JP6774745B2 - Solid electrolytic capacitors and their manufacturing methods - Google Patents

Solid electrolytic capacitors and their manufacturing methods Download PDF

Info

Publication number
JP6774745B2
JP6774745B2 JP2015137474A JP2015137474A JP6774745B2 JP 6774745 B2 JP6774745 B2 JP 6774745B2 JP 2015137474 A JP2015137474 A JP 2015137474A JP 2015137474 A JP2015137474 A JP 2015137474A JP 6774745 B2 JP6774745 B2 JP 6774745B2
Authority
JP
Japan
Prior art keywords
anode lead
metal foil
anode
solid electrolytic
exterior resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015137474A
Other languages
Japanese (ja)
Other versions
JP2017022222A (en
Inventor
雄次 吉田
雄次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2015137474A priority Critical patent/JP6774745B2/en
Publication of JP2017022222A publication Critical patent/JP2017022222A/en
Application granted granted Critical
Publication of JP6774745B2 publication Critical patent/JP6774745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タンタル固体電解コンデンサの端子構造に関する。 The present invention relates to a terminal structure of a tantalum solid electrolytic capacitor.

固体電解コンデンサの大容量化に際しては数々の試みがなされている。すなわち、固体電解コンデンサ自体の大きさを変えることなく、陽極端子や陽極リードといった多孔質体以外の構成部材の配置や大きさを変更することで、静電容量増に直接寄与する多孔質体の体積を大きくする方法が種々提案されている。 Numerous attempts have been made to increase the capacity of solid electrolytic capacitors. That is, by changing the arrangement and size of components other than the porous body such as the anode terminal and the anode lead without changing the size of the solid electrolytic capacitor itself, the porous body directly contributes to the increase in capacitance. Various methods for increasing the volume have been proposed.

特許文献1には、陽極ワイヤの端部及び陰極引出し層の端部が露出するように、コンデンサ素子を覆いかぶせるモールディング部の両側部にメッキ層によって設けられた陽極端子と陰極端子を含む固体電解コンデンサが記載されている。 Patent Document 1 describes solid electrolysis including an anode terminal and a cathode terminal provided by plating layers on both sides of a molding portion covering a capacitor element so that the end of the anode wire and the end of the cathode extraction layer are exposed. Capacitors are listed.

特許文献2には、コンデンサ素子を上面に搭載した合成樹脂製シート片と、このシート片の上面においてコンデンサ素子を封止する合成樹脂製のパッケージ体のいずれか一方または両方の表面に、コンデンサ素子の陽極部に導通する陽極側電極膜と、陰極部に導通する陰極側端子電極膜とを形成したパッケージ型固体電解コンデンサの構造が記載されている。 Patent Document 2 describes a capacitor element on the surface of either or both of a synthetic resin sheet piece on which a capacitor element is mounted on the upper surface and a synthetic resin package body that seals the capacitor element on the upper surface of the sheet piece. The structure of a package-type solid electrolytic capacitor in which an anode-side electrode film conductive to the anode portion and a cathode-side terminal electrode film conducting to the cathode portion is described.

特開2009−302499号公報JP-A-2009-302499 特開2001−052961号公報Japanese Unexamined Patent Publication No. 2001-052961

特許文献1に記載の固体電解コンデンサは、モールディング部の両側面にメッキによって陰極端子及び陽極端子を設けることで、別のリードフレームなしに陰極端子を設けることができるとあるが、例えば、タンタルからなる陽極ワイヤ上にメッキを施すことは極めて困難であり、実現したとしても、陽極ワイヤの断面積の範囲でのみの接続となるために電気的な接続の信頼性が低く、製造コストも上昇するという課題がある。 In the solid electrolytic capacitor described in Patent Document 1, it is said that the cathode terminal and the anode terminal can be provided by plating on both side surfaces of the molding portion, so that the cathode terminal can be provided without another lead frame. It is extremely difficult to plate the anode wire, and even if it is realized, the reliability of the electrical connection is low and the manufacturing cost increases because the connection is made only within the cross-sectional area of the anode wire. There is a problem.

特許文献2に記載のパッケージ型固体電解コンデンサの構造は、小型軽量化のために合成樹脂製シート片または合成樹脂製のパッケージ体で密封するために、シート片にあらかじめ陽極側電極膜と陰極側端子電極膜を設けるものであり、パッケージ型固体電解コンデンサにそのまま適用するのは困難である。 The structure of the package-type solid electrolytic capacitor described in Patent Document 2 is such that the sheet piece is sealed with a synthetic resin sheet piece or a synthetic resin package in order to reduce the size and weight. A terminal electrode film is provided, and it is difficult to apply it as it is to a packaged solid electrolytic capacitor.

本発明は、電気的な接続の信頼性が高く、作業時間の短縮化や低コスト化を実現する固体電解コンデンサの提供を目的とする。 An object of the present invention is to provide a solid electrolytic capacitor having high reliability of electrical connection, shortening working time and reducing cost.

上記の課題を解決するために、本発明による固体電解コンデンサは、陽極リードよりも断面積が大きい金属箔を陽極リードに接続しこの金属箔の断面または弁作用金属および陽極リードの断面にめっきを施して陽極端子とする、もしくは、陽極リードとは異なる材質の金属箔を陽極リードに接続することで、電気的な接続の信頼性を高める。さらに、陽極リードと弁作用金属の表面には、所定の厚みの酸化皮膜を形成し漏れ電流の増加を抑制する。加えて、金属箔として、アルミニウムのような、酸化皮膜の除去が容易な金属を用いれば、作業時間の短縮化や低コスト化を実現することができる。 In order to solve the above problems, in the solid electrolytic capacitor according to the present invention, a metal foil having a cross-sectional area larger than that of the anode lead is connected to the anode lead, and the cross section of the metal foil or the cross section of the valve acting metal and the anode lead is plated. By applying this to make an anode terminal, or by connecting a metal foil made of a material different from that of the anode lead to the anode lead, the reliability of the electrical connection is enhanced. Further, an oxide film having a predetermined thickness is formed on the surfaces of the anode lead and the valve acting metal to suppress an increase in leakage current. In addition, if a metal such as aluminum whose oxide film can be easily removed is used as the metal foil, the working time can be shortened and the cost can be reduced.

本発明によれば、弁作用金属粉末を焼結して得た多孔質体と、前記多孔質体から導出してなる陽極リードと、前記陽極リードと電気的に絶縁されるように前記多孔質体上に順次積層されてなる導電性高分子層とグラファイト層と銀ペースト層と、前記銀ペースト上に設けてなる銀突出部とを含むコンデンサ素子を外装樹脂で被覆し、前記外装樹脂の表面に陽極端子および陰極端子を設けてなる固体電解コンデンサであって、前記陽極リードには、前記陽極リードと異なる材質の金属箔が接続されてなり、少なくとも前記金属箔の一部が前記外装樹脂から露出し、めっきを施されて前記陽極端子とされてなり、前記銀突出部の一部が前記外装樹脂から露出し、めっきを施されて前記陰極端子とされてなることを特徴とする固体電解コンデンサが得られる。 According to the present invention, a porous body obtained by sintering a valvening metal powder, an anode lead derived from the porous body, and the porous body so as to be electrically insulated from the anode lead. A capacitor element including a conductive polymer layer, a graphite layer, a silver paste layer, and a silver protrusion provided on the silver paste, which are sequentially laminated on the body, is coated with an exterior resin, and the surface of the exterior resin is coated. It is a solid electrolytic capacitor provided with an anode terminal and a cathode terminal, and a metal foil of a material different from that of the anode lead is connected to the anode lead, and at least a part of the metal foil is made of the exterior resin. Solid electrolysis characterized in that it is exposed and plated to form the anode terminal, and a part of the silver protruding portion is exposed from the exterior resin and plated to form the cathode terminal. A anode is obtained.

本発明によれば、前記金属箔の前記外装樹脂からの露出部の面積は、前記陽極リードの長手方向に直交する方向の断面の面積よりも大きいことを特徴とする固体電解コンデンサが得られる。 According to the present invention, a solid electrolytic capacitor can be obtained in which the area of the exposed portion of the metal foil from the exterior resin is larger than the area of the cross section in the direction orthogonal to the longitudinal direction of the anode lead.

本発明によれば、弁作用金属粉末を焼結して得た多孔質体と、前記多孔質体から導出してなる陽極リードと、前記陽極リードと電気的に絶縁されるように前記多孔質体上に順次積層されてなる導電性高分子層とグラファイト層と銀ペースト層と、前記銀ペースト上に設けてなる銀突出部とを含むコンデンサ素子を外装樹脂で被覆し、前記外装樹脂の表面に陽極端子および陰極端子を設けてなる固体電解コンデンサであって、前記陽極リードには、金属箔が接続されてなり、少なくとも前記金属箔の一部が前記外装樹脂から露出し、めっきを施されて前記陽極端子とされてなり、前記銀突出部の一部が前記外装樹脂から露出し、めっきを施されて前記陰極端子とされてなり、前記金属箔の前記外装樹脂からの露出部の面積は、前記陽極リードの長手方向に直交する方向の断面の面積よりも大きいことを特徴とする固体電解コンデンサが得られる。 According to the present invention, a porous body obtained by sintering a valvening metal powder, an anode lead derived from the porous body, and the porous body so as to be electrically insulated from the anode lead. A capacitor element including a conductive polymer layer, a graphite layer, a silver paste layer, and a silver protrusion provided on the silver paste, which are sequentially laminated on the body, is coated with an exterior resin, and the surface of the exterior resin is coated. It is a solid electrolytic capacitor provided with an anode terminal and a cathode terminal, and a metal foil is connected to the anode lead, and at least a part of the metal foil is exposed from the exterior resin and plated. The area of the exposed portion of the metal foil from the exterior resin is formed by forming the anode terminal, and a part of the silver protruding portion is exposed from the exterior resin and plated to form the cathode terminal. Is obtained, which is larger than the area of the cross section in the direction orthogonal to the longitudinal direction of the anode lead.

本発明によれば、弁作用金属粉末を焼結して得た多孔質体と、前記多孔質体から導出してなる陽極リードと、前記陽極リードと電気的に絶縁されるように前記多孔質体上に順次積層されてなる導電性高分子層とグラファイト層と銀ペースト層と、前記銀ペースト上に設けてなる銀突出部とを含むコンデンサ素子を外装樹脂で被覆し、前記外装樹脂の表面に陽極端子および陰極端子を設けてなる固体電解コンデンサであって、前記陽極リードには、金属箔が接続されてなり、前記陽極リードの一部および前記金属箔の一部が前記外装樹脂から露出し、めっきを施されて前記陽極端子とされてなり、前記銀突出部の一部が前記外装樹脂から露出し、めっきを施されて前記陰極端子とされてなり、前記陽極リードおよび前記金属箔の前記外装樹脂からの露出部の総面積は、前記陽極リードの長手方向に直交する方向の断面の面積よりも大きいことを特徴とする固体電解コンデンサが得られる。 According to the present invention, the porous body obtained by sintering the valve acting metal powder, the anode lead derived from the porous body, and the porous body so as to be electrically insulated from the anode lead. A capacitor element including a conductive polymer layer, a graphite layer, a silver paste layer, and a silver protrusion provided on the silver paste, which are sequentially laminated on the body, is coated with an exterior resin, and the surface of the exterior resin is coated. It is a solid electrolytic capacitor provided with an anode terminal and a cathode terminal, and a metal foil is connected to the anode lead, and a part of the anode lead and a part of the metal foil are exposed from the exterior resin. Then, it is plated to be the anode terminal, a part of the silver protrusion is exposed from the exterior resin, and is plated to be the anode terminal, and the anode lead and the metal foil are formed. A solid electrolytic capacitor is obtained, wherein the total area of the exposed portion from the exterior resin is larger than the area of the cross section in the direction orthogonal to the longitudinal direction of the anode lead.

本発明によれば、前記陽極リードと前記(弁作用)金属箔の、前記めっきとの接触部を除く表面に、酸化皮膜が施されてなることを特徴とする固体電解コンデンサが得られる。 According to the present invention, a solid electrolytic capacitor is obtained in which an oxide film is applied to the surfaces of the anode lead and the (valve action) metal foil except for the contact portion with the plating.

本発明によれば、前記金属箔は、弁作用金属であることを特徴とする固体電解コンデンサが得られる。 According to the present invention, the metal foil is a solid electrolytic capacitor characterized by being a valve acting metal.

本発明によれば、前記金属箔は、アルミニウムを含んでなることを特徴とする固体電解コンデンサが得られる。 According to the present invention, the metal foil provides a solid electrolytic capacitor characterized by containing aluminum.

本発明によれば、弁作用金属粉末を焼結して得た多孔質体から導出してなる陽極リードに、前記陽極リードと異なる材質の金属箔を接続する工程と、前記陽極リードと前記弁作用金属箔の表面に酸化皮膜を形成する工程と、前記多孔質体の表面に導電性高分子層、グラファイト層、銀ペースト層を順次形成し、前記銀ペースト層上の一部に銀突起部を形成してコンデンサ素子を得る工程と、前記コンデンサ素子を外装樹脂により被覆する工程と、前記金属箔および前記銀突起部を前記外装樹脂より露出させる工程と、前記金属箔の露出部を含むように前記外装樹脂の表面の一部にめっきを施して陽極端子を形成する工程と、前記銀突起部の露出部を含むように前記外装樹脂の表面の一部にめっきを施して前記陽極端子と電気的に絶縁されるように陰極端子を形成する工程とを含むことを特徴とする固体電解コンデンサの製造方法が得られる。 According to the present invention, a step of connecting a metal foil made of a material different from that of the anode lead to an anode lead derived from a porous body obtained by sintering a valve acting metal powder, and the anode lead and the valve. A step of forming an oxide film on the surface of the working metal foil, and a conductive polymer layer, a graphite layer, and a silver paste layer are sequentially formed on the surface of the porous body, and a silver protrusion portion is partially formed on the silver paste layer. A step of forming the capacitor element to obtain a capacitor element, a step of coating the capacitor element with an exterior resin, a step of exposing the metal foil and the silver protrusions from the exterior resin, and an exposed portion of the metal foil. A step of forming an anode terminal by plating a part of the surface of the exterior resin, and plating a part of the surface of the exterior resin so as to include an exposed portion of the silver protrusion to form an anode terminal. A method for manufacturing a solid electrolytic capacitor is obtained, which comprises a step of forming a cathode terminal so as to be electrically insulated.

本発明によれば、弁作用金属粉末を焼結して得た多孔質体から導出してなる陽極リードに、前記陽極リードの長手方向に直交する方向の断面の面積よりも、前記陽極リードの長手方向に直交する方向の断面の面積が大きい金属箔を接続する工程と、前記陽極リードと前記弁作用金属箔の表面に酸化皮膜を形成する工程と、前記多孔質体の表面に導電性高分子層、グラファイト層、銀ペースト層を順次形成し、前記銀ペースト層上の一部に銀突起部を形成してコンデンサ素子を得る工程と、前記コンデンサ素子を外装樹脂により被覆する工程と、前記金属箔および前記銀突起部を前記外装樹脂より露出させる工程と、前記金属箔の露出部を含むように前記外装樹脂の表面の一部にめっきを施して陽極端子を形成する工程と、前記銀突起部の露出部を含むように前記外装樹脂の表面の一部にめっきを施して前記陽極端子と電気的に絶縁されるように陰極端子を形成する工程とを含むことを特徴とする固体電解コンデンサの製造方法が得られる。 According to the present invention, the area of the cross section of the anode lead derived from the porous body obtained by sintering the valve acting metal powder in the direction orthogonal to the longitudinal direction of the anode lead is larger than that of the anode lead. A step of connecting a metal foil having a large cross-sectional area in a direction orthogonal to the longitudinal direction, a step of forming an oxide film on the surface of the anode lead and the valve acting metal foil, and a step of high conductivity on the surface of the porous body. A step of sequentially forming a molecular layer, a graphite layer, and a silver paste layer and forming a silver protrusion on a part of the silver paste layer to obtain a capacitor element, a step of coating the capacitor element with an exterior resin, and the above-mentioned A step of exposing the metal foil and the silver protrusion from the exterior resin, a step of plating a part of the surface of the exterior resin so as to include the exposed portion of the metal foil to form an anode terminal, and the silver. Solid electrolysis comprising a step of plating a part of the surface of the exterior resin so as to include an exposed portion of a protrusion to form a cathode terminal so as to be electrically insulated from the anode terminal. A method for manufacturing a capacitor can be obtained.

上記により、電気的な接続の信頼性が高く、作業時間の短縮化や低コスト化を実現する固体電解コンデンサの提供が可能となる。 As a result, it is possible to provide a solid electrolytic capacitor having high reliability of electrical connection, shortening working time and reducing cost.

本発明の第1の実施の形態に係る固体電解コンデンサの断面図である。It is sectional drawing of the solid electrolytic capacitor which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係る固体電解コンデンサの部分説明図である。It is a partial explanatory view of the solid electrolytic capacitor which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係る固体電解コンデンサの断面図である。It is sectional drawing of the solid electrolytic capacitor which concerns on 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る固体電解コンデンサの部分説明図である。It is a partial explanatory view of the solid electrolytic capacitor which concerns on 2nd Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係る固体電解コンデンサの断面図である。
図2は本発明の第1の実施の形態に係る固体電解コンデンサの部分説明図である。
(First Embodiment)
FIG. 1 is a cross-sectional view of a solid electrolytic capacitor according to the first embodiment of the present invention.
FIG. 2 is a partial explanatory view of the solid electrolytic capacitor according to the first embodiment of the present invention.

弁作用金属としてタンタル粉末を用い、焼結して得た多孔質体2には、同様にタンタルからなる陽極リード1の一端が埋設され、他端が導出されている。図2に例示するように、アルミニウムを用いた金属箔3のおもて面の一部は、陽極リード1の側周面の一部に溶接により接続されている。 Similarly, one end of the anode lead 1 made of tantalum is embedded in the porous body 2 obtained by sintering using tantalum powder as the valve acting metal, and the other end is derived. As illustrated in FIG. 2, a part of the front surface of the metal foil 3 using aluminum is connected to a part of the side peripheral surface of the anode lead 1 by welding.

タンタルは酸化皮膜の形成能が高く、強固な酸化皮膜を形成する。従って、陽極リードとしてタンタルを用いた場合は、陽極リードの断面に形成された酸化皮膜を除去した後に、めっきを施す必要が生じるが、酸化皮膜の除去が困難である。従って、一般的に、パラジウム触媒で置換めっきを形成し、その後、無電解めっきまたは電解めっきで、陽極端子を形成するが、パラジウムを用いることで製造コストが高価となる。 Tantalum has a high ability to form an oxide film and forms a strong oxide film. Therefore, when tantalum is used as the anode lead, it is necessary to perform plating after removing the oxide film formed on the cross section of the anode lead, but it is difficult to remove the oxide film. Therefore, in general, substitution plating is formed with a palladium catalyst, and then an anode terminal is formed by electroless plating or electrolytic plating, but the use of palladium increases the manufacturing cost.

本実施の形態では、この点に着目し、タンタルよりもめっきが容易な、すなわち酸化皮膜の耐酸性が低く、パラジウム触媒を用いる必要がないアルミニウム金属箔を用いることにより、製造工数およびコストを削減する。 In the present embodiment, paying attention to this point, manufacturing man-hours and costs are reduced by using an aluminum metal foil that is easier to plate than tantalum, that is, has a lower acid resistance of the oxide film and does not require the use of a palladium catalyst. To do.

また、さらなる電気的接続の信頼性向上のために、陽極リード1の導出方向、すなわち、長手方向と直交する方向の陽極リード1の断面の面積よりも、陽極リード1の長手方向と直交する方向の金属箔3の断面の面積が大きくなるように、金属箔3のおもて面の面積や厚みを適宜調整する。 Further, in order to further improve the reliability of the electrical connection, the direction in which the anode lead 1 is derived, that is, the direction orthogonal to the longitudinal direction of the anode lead 1 rather than the area of the cross section of the anode lead 1 in the direction orthogonal to the longitudinal direction. The area and thickness of the front surface of the metal foil 3 are appropriately adjusted so that the cross-sectional area of the metal foil 3 is large.

異なる材質の金属箔を接続する、もしくは、陽極リードの断面積よりも面積が大きい、金属箔を用いるのいずれか一方でも、効果を奏するが、両者を同時に採用することが、より好ましい。 Either connecting metal foils of different materials or using a metal foil having a larger area than the cross-sectional area of the anode reed is effective, but it is more preferable to use both at the same time.

また、陽極リードの一部および陽極リードに接続した弁作用金属の一部の両方を外装樹脂層から露出させてめっきを施す面積を大きくするのも、電気的接続の信頼性向上のためには好ましい。 It is also possible to increase the area for plating by exposing both a part of the anode reed and a part of the valve working metal connected to the anode reed from the exterior resin layer in order to improve the reliability of the electrical connection. preferable.

なお、上記条件を満たすとともに、コンデンサ素子を外装樹脂でモールドする際に多孔質体2に接触しない形状であれば、金属箔3のおもて面の面積や厚み、形状はいずれでもよい。また、金属箔3には、板状や柱状の金属片も含まれる。 The area, thickness, and shape of the front surface of the metal foil 3 may be any as long as the above conditions are satisfied and the shape does not come into contact with the porous body 2 when the capacitor element is molded with the exterior resin. The metal foil 3 also includes a plate-shaped or columnar metal piece.

さらに、陽極リード1として、本実施の形態のようにタンタルを採用した場合、もしくはニオブ、もしくはこれらの合金を採用した場合は、めっき形成前にパラジウムといった比較的高価な材料を含む薬剤等を用いた前処理工程が必要となる。しかしながら、金属箔3としてアルミニウムまたはアルミニウムを含む合金等を採用する場合は、前処理工程を簡略化することができる。 Further, when tantalum is adopted as the anode lead 1 as in the present embodiment, or when niobium or an alloy thereof is adopted, a chemical or the like containing a relatively expensive material such as palladium is used before plating formation. The existing pretreatment process is required. However, when aluminum or an alloy containing aluminum is used as the metal foil 3, the pretreatment step can be simplified.

したがって、めっき形成部の総面積を陽極リードの断面よりも大きくするのであれば、金属箔3は、陽極リード1と同様の材質を用いても良いが、陽極リード1に溶接等により比較的容易に接続可能かつ、よりめっき形成しやすい材質のものを選択するのが好ましい。すなわち、金属箔としては、タンタル、ニオブ、アルミニウム等の弁作用を有する金属またはこれらを含む合金、または、銅や銅合金等から適宜選択して用いるのが好ましいが、陽極リードとしてタンタル、ニオブまたはこれらの合金を採用した場合は、金属箔としてはアルミニウムまたはアルミニウムを含む合金を用いるのがより好ましい。 Therefore, if the total area of the plating forming portion is made larger than the cross section of the anode lead, the metal foil 3 may use the same material as the anode lead 1, but it is relatively easy to weld the anode lead 1 to the metal foil 1. It is preferable to select a material that can be connected to and is easier to form plating. That is, as the metal foil, it is preferable to appropriately select and use a metal having a valve action such as tantalum, niobium, aluminum or an alloy containing these, or copper or a copper alloy, etc., but as the anode lead, tantalum, niobium or When these alloys are adopted, it is more preferable to use aluminum or an alloy containing aluminum as the metal foil.

また、陽極リード1および金属箔3の表面には、公知の手段で酸化皮膜4が形成されている。すなわち、例えば、最終製品たる固体電解コンデンサの定格電圧より高い電圧をリン酸水溶液中で印加し、定格電圧1V当り1.3nm以上の酸化皮膜4を形成してなる。 Further, an oxide film 4 is formed on the surfaces of the anode lead 1 and the metal foil 3 by a known means. That is, for example, a voltage higher than the rated voltage of the solid electrolytic capacitor, which is the final product, is applied in the phosphoric acid aqueous solution to form an oxide film 4 having a rated voltage of 1.3 nm or more per 1 V.

多孔質体2の表面には、陰極層として、導電性高分子層5、グラファイト層6、銀ペースト層7が順次形成されている。なお、導電性高分子層5の形成の際に、導電性高分子の重合液もしくは懸濁液で多孔質体2を浸漬する方法を採用した場合は、導電性高分子層5の一部が陽極リード1及びアルミニウムの金属箔3まで這い上がり、陽極リード1の導出部では、酸化皮膜4と導電性高分子層5が重なっている。 A conductive polymer layer 5, a graphite layer 6, and a silver paste layer 7 are sequentially formed on the surface of the porous body 2 as a cathode layer. When the method of immersing the porous body 2 in the polymer solution or suspension of the conductive polymer is adopted when forming the conductive polymer layer 5, a part of the conductive polymer layer 5 is formed. It crawls up to the anode lead 1 and the aluminum metal foil 3, and the oxide film 4 and the conductive polymer layer 5 overlap each other at the lead-out portion of the anode lead 1.

この構成により、漏れ電流の発生が抑制されるので、金属箔3を多孔質体2のある程度近くに配置することが可能となる。従って、コンデンサ素子全体の大きさを変えることなく、多孔質体3の体積を従来よりも大きくすることができる。 With this configuration, the generation of leakage current is suppressed, so that the metal foil 3 can be arranged close to the porous body 2 to some extent. Therefore, the volume of the porous body 3 can be made larger than before without changing the size of the entire capacitor element.

続いて、多孔質体2の、陽極リード1が導出された面に対向する面に、銀ペースト層7と同様の銀ペーストを用いて凸状の銀突起部8を設け、コンデンサ素子とする。 Subsequently, a convex silver protrusion 8 is provided on the surface of the porous body 2 facing the surface from which the anode lead 1 is derived, using the same silver paste as the silver paste layer 7, to form a capacitor element.

上記コンデンサ素子を、例えば、エポキシ樹脂とフィラーからなる外装樹脂層9により、モールド成形した後に、所望の製品形状になるように例えばダイシングで切断し、金属箔3と銀突起部8の断面を外装樹脂層9より露出させる。 The capacitor element is molded by, for example, an exterior resin layer 9 made of an epoxy resin and a filler, and then cut by dicing, for example, so as to have a desired product shape, and the cross section of the metal foil 3 and the silver protrusion 8 is exteriorized. It is exposed from the resin layer 9.

続いて、外装樹脂層9から露出させた金属箔3の断面を公知の手段を用いて、表面処理し、めっき形成部とする。すなわち、例えば金属箔3の断面を強酸に浸漬し、表面の酸化皮膜4を除去した後に、さらに、金属箔3の断面を例えば亜鉛触媒で処理する。 Subsequently, the cross section of the metal foil 3 exposed from the exterior resin layer 9 is surface-treated by a known means to form a plating forming portion. That is, for example, the cross section of the metal foil 3 is immersed in a strong acid to remove the oxide film 4 on the surface, and then the cross section of the metal foil 3 is further treated with, for example, a zinc catalyst.

表面処理完了後に、例えば、無電解めっきを施し、さらに、金属箔3の断面を含む外装樹脂層9の表面に公知の手段を用いて、すなわち、例えば、パラジウム触媒や無電解めっきを順次施して、陽極端子10を形成する。 After the surface treatment is completed, for example, electroless plating is applied, and further, the surface of the exterior resin layer 9 including the cross section of the metal foil 3 is sequentially subjected to, for example, a palladium catalyst or electroless plating by a known means. , The anode terminal 10 is formed.

同様に、外装樹脂層9から露出させた銀突起部8の断面を含む外装樹脂層9の表面にも公知の手段を用いて、すなわち、例えば、パラジウム触媒や無電解めっきを順次施して、陰極端子11を形成し、固体電解コンデンサを得る。 Similarly, the surface of the exterior resin layer 9 including the cross section of the silver protrusion 8 exposed from the exterior resin layer 9 is also subjected to a known means, that is, for example, a palladium catalyst or electroless plating is sequentially applied to the cathode. The terminal 11 is formed to obtain a solid electrolytic capacitor.

なお、陽極端子10および陰極端子11の一部は、例えば、はんだ実装用の電極端子とするために、同一面内に配されるが、これらは、外装樹脂層9により電気的に絶縁されている。 A part of the anode terminal 10 and the cathode terminal 11 is arranged in the same plane in order to be an electrode terminal for solder mounting, for example, but these are electrically insulated by the exterior resin layer 9. There is.

上記のように、陽極リードに金属箔を接続して、陽極リードの長手方向と直交する方向の断面の面積よりも大きいめっき形成面を得ることにより、電気的接続がより安定した陽極端子を形成することができ、ESRを低減した固体電解コンデンサを得ることができる。 As described above, by connecting a metal foil to the anode lead to obtain a plating forming surface larger than the area of the cross section in the direction orthogonal to the longitudinal direction of the anode lead, an anode terminal having a more stable electrical connection is formed. It is possible to obtain a solid electrolytic capacitor with reduced ESR.

しかしながら、酸化皮膜を形成しやすいタンタルは陽極リード材料として好適ではあるが、めっきを施す際には酸化皮膜除去に工数を要する。めっき形成が比較的容易な材質の金属箔、すなわち、めっきを施す前処理工程が容易または工程数が少ない材質の金属箔を接続して、その断面をめっき形成面とすることにより、コストおよび製造工数を削減することが可能となる。 However, although tantalum, which easily forms an oxide film, is suitable as an anode lead material, man-hours are required to remove the oxide film when plating. Cost and manufacture by connecting a metal foil made of a material that is relatively easy to form a plating, that is, a metal foil made of a material that has an easy pretreatment step for plating or a small number of steps, and using the cross section as a plating forming surface. It is possible to reduce the number of steps.

(第2の実施の形態)
図3は本発明の第2の実施の形態に係る固体電解コンデンサの断面図である。
図4は本発明の第2の実施の形態に係る固体電解コンデンサの部分説明図である。
(Second Embodiment)
FIG. 3 is a cross-sectional view of the solid electrolytic capacitor according to the second embodiment of the present invention.
FIG. 4 is a partial explanatory view of the solid electrolytic capacitor according to the second embodiment of the present invention.

第1の実施の形態と同様の材料および方法により、固体電解コンデンサを得る。 A solid electrolytic capacitor is obtained by the same materials and methods as in the first embodiment.

なお、本実施の形態においては、図4に例示するように、金属箔3のおもて面の一部は、陽極リード1の長手方向と直交する方向の断面に溶接により接続されている。この際、陽極リード1の長手方向と直交する方向の陽極リード1の断面の面積よりも、金属箔3のおもて面の面積が大きくなるように、金属箔3のおもて面の面積を適宜調整する。 In the present embodiment, as illustrated in FIG. 4, a part of the front surface of the metal foil 3 is connected by welding to a cross section in a direction orthogonal to the longitudinal direction of the anode lead 1. At this time, the area of the front surface of the metal foil 3 is so that the area of the front surface of the metal foil 3 is larger than the area of the cross section of the anode lead 1 in the direction orthogonal to the longitudinal direction of the anode lead 1. Is adjusted as appropriate.

第1の実施の形態に比較して、金属箔3が外装樹脂層9からより多く露出しているために、陽極端子との電気的な接続の信頼性が増している。 Compared to the first embodiment, since the metal foil 3 is more exposed from the exterior resin layer 9, the reliability of the electrical connection with the anode terminal is increased.

種々の実験によれば、金属箔の外装樹脂からの露出面積は、陽極リードの上記断面積の2倍以上であるのが好ましく、10倍以上であるのがより好ましい。 According to various experiments, the exposed area of the metal foil from the exterior resin is preferably twice or more, more preferably 10 times or more, the cross-sectional area of the anode lead.

以下、本発明の実施例を用いて具体的に説明する。 Hereinafter, examples of the present invention will be specifically described.

(実施例1)
直径0.2mmの円柱状のタンタルからなる陽極リード1に、タンタル粉末を焼結して多孔質体2を形成し、多孔質体2から0.05mm離れた、陽極リード1上に、厚み0.2mm、幅0.16mmであり、陽極リード1とほぼ同じ断面積を有するアルミニウムの金属箔3を溶接した。
(Example 1)
Tantalum powder is sintered on an anode lead 1 made of columnar tantalum having a diameter of 0.2 mm to form a porous body 2, and the thickness is 0 on the anode lead 1 at a distance of 0.05 mm from the porous body 2. An aluminum metal foil 3 having a width of .2 mm and a width of 0.16 mm and having substantially the same cross-sectional area as the anode lead 1 was welded.

続いて、陽極リード1、多孔質体2および金属箔3の表面に、リン酸水溶液中で20Vの電圧を印加し、表面に26nm以上の酸化皮膜4を形成した。 Subsequently, a voltage of 20 V was applied to the surfaces of the anode lead 1, the porous body 2 and the metal foil 3 in an aqueous phosphoric acid solution to form an oxide film 4 having a diameter of 26 nm or more on the surfaces.

次に、エチレンジオキシチオフェンとトルエンスルホン酸第二鉄からなる重合液で、多孔質体2の細孔内部に導電性高分子層5を充填し、さらに、多孔質体2の外表面に約5μmの厚みとなるように導電性高分子層5を形成した。重合液の表面張力により、導電性高分子層5の一部が陽極リード1を介し、金属箔3まで這い上がった。 Next, the conductive polymer layer 5 is filled inside the pores of the porous body 2 with a polymerization solution composed of ethylenedioxythiophene and ferric toluenesulfonic acid, and further, the outer surface of the porous body 2 is about. The conductive polymer layer 5 was formed so as to have a thickness of 5 μm. Due to the surface tension of the polymer solution, a part of the conductive polymer layer 5 crawls up to the metal foil 3 via the anode lead 1.

多孔質体2の陽極リード1の埋設面を除く導電性高分子層5上に、グラファイト層6、銀ペースト層7を順次形成した後、多孔質体2の陽極リード1の埋設面の対向面の銀ペースト層7上に、銀ペースト層7と同じ種類の銀ペーストで凸形状の銀突起部8を0.2mmの高さに形成し、コンデンサ素子とした。 After the graphite layer 6 and the silver paste layer 7 are sequentially formed on the conductive polymer layer 5 excluding the embedded surface of the anode lead 1 of the porous body 2, the facing surface of the embedded surface of the anode lead 1 of the porous body 2 is formed. On the silver paste layer 7 of the above, a convex silver protrusion 8 was formed with the same type of silver paste as the silver paste layer 7 at a height of 0.2 mm to form a condenser element.

陽極リード1と多孔質体2と金属箔3と銀突起部8の全てを覆うように、エポキシ樹脂とフィラーからなる樹脂を用いて射出成型し、外装樹脂層9を1mmの厚さとなるよう形成した。 The exterior resin layer 9 is formed to have a thickness of 1 mm by injection molding using a resin composed of an epoxy resin and a filler so as to cover all of the anode lead 1, the porous body 2, the metal foil 3, and the silver protrusion 8. did.

外装樹脂層9を、長さ方向に2.0mm、幅方向に1.2mmの形状になるようにダイシングで切断し、ダイシングして得た切断面に金属箔3と銀突起部8のそれぞれを露出させた。 The exterior resin layer 9 is cut by dicing so as to have a shape of 2.0 mm in the length direction and 1.2 mm in the width direction, and the metal foil 3 and the silver protrusion 8 are respectively formed on the cut surface obtained by dicing. Exposed.

次に、金属箔3の露出部を10wt%の硫酸に浸漬して酸化皮膜4を除去し、金属箔3の断面を亜鉛触媒に浸漬した後に、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、総厚みが0.1mm以下となるようにめっきを施した。 Next, the exposed portion of the metal foil 3 is immersed in 10 wt% sulfuric acid to remove the oxide film 4, and the cross section of the metal foil 3 is immersed in a zinc catalyst, followed by electroless copper plating, electroless nickel plating, and electroless electrolysis. Tin plating was sequentially formed and plated so that the total thickness was 0.1 mm or less.

さらに、金属箔3の露出部を含む金属箔3と同一面の外装樹脂層9と、外装樹脂層9の実装面に、パラジウム触媒、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、総厚みが0.1mm以下のめっきを施し、陽極端子とした。 Further, a palladium catalyst, electroless copper plating, electroless nickel plating, and electroless tin plating are applied to the exterior resin layer 9 on the same surface as the metal foil 3 including the exposed portion of the metal foil 3 and the mounting surface of the exterior resin layer 9. They were sequentially formed and plated with a total thickness of 0.1 mm or less to form an anode terminal.

また、銀突起部8の露出部を含む銀突起部8と同一面の外装樹脂層9と、外装樹脂層9の実装面に、パラジウム触媒、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、総厚みが0.1mm以下のめっきを施し、陰極端子とし、陽極端子10と陰極端子11を、はんだ実装用の電極端子とした、固体電解コンデンサが得られた。 Further, the exterior resin layer 9 on the same surface as the silver protrusion 8 including the exposed portion of the silver protrusion 8 and the mounting surface of the exterior resin layer 9 are surfaced with a palladium catalyst, electroless copper plating, electroless nickel plating, and electroless tin. A solid electrolytic capacitor was obtained in which plating was sequentially formed and plating having a total thickness of 0.1 mm or less was performed to form a cathode terminal, and the anode terminal 10 and the cathode terminal 11 were used as electrode terminals for solder mounting.

ここで、実装面において、陽極端子10と陰極端子11の中間部は、あらかじめマスキング処理により分断し、電気的に絶縁している。 Here, on the mounting surface, the intermediate portion between the anode terminal 10 and the cathode terminal 11 is previously divided by a masking process and electrically insulated.

本実施例による固体電解コンデンサは、タンタルの陽極リードにめっきを形成した場合と比較して、アルミニウムの金属箔にめっきを施したことにより、めっき前の処理剤として、フッ化水素酸などの危険な薬品を使う必要がなく、かつ短時間で酸化皮膜が除去できるためにめっきを施すための作業時間が20%程度削減された。 Compared with the case where the solid electrolytic capacitor according to this example is plated on the anode lead of tantalum, the metal foil of aluminum is plated, so that there is a danger of hydrofluoric acid or the like as a treatment agent before plating. Since it is not necessary to use various chemicals and the oxide film can be removed in a short time, the work time for plating has been reduced by about 20%.

また、同様に、めっき前の処理剤として用いるパラジウム触媒の一部の、亜鉛触媒への置換により、パラジウムの使用量を削減し、めっきの材料コストを10%削減することができた。 Similarly, by substituting a part of the palladium catalyst used as a treatment agent before plating with a zinc catalyst, the amount of palladium used could be reduced and the material cost of plating could be reduced by 10%.

(実施例2)
金属箔3として、外装樹脂層9からの露出部の面積が、陽極リード1の長手方向と直交する方向の断面の面積の2倍であるものを用いた以外は、実施例と同様の材料および方法で固体電解コンデンサを作成した。
(Example 2)
As the metal foil 3, the same material as in the examples and the same materials as in the examples except that the area of the exposed portion from the exterior resin layer 9 is twice the area of the cross section in the direction orthogonal to the longitudinal direction of the anode lead 1 are used. A solid electrolytic capacitor was made by the method.

実施例1と同様に、めっきを施すための作業時間および、めっきの材料コストを大幅に削減できたばかりでなく、陽極端子との安定した接続により、電気的な接続の信頼性が向上した。 Similar to the first embodiment, not only the working time for plating and the material cost of plating can be significantly reduced, but also the reliability of the electrical connection is improved by the stable connection with the anode terminal.

すなわち、本実施例の固体電解コンデンサは、タンタルの陽極リードの断面にめっきを施した場合と比較して、断面積が2倍のアルミニウムの金属箔3にめっきを施したことから、電気的な接続の信頼性が大幅に改善し、−55℃から105℃までの温度サイクル試験において、金属箔を用いない点を除き、本実施例と同様の構成の従来例の固体電解コンデンサが、100サイクルで規格外になるのに対し、本実施例の固体電解コンデンサは1000サイクルでも規格内であった。 That is, the solid electrolytic capacitor of this embodiment is electrically charged because the aluminum metal foil 3 having twice the cross-sectional area is plated as compared with the case where the cross section of the tantalum anode lead is plated. The reliability of the connection is greatly improved, and in the temperature cycle test from -55 ° C to 105 ° C, the solid electrolytic capacitor of the conventional example having the same configuration as this example except that no metal foil is used has 100 cycles. However, the solid electrolytic capacitor of this example was within the standard even after 1000 cycles.

また、陽極体とめっきを形成した部分の接続抵抗が大幅に低減したため、上述した従来例の固体電解コンデンサのESRが平均80mΩであるのに対し、本実施例の固体電解コンデンサのESRは平均60mΩであった。 Further, since the connection resistance between the anode and the plated portion is significantly reduced, the ESR of the solid electrolytic capacitor of the above-mentioned conventional example is 80 mΩ on average, whereas the ESR of the solid electrolytic capacitor of this example is 60 mΩ on average. Met.

(実施例3)
直径0.2mmの円柱状のタンタルの陽極リード1にタンタル粉末を焼結して多孔質体2を形成し、多孔質体2から0.05mm離した陽極リード1上に、厚み0.3mm、幅1.2mmであり、陽極リード1の10倍以上の断面積を有するタンタルの金属箔3を溶接し、陽極リード1、多孔質体2、金属箔の表面に、リン酸水溶液中で20Vの電圧を印加し、表面に26nm以上となるように酸化皮膜4を形成し、実施例1と同様の工程で、ダイシングによる切断加工までを行い、金属箔3と銀突起部8のそれぞれの断面を外装樹脂層9から露出させた。
(Example 3)
Tantal powder is sintered on the anode lead 1 of a columnar tantalum having a diameter of 0.2 mm to form a porous body 2, and the thickness is 0.3 mm on the anode lead 1 0.05 mm away from the porous body 2. A tantalum metal foil 3 having a width of 1.2 mm and a cross-sectional area 10 times or more that of the anode lead 1 is welded to the surface of the anode lead 1, the porous body 2, and the metal foil at 20 V in an aqueous phosphate solution. A voltage is applied to form an oxide film 4 on the surface so as to have an anode of 26 nm or more, and in the same process as in Example 1, cutting is performed by dying to obtain cross sections of the metal foil 3 and the silver protrusion 8. It was exposed from the exterior resin layer 9.

次に、金属箔3の断面を10wt%の硫酸に浸漬して酸化皮膜4を除去し、金属箔3の断面を亜鉛触媒に浸漬した後に、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、めっきの総厚みが0.1mm以下となるようにめっきを施した。 Next, the cross section of the metal foil 3 is immersed in 10 wt% sulfuric acid to remove the oxide film 4, and the cross section of the metal foil 3 is immersed in a zinc catalyst, followed by electroless copper plating, electroless nickel plating, and electroless tin. Plating was sequentially formed, and plating was performed so that the total thickness of the plating was 0.1 mm or less.

さらに、金属箔3の露出部を含む金属箔3と同一面の外装樹脂層9と、外装樹脂層9の実装面に、パラジウム触媒、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、総厚みが0.1mm以下のめっきを施し、陽極端子とした。 Further, a palladium catalyst, electroless copper plating, electroless nickel plating, and electroless tin plating are applied to the exterior resin layer 9 on the same surface as the metal foil 3 including the exposed portion of the metal foil 3 and the mounting surface of the exterior resin layer 9. They were sequentially formed and plated with a total thickness of 0.1 mm or less to form an anode terminal.

また、銀突起部8の露出部を含む銀突起部8と同一面の外装樹脂層9と、外装樹脂層9の実装面に、パラジウム触媒、無電解銅めっき、無電解ニッケルめっき、無電解スズめっきを順次形成し、総厚みが0.1mm以下のめっきを施し、陰極端子とし、陽極端子10と陰極端子11を、はんだ実装用の電極端子とした、固体電解コンデンサが得られた。 Further, the exterior resin layer 9 on the same surface as the silver protrusion 8 including the exposed portion of the silver protrusion 8 and the mounting surface of the exterior resin layer 9 are surfaced with a palladium catalyst, electroless copper plating, electroless nickel plating, and electroless tin. A solid electrolytic capacitor was obtained in which plating was sequentially formed and plating having a total thickness of 0.1 mm or less was performed to form a cathode terminal, and the anode terminal 10 and the cathode terminal 11 were used as electrode terminals for solder mounting.

ここで、実装面において、陽極端子10と陰極端子11の中間部は、あらかじめマスキング処理により分断し、電気的に絶縁している。 Here, on the mounting surface, the intermediate portion between the anode terminal 10 and the cathode terminal 11 is previously divided by a masking process and electrically insulated.

本実施例の固体電解コンデンサは、タンタルの陽極リードの断面にめっきを形成した場合と比較して、断面積が10倍以上のタンタルの金属箔3にめっきを行ったことから、電気的な接続信頼性が大幅に改善し、−55℃から105℃までの温度サイクル試験において、上述した従来例の固体電解コンデンサが100サイクルで規格外になるのに対し、本実施例の固体電解コンデンサは1000サイクルでも規格内であった。 Since the solid electrolytic capacitor of this embodiment is plated on the metal leaf 3 of tantalum having a cross-sectional area 10 times or more that of the case where plating is formed on the cross section of the anode lead of tantalum, it is electrically connected. The reliability is greatly improved, and in the temperature cycle test from -55 ° C to 105 ° C, the solid electrolytic capacitor of the above-mentioned conventional example becomes out of specification in 100 cycles, whereas the solid electrolytic capacitor of this example is 1000. It was within the standard even in the cycle.

また、陽極体とめっきを形成した部分の接続抵抗が大幅に低減したため、上述した従来例の固体電解コンデンサのESRが平均100mΩであるのに対し、本実施例の固体電解コンデンサのESRは平均60mΩであった。 Further, since the connection resistance between the anode and the plated portion is significantly reduced, the ESR of the solid electrolytic capacitor of the above-mentioned conventional example is 100 mΩ on average, whereas the ESR of the solid electrolytic capacitor of this example is 60 mΩ on average. Met.

詳述したように、陽極リードよりも断面積が大きい金属箔を陽極リードに接続し、この金属箔の断面にめっきを施すことで、電気的な接続の信頼性を高めた固体電解コンデンサが得られた。 As described in detail, a metal foil having a cross section larger than that of the anode lead is connected to the anode lead, and the cross section of the metal foil is plated to obtain a solid electrolytic capacitor with improved reliability of electrical connection. Was done.

さらに、めっき形成に工数を要する陽極リードとは異なりめっき形成が比較的容易な金属箔を陽極リードに接続することにより、作業時間を短縮し、低コスト化を実現した固体電解コンデンサが得られた。 Furthermore, by connecting a metal foil, which is relatively easy to form plating, to the anode reed, unlike the anode reed, which requires man-hours for plating formation, a solid electrolytic capacitor that shortens the work time and realizes cost reduction was obtained. ..

加えて、陽極リードと弁作用金属の表面に、所定の厚みの酸化皮膜を形成することにより、漏れ電流の増加を抑制した固体電解コンデンサが得られた。 In addition, a solid electrolytic capacitor in which an increase in leakage current was suppressed was obtained by forming an oxide film having a predetermined thickness on the surfaces of the anode lead and the valve acting metal.

以上、本発明の実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であれば成し得る各種変形、修正もまた本発明に含まれる。 Although the examples of the present invention have been described above, the present invention is not limited to the above, and the configuration can be changed or modified without departing from the gist of the present invention. That is, various modifications and modifications that can be made by those skilled in the art are also included in the present invention.

1 陽極リード
2 多孔質体
3 金属箔
4 酸化皮膜
5 導電性高分子層
6 グラファイト層
7 銀ペースト層
8 銀突起部
9 外装樹脂層
10 陽極端子
11 陰極端子
1 Anode lead 2 Porous body 3 Metal foil 4 Oxide film 5 Conductive polymer layer 6 Graphite layer 7 Silver paste layer 8 Silver protrusion 9 Exterior resin layer 10 Anode terminal 11 Cathode terminal

Claims (5)

弁作用金属粉末を焼結して得た多孔質体と、前記多孔質体から導出してなる陽極リードと、前記陽極リードと電気的に絶縁されるように前記多孔質体上に順次積層されてなる導電性高分子層とグラファイト層と銀ペースト層と、前記銀ペースト上に設けてなる銀突出部とを含むコンデンサ素子を外装樹脂で被覆し、前記外装樹脂の表面に陽極端子および陰極端子を設けてなる固体電解コンデンサであって、
前記陽極リードはタンタル、ニオブ又はこれらの合金のいずれかからなり、
前記陽極リードには、アルミニウムを含む金属箔が接続されてなり、
前記金属箔の、前記コンデンサ素子の長手方向に直交する2つの面のうち、一方の面が前記陽極リードに接続しており、前記陽極リードと接続しない他方の面の全面が前記外装樹脂から露出し、めっきを施されて前記陽極端子とされてなり、
前記銀突出部の一部が前記外装樹脂から露出し、めっきを施されて前記陰極端子とされてなることを特徴とする固体電解コンデンサ。
A porous body obtained by sintering a valve-acting metal powder, an anode lead derived from the porous body, and sequentially laminated on the porous body so as to be electrically insulated from the anode lead. A capacitor element including a conductive polymer layer, a graphite layer, a silver paste layer, and a silver protrusion provided on the silver paste is coated with an exterior resin, and an anode terminal and a cathode terminal are provided on the surface of the exterior resin. It is a solid electrolytic capacitor provided with
The anode leads consist of tantalum, niobium or alloys of these.
A metal foil containing aluminum is connected to the anode reed.
Of the two surfaces of the metal foil orthogonal to the longitudinal direction of the capacitor element, one surface is connected to the anode lead, and the entire surface of the other surface not connected to the anode lead is exposed from the exterior resin. It is plated and used as the anode terminal.
A solid electrolytic capacitor characterized in that a part of the silver protruding portion is exposed from the exterior resin and plated to serve as the cathode terminal.
前記金属箔の前記外装樹脂から露出した前記他方の面である露出部の面積は、前記陽極リードの長手方向に直交する方向の前記陽極リードの断面の面積よりも大きいことを特徴とする請求項1記載の固体電解コンデンサ。 The claim is characterized in that the area of the exposed portion, which is the other surface of the metal foil exposed from the exterior resin , is larger than the area of the cross section of the anode lead in the direction orthogonal to the longitudinal direction of the anode lead. 1. The solid electrolytic capacitor according to 1. 前記陽極リードと前記金属箔の、前記めっきとの接触部を除く表面に、酸化皮膜が施されてなることを特徴とする請求項1または2に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1 or 2, wherein an oxide film is applied to the surfaces of the anode lead and the metal foil except for the contact portion with the plating. タンタル、ニオブ又はこれらの合金のいずれかの金属粉末を焼結して得た多孔質体から導出してなる陽極リードに、アルミニウムを含んでなる金属箔を接続する工程と、
前記陽極リードと前記金属箔の表面に酸化皮膜を形成する工程と、
前記多孔質体の表面に導電性高分子層、グラファイト層、銀ペースト層を順次形成し、前記銀ペースト層上の一部に銀突起部を形成してコンデンサ素子を得る工程と、
前記コンデンサ素子を外装樹脂により被覆する工程と、
前記金属箔の、前記コンデンサ素子の長手方向に直交する2つの面のうち、一方の面が前記陽極リードに接続した状態で、前記陽極リードと接続しない前記金属箔の他方の面の全面の前記酸化皮膜を除去して前記外装樹脂より露出させる工程と、
前記銀突起部を前記外装樹脂より露出させる工程と、
前記金属箔の前記他方の面である露出部を含むように前記外装樹脂の表面の一部にめっきを施して陽極端子を形成する工程と、
前記銀突起部の露出部を含むように前記外装樹脂の表面の一部にめっきを施して前記陽極端子と電気的に絶縁されるように陰極端子を形成する工程とを含むことを特徴とする固体電解コンデンサの製造方法。
A step of connecting a metal foil containing aluminum to an anode lead derived from a porous body obtained by sintering a metal powder of tantalum, niobium, or an alloy thereof, and
A step of forming an oxide film on the surfaces of the anode lead and the metal foil, and
A step of sequentially forming a conductive polymer layer, a graphite layer, and a silver paste layer on the surface of the porous body, and forming a silver protrusion on a part of the silver paste layer to obtain a capacitor element.
The process of coating the capacitor element with exterior resin and
The metal foil, one of the two surfaces perpendicular to the longitudinal direction of the capacitor element, in the state where one surface is connected to the anode lead, the entire surface of the other surface of the metal foil is not connected to the anode lead The process of removing the oxide film and exposing it from the exterior resin,
The step of exposing the silver protrusion from the exterior resin and
A step of forming an anode terminal by plating a part of the surface of the exterior resin so as to include an exposed portion which is the other surface of the metal foil.
It is characterized by including a step of plating a part of the surface of the exterior resin so as to include an exposed portion of the silver protrusion to form a cathode terminal so as to be electrically insulated from the anode terminal. A method for manufacturing a solid electrolytic capacitor.
前記陽極リードに、前記陽極リードの長手方向に直交する方向の前記陽極リードの断面の面積よりも、前記陽極リードの長手方向に直交する方向の断面の面積が大きい前記金属箔を接続する工程を含むことを特徴とする請求項4に記載の固体電解コンデンサの製造方法。 A step of connecting the metal foil to the anode lead, which has a larger cross-sectional area in the direction orthogonal to the longitudinal direction of the anode lead than the cross-sectional area of the anode lead in the direction orthogonal to the longitudinal direction of the anode lead. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein the solid electrolytic capacitor is included.
JP2015137474A 2015-07-09 2015-07-09 Solid electrolytic capacitors and their manufacturing methods Active JP6774745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015137474A JP6774745B2 (en) 2015-07-09 2015-07-09 Solid electrolytic capacitors and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015137474A JP6774745B2 (en) 2015-07-09 2015-07-09 Solid electrolytic capacitors and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2017022222A JP2017022222A (en) 2017-01-26
JP6774745B2 true JP6774745B2 (en) 2020-10-28

Family

ID=57888404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015137474A Active JP6774745B2 (en) 2015-07-09 2015-07-09 Solid electrolytic capacitors and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6774745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335936A (en) * 2020-03-31 2022-11-11 株式会社村田制作所 Solid electrolytic capacitor
WO2023218931A1 (en) * 2022-05-13 2023-11-16 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for producing solid electrolytic capacitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417298A (en) * 1980-05-16 1983-11-22 Koreaki Nakata Chip type tantalum capacitor
JPH02256221A (en) * 1989-03-29 1990-10-17 Matsushita Electric Ind Co Ltd Manufacture of chip-type solid state electrolytic capacitor
JPH0357929U (en) * 1989-10-11 1991-06-05
JPH03190210A (en) * 1989-12-20 1991-08-20 Matsushita Electric Ind Co Ltd Manufacture of chiplike solid electrolytic capacitor
JP2000049048A (en) * 1998-07-31 2000-02-18 Elna Co Ltd Chip-type solid electrolytic capacitor and manufacture thereof
JP3942000B2 (en) * 1999-06-01 2007-07-11 ローム株式会社 Structure of package type solid electrolytic capacitor and manufacturing method thereof
JP2005101562A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Chip solid electrolytic capacitor and its manufacturing method
KR101009850B1 (en) * 2008-06-17 2011-01-19 삼성전기주식회사 Solid electrolytic capacitor and method for preparing the same
JP5474441B2 (en) * 2009-08-06 2014-04-16 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017022222A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6819691B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
US10629383B2 (en) Solid electrolytic capacitor
KR20110027631A (en) Electrolytic capacitor assembly and method with recessed leadframe channel
JP6223800B2 (en) Method for forming solid electrolytic capacitor
KR101434923B1 (en) Solid electrolytic capacitor
JP6774745B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP6142292B2 (en) Solid electrolytic capacitor
JP2011228518A (en) Solid electrolytic capacitor and method for producing the same
US11915886B2 (en) Solid electrolytic capacitor
JP5775040B2 (en) Solid electrolytic capacitor
JP2012069788A (en) Solid electrolytic capacitor
US8882857B2 (en) Solid electrolytic capacitor and method for manufacturing the same
JP4900851B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2020053588A (en) Solid electrolytic capacitor
KR102078008B1 (en) Solid electrolytic capacitor, manufacturing of the same and chip-type electronic part
JP2012084626A (en) Manufacturing method of electrolytic capacitor and electrolytic capacitor
JP6341654B2 (en) Solid electrolytic capacitor
JP2011243863A (en) Electrolytic capacitor
JP2011243864A (en) Electrolytic capacitor and method of manufacturing the same
KR101475367B1 (en) Solid electrolytic capacitor
JP2005311014A (en) Niobium solid electrolytic capacitor
JP5682277B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004134462A (en) Aluminum solid electrolytic capacitor
JP2008113055A (en) Solid electrolytic capacitor
JP2008294231A (en) Solid-state electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190620

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6774745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250