cooling holder 6, the sample is indirectly heated by a tungsten filament placed under the sample, and is indirectly cooled by a water cooling tube arranged around the sample. With such an indirect sample heating method, 1500
Although heating up to ° C. is possible, a method of directly energizing the sample is preferred for further heating at a higher temperature.

【0015】試料の冷却方法としては、本実施例のよう
に(1) 試料周囲に冷却管を張り巡らせ間接的に冷却する
方法の他に、(2) 通電する電流を減少させる方法か、
(3) 試料に窒素、アルゴン、ヘリウム等のガスを直接噴
射し冷却する方法が有効である。通常は(1) か(2) の方
法で十分であるが、特に10℃/s以上の冷却速度における
結晶粒の動き(あるいはミクロ組織の変化)を観察する
場合には、(3) 単独あるいは(2) と(3) の併用方法が好
適である。7は試料冷却に用いるガスの噴射機構であ
り、窒素、アルゴン、ヘリウム等の不活性ガスを直接試
料上に噴射して試料を冷却する機構である。
As a method of cooling a sample, in addition to (1) a method of indirectly cooling by extending a cooling pipe around a sample as in this embodiment, (2) a method of reducing a current to be supplied,
(3) It is effective to directly inject a gas such as nitrogen, argon or helium into the sample and cool it. Usually, the method (1) or (2) is sufficient, but especially when observing the movement of the crystal grains (or the change of the microstructure) at a cooling rate of 10 ° C / s or more, the method (3) alone or The combination method of (2) and (3) is preferable. Reference numeral 7 denotes a gas injection mechanism for cooling the sample by injecting an inert gas such as nitrogen, argon, or helium directly onto the sample.

【0016】2次電子検出器3は、試料上部に位置させ
る。ただしその場合、試料昇温により起こる試料からの
直射光により1000℃以上では像質が低下する。このため
1000℃以上での観察を行うためには、試料からの直射光
が当たらない位置に検出器を置き、試料から発生した2
次電子を電場勾配により曲折させ、検出器3で捕捉する
方法が望ましい。
The secondary electron detector 3 is located above the sample. However, in this case, the image quality deteriorates at 1000 ° C. or higher due to direct light from the sample caused by the temperature rise of the sample. For this reason
In order to observe at 1000 ° C or higher, a detector is placed at a position where direct light from the sample does not shine,
It is desirable to use a method in which secondary electrons are bent by an electric field gradient and captured by the detector 3.

【0017】以上の機構において、高温での急激な試料
酸化を防ぐために、試料は真空雰囲気内におかれる。真
空度が良いほど、試料の観察上は好ましい。さらに発明
者らは、各結晶粒の方位解析を行うために、EBSP( 電子
線後方散乱パターン)解析装置の電子線源および検出機
構を、前述のFIB 装置に組み入れた。本発明方法による
と、高温での後方散乱電子の菊池パターンが明瞭に観察
できており、高温で動的に変化する結晶粒の組織観察だ
けでなく、その結晶粒の方位も解析可能である。
In the above mechanism, the sample is placed in a vacuum atmosphere in order to prevent rapid sample oxidation at a high temperature. The better the degree of vacuum, the better the observation of the sample. Further, the present inventors have incorporated an electron beam source and a detection mechanism of an EBSP (Electron Beam Back Scattering Pattern) analyzer into the above-described FIB apparatus in order to analyze the orientation of each crystal grain. According to the method of the present invention, a Kikuchi pattern of backscattered electrons at a high temperature can be clearly observed, and it is possible to analyze not only the structure of a crystal grain dynamically changing at a high temperature but also the orientation of the crystal grain.

【0018】以上の装置を用い、多結晶鉄を試料として
用いたところ、加熱速度100 ℃/sec以下、冷却速度50℃
/sec以下の範囲内で、図1に示した装置によりα- γ相
変態(加熱中)、結晶粒成長(加熱中および等温保持
中)、γー α相変態(冷却中)挙動がその場(in-situ)
で観察できることが確認された。図2(a) 及び(b) は結
晶粒変化の動的観察結果の一例であり、1000℃における
鉄の結晶粒の時間変化を観察した例である。
Using the above apparatus and using polycrystalline iron as a sample, the heating rate was 100 ° C./sec or less, and the cooling rate was 50 ° C.
Within the range of / sec or less, the apparatus shown in Fig. 1 can be used to determine the behavior of α-γ phase transformation (during heating), grain growth (during heating and isothermal holding), and γ-α phase transformation (during cooling) in situ. (in-situ)
It was confirmed that observation was possible. 2 (a) and 2 (b) are examples of dynamic observation results of crystal grain change, and are examples of observing the time change of iron crystal grains at 1000 ° C.

【0019】[0019]

【発明の効果】本発明は従来観察不可能であった結晶粒
成長、動的再結晶、静的再結晶、加熱中の相変態、等温
相変態、冷却中の相変態の動的観察手段を与え、上記現
象解明に大きく貢献しうる。1500℃以下で内部組織の変
化が起こる鉄鋼材料、アルミニウム材料、チタン材料、
銅材料を代表とする金属材料の組織観察方法として利用
可能であり、これら材料研究開発を進展させる効果を有
する。
The present invention provides a means for dynamically observing grain growth, dynamic recrystallization, static recrystallization, phase transformation during heating, isothermal phase transformation, and phase transformation during cooling, which were not previously observable. And can greatly contribute to the elucidation of the above phenomena. Steel materials, aluminum materials, titanium materials, whose internal structure changes below 1500 ° C
It can be used as a method for observing the structure of metal materials represented by copper materials, and has the effect of advancing the research and development of these materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるイオンの集束機構と加
熱冷却機構を有する試料ステージからなる装置の概略図
である。
FIG. 1 is a schematic view of an apparatus including a sample stage having an ion focusing mechanism and a heating / cooling mechanism according to an embodiment of the present invention.

【図2】多結晶鉄の1000℃でのミクロ組織の時間変化を
観察した例であり、図2(a) は0分及び図2(b) は30分
保持した金属組織の写真である。
FIG. 2 is an example of observing the time change of the microstructure of polycrystalline iron at 1000 ° C., wherein FIG. 2 (a) is a photograph of a metal structure held for 0 minutes and FIG. 2 (b) is a photograph of a metal structure held for 30 minutes.

【符号の説明】[Explanation of symbols]

1…Gaイオン源(含イオン加速機構) 2…イオンビームの集束および偏向機構 3…2次電子検出器 4…反射電子検出器 5…試料 6…試料加熱冷却ホルダー 7…ガス噴射口 DESCRIPTION OF SYMBOLS 1 ... Ga ion source (Ion-containing acceleration mechanism) 2 ... Ion beam focusing and deflection mechanism 3 ... Secondary electron detector 4 ... Reflection electron detector 5 ... Sample 6 ... Sample heating and cooling holder 7 ... Gas injection port

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA03 AA05 BA07 BA15 CA03 DA02 DA06 GA06 GA17 JA01 JA14 KA08 KA20 LA02 PA07 QA01 RA03 RA20 5C033 QQ05 QQ10 UU03 UU06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G001 AA03 AA05 BA07 BA15 CA03 DA02 DA06 GA06 GA17 JA01 JA14 KA08 KA20 LA02 PA07 QA01 RA03 RA20 5C033 QQ05 QQ10 UU03 UU06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集束イオンビームを照射された試料から
の2次電子像あるいは反射電子像による、加熱中、冷却
中及び等温保持中の少なくとも1つの状態中での結晶粒
変化の動的観察方法。
1. A method for dynamically observing a change in crystal grains in at least one of a state of heating, a state of cooling and a state of isothermal holding by a secondary electron image or a reflected electron image from a sample irradiated with a focused ion beam. .
【請求項2】 各結晶粒の結晶方位をその場測定するこ
とを特徴とする、請求項1記載の結晶粒変化の動的観察
方法。
2. The dynamic observation method of crystal grain change according to claim 1, wherein the crystal orientation of each crystal grain is measured in situ.
【請求項3】 集束イオンビームを照射する機能、およ
び前記照射による試料からの2次電子及び反射電子の少
なくとも1種の電子を検出する機能を備えたことを特徴
とする電子線後方散乱パターン解析装置。
3. An electron beam backscattering pattern analysis having a function of irradiating a focused ion beam and a function of detecting at least one kind of secondary electron and reflected electron from a sample by the irradiation. apparatus.
【請求項4】 試料を加熱、冷却及び加工の少なくとも
1つの機能を備えたことを特徴とする請求項3記載の装
置。
4. The apparatus according to claim 3, wherein the apparatus has at least one function of heating, cooling and processing the sample.
JP11128619A 1999-05-10 1999-05-10 Method and device for dynamically observing change in crystal particle Pending JP2000321224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11128619A JP2000321224A (en) 1999-05-10 1999-05-10 Method and device for dynamically observing change in crystal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11128619A JP2000321224A (en) 1999-05-10 1999-05-10 Method and device for dynamically observing change in crystal particle

Publications (1)

Publication Number Publication Date
JP2000321224A true JP2000321224A (en) 2000-11-24

Family

ID=14989277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11128619A Pending JP2000321224A (en) 1999-05-10 1999-05-10 Method and device for dynamically observing change in crystal particle

Country Status (1)

Country Link
JP (1) JP2000321224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045172A (en) * 2002-07-11 2004-02-12 Fujitsu Ltd Method for evaluating three-dimensional structure
JP2012013619A (en) * 2010-07-02 2012-01-19 Nippon Steel Corp Minute part analyzer using focused ion beam and minute part analysis method using focused ion beam
WO2015170397A1 (en) * 2014-05-09 2015-11-12 株式会社日立ハイテクノロジーズ Sample processing method and charged particle beam device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045172A (en) * 2002-07-11 2004-02-12 Fujitsu Ltd Method for evaluating three-dimensional structure
JP2012013619A (en) * 2010-07-02 2012-01-19 Nippon Steel Corp Minute part analyzer using focused ion beam and minute part analysis method using focused ion beam
WO2015170397A1 (en) * 2014-05-09 2015-11-12 株式会社日立ハイテクノロジーズ Sample processing method and charged particle beam device
JPWO2015170397A1 (en) * 2014-05-09 2017-04-20 株式会社日立ハイテクノロジーズ Sample processing method and charged particle beam apparatus
US9922798B2 (en) 2014-05-09 2018-03-20 Hitachi High-Technologies Corporation Sample processing method and charged particle beam device

Similar Documents

Publication Publication Date Title
Makineni et al. Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys
Phaneuf Applications of focused ion beam microscopy to materials science specimens
Fanta et al. Elevated temperature transmission Kikuchi diffraction in the SEM
Langfischer et al. Evolution of tungsten film deposition induced by focused ion beam
WO2007141868A1 (en) X-ray microscope and x-ray microscopic method
Zieliński et al. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens
Tokarski et al. High quality transmission Kikuchi diffraction analysis of deformed alloys-Case study
Yoshida et al. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels
Uzuhashi et al. Development of automated tip preparation for atom probe tomography by using script-controlled FIB-SEM
Gasser et al. Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites
EP2302349B1 (en) Gas charge container, atom probe apparatus, and method for analyzing hydrogen position in material
JP2000321224A (en) Method and device for dynamically observing change in crystal particle
Hans et al. Opportunities of combinatorial thin film materials design for the sustainable development of magnesium-based alloys
JP5560033B2 (en) Cooled sample holder and method for cooling sample
JP2001305028A (en) Transmission electron microscope observation sample preparing method for solid phase reactive sample and charged particle beam device
JP2001311681A (en) Method for preparing sample for transmission electron microscope observation and sampling apparatus
JP5862405B2 (en) Method for preparing micro thin film sample for transmission electron microscope
Hamaji et al. Damage and deuterium retention of re-solidified tungsten following vertical displacement event-like heat load
CN115950906A (en) Detection system
Sato et al. Three-dimensional shapes and distributions of long-period stacking ordered structures in Mg97Zn1Gd2 cast alloys characterized by electron tomography
JP6353646B2 (en) Charged particle beam apparatus and sample observation method using the apparatus
Li et al. Important factors to consider in FIB milling of crystalline materials
JPS61151449A (en) Electron beam differaction apparatus
Georgin et al. Optimizing image contrast of second phases in metal alloys
JPH10104141A (en) Method and mechanism for preparing sample, and analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030