JP6775026B2 - Composite optical element - Google Patents

Composite optical element Download PDF

Info

Publication number
JP6775026B2
JP6775026B2 JP2018541900A JP2018541900A JP6775026B2 JP 6775026 B2 JP6775026 B2 JP 6775026B2 JP 2018541900 A JP2018541900 A JP 2018541900A JP 2018541900 A JP2018541900 A JP 2018541900A JP 6775026 B2 JP6775026 B2 JP 6775026B2
Authority
JP
Japan
Prior art keywords
flange surface
optical element
resin composition
composite optical
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018541900A
Other languages
Japanese (ja)
Other versions
JPWO2018061331A1 (en
Inventor
正憲 藤原
正憲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2018061331A1 publication Critical patent/JPWO2018061331A1/en
Application granted granted Critical
Publication of JP6775026B2 publication Critical patent/JP6775026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、複合光学素子に関する。 The present invention relates to composite optical elements.

ガラス基材の表面に樹脂層が設けられてなる複合光学素子は、典型的にはガラス基材の表面の中央部と成形型の成形面との間に挟み込まれた樹脂組成物が、ガラス基材の表面に沿って外径側に向けて押し広げられ、押し広げられた樹脂組成物が硬化されて製造される(例えば、特許文献1及び特許文献2参照)。 In a composite optical element in which a resin layer is provided on the surface of a glass base material, a resin composition sandwiched between a central portion of the surface of the glass base material and a molding surface of a molding mold is typically a glass base. The resin composition is expanded along the surface of the material toward the outer diameter side, and the expanded resin composition is cured to produce the resin composition (see, for example, Patent Document 1 and Patent Document 2).

特許文献1に記載された複合光学素子では、樹脂層は、ガラス基材の表面の中央部に設けられている光学素子面だけでなく、光学素子面の外周に設けられている切り欠き面にも形成されており、樹脂層の密着性を高める観点から、切り欠き面は粗面とされている。 In the composite optical element described in Patent Document 1, the resin layer is applied not only to the optical element surface provided in the central portion of the surface of the glass base material but also to the notched surface provided on the outer periphery of the optical element surface. Is also formed, and the cutout surface is a rough surface from the viewpoint of enhancing the adhesion of the resin layer.

特許文献2に記載された複合光学素子では、樹脂層が、ガラス基材の表面の中央部だけでなく外周部にも形成されており、ガラス基材の外周部に形成されている樹脂層の光学有効外部には、外径側に向けて次第に薄くなる傾斜部分が形成されている。 In the composite optical element described in Patent Document 2, the resin layer is formed not only on the central portion of the surface of the glass base material but also on the outer peripheral portion, and the resin layer formed on the outer peripheral portion of the glass base material. An inclined portion that gradually becomes thinner toward the outer diameter side is formed on the optically effective outside.

日本国特開2008−299148号公報Japanese Patent Application Laid-Open No. 2008-299148 日本国特開2013−254200号公報Japanese Patent Application Laid-Open No. 2013-254200

上記の複合光学素子の製造方法において、樹脂組成物はガラス基材の表面の中央部から円状に均一に広げられることが望ましいが、樹脂組成物の広がりが不均一となる場合がある。例えば、特許文献1に記載された複合光学素子では、樹脂層が形成される光学素子面の外周に設けられている切り欠き面が粗面とされており、ガラス基材の表面の樹脂組成物に対する濡れ性が光学素子面と切り欠き面とで相違し、この濡れ性の変化に影響されて樹脂組成物の広がりが不均一となる場合がある。樹脂組成物の広がりが不均一であると、ガラス基材の表面の同一円周上で樹脂層によって覆われている部分と樹脂層によって覆われていない部分とが生じ、外観不良となる虞があり、またゴーストが発生する虞もある。 In the above method for manufacturing a composite optical element, it is desirable that the resin composition is uniformly spread in a circular shape from the central portion of the surface of the glass base material, but the spread of the resin composition may be non-uniform. For example, in the composite optical element described in Patent Document 1, the notched surface provided on the outer periphery of the optical element surface on which the resin layer is formed is a rough surface, and the resin composition on the surface of the glass base material. The wettability of the resin composition may differ between the optical element surface and the notched surface, and the spread of the resin composition may become non-uniform due to the influence of this change in wettability. If the spread of the resin composition is not uniform, a portion covered by the resin layer and a portion not covered by the resin layer may occur on the same circumference of the surface of the glass substrate, resulting in a poor appearance. Yes, and there is a risk of ghosting.

樹脂組成物の不均一な広がりに対し、特許文献2に記載された複合光学素子では、樹脂層の光学有効外部に、外径側に向けて次第に薄くなる傾斜部分が形成されている。樹脂層の傾斜部分を成形するガラス基材の表面と成形型の成形面との間の成形空間(以下、傾斜部分成形空間という)は外径側に向けて次第に狭められ、外径側に向けて次第に狭まる空間形状に起因して、樹脂組成物の傾斜部分成形空間における外径側に向けた流動抵抗は円周方向の流動抵抗に比べて高くなる。このため、ガラス基材の表面に沿って外径側に向けて押し広げられる樹脂組成物が傾斜部分成形空間に達すると、樹脂組成物は傾斜部分成形空間を円周方向に流動する。この結果、傾斜部分成形空間が樹脂組成物によって満たされ、樹脂組成物の不均一な広がりが抑制される。 With respect to the non-uniform spread of the resin composition, in the composite optical element described in Patent Document 2, an inclined portion gradually thinning toward the outer diameter side is formed on the optically effective outside of the resin layer. The molding space between the surface of the glass base material for molding the inclined portion of the resin layer and the molding surface of the molding mold (hereinafter referred to as the inclined portion molding space) is gradually narrowed toward the outer diameter side and toward the outer diameter side. Due to the gradually narrowing space shape, the flow resistance toward the outer diameter side in the inclined partial molding space of the resin composition becomes higher than the flow resistance in the circumferential direction. Therefore, when the resin composition spread toward the outer diameter side along the surface of the glass base material reaches the inclined partial molding space, the resin composition flows in the inclined partial molding space in the circumferential direction. As a result, the inclined partial molding space is filled with the resin composition, and the non-uniform spread of the resin composition is suppressed.

しかし、樹脂組成物の外径側に向けた流動抵抗と円周方向の流動抵抗との差を利用して傾斜部分成形空間に樹脂組成物を充填するには、外径側に向けた流動抵抗と円周方向の流動抵抗との間に比較的大きな差を生じさせる必要がある。このため、相応の粘度が樹脂組成物に求められるが、粘度が高くなる程に樹脂組成物をガラス基材の表面に沿って押し広げるのに時間を要し、製造効率が低下する。また、樹脂組成物を押し広げる時間を短縮しようとすると成形型の成形面の僅かな濡れ性の変化によっても樹脂組成物に気泡を噛み込む虞がある。 However, in order to fill the inclined partial molding space with the resin composition by utilizing the difference between the flow resistance toward the outer diameter side of the resin composition and the flow resistance in the circumferential direction, the flow resistance toward the outer diameter side is used. It is necessary to make a relatively large difference between the flow resistance in the circumferential direction and the flow resistance in the circumferential direction. Therefore, a suitable viscosity is required for the resin composition, but as the viscosity increases, it takes time to spread the resin composition along the surface of the glass base material, and the production efficiency decreases. Further, if it is attempted to shorten the time for spreading the resin composition, there is a possibility that air bubbles may be caught in the resin composition even by a slight change in the wettability of the molding surface of the molding die.

本発明は、上述した事情に鑑みなされたものであり、ガラス基材の表面上で均一に広がった樹脂層を備え、製造効率に優れる複合光学素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite optical element having a resin layer uniformly spread on the surface of a glass substrate and having excellent manufacturing efficiency.

本発明の一態様の複合光学素子は、光学面及び上記光学面の外周に設けられているフランジ面を有するガラス基材と、上記光学面及び上記フランジ面の上に形成されている樹脂層と、を備え、上記樹脂層の前記光学面及び前記フランジ面側とは反対側の表面は露出しており、上記樹脂層は、上記フランジ面に重なるフランジ面領域に、外周に向けて次第に厚くなり且つ露出した少なくとも一つの環状凸部を有し、上記フランジ面は平坦面であり、上記樹脂層の上記フランジ面領域において、最も上記光学面側に位置する上記環状凸部の表面の内径側エッジから内径側に広がっている部分の厚みは均一であり、光軸を含む断面において、上記内径側エッジにおける接線と上記フランジ面とのなす角度が60°以上90°以下であり、上記フランジ面の算術平均粗さRaは0.3μm以上2.0μm以下である。 The composite optical element of one aspect of the present invention includes a glass base material having an optical surface and a flange surface provided on the outer periphery of the optical surface, and a resin layer formed on the optical surface and the flange surface. , The optical surface of the resin layer and the surface opposite to the flange surface side are exposed, and the resin layer gradually becomes thicker toward the outer periphery in the flange surface region overlapping the flange surface. Moreover, it has at least one exposed annular convex portion, the flange surface is a flat surface, and the inner diameter side edge of the surface of the annular convex portion located closest to the optical surface side in the flange surface region of the resin layer. The thickness of the portion extending from the inner diameter side to the inner diameter side is uniform, and the angle formed by the tangent line at the inner diameter side edge and the flange surface is 60 ° or more and 90 ° or less in the cross section including the optical axis. The arithmetic average roughness Ra is 0.3 μm or more and 2.0 μm or less.

本発明によれば、ガラス基材の表面上で均一に広がった樹脂層を備え、製造効率に優れる複合光学素子を提供することができる。 According to the present invention, it is possible to provide a composite optical element having a resin layer uniformly spread on the surface of a glass base material and having excellent manufacturing efficiency.

本発明の実施形態を説明するための、複合光学素子の一例の断面図である。It is sectional drawing of an example of the composite optical element for demonstrating the embodiment of this invention. 図1の破線円IIで囲まれた部分の拡大図である。It is an enlarged view of the part surrounded by the broken line circle II of FIG. 図1の複合光学素子の変形例の要部を拡大して示す断面図である。It is sectional drawing which shows the main part of the modification of the composite optical element of FIG. 1 in an enlarged manner. 図1の複合光学素子の製造に用いられる成形型の断面図である。It is sectional drawing of the molding mold used for manufacturing the composite optical element of FIG. 図4の破線円Vで囲まれた部分の拡大図である。It is an enlarged view of the part surrounded by the broken line circle V of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図1の複合光学素子の製造過程における硬化性樹脂組成物の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the curable resin composition in the manufacturing process of the composite optical element of FIG. 図4の成形型の変形例の断面図である。It is sectional drawing of the modification of the molding die of FIG.

図1及び図2は、本発明の実施形態を説明するための、複合光学素子の一例を示す。 1 and 2 show an example of a composite optical element for explaining an embodiment of the present invention.

図1及び図2に示す複合光学素子1は、ガラス基材2と、ガラス基材2の一方の表面に重なる樹脂層3とを備える。 The composite optical element 1 shown in FIGS. 1 and 2 includes a glass base material 2 and a resin layer 3 that overlaps one surface of the glass base material 2.

樹脂層3が重なるガラス基材2の一方の表面は、円形状の光学面4と、光学面4の外周に設けられているフランジ面5とを有する。光学面4は、図示の例では凹球面状に形成されているが、凹球面状に限定されず、平坦面状に形成されてもよいし、凸球面状に形成されてもよい。 One surface of the glass base material 2 on which the resin layer 3 overlaps has a circular optical surface 4 and a flange surface 5 provided on the outer periphery of the optical surface 4. Although the optical surface 4 is formed in a concave spherical shape in the illustrated example, the optical surface 4 is not limited to the concave spherical surface shape, and may be formed in a flat surface shape or a convex spherical surface shape.

樹脂層3は、光学面4と同心の円形状に形成されており、光学面4に重なる光学面領域6と、フランジ面5に重なるフランジ面領域7とを有し、光学面4及びフランジ面5の上に形成されている。なお、フランジ面領域7はフランジ面5の全体に重なっている必要はなく、図示の例では、フランジ面領域7の外縁は、フランジ面5の面内に配置されている。 The resin layer 3 is formed in a circular shape concentric with the optical surface 4, has an optical surface region 6 overlapping the optical surface 4, and a flange surface region 7 overlapping the flange surface 5, and has the optical surface 4 and the flange surface. It is formed on top of 5. The flange surface region 7 does not have to overlap the entire flange surface 5, and in the illustrated example, the outer edge of the flange surface region 7 is arranged in the surface of the flange surface 5.

フランジ面5の面内に配置されている樹脂層3のフランジ面領域7の外縁がガラス基材2の他方の表面側から視認されることを阻止し、また使用時におけるフレア及びゴーストの発生を抑制するため、本例では、フランジ面5は粗面化されており、フランジ面5の表面粗さは光学面4の表面粗さよりも大きくなっている。フランジ面5を粗面化する方法としては、フランジ面5を粗い研削砥石を用いて研削することによってフランジ面5を粗面化する方法、粗面化した成形型を用いてフランジ面5を成形することによってフランジ面5を粗面化する方法、及びフランジ面5のみ露出させるマスキングをレンズに施した上でサンドブラストを行うことによってフランジ面5を粗面化する方法を例示することができる。樹脂層3の外縁を遮蔽し、またフレア及びゴーストの発生を抑制する観点では、フランジ面5の面粗さは、算術平均粗さRaで0.3μm以上が好ましい。 It prevents the outer edge of the flange surface region 7 of the resin layer 3 arranged in the surface of the flange surface 5 from being visually recognized from the other surface side of the glass base material 2, and also prevents flare and ghost from occurring during use. In this example, the flange surface 5 is roughened in order to suppress the surface roughness, and the surface roughness of the flange surface 5 is larger than the surface roughness of the optical surface 4. As a method of roughening the flange surface 5, a method of roughening the flange surface 5 by grinding the flange surface 5 with a coarse grinding wheel, and a method of molding the flange surface 5 using a roughened molding die. By doing so, a method of roughening the flange surface 5 and a method of roughening the flange surface 5 by performing sandblasting after masking the lens to expose only the flange surface 5 can be exemplified. From the viewpoint of shielding the outer edge of the resin layer 3 and suppressing the occurrence of flare and ghost, the surface roughness of the flange surface 5 is preferably 0.3 μm or more in arithmetic average roughness Ra.

図2に示すように、樹脂層3のフランジ面領域7には、光軸x(図1参照)を中心とする環状凸部8が設けられている。環状凸部8は、外周に向けて次第に厚くなるように形成されており、光軸xを含む断面において、環状凸部8の表面の内径側エッジ8eにおける接線t1とフランジ面5とのなす角度θ1が60°以上90°以下とされている。なお、図1及び図2に示す例では、一つの環状凸部8がフランジ面領域7に設けられているが、図3に示す例のように、複数の環状凸部8がフランジ面領域7に同心円状に設けられていてもよい。 As shown in FIG. 2, the flange surface region 7 of the resin layer 3 is provided with an annular convex portion 8 centered on the optical axis x (see FIG. 1). The annular convex portion 8 is formed so as to gradually become thicker toward the outer circumference, and the angle formed by the tangent line t1 and the flange surface 5 at the inner diameter side edge 8e of the surface of the annular convex portion 8 in the cross section including the optical axis x. θ1 is 60 ° or more and 90 ° or less. In the examples shown in FIGS. 1 and 2, one annular convex portion 8 is provided in the flange surface region 7, but as in the example shown in FIG. 3, a plurality of annular convex portions 8 are provided in the flange surface region 7. May be provided concentrically with each other.

図4及び図5は、複合光学素子1の製造に用いられる成形型を示す。 4 and 5 show molding dies used in the manufacture of the composite optical element 1.

複合光学素子1の製造方法は、ガラス基材2の光学面4と成形型10の成形面11との間に硬化性樹脂組成物Rを挟み込むステップと、光学面4と成形面11との間に挟み込んだ硬化性樹脂組成物Rをガラス基材2の光学面4及びフランジ面5に沿って外径側に向けて押し広げるステップと、光学面4及びフランジ面5に沿って押し広げられた硬化性樹脂組成物Rを硬化させて樹脂層3を形成するステップと、を備える。 The method for manufacturing the composite optical element 1 is a step of sandwiching the curable resin composition R between the optical surface 4 of the glass base material 2 and the molding surface 11 of the molding die 10 and between the optical surface 4 and the molding surface 11. The curable resin composition R sandwiched between the two was spread along the optical surface 4 and the flange surface 5 of the glass substrate 2 toward the outer diameter side, and the curable resin composition R was spread along the optical surface 4 and the flange surface 5. A step of curing the curable resin composition R to form the resin layer 3 is provided.

成形型10の成形面11は、ガラス基材2の光学面4に対向して配置される光学面領域12と、フランジ面5に対向して配置されるフランジ面領域13とを有する。光学面領域12は、図示の例では凸球面状に形成されているが、凸球面状に限定されるものではない。硬化性樹脂組成物Rの硬化物である樹脂層3のフランジ面領域7には、上記のとおり外周に向けて次第に厚くなる環状凸部8(図2参照)が形成され、硬化性樹脂組成物Rを成形する成形面11のフランジ面領域13には、樹脂層3の環状凸部8に対応して、外周に向けて次第に深くなる環状凹部14が設けられており、環状凹部14の表面の内径側エッジ14eにおける接線t2とフランジ面5とのなす角度θ2は60°以上90°以下とされている。 The molding surface 11 of the molding die 10 has an optical surface region 12 arranged to face the optical surface 4 of the glass base material 2 and a flange surface region 13 arranged to face the flange surface 5. The optical surface region 12 is formed in a convex spherical shape in the illustrated example, but is not limited to the convex spherical shape. As described above, an annular convex portion 8 (see FIG. 2) that gradually becomes thicker toward the outer periphery is formed in the flange surface region 7 of the resin layer 3 that is a cured product of the curable resin composition R, and the curable resin composition. The flange surface region 13 of the molding surface 11 for molding R is provided with an annular recess 14 that gradually becomes deeper toward the outer periphery corresponding to the annular convex portion 8 of the resin layer 3, and is provided on the surface of the annular recess 14. The angle θ2 formed by the tangent line t2 and the flange surface 5 on the inner diameter side edge 14e is 60 ° or more and 90 ° or less.

図6A及び図6Bは、ガラス基材2のフランジ面5に沿って外径側に向けて押し広げられる過程の硬化性樹脂組成物Rの挙動を模式的に示し、図6Aは、角度θ2が相対的に小さい場合の硬化性樹脂組成物Rの挙動を示し、図6Bは、角度θ2が相対的に大きい場合の硬化性樹脂組成物Rの挙動を示す。 6A and 6B schematically show the behavior of the curable resin composition R in the process of being spread toward the outer diameter side along the flange surface 5 of the glass substrate 2. FIG. 6A shows the behavior of the curable resin composition R at an angle θ2. The behavior of the curable resin composition R when it is relatively small is shown, and FIG. 6B shows the behavior of the curable resin composition R when the angle θ2 is relatively large.

硬化性樹脂組成物Rがフランジ面5に沿って外径側に向けて押し広げられる過程において、硬化性樹脂組成物Rは成形面11のフランジ面領域13に濡れ広がるが、硬化性樹脂組成物Rの成形面11上での縁が環状凹部14の表面の内径側エッジ14eに達すると、内径側エッジ14eにて硬化性樹脂組成物Rの濡れ広がりが一旦堰き止められる。 In the process in which the curable resin composition R is spread toward the outer diameter side along the flange surface 5, the curable resin composition R wets and spreads over the flange surface region 13 of the molding surface 11, but the curable resin composition When the edge of R on the molding surface 11 reaches the inner diameter side edge 14e of the surface of the annular recess 14, the wet spread of the curable resin composition R is temporarily blocked by the inner diameter side edge 14e.

硬化性樹脂組成物Rが内径側エッジ14eを超えて環状凹部14の表面に濡れ広がる際の、硬化性樹脂組成物Rのフランジ面5に沿った変位量Δrに対する硬化性樹脂組成物Rの環状凹部14の表面に沿った変位量Δhを検討すると、角度θ2が大きいほど変位量Δhは大きくなる。すなわち、角度θ2が大きいほど、環状凹部14の表面に沿った硬化性樹脂組成物Rの濡れ広がりが抑制される。 When the curable resin composition R extends beyond the inner diameter side edge 14e to the surface of the annular recess 14, the annular shape of the curable resin composition R with respect to the displacement amount Δr along the flange surface 5 of the curable resin composition R. Examining the displacement amount Δh along the surface of the recess 14, the larger the angle θ2, the larger the displacement amount Δh. That is, the larger the angle θ2, the more the wetting spread of the curable resin composition R along the surface of the annular recess 14 is suppressed.

このように環状凹部14の表面に沿った硬化性樹脂組成物Rの濡れ広がりが抑制されることにより、フランジ面5に沿った硬化性樹脂組成物Rの局所的な広がりが抑制され、硬化性樹脂組成物Rの広がりが円状に均一化される。環状凹部14の表面に沿った硬化性樹脂組成物Rの濡れ広がりは、硬化性樹脂組成物Rの表面張力に関連することから、硬化性樹脂組成物Rの粘性にかかわらず、ガラス基材2の光学面4及びフランジ面5上で均一に広がった樹脂層3を効率よく形成することが可能となる。 By suppressing the wet spread of the curable resin composition R along the surface of the annular recess 14 in this way, the local spread of the curable resin composition R along the flange surface 5 is suppressed, and the curability is curable. The spread of the resin composition R is made uniform in a circular shape. Since the wet spread of the curable resin composition R along the surface of the annular recess 14 is related to the surface tension of the curable resin composition R, the glass base material 2 is irrespective of the viscosity of the curable resin composition R. It is possible to efficiently form the resin layer 3 uniformly spread on the optical surface 4 and the flange surface 5.

そして、環状凹部14の表面の内径側エッジ14eにおける接線t2とフランジ面5とのなす角度θ2を60°以上とすることにより、フランジ面5に沿った硬化性樹脂組成物Rの局所的な広がりを十分に抑制でき、ガラス基材2の光学面4及びフランジ面5上で円状に均一に広がった樹脂層3を効率よく形成することができる。一方、角度θ2が90°より大きいと、樹脂層3の環状凸部8に所謂アンダーカットが形成され、成形型10の取り外しが困難となる。このため、角度θ2、及び環状凹部14によって成形される樹脂層3の環状凸部8の表面の内径側エッジ8eにおける接線t1とフランジ面5とのなす角度であって角度θ2に対応する角度θ1は60°以上90°以下とされている。 Then, by setting the angle θ2 formed by the tangent line t2 and the flange surface 5 at the inner diameter side edge 14e of the surface of the annular recess 14 to 60 ° or more, the curable resin composition R spreads locally along the flange surface 5. Can be sufficiently suppressed, and the resin layer 3 uniformly spread in a circle on the optical surface 4 and the flange surface 5 of the glass base material 2 can be efficiently formed. On the other hand, if the angle θ2 is larger than 90 °, a so-called undercut is formed in the annular convex portion 8 of the resin layer 3, making it difficult to remove the molding die 10. Therefore, the angle θ1 formed by the tangent line t1 and the flange surface 5 at the inner diameter side edge 8e of the surface of the annular convex portion 8 of the resin layer 3 formed by the angle θ2 and the annular concave portion 14 and corresponding to the angle θ2. Is 60 ° or more and 90 ° or less.

図7A及び図7B、並びに図8A及び図8Bは、ガラス基材2のフランジ面5に沿って外径側に向けて押し広げられる過程の硬化性樹脂組成物Rの挙動を模式的に示し、図7Aは、成形型10の環状凹部14の表面の内径側エッジ14eとガラス基材2のフランジ面5との間隔Dが相対的に大きい場合の硬化性樹脂組成物Rの挙動を示し、図7Bは、間隔Dが相対的に小さい場合の硬化性樹脂組成物Rの挙動を示す。なお、間隔Dはフランジ面5の法線方向の距離である。また、図8Aは、フランジ面5の面粗さが相対的に大きい場合の硬化性樹脂組成物Rの挙動を示し、図8Bは、フランジ面5の面粗さが相対的に小さい場合の硬化性樹脂組成物Rの挙動を示す。 7A and 7B, and 8A and 8B, schematically show the behavior of the curable resin composition R in the process of being spread toward the outer diameter side along the flange surface 5 of the glass substrate 2. FIG. 7A shows the behavior of the curable resin composition R when the distance D between the inner diameter side edge 14e of the surface of the annular recess 14 of the molding die 10 and the flange surface 5 of the glass base material 2 is relatively large. Reference numeral 7B shows the behavior of the curable resin composition R when the interval D is relatively small. The interval D is the distance of the flange surface 5 in the normal direction. Further, FIG. 8A shows the behavior of the curable resin composition R when the surface roughness of the flange surface 5 is relatively large, and FIG. 8B shows the curing when the surface roughness of the flange surface 5 is relatively small. The behavior of the sex resin composition R is shown.

内径側エッジ14eにて堰き止められている硬化性樹脂組成物Rの液面の内径側エッジ14eにおける接線t3と内径側エッジ14eを通るフランジ面5の法線nとのなす角度を濡れ広がり角βとして、硬化性樹脂組成物Rを円状に均一に広げる観点では、濡れ広がり角βを小さくすることが好ましい。 The angle formed by the tangent line t3 at the inner diameter side edge 14e of the liquid surface of the curable resin composition R blocked by the inner diameter side edge 14e and the normal line n of the flange surface 5 passing through the inner diameter side edge 14e is the wet spread angle. As β, it is preferable to reduce the wetting spread angle β from the viewpoint of uniformly spreading the curable resin composition R in a circular shape.

図7A及び図7Bに示すとおり、間隔Dが小さいほど濡れ広がり角βは小さくなる。好ましくは、間隔D、及び環状凹部14によって成形される樹脂層3の環状凸部8の表面の内径側エッジ8eにおける厚みであって間隔Dに対応する厚みT(図2参照)は0.5mm以下である。 As shown in FIGS. 7A and 7B, the smaller the interval D, the smaller the wetting spread angle β. Preferably, the thickness T (see FIG. 2) of the inner diameter side edge 8e of the surface of the annular convex portion 8 of the resin layer 3 formed by the interval D and the annular recess 14 and corresponding to the interval D is 0.5 mm. It is as follows.

フランジ面5は、樹脂層3の外縁を遮蔽し、またフレア及びゴーストの発生を抑制する観点から粗面とされているが、フランジ面5の面粗さが大きいほど硬化性樹脂組成物Rがフランジ面5に濡れ広がりやすく、図8A及び図8Bに示すとおり、フランジ面5の面粗さが小さいほど濡れ広がり角βは小さくなる。好ましくは、フランジ面5の面粗さは、算術平均粗さRaで2.0μm以下である。 The flange surface 5 is a rough surface from the viewpoint of shielding the outer edge of the resin layer 3 and suppressing the generation of flare and ghost. However, the larger the surface roughness of the flange surface 5, the more the curable resin composition R becomes. It easily spreads on the flange surface 5, and as shown in FIGS. 8A and 8B, the smaller the surface roughness of the flange surface 5, the smaller the wet spread angle β. Preferably, the surface roughness of the flange surface 5 is 2.0 μm or less in arithmetic average roughness Ra.

また、濡れ広がり角βは、硬化性樹脂組成物Rの表面張力に関連し、表面張力が大きいほど濡れ広がり角βは小さくなる。表面張力が比較的大きい硬化性樹脂組成物としては、重合性芳香族含有モノマーを含む硬化性樹脂組成物を例示することができ、硬化性樹脂組成物の全固形分に対して40質量%以上の重合性芳香族含有モノマーを含有することが好ましい。 Further, the wet spread angle β is related to the surface tension of the curable resin composition R, and the larger the surface tension, the smaller the wet spread angle β. Examples of the curable resin composition having a relatively large surface tension include a curable resin composition containing a polymerizable aromatic-containing monomer, which is 40% by mass or more based on the total solid content of the curable resin composition. It is preferable to contain the polymerizable aromatic-containing monomer of.

重合性芳香族含有モノマーは、その構造中に芳香族基を含み、かつ(メタ)アクリロイル基、ビニル基等の重合性不飽和二重結合を含む化合物である。芳香族基としては、ベンゼン環、ナフタレン環、ビフェニル環、複素環等を例示することがで、複素環としては、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環等を例示することができる。重合性芳香族含有モノマーとしては、例えば、特開2012−140579号公報、特開2014−198819号公報、特開2015−178547号公報、特開2015−193809号公報、特開2012−082386号公報に記載の重合性芳香族含有モノマーを用いることができる。 The polymerizable aromatic-containing monomer is a compound containing an aromatic group in its structure and containing a polymerizable unsaturated double bond such as a (meth) acryloyl group or a vinyl group. Examples of the aromatic group include a benzene ring, a naphthalene ring, a biphenyl ring, a heterocycle, and the like, and examples of the heterocycle include a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, and the like. Examples of the polymerizable aromatic-containing monomer include JP2012-140579, JP2014-198819, JP2015-178547, JP2015-193809, and JP2012-082386. The polymerizable aromatic-containing monomer described in 1) can be used.

なお、図9に示すように、複数の環状凹部14が成形面11のフランジ面領域13に同心円状に設けられていてもよく、この場合、図3に示したように、複数の環状凸部8が樹脂層3のフランジ面領域7に同心円状に設けられる。複数の環状凹部14が設けられることにより、成形面11のフランジ面領域13に濡れ広がる硬化性樹脂組成物Rの濡れ広がりが環状凹部14それぞれの内径側エッジ14eにて都度堰き止められので、硬化性樹脂組成物Rの広がりをさらに均一化できる。 As shown in FIG. 9, a plurality of annular recesses 14 may be provided concentrically in the flange surface region 13 of the molding surface 11. In this case, as shown in FIG. 3, a plurality of annular protrusions may be provided. 8 are concentrically provided in the flange surface region 7 of the resin layer 3. By providing the plurality of annular recesses 14, the wet spread of the curable resin composition R that wets and spreads over the flange surface region 13 of the molded surface 11 is blocked by the inner diameter side edges 14e of each of the annular recesses 14 and thus cured. The spread of the sex resin composition R can be further made uniform.

以下、実験例について説明する。 An experimental example will be described below.

<ガラス基材>
図1示したとおり、光学面4及び光学面4の外周に設けられているフランジ面5を有するガラス基材を用意した。光学面4は、外径36mm且つ曲率半径20mmの凹球面状に形成した。また、フランジ面5には砥石を用いた研削加工を施し、研削されたフランジ面5の算術平均粗さRaを評価した。
<Glass substrate>
As shown in FIG. 1, a glass base material having an optical surface 4 and a flange surface 5 provided on the outer periphery of the optical surface 4 was prepared. The optical surface 4 is formed in a concave spherical shape having an outer diameter of 36 mm and a radius of curvature of 20 mm. Further, the flange surface 5 was subjected to a grinding process using a grindstone, and the arithmetic average roughness Ra of the ground flange surface 5 was evaluated.

フランジ面5の算術平均粗さRaは、ガラス基材の径方向におけるフランジ面5の形状プロファイルを(x、f(x))として、下式によって定義した。三次元測定機(商品名:UA3P パナソニック社製)を用い、Δx=1μmとして、ガラス基材の径方向にフランジ面5の形状を1mm測定し、測定された形状プロファイルを用いて評価した。Arithmetic average roughness Ra of the flange surface 5, the shape profile of the flange surface 5 in the radial direction of the glass substrate as a (x i, f (x i )), defined by the following equation. CMM: (trade name UA3P Panasonic Corporation), as [Delta] x i = 1 [mu] m, the shape of the flange surface 5 in the radial direction of the glass substrate was 1mm measured and evaluated using the measured shape profile.

Ra=∫|f(x)|dx=Σ|f(x)|Δx・・・(1)
ここで、式(1)中、Δx=xi+1−xである。
Ra = ∫ | f (x) | dx = Σ | f (x i ) | Δx i ... (1)
Here, in the equation (1), Δx i = x i + 1 −x i .

<硬化性樹脂組成物の調製>
重合性芳香族非含有ポリマー(ベースポリマー)としてトリシクロデカンジメタノールジアクリレート(商品名:A−DCP 新中村化学工業社製)を、また重合性芳香族含有モノマーとしてO−フェニルフェニルアクリレート(商品名:PhOEA 東京化成工業社製)又はアクリル酸ベンジル(商品名:BnA アルドリッチ社製)を、光ラジカル重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(商品名:Irg184 BASF社製)を、表1に示す組成比率に従って混合し、全固形分に対する重合性芳香族含有モノマーの含有量が互いに異なる硬化性樹脂組成物1〜硬化性樹脂組成物4を調整した。
<Preparation of curable resin composition>
Tricyclodecanedimethanol diacrylate (trade name: A-DCP manufactured by Shin-Nakamura Chemical Co., Ltd.) as a polymerizable aromatic-free polymer (base polymer), and O-phenylphenyl acrylate (commodity) as a polymerizable aromatic-containing monomer. Name: PhOEA manufactured by Tokyo Kasei Kogyo Co., Ltd.) or benzyl acrylate (trade name: manufactured by BnA Aldrich), and 1-hydroxycyclohexylphenylketone (trade name: manufactured by Irg184 BASF) as a photoradical polymerization initiator are shown in Table 1. Mixing was performed according to the composition ratio shown to prepare curable resin compositions 1 to curable resin compositions 4 having different contents of the polymerizable aromatic-containing monomer with respect to the total solid content.

Figure 0006775026
Figure 0006775026

Figure 0006775026
Figure 0006775026

Figure 0006775026
Figure 0006775026

Figure 0006775026
Figure 0006775026

<硬化性樹脂組成物の成形>
ガラス基材の光学面4と、ガラス基材のフランジ面5に、樹脂層3との密着を強くするためのシランカップリング処理を施した。そして、シランカップリング処理を施したガラス基材の光学面4の中央部に0.66mlの硬化性樹脂組成物を配置し、成形型を用いて硬化性樹脂組成物を成形した。成形型としては、成形面11のフランジ面領域13に一つの環状凹部14が設けられている図4及び図5に示した成形型、又は成形面11のフランジ面領域13に二つの環状凹部14が設けられている図9に示した成形型を用い、環状凹部14の表面の内径側エッジ14eにおける接線t2とフランジ面5とのなす角度θ2(図5参照)は実験例毎に設定した。なお、成形面11は、全ての実験例の成形型に共通して外径37mm且つ曲率半径21mmの凸球面状に形成した。そして、成形型の環状凹部14の表面の内径側エッジ14eとガラス基材のフランジ面5との間隔D(図7A及び図7B参照)が実験例毎に設定された値となるまでガラス基材と成形型とを0.1mm/sの速度で相対的に接近させ、硬化性樹脂組成物をガラス基材の光学面4及びフランジ面5に沿って外径側に向けて押し広げることにより、硬化性樹脂組成物を光学面4及びフランジ面5と成形面11との間に充填した。光学面4及びフランジ面5と成形面11との間に充填した硬化性樹脂組成物に対して、紫外線照射ランプから紫外光を照射することによって硬化性樹脂組成物を硬化させて樹脂層3を形成した。
<Molding of curable resin composition>
The optical surface 4 of the glass base material and the flange surface 5 of the glass base material were subjected to a silane coupling treatment to strengthen the adhesion with the resin layer 3. Then, 0.66 ml of a curable resin composition was placed in the central portion of the optical surface 4 of the glass substrate subjected to the silane coupling treatment, and the curable resin composition was molded using a molding die. As the molding die, the molding die shown in FIGS. 4 and 5 in which one annular recess 14 is provided in the flange surface region 13 of the molding surface 11, or two annular recesses 14 in the flange surface region 13 of the molding surface 11. The angle θ2 (see FIG. 5) formed by the tangent line t2 and the flange surface 5 at the inner diameter side edge 14e of the surface of the annular recess 14 was set for each experimental example by using the molding die shown in FIG. The molding surface 11 was formed in a convex spherical shape having an outer diameter of 37 mm and a radius of curvature of 21 mm, which is common to all the molding molds of the experimental examples. Then, until the distance D (see FIGS. 7A and 7B) between the inner diameter side edge 14e of the surface of the annular recess 14 of the molding die and the flange surface 5 of the glass base material becomes a value set for each experimental example, the glass base material is used. And the molding die are relatively close to each other at a speed of 0.1 mm / s, and the curable resin composition is spread toward the outer diameter side along the optical surface 4 and the flange surface 5 of the glass substrate. The curable resin composition was filled between the optical surface 4 and the flange surface 5 and the molding surface 11. The curable resin composition filled between the optical surface 4 and the flange surface 5 and the molding surface 11 is irradiated with ultraviolet light from an ultraviolet irradiation lamp to cure the curable resin composition to form a resin layer 3. Formed.

<充填性評価>
上記の硬化性樹脂組成物の成形を実験例毎に10回行い、最も外側に位置する環状凹部14の内側において、ガラス基材の表面と成形型の成形面11との間に硬化性樹脂組成物が空隙なく充填されている確率(充填成功率)を評価した。評価結果を、実験例毎の角度θ2、間隔D、表面粗さ(算術平均粗さ)Ra、環状凹部14の数、用いた硬化性樹脂組成物の種類と併せて、表2に示す。
<Evaluation of filling property>
The above curable resin composition was molded 10 times for each experimental example, and inside the outermost annular recess 14, the curable resin composition was formed between the surface of the glass substrate and the molding surface 11 of the mold. The probability that the product was filled without voids (filling success rate) was evaluated. The evaluation results are shown in Table 2 together with the angle θ2, the interval D, the surface roughness (arithmetic mean roughness) Ra, the number of annular recesses 14, and the type of curable resin composition used for each experimental example.

Figure 0006775026
Figure 0006775026

成形型の環状凹部14の表面の内径側エッジ14eにおける接線t2とフランジ面5とのなす角度θ2が60°未満である実験例1〜実験例7では、充填成功率が40%以下であるのに対し、角度θ2が60°以上である実験例8〜実験例16では、充填成功率70%以上となった。このことから、角度θ2を60°以上とすることにより、フランジ面5に沿った硬化性樹脂組成物の局所的な広がりを十分に抑制でき、結果として、ガラス基材の光学面4及びフランジ面5上で円状に均一に広がった樹脂層を形成できることがわかる。 In Experimental Examples 1 to 7, the angle θ2 formed by the tangent line t2 and the flange surface 5 at the inner diameter side edge 14e of the surface of the annular recess 14 of the molding die is less than 60 °, and the filling success rate is 40% or less. On the other hand, in Experimental Examples 8 to 16 in which the angle θ2 was 60 ° or more, the filling success rate was 70% or more. From this, by setting the angle θ2 to 60 ° or more, the local spread of the curable resin composition along the flange surface 5 can be sufficiently suppressed, and as a result, the optical surface 4 and the flange surface of the glass substrate can be sufficiently suppressed. It can be seen that the resin layer that spreads uniformly in a circle can be formed on 5.

また、成形型の環状凹部14の表面の内径側エッジ14eとガラス基材のフランジ面5との間隔Dのみ異にする実験例2及び実験例3を比較すると、間隔Dが1000μmである実験例3では充填成功率が10%であるのに対し、間隔Dが500μmである実験例2では充填成功率が40%に向上している。このことから、硬化性樹脂組成物を円状に均一に広げる観点では、間隔Dは500μm以下(0.5mm以下)が好ましいことがわかる。特に、間隔Dが250μmである実験例10では充填成功率が100%となっており、間隔Dは250μm以下がより好ましいことがわかる。 Further, comparing Experimental Example 2 and Experimental Example 3 in which only the distance D between the inner diameter side edge 14e of the surface of the annular recess 14 of the molding die and the flange surface 5 of the glass base material is different, the experimental example in which the distance D is 1000 μm. In Experimental Example 2, the filling success rate is 10%, whereas in Experimental Example 2 where the interval D is 500 μm, the filling success rate is improved to 40%. From this, it can be seen that the interval D is preferably 500 μm or less (0.5 mm or less) from the viewpoint of uniformly spreading the curable resin composition in a circular shape. In particular, in Experimental Example 10 in which the interval D is 250 μm, the filling success rate is 100%, and it can be seen that the interval D is more preferably 250 μm or less.

また、フランジ面5の表面粗さRaのみ異にする実験例15及び実験例16を比較すると、フランジ面5の表面粗さRaが2.0μmより大きい2.08μmである実験例16では充填成功率が80%であるのに対し、フランジ面5の表面粗さRaが2.0μm以下の1.12μmである実験例15では充填成功率が90%に向上している。また、環状凹部14の数のみ異にする実験例12及び実験例15を比較すると、環状凹部14の数が1つである実験例15の充填成功率が90%であるのに対し、環状凹部14の数が2つである実験例12では充填成功率が100%に向上している。このことから、硬化性樹脂組成物を円状に均一に広げる観点では、フランジ面5の表面粗さRaは2.0μm以下が好ましく、環状凹部14は複数設けられることが好ましいことがわかる。 Comparing Experimental Example 15 and Experimental Example 16 in which only the surface roughness Ra of the flange surface 5 is different, filling was successful in Experimental Example 16 in which the surface roughness Ra of the flange surface 5 is 2.08 μm, which is larger than 2.0 μm. While the rate is 80%, in Experimental Example 15 in which the surface roughness Ra of the flange surface 5 is 2.0 μm or less and 1.12 μm, the filling success rate is improved to 90%. Further, when comparing Experimental Example 12 and Experimental Example 15 in which only the number of annular recesses 14 is different, the filling success rate of Experimental Example 15 in which the number of annular recesses 14 is one is 90%, whereas the annular recess is 90%. In Experimental Example 12, in which the number of 14 is 2, the filling success rate is improved to 100%. From this, it can be seen that the surface roughness Ra of the flange surface 5 is preferably 2.0 μm or less, and a plurality of annular recesses 14 are preferably provided from the viewpoint of uniformly spreading the curable resin composition in a circular shape.

また、硬化性樹脂組成物の種類のみ異にする実験例2、実験例5、実験例6、及び実験例7を比較すると、重合性芳香族含有モノマーを含有しない硬化性樹脂組成物1を用いた実験例5の重点成功率が20%であり、重合性芳香族含有モノマーの含有量が40質量%未満である硬化性樹脂組成物2を用いた実験例6の充填成功率が25%であるのに対し、重合性芳香族含有モノマーの含有量が40質量%以上である硬化性樹脂組成物3又は硬化性樹脂組成物4を用いた実験例2及び実験例7では充填成功率が40%に向上している。同様に、硬化性樹脂組成物の種類のみ異にする実験例9、実験例13、及び実験例14を比較しても、重合性芳香族含有モノマーの含有量が40質量%未満である硬化性樹脂組成物2を用いた実験例13の充填成功率が75%であるのに対し、重合性芳香族含有モノマーの含有量が40質量%以上である硬化性樹脂組成物3又は硬化性樹脂組成物4を用いた実験例9及び実験例14では充填成功率が90%に向上している。このことから、硬化性樹脂組成物を円状に均一に広げる観点では、硬化性樹脂組成物としては、表面張力が比較的大きい重合性芳香族含有モノマーを含む硬化性樹脂組成物が好適であり、全固形分に対する重合性芳香族含有モノマーの含有量は40質量%以上がより好ましいことがわかる。 Further, comparing Experimental Example 2, Experimental Example 5, Experimental Example 6, and Experimental Example 7 in which only the type of the curable resin composition is different, the curable resin composition 1 containing no polymerizable aromatic-containing monomer is used. The priority success rate of Experimental Example 5 was 20%, and the filling success rate of Experimental Example 6 using the curable resin composition 2 in which the content of the polymerizable aromatic-containing monomer was less than 40% by mass was 25%. On the other hand, in Experimental Example 2 and Experimental Example 7 using the curable resin composition 3 or the curable resin composition 4 in which the content of the polymerizable aromatic-containing monomer is 40% by mass or more, the filling success rate is 40. It has improved to%. Similarly, when comparing Experimental Example 9, Experimental Example 13, and Experimental Example 14 in which only the types of curable resin compositions are different, the content of the polymerizable aromatic-containing monomer is less than 40% by mass. The curable resin composition 3 or the curable resin composition in which the filling success rate of Experimental Example 13 using the resin composition 2 is 75%, while the content of the polymerizable aromatic-containing monomer is 40% by mass or more. In Experimental Example 9 and Experimental Example 14 using the object 4, the filling success rate is improved to 90%. From this, from the viewpoint of uniformly spreading the curable resin composition in a circular shape, a curable resin composition containing a polymerizable aromatic-containing monomer having a relatively large surface tension is preferable as the curable resin composition. It can be seen that the content of the polymerizable aromatic-containing monomer with respect to the total solid content is more preferably 40% by mass or more.

以上説明したとおり、本明細書に開示された複合光学素子は、光学面及び上記光学面の外周に設けられているフランジ面を有するガラス基材と、上記光学面及び上記フランジ面の上に形成されている樹脂層と、を備え、上記樹脂層は、上記フランジ面に重なるフランジ面領域に、外周に向けて次第に厚くなる少なくとも一つの環状凸部を有し、光軸を含む断面において、上記環状凸部表面の内径側エッジにおける接線と上記フランジ面とのなす角度が60°以上90°以下である。 As described above, the composite optical element disclosed in the present specification is formed on a glass base material having an optical surface and a flange surface provided on the outer periphery of the optical surface, and the optical surface and the flange surface. The resin layer comprises at least one annular convex portion that gradually becomes thicker toward the outer periphery in a flange surface region that overlaps the flange surface, and the above-mentioned resin layer is provided in a cross section including an optical axis. The angle formed by the tangent line at the inner diameter side edge of the surface of the annular convex portion and the flange surface is 60 ° or more and 90 ° or less.

また、本明細書に開示された複合光学素子は、上記環状凸部表面の内径側エッジにおける厚みが0.5mm以下である。 Further, the composite optical element disclosed in the present specification has a thickness of 0.5 mm or less at the inner diameter side edge of the surface of the annular convex portion.

また、本明細書に開示された複合光学素子は、上記フランジ面の表面粗さが、上記光学面の表面粗さよりも大きい。 Further, in the composite optical element disclosed in the present specification, the surface roughness of the flange surface is larger than the surface roughness of the optical surface.

また、本明細書に開示された複合光学素子は、上記フランジ面の算術平均粗さRaが0.3μm以上2.0μm以下である。 Further, in the composite optical element disclosed in the present specification, the arithmetic average roughness Ra of the flange surface is 0.3 μm or more and 2.0 μm or less.

また、本明細書に開示された複合光学素子は、上記樹脂層が、上記フランジ面領域に、複数の上記環状凸部を有する。 Further, in the composite optical element disclosed in the present specification, the resin layer has a plurality of the annular convex portions in the flange surface region.

また、本明細書に開示された複合光学素子は、上記樹脂層が、重合性芳香族含有モノマーを含む硬化性組成物の硬化物である。 Further, in the composite optical element disclosed in the present specification, the resin layer is a cured product of a curable composition containing a polymerizable aromatic-containing monomer.

また、本明細書に開示された複合光学素子は、上記硬化性組成物中の上記重合性芳香族含有モノマーの含有量が、上記硬化性組成物の全固形分に対して40質量%以上である。 Further, in the composite optical element disclosed in the present specification, the content of the polymerizable aromatic-containing monomer in the curable composition is 40% by mass or more based on the total solid content of the curable composition. is there.

本発明は、ガラス基材の表面に樹脂層が設けられてなる複合光学素子に用いることができる。 The present invention can be used for a composite optical element in which a resin layer is provided on the surface of a glass substrate.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。本出願は、2016年9月29日出願の日本特許出願(特願2016−191673)に基づくものであり、その内容はここに参照として取り込まれる。 The embodiments of the present invention have been described in detail above, but this is merely an example, and the present invention can be carried out in a mode in which various modifications are made without departing from the spirit thereof. This application is based on a Japanese patent application filed on September 29, 2016 (Japanese Patent Application No. 2016-191673), the contents of which are incorporated herein by reference.

1 複合光学素子
2 ガラス基材
3 樹脂層
4 ガラス基材の光学面
5 ガラス基材のフランジ面
6 樹脂層の光学面領域
7 樹脂層のフランジ面領域
8 環状凸部
8e 環状凸部表面の内径側エッジ
10 成形型
11 成形面
12 成形面の光学面領域
13 成形面のフランジ面領域
14 環状凹部
14e 環状凹部表面の内径側エッジ
D 間隔
n 法線
R 硬化性樹脂組成物
T 厚み
t1 接線
t2 接線
t3 接線
x 光軸
β 濡れ広がり角
Δh 変位量
Δr 変位量
θ1 角度
θ2 角度
1 Composite optical element 2 Glass base material 3 Resin layer 4 Optical surface of glass base material 5 Flange surface of glass base material 6 Optical surface area of resin layer 7 Flange surface area of resin layer 8 Cyclic convex portion 8e Inner diameter of annular convex portion surface Side edge 10 Molding mold 11 Molding surface 12 Optical surface area of molding surface 13 Flange surface area of molding surface 14 Annular recess 14e Inner diameter side edge of annular recess surface D Interval n Normal line R Curable resin composition T Thickness t1 tangent line t2 tangent line t3 tangent x optical axis β wet spread angle Δh displacement amount Δr displacement amount θ1 angle θ2 angle

Claims (6)

光学面及び前記光学面の外周に設けられているフランジ面を有するガラス基材と、
前記光学面及び前記フランジ面の上に形成されている樹脂層と、
を備え、
前記樹脂層の前記光学面及び前記フランジ面側とは反対側の表面は露出しており、
前記樹脂層は、前記フランジ面に重なるフランジ面領域に、外周に向けて次第に厚くなり且つ露出した少なくとも一つの環状凸部を有し、
前記フランジ面は平坦面であり、
前記樹脂層の前記フランジ面領域において、最も前記光学面側に位置する前記環状凸部の表面の内径側エッジから内径側に広がっている部分の厚みは均一であり、
光軸を含む断面において、前記内径側エッジにおける接線と前記フランジ面とのなす角度が60°以上90°以下であり、
前記フランジ面の算術平均粗さRaは0.3μm以上2.0μm以下である複合光学素子。
A glass base material having an optical surface and a flange surface provided on the outer periphery of the optical surface,
A resin layer formed on the optical surface and the flange surface, and
With
The surface of the resin layer opposite to the optical surface and the flange surface side is exposed.
The resin layer has at least one annular convex portion that is gradually thickened and exposed toward the outer periphery in a flange surface region that overlaps the flange surface.
The flange surface is a flat surface and
In the flange surface region of the resin layer, the thickness of the portion extending from the inner diameter side edge to the inner diameter side of the surface of the annular convex portion located most on the optical surface side is uniform.
In the cross section including the optical axis, the angle formed by the tangent line at the inner diameter side edge and the flange surface is 60 ° or more and 90 ° or less.
A composite optical element having an arithmetic mean roughness Ra of the flange surface of 0.3 μm or more and 2.0 μm or less.
請求項1記載の複合光学素子であって、
前記内径側エッジから内径側に広がっている部分の厚みは0.5mm以下である複合光学素子。
The composite optical element according to claim 1.
A composite optical element having a thickness of 0.5 mm or less at a portion extending from the inner diameter side edge to the inner diameter side .
請求項1又は2記載の複合光学素子であって、
前記フランジ面の表面粗さは、前記光学面の表面粗さよりも大きい複合光学素子。
The composite optical element according to claim 1 or 2.
A composite optical element in which the surface roughness of the flange surface is larger than the surface roughness of the optical surface.
請求項1から3のいずれか一項記載の複合光学素子であって、
前記樹脂層は、前記フランジ面領域に、複数の前記環状凸部を有する複合光学素子。
The composite optical element according to any one of claims 1 to 3.
The resin layer is a composite optical element having a plurality of the annular convex portions in the flange surface region.
請求項1から4のいずれか一項記載の複合光学素子であって、
前記樹脂層は、重合性芳香族含有モノマーを含む硬化性組成物の硬化物である複合光学素子。
The composite optical element according to any one of claims 1 to 4.
The resin layer is a composite optical element which is a cured product of a curable composition containing a polymerizable aromatic-containing monomer.
請求項5記載の複合光学素子であって、
前記硬化性組成物中の前記重合性芳香族含有モノマーの含有量は、前記硬化性組成物の全固形分に対して40質量%以上である複合光学素子。
The composite optical element according to claim 5.
A composite optical element in which the content of the polymerizable aromatic-containing monomer in the curable composition is 40% by mass or more with respect to the total solid content of the curable composition.
JP2018541900A 2016-09-29 2017-06-07 Composite optical element Active JP6775026B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016191673 2016-09-29
JP2016191673 2016-09-29
PCT/JP2017/021190 WO2018061331A1 (en) 2016-09-29 2017-06-07 Composite optical element

Publications (2)

Publication Number Publication Date
JPWO2018061331A1 JPWO2018061331A1 (en) 2019-07-04
JP6775026B2 true JP6775026B2 (en) 2020-10-28

Family

ID=61760504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541900A Active JP6775026B2 (en) 2016-09-29 2017-06-07 Composite optical element

Country Status (3)

Country Link
JP (1) JP6775026B2 (en)
CN (1) CN109863426A (en)
WO (1) WO2018061331A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11409083B2 (en) * 2019-01-31 2022-08-09 Canon Kabushiki Kaisha Composite optical element, optical apparatus and imaging apparatus
WO2023233797A1 (en) * 2022-05-31 2023-12-07 富士フイルム株式会社 Optical system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242334U (en) * 1988-09-14 1990-03-23
JP2606718Y2 (en) * 1993-12-29 2001-01-09 旭光学工業株式会社 Mold structure of compound aspherical lens
JPH0857976A (en) * 1994-08-19 1996-03-05 Olympus Optical Co Ltd Production of composite optical element
JPH0866972A (en) * 1994-08-30 1996-03-12 Olympus Optical Co Ltd Manufacture of composite type optic
JP4051994B2 (en) * 2002-04-23 2008-02-27 ソニー株式会社 Compound lens molding method and compound lens
JP2008299148A (en) * 2007-06-01 2008-12-11 Panasonic Corp Junction type optical element and manufacturing method therefor
JP2009204752A (en) * 2008-02-26 2009-09-10 Sanyo Electric Co Ltd Composite lens
JP2010169708A (en) * 2009-01-20 2010-08-05 Olympus Corp Composite optical element
EP2662205B1 (en) * 2012-05-11 2020-06-24 Canon Kabushiki Kaisha Laminated diffraction optical element and production method thereof
JP6411821B2 (en) * 2014-09-09 2018-10-24 オリンパス株式会社 Lens manufacturing apparatus and lens manufacturing method

Also Published As

Publication number Publication date
WO2018061331A1 (en) 2018-04-05
JPWO2018061331A1 (en) 2019-07-04
CN109863426A (en) 2019-06-07

Similar Documents

Publication Publication Date Title
TWI651551B (en) Anisotropic optical film
JP6775026B2 (en) Composite optical element
US20110164329A1 (en) Fresnel lens coating process
JP2010532268A5 (en)
TWI605928B (en) Imprinting photocurable resin composition, method for producing structure using the same and structure
TWI750313B (en) Method for manufacturing image display device
CN1142797A (en) Photochromic lenses and method for manufacturing
JP5834458B2 (en) Optical element manufacturing method and optical element
JP6238562B2 (en) Composite optical element and method for manufacturing the same
JP2005250469A (en) Lens, transmission type screen, and method for manufacturing lems
JP2010160474A (en) Diffractive optical element, laminated diffractive optical element, and its manufacturing method
JP2009280724A (en) Material composition for optical use, and optical element using the same
JP2008213210A (en) Transfer method and optical element manufactured thereby
JP2010169708A (en) Composite optical element
JPWO2020101028A5 (en)
JPWO2015046047A1 (en) Hard coat film and display element with surface member
TW201945449A (en) Light-shielding film and method for manufacturing light-shielding film
JP2009256462A (en) Optical material composition and optical element using the same
JP7204363B2 (en) Diffractive optical element, manufacturing method thereof, and optical apparatus
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP5926561B2 (en) Method for producing thermosetting composition
JP2013054096A (en) Method of manufacturing spectacle lens
JP2009249591A (en) Optical material composition and optical element using the same
JP5626630B2 (en) Material composition and optical element using the same
JP2012128319A (en) Laminated diffractive optical element and manufacturing method of laminated diffractive optical element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20190319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6775026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250