JP6774711B2 - Low-salt miso and its manufacturing method - Google Patents

Low-salt miso and its manufacturing method Download PDF

Info

Publication number
JP6774711B2
JP6774711B2 JP2015112354A JP2015112354A JP6774711B2 JP 6774711 B2 JP6774711 B2 JP 6774711B2 JP 2015112354 A JP2015112354 A JP 2015112354A JP 2015112354 A JP2015112354 A JP 2015112354A JP 6774711 B2 JP6774711 B2 JP 6774711B2
Authority
JP
Japan
Prior art keywords
miso
salt
rice
concentration
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015112354A
Other languages
Japanese (ja)
Other versions
JP2016220650A (en
Inventor
篤寿 西村
篤寿 西村
紀之 浅井
紀之 浅井
詩帆 早川
詩帆 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichibiki Co Ltd
Original Assignee
Ichibiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichibiki Co Ltd filed Critical Ichibiki Co Ltd
Priority to JP2015112354A priority Critical patent/JP6774711B2/en
Publication of JP2016220650A publication Critical patent/JP2016220650A/en
Application granted granted Critical
Publication of JP6774711B2 publication Critical patent/JP6774711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Beans For Foods Or Fodder (AREA)
  • Cereal-Derived Products (AREA)

Description

本発明は、減塩味噌およびその製造方法に関するものである。 The present invention relates to low-salt miso and a method for producing the same.

味噌は、高栄養食品であるが、製造上食塩(塩化ナトリウム)を多く使用することから、食塩摂取量を制限する昨今の健康志向の高まりのなかで敬遠され、消費量が減少傾向にある。そこで今日まで食塩を低減した味噌の開発が多くなされてきた。しかしながら、単に食塩の使用量を低減した味噌は、どうしても塩味の弱さやもの足りなさがある。 Miso is a highly nutritious food, but since it uses a large amount of salt (sodium chloride) in manufacturing, it is shunned due to the recent increase in health consciousness that limits salt intake, and its consumption is declining. Therefore, many developments of miso with reduced salt have been made to date. However, miso with a reduced amount of salt is inevitably weak in saltiness and lacking in saltiness.

一般に食品においては、食塩含量を減らすことによる塩味の弱さやもの足りなさを補うための食塩代替物として、塩化カリウム等のカリウム塩、塩化アンモニウム等のアンモニウム塩、塩化マグネシウム等のマグネシウム塩、グルコン酸カリウムなどのグルコン酸塩、アルギニン、リジンなどの塩基性アミノ酸、オルニチル−タウリン、オルニチル−β−アラニンなどのペプチド等が使用されている。しかしながら、上記食塩代替物質は、食塩味のほかに、苦味、えぐ味などの不快味を有しているという欠点がある。 Generally, in foods, potassium salts such as potassium chloride, ammonium salts such as ammonium chloride, magnesium salts such as magnesium chloride, and gluconic acid are used as salt substitutes for compensating for the weak salty taste and lack of saltiness due to the reduction of salt content. Gluconates such as potassium, basic amino acids such as arginine and lysine, and peptides such as ornityl-taurin and ornityl-β-alanine are used. However, the salt substitute substance has a drawback that it has an unpleasant taste such as bitterness and harsh taste in addition to the salty taste.

これらの不快味を抑制する技術として、塩化カリウム、塩化アンモニウム、乳酸力ルシウム、L−アスパラギン酸ナトリウム、L−グルタミン酸塩及び/又は核酸系調味料を特定の配合で混合した調味料組成物(特許文献1)、酵母由来ペプチドを含有する組成物を添加する方法(特許文献2)、ペプチドとカルボニル化合物とのアミノーカルボニル反応物を含有する組成物を添加する方法(特許文献3)、乳酸発酵した酵母エキスを添加する方法(特許文献4)、ポリ−γ−グルタミン酸またはその塩を含有する組成物を添加する方法(特許文献5)、海藻の酵素分解物を添加する方法(特許文献6)などがある。 As a technique for suppressing these unpleasant tastes, a seasoning composition (patented) in which potassium chloride, ammonium chloride, lacium lactate, sodium L-aspartate, L-glutamic acid and / or a nucleic acid-based seasoning is mixed in a specific formulation. Document 1), a method of adding a composition containing a yeast-derived peptide (Patent Document 2), a method of adding a composition containing an amino-carbonyl reaction product of a peptide and a carbonyl compound (Patent Document 3), lactic acid fermentation. Method of adding yeast extract (Patent Document 4), method of adding a composition containing poly-γ-glutamic acid or a salt thereof (Patent Document 5), method of adding an enzymatic decomposition product of seaweed (Patent Document 6). and so on.

特開平11−187841号公報Japanese Unexamined Patent Publication No. 11-187841 特開2012−105597号公報Japanese Unexamined Patent Publication No. 2012-105597 国際公開第2010/107019号パンフレットInternational Publication No. 2010/1007019 Pamphlet 国際公開第2013/047201号パンフレットInternational Publication No. 2013/04720 Pamphlet 特開2009−136266号公報JP-A-2009-136266 国際公開第2011/089764号パンフレットInternational Publication No. 2011/089764 Pamphlet

上述したような一般食品向けの汎用性添加剤を食塩低減味噌に添加すれば、塩味の弱さやもの足りなさを一定程度補いうるが、減塩効果、風味、経済性等の観点から考えると十分とはいえない。その結果、未だ「減塩」=「おいしくない」というイメージが払拭できず、充分に普及しているとは言えない状態である。 Adding a general-purpose additive for general foods as described above to salt-reduced miso can compensate for the weakness and lack of saltiness to a certain extent, but it is sufficient from the viewpoint of salt-reducing effect, flavor, economy, etc. I can't say that. As a result, the image of "reduced salt" = "not delicious" cannot be dispelled, and it cannot be said that it is sufficiently widespread.

本発明の目的は、上記現状に鑑み、食塩濃度が低くても、はっきりとした塩味を感じる一方、不快味を呈さず、風味の優れた減塩味噌類を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide low-salt miso which has a clear salty taste even when the salt concentration is low, does not exhibit an unpleasant taste, and has an excellent flavor.

上記目的を達成するためになされた本発明の1つの側面は、塩化カリウムと乳酸とを含み、以下の関係式(1)(2)(3)を全て満たす減塩豆味噌である。
0.003X+0.03≦A≦0.005X+0.17 (1)
9×10−4X−0.015≦B≦2.75×10−3X−0.0015 (2)
1.5×10−3X+0.025≦(B/A)≦7.0×10−3X+0.07 (3)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである豆味噌を標準としたときのナトリウム濃度の低減率(%)であって、Aは喫食時のカリウム濃度(重量%)、Bは喫食時の乳酸濃度(重量%)である。)
本発明のもう1つの側面は、塩化カリウムと乳酸とを含み、以下の関係式(7)(8)(9)を全て満たす減塩米味噌である。
6.5×10−3X+0.035≦E≦5.0×10−4X+0.465 (7)
5.0×10−4X+0.002≦F≦3.5×10−4X+0.0715 (8)
1.0×10−3X+0.03≦(F/E)≦1.0×10−3X+0.2 (9)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである米味噌を標準としたときのナトリウム濃度の低減率(%)であって、Eは喫食時のカリウム濃度(重量%)、Fは喫食時の乳酸濃度(重量%)である。)
斯かる減塩豆味噌及び減塩米味噌は、常法により得られた味噌と比べると、食塩濃度が低いにもかかわらず、実際の食塩濃度以上の塩味を感じることができる一方、不快な苦味や酸味を感じることはなく、常法の味噌と同じような使い方をした場合も味を損なうことがない。
One aspect of the present invention made to achieve the above object is a low-salt soybean miso containing potassium chloride and lactic acid and satisfying all of the following relational expressions (1), (2) and (3).
0.003X + 0.03 ≤ A ≤ 0.005X + 0.17 (1)
9 x 10 -4 X-0.015 ≤ B ≤ 2.75 x 10 -3 X-0.0015 (2)
1.5 × 10 -3 X + 0.025 ≦ (B / A) ≦ 7.0 × 10 -3 X + 0.07 (3)
(Here, X is the reduction rate (%) of the sodium concentration when the soybean miso having a sodium concentration at the time of eating is 0.504 g / 100 g as a standard, and A is the potassium concentration (weight%) at the time of eating. ), B is the lactic acid concentration (% by weight) at the time of eating.)
Another aspect of the present invention is a low-salt rice miso containing potassium chloride and lactic acid and satisfying all of the following relational expressions (7), (8) and (9).
6.5 × 10 -3 X + 0.035 ≦ E ≦ 5.0 × 10 -4 X + 0.465 (7)
5.0 × 10 -4 X + 0.002 ≦ F ≦ 3.5 × 10 -4 X + 0.0715 (8)
1.0 × 10 -3 X + 0.03 ≦ (F / E) ≦ 1.0 × 10 -3 X + 0.2 (9)
(Here, X is the reduction rate (%) of the sodium concentration when the sodium concentration at the time of eating is 0.504 g / 100 g as a standard, and E is the potassium concentration (weight%) at the time of eating. ), F is the lactic acid concentration (% by weight) at the time of eating.)
Such low-salt soybean miso and low-salt rice miso have a lower salt concentration than the miso obtained by a conventional method, but can feel a salty taste higher than the actual salt concentration, but have an unpleasant bitterness. It does not feel sour, and even if it is used in the same way as ordinary miso, it does not spoil the taste.

上記目的を達成するためになされた本発明のもう1つの側面は、塩化カリウムとアミノ酸分解物とを含み、以下の関係式(4)(5)(6)を全て満たす減塩豆味噌である。
0.003X+0.03≦C≦0.005X+0.17 (4)
7×10−4X−0.003≦D≦−9.5×10−4X+0.1735 (5)
−1.0×10−3X+0.18≦(D/C)≦−4.0×10−3X+0.73 (6)(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである豆味噌を標準としたときのナトリウム濃度の低減率(%)であって、Cは喫食時のカリウム濃度(重量%)、Dは喫食時の乳酸濃度(重量%)である。)
本発明のもう1つの側面は、塩化カリウムとアミノ酸分解物とを含み、以下の関係式(10)(11)(12)を全て満たす減塩米味噌である。
6.5×10−3X+0.035≦G≦5.0×10−4X+0.465 (10)
1.15×10−3X−0.0135≦H≦1×10−4X+0.131 (11)
2.5×10−3X−0.015≦(H/G)≦−8.5×10−3X+0.795 (12)(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである米味噌を標準としたときのナトリウム濃度の低減率(%)であって、Gは喫食時のカリウム濃度(重量%)、Hは喫食時の乳酸濃度(重量%)である。)
斯かる減塩豆味噌及び減塩米味噌は、常法により得られた味噌と比べると、食塩濃度が低いにもかかわらず、実際の食塩濃度以上の塩味を感じることができる一方、不快な苦味や酸味を感じることはなく、常法の味噌と同じような使い方をした場合も味を損なうことがないうえ、乳酸量が若干多くても許容しうる味噌となる。
Another aspect of the present invention made to achieve the above object is a low-salt soybean miso containing potassium chloride and an amino acid decomposition product and satisfying all of the following relational expressions (4), (5) and (6).
0.003X + 0.03 ≤ C ≤ 0.005X + 0.17 (4)
7 × 10 -4 X-0.003 ≦ D ≦ -9.5 × 10 -4 X + 0.1735 (5)
-1.0 x 10 -3 X + 0.18 ≤ (D / C) ≤-4.0 x 10 -3 X + 0.73 (6) (Here, X has a sodium concentration of 0.504 g / 100 g at the time of eating. The reduction rate (%) of the sodium concentration when the soybean miso is used as a standard, C is the potassium concentration (% by weight) at the time of eating, and D is the lactic acid concentration (% by weight) at the time of eating.)
Another aspect of the present invention is a low-salt rice miso containing potassium chloride and an amino acid decomposition product and satisfying all of the following relational expressions (10), (11) and (12).
6.5 × 10 -3 X + 0.035 ≦ G ≦ 5.0 × 10 -4 X + 0.465 (10)
1.15 × 10 -3 X-0.0135 ≦ H ≦ 1 × 10 -4 X + 0.131 (11)
2.5 × 10 -3 X-0.015 ≦ (H / G) ≦ -8.5 × 10 -3 X + 0.795 (12) (Here, X has a sodium concentration of 0.504 g / g when eaten. The reduction rate (%) of the sodium concentration when 100 g of rice miso is used as a standard, G is the potassium concentration (% by weight) at the time of eating, and H is the lactic acid concentration (% by weight) at the time of eating.)
Such low-salt soybean miso and low-salt rice miso have a lower salt concentration than the miso obtained by a conventional method, but can feel a salty taste higher than the actual salt concentration, but have an unpleasant bitterness and an unpleasant bitterness. It does not feel sour, and even if it is used in the same way as ordinary miso, it does not spoil the taste, and even if the amount of lactic acid is slightly large, the miso is acceptable.

上記減塩豆味噌及び減塩米味噌は、さらに呈味改善剤を含有するものであってもよい。呈味改善剤を含有することにより、相乗的に塩味を増強でき、また、みそ汁としての完成度もより高くなる。 The low-salt soybean miso and low-salt rice miso may further contain a taste improving agent. By containing the taste improving agent, the salty taste can be synergistically enhanced, and the degree of perfection as miso soup is also improved.

本発明の他の側面は、乳酸菌を添加して製麹する工程と、塩化カリウムを添加して仕込む工程とを含む減塩味噌の製造方法である。塩化カリウムを添加して仕込むことで、乳酸発酵が早く進み、熟成終了時の乳酸量が多くなる。上記工程を含めることで、味噌そのものが減塩に適したものに改良され、現在までに開発された呈味改良剤や塩味増強剤など添加物だけの効果に比べて、より満足のいく味と風味を得ることができる。 Another aspect of the present invention is a method for producing low-salt miso, which comprises a step of adding lactic acid bacteria to make koji and a step of adding potassium chloride to prepare the miso. By adding potassium chloride and charging, lactic acid fermentation proceeds faster and the amount of lactic acid at the end of aging increases. By including the above steps, the miso itself has been improved to be suitable for salt reduction, and the taste is more satisfactory than the effects of additives such as taste improvers and saltiness enhancers developed so far. You can get the flavor.

乳酸菌は、アミノ酸分解能を有する乳酸菌であることが好ましい。斯かる乳酸菌は、アミノ酸分解の過程でアンモニアを生成し、アンモニアにはpHを上げて酸っぱさを抑える効果があるため、乳酸発酵が過度に進行した場合も酸味だけが強調されることがなく、味に厚みを加えることができる。 The lactic acid bacterium is preferably a lactic acid bacterium having amino acid decomposing ability. Such lactic acid bacteria generate ammonia in the process of amino acid decomposition, and ammonia has the effect of raising the pH and suppressing sourness. Therefore, even when lactic acid fermentation progresses excessively, only sourness is not emphasized. You can add thickness to the taste.

上記仕込み工程は、塩化カリウムを添加する第1仕込み槽と、塩化カリウムを実質的に添加しないかまたはカリウム濃度が第1仕込み槽に比べて低い第2仕込み槽とを設ける段階を含み、さらに第1仕込み槽と第2仕込み槽とを別個に発酵熟成させる工程と、得られた味噌を混合する工程とを含んでなる。別個に発酵熟成させた場合、第1仕込み槽の味噌は第2仕込み槽の味噌に比べて乳酸発酵が早く進み、熟成終了時の乳酸量が多くなるので、第2仕込み槽の味噌と混合した際に味の厚みがより顕著になる。 The above-mentioned preparation step includes a step of providing a first preparation tank to which potassium chloride is added and a second preparation tank in which potassium chloride is substantially not added or the potassium concentration is lower than that of the first preparation tank. It includes a step of separately fermenting and aging the 1-preparation tank and the 2nd preparation tank, and a step of mixing the obtained miso. When fermented and aged separately, the miso in the first brewing tank undergoes lactic acid fermentation faster than the miso in the second brewing tank, and the amount of lactic acid at the end of aging increases, so it was mixed with the miso in the second brewing tank. The thickness of the taste becomes more noticeable.

本発明の他の側面は、塩化カリウムとアミノ酸分解物とを含み、塩化カリウムと塩化ナトリウムとの重量比率が1:0〜1:1である減塩味噌である。斯かる減塩味噌は、食塩および呈味改善剤の添加量または食塩と呈味改善剤との添加比率を用途に応じて調整することが可能になり、加工用途として特に好適なものとなる。 Another aspect of the present invention is low-salt miso containing potassium chloride and an amino acid decomposition product, and the weight ratio of potassium chloride to sodium chloride is 1: 0 to 1: 1. Such low-salt miso makes it possible to adjust the amount of salt and the taste improving agent added or the ratio of the salt added to the taste improving agent according to the application, and is particularly suitable for processing applications.

本発明によれば、常法により得られた味噌と比べると、食塩濃度が低いにもかかわらず、実際の食塩濃度以上の塩味を感じることができ、通常の味噌と同じような使い方をするだけで、味を損なうことなく、食塩の摂取量を削減できる。 According to the present invention, even though the salt concentration is lower than that of miso obtained by a conventional method, it is possible to feel a salty taste higher than the actual salt concentration, and it is only used in the same way as ordinary miso. Therefore, the intake of salt can be reduced without spoiling the taste.

以下に本発明の実施態様を説明する。なお、本願明細書において、減塩米味噌と減塩豆味噌とを特に区別しないときは、包括的に「減塩味噌」と称する。 Embodiments of the present invention will be described below. In the specification of the present application, when the low-salt rice miso and the low-salt soybean miso are not particularly distinguished, they are collectively referred to as "low-salt miso".

本発明における減塩豆味噌は、原料によって豆味噌に分類される味噌のうち、通常の味噌に比して一定程度ナトリウム含量を低減した味噌であれば全て包含され、例えば、衛発第781号記載の特別用途食品の基準に適合した豆味噌;該特別用途食品の基準に適合しない豆味噌;高血圧学会減塩委員会減塩食品リスト掲載基準(URL:https://www.jpnsh.jp/data/salt_f03.pdf)に適合した豆味噌;該掲載基準に適合しない豆味噌;常法により得られた豆味噌(乳酸発酵豆味噌を含む)を混合した味噌;常法により得られた米味噌、後述する減塩米味噌および/または麦味噌を50質量%未満の調合割合で調合した調合味噌(合わせ味噌)のいずれも包含される。本発明の減塩豆味噌の減塩率(喫食時のナトリウム濃度が0.504g/100gである豆味噌を標準としたときのナトリウム濃度の低減割合)としては、通常20〜100%、好ましくは20〜80%、より好ましくは20〜50%を想定しているが、特に限定されない。 The low-salt soybean miso in the present invention includes all miso classified as soybean miso depending on the raw material, as long as the miso has a certain degree of sodium content reduced as compared with ordinary miso. For example, described in Ebisu No. 781. Miso miso that meets the standards for special-purpose foods; Miso miso that does not meet the standards for special-purpose foods; Salt-reduced food list listing standards of the High Blood Pressure Society Salt Reduction Committee (URL: https://www.jpnsh.jp/data) Miso that conforms to (/salt_f03.pdf); Miso that does not conform to the publication standards; Miso mixed with soybean miso (including lactic acid fermented soybean miso) obtained by a conventional method; Rice miso obtained by a conventional method, Both low-salt rice miso and / or wheat miso, which will be described later, are included in the blended miso (mixed miso) prepared in a blending ratio of less than 50% by mass. The salt reduction rate of the low-salt soybean miso of the present invention (the reduction rate of the sodium concentration when the sodium concentration at the time of eating is 0.504 g / 100 g as a standard) is usually 20 to 100%, preferably 20. It is assumed to be -80%, more preferably 20 to 50%, but is not particularly limited.

本発明における減塩豆味噌は、一つの態様として、塩化カリウムと乳酸とを含み、上記関係式(1)(2)(3)を満たすものである。この態様において、喫食時カリウム濃度の好ましい範囲は、減塩率30%のとき、0.12〜0.32であり、より好ましい下限は、0.24、減塩率50%のとき、0.18〜0.42であり、より好ましい下限は、0.24である。また、喫食時乳酸濃度の好ましい範囲は、減塩率30%のとき、0.012〜0.081、より好ましい下限は、0.027、より好ましい上限は、0.052、減塩率50%のとき、0.030〜0.136、より好ましい下限は、0.041、より好ましい上限は、0.121である。上記範囲にすることで、厚みがあり、さらに味の良好な減塩味噌類が得られる。 The low-salt soybean miso in the present invention contains potassium chloride and lactic acid as one embodiment, and satisfies the above relational expressions (1), (2) and (3). In this embodiment, the preferable range of the potassium concentration at the time of eating is 0.12 to 0.32 when the salt reduction rate is 30%, and the more preferable lower limit is 0.24 when the salt reduction rate is 50%. It is 18 to 0.42, and a more preferable lower limit is 0.24. The preferred range of lactic acid concentration during eating is 0.012 to 0.081 when the salt reduction rate is 30%, the more preferable lower limit is 0.027, the more preferable upper limit is 0.052, and the salt reduction rate is 50%. At the time, 0.030 to 0.136, a more preferable lower limit is 0.041, and a more preferable upper limit is 0.121. Within the above range, low-salt miso that is thick and has a good taste can be obtained.

本発明の減塩豆味噌は、塩化カリウムとアミノ酸分解物とを含み、上記関係式(4)(5)(6)を満たすものである。この態様において、喫食時カリウム濃度の好ましい範囲は、減塩率30%のとき、0.12〜0.32であり、より好ましい下限は、0.24、減塩率50%のとき、0.18〜0.42であり、より好ましい下限は、0.24である。また、喫食時乳酸濃度の好ましい範囲は、減塩率30%のとき、0.018〜0.145、より好ましい下限は、0.064、より好ましい上限は、0.121、減塩率50%のとき、0.032〜0.126、より好ましい下限は、0.056、より好ましい上限は、0.111である。上記範囲にすることで、厚みがあり、さらに味の良好な減塩味噌類が得られる。 The low-salt soybean miso of the present invention contains potassium chloride and an amino acid decomposition product, and satisfies the above relational expressions (4), (5) and (6). In this embodiment, the preferable range of the potassium concentration at the time of eating is 0.12 to 0.32 when the salt reduction rate is 30%, and the more preferable lower limit is 0.24 when the salt reduction rate is 50%. It is 18 to 0.42, and a more preferable lower limit is 0.24. The preferable range of the lactic acid concentration during eating is 0.018 to 0.145 when the salt reduction rate is 30%, the more preferable lower limit is 0.064, the more preferable upper limit is 0.121, and the salt reduction rate is 50%. At the time, 0.032 to 0.126, a more preferable lower limit is 0.056, and a more preferable upper limit is 0.111. Within the above range, low-salt miso that is thick and has a good taste can be obtained.

本明細書において、アミノ酸分解物は、糖を分解して乳酸を生産することによってエネルギーをつくる細菌(乳酸菌)の作用によって豆類または穀物由来のアミノ酸のうち少なくとも1種が分解された後の生成物である。本発明の減塩味噌におけるアミノ酸分解物の量は、乳酸菌を利用せずに製造した味噌に比べて有意に増加していれば足り、加工前(発酵熟成終了直後)の味噌100g中のアミノ酸分解物の量が0.15%以上増加したものが好適に採用されうる。別の見方で、乳酸菌を利用して製造した味噌のアミノ酸分解物と対応する、乳酸菌を利用せずに製造した味噌の基質アミノ酸との重量比率[(アミノ酸分解物)/(対応する基質アミノ酸)]は、0.01以上、好ましくは、0.1以上、より好ましくは1以上である。アミノ酸分解物の量は、ポストカラム誘導体化法によるHPLC(移動相:株式会社島津製作所、アミノ酸移動相NA型、カラム:Shim-Pack AMINO-Na)で測定した値である。アミノ酸分解物は、味噌原料由来、即ち味噌の発酵熟成に由来するものであってもよいし、味噌の発酵熟成過程とは別に豆類または穀物を用意しておき、これを乳酸発酵して、味噌の製麹工程、仕込み工程、発酵熟成工程またはその後の工程で添加してもよい。 In the present specification, the amino acid decomposition product is a product after at least one of the amino acids derived from beans or grains is decomposed by the action of a bacterium (lactic acid bacterium) that produces energy by decomposing sugar to produce lactic acid. Is. It is sufficient that the amount of amino acid decomposition products in the low-salt miso of the present invention is significantly increased as compared with the miso produced without using lactic acid bacteria, and the amino acid decomposition in 100 g of miso before processing (immediately after the completion of fermentation and aging) is sufficient. Those in which the amount of the substance is increased by 0.15% or more can be preferably adopted. From another point of view, the weight ratio of the amino acid decomposition product of miso produced using lactic acid bacteria to the substrate amino acid of miso produced without using lactic acid bacteria [(amino acid decomposition product) / (corresponding substrate amino acid) ] Is 0.01 or more, preferably 0.1 or more, and more preferably 1 or more. The amount of the amino acid decomposition product is a value measured by HPLC (mobile phase: Shimadzu Corporation, amino acid mobile phase NA type, column: Shim-Pack AMINO-Na) by the post-column derivatization method. The amino acid decomposition product may be derived from the miso raw material, that is, from the fermentation and aging of miso, or beans or grains are prepared separately from the fermentation and aging process of miso, and this is lactic acid fermented to make miso. It may be added in the koji making step, the preparation step, the fermentation aging step or a subsequent step.

本発明における減塩米味噌は、原料によって米味噌に分類される味噌のうち、通常の味噌に比して一定程度ナトリウム含量を低減した味噌であれば全て包含され、例えば、衛発第781号記載の特別用途食品の基準に適合した減塩米味噌;該特別用途食品の基準に適合しない米味噌;高血圧学会減塩委員会減塩食品リスト掲載基準(URL:https://www.jpnsh.jp/data/salt_f03.pdf)に適合した米味噌;該掲載基準に適合しない米味噌;常法により得られた米味噌(乳酸発酵米味噌を含む)を混合した味噌;通常の豆味噌、上記減塩豆味噌および/または麦味噌を50質量%未満の調合割合で調合した調合味噌(合わせ味噌)のいずれも包含される。本発明の減塩米味噌の減塩率(喫食時のナトリウム濃度が0.504g/100gである米味噌を標準としたときのナトリウム濃度の低減割合)としては、通常20〜100%、好ましくは20〜80%、より好ましくは20〜50%を想定しているが、特に限定されない。 The low-salt rice miso in the present invention includes all miso classified as rice miso depending on the raw material, as long as the miso has a certain degree of sodium content reduced as compared with ordinary miso. For example, Miso No. 781. Low-salt rice miso that meets the standards for special-purpose foods listed; Rice miso that does not meet the standards for special-purpose foods; High Blood Pressure Society Salt Reduction Committee Salt-reduced food list listing standards (URL: https://www.jpnsh. Rice miso conforming to jp / data / salt_f03.pdf); Rice miso not conforming to the publication standards; Miso mixed with rice miso (including lactic acid fermented rice miso) obtained by a conventional method; Normal soybean miso, above Both low-salt soybean miso and / or wheat miso mixed in a blending ratio of less than 50% by mass (combined miso) are included. The salt reduction rate of the low-salt rice miso of the present invention (the reduction rate of the sodium concentration when the sodium concentration at the time of eating is 0.504 g / 100 g as a standard) is usually 20 to 100%, preferably 20 to 100%. It is assumed to be 20 to 80%, more preferably 20 to 50%, but is not particularly limited.

本発明における減塩米味噌は、塩化カリウムと乳酸とを含み、上記関係式(7)(8)(9)を全て満たすものである。この態様において、喫食時カリウム濃度の好ましい範囲は、減塩率30%のとき、0.23〜0.48であり、より好ましい下限は、0.29、より好ましい上限は、0.42、減塩率50%のとき、0.36〜0.49であり、より好ましい上限は、0.46である。また、喫食時乳酸濃度の好ましい範囲は、減塩率30%のとき、0.017〜0.082、より好ましい下限は、0.031、より好ましい上限は、0.071、減塩率50%のとき、0.027〜0.089、より好ましい下限は、0.044、より好ましい上限は、0.070である。上記範囲にすることで、厚みがあり、さらに味の良好な減塩味噌類が得られる。 The low-salt rice miso in the present invention contains potassium chloride and lactic acid, and satisfies all of the above relational expressions (7), (8) and (9). In this embodiment, the preferable range of the potassium concentration at the time of eating is 0.23 to 0.48 when the salt reduction rate is 30%, the more preferable lower limit is 0.29, and the more preferable upper limit is 0.42. When the salt ratio is 50%, it is 0.36 to 0.49, and a more preferable upper limit is 0.46. The preferable range of the lactic acid concentration during eating is 0.017 to 0.082 when the salt reduction rate is 30%, the more preferable lower limit is 0.031, the more preferable upper limit is 0.071, and the salt reduction rate is 50%. At the time, 0.027 to 0.089, a more preferable lower limit is 0.044, and a more preferable upper limit is 0.070. Within the above range, low-salt miso that is thick and has a good taste can be obtained.

本発明の減塩米味噌は、塩化カリウムとアミノ酸分解物とを含み、上記関係式(10)(11)(12)を満たすものである。この態様において、喫食時カリウム濃度の好ましい範囲は、減塩率30%のとき、0.23〜0.48であり、より好ましい下限は、0.29、より好ましい上限は、0.42、減塩率50%のとき、0.36〜0.49であり、より好ましい上限は、0.46である。また、喫食時乳酸濃度の好ましい範囲は、減塩率30%のとき、0.021〜0.134、より好ましい下限は、0.042、より好ましい上限は、0.129、減塩率50%のとき、0.044〜0.136、より好ましい下限は、0.073、より好ましい上限は、0.113である。上記範囲にすることで、厚みがあり、さらに味の良好な減塩味噌類が得られる。 The low-salt rice miso of the present invention contains potassium chloride and an amino acid decomposition product, and satisfies the above relational expressions (10), (11) and (12). In this embodiment, the preferable range of the potassium concentration at the time of eating is 0.23 to 0.48 when the salt reduction rate is 30%, the more preferable lower limit is 0.29, and the more preferable upper limit is 0.42. When the salt ratio is 50%, it is 0.36 to 0.49, and a more preferable upper limit is 0.46. The preferred range of lactic acid concentration during eating is 0.021 to 0.134 when the salt reduction rate is 30%, the more preferable lower limit is 0.042, the more preferable upper limit is 0.129, and the salt reduction rate is 50%. At the time, 0.044 to 0.136, a more preferable lower limit is 0.073, and a more preferable upper limit is 0.113. Within the above range, low-salt miso that is thick and has a good taste can be obtained.

本明細書において、ナトリウム濃度、カリウム濃度及び乳酸濃度は喫食時の値としたが、「喫食時」とは、食品包装等で指示された標準的な方法に従って味噌を熱湯で溶いて(具材が別形態で同一包装内に添付されているかまたは味噌と混合されている場合は、味噌を溶きかつ具材を戻して)食する状態とした時点を意味する。
上記ナトリウム濃度並びにA、C、E及びGのカリウム濃度は、喫食時の試料から灰分を析出させ、原子吸光法(株式会社島津製作所、原子吸光分光高度計AA-6300)により測定し算出した値である。
上記B、D、F及びHの乳酸の濃度は、喫食時の試料をイオン排除モードのHPLC(移動相:4mM過塩素酸、カラム:shodex RSpak KC-LG+KC-811)にかけて検出、定量した値である。
喫食時のナトリウム濃度が0.504g/100gである豆味噌または米味噌を標準としたが、当該ナトリウム濃度の値は以下の手順により計算した。即ち、20gの味噌を160gの湯に溶かして、180g喫食時の食塩相当量が2.31gである製品を標準品として、
(喫食時の食塩相当量)=2.31×100/(160+20)=1.28g/100g
ここで、食塩相当量をナトリウム量へ換算して、
1.28g/100g÷{(22.99+35.45)/22.99}=0.504g/100g
In the present specification, the sodium concentration, the potassium concentration and the lactic acid concentration are set to the values at the time of eating, but “at the time of eating” means that miso is melted in boiling water according to a standard method instructed in food packaging or the like (ingredients). When is attached to the same package in another form or mixed with miso, it means the time when the miso is melted and the ingredients are returned to the state of eating.
The above sodium concentration and potassium concentration of A, C, E and G are values calculated by precipitating ash from a sample at the time of eating and measuring by atomic absorption spectroscopy (Atomic Absorption Spectroscopy AA-6300, Shimadzu Corporation). is there.
The lactic acid concentrations of B, D, F and H were detected and quantified by subjecting the sample during eating to HPLC in the ion exclusion mode (mobile phase: 4 mM perchloric acid, column: shodex RSpak KC-LG + KC-811). The value.
The standard was soybean miso or rice miso having a sodium concentration of 0.504 g / 100 g at the time of eating, and the value of the sodium concentration was calculated by the following procedure. That is, a product obtained by dissolving 20 g of miso in 160 g of hot water and having a salt equivalent amount of 2.31 g when eating 180 g is used as a standard product.
(Equivalent amount of salt at the time of eating) = 2.31 × 100 / (160 + 20) = 1.28 g / 100 g
Here, the salt equivalent is converted into the sodium amount,
1.28g / 100g ÷ {(22.99 + 35.45) /22.99} = 0.504g / 100g

本発明の減塩豆味噌は、通常、原料の大豆を蒸煮する工程、蒸煮した大豆(味噌玉)に乳酸菌と麹菌(種麹)とを添加して製麹する工程、麹に塩化カリウムと種水と所望により蒸煮した大豆の残りを加えて仕込む工程、発酵・熟成する工程を経て得られるが、乳酸濃度及びカリウム濃度が上記関係式(1)〜(3)または(4)〜(6)を満たすものであれば、製造方法はこれらの工程に限定されるものではない。 The low-salt soybean miso of the present invention usually includes a step of steaming raw soybeans, a step of adding lactic acid bacteria and aspergillus (seed koji) to steamed soybeans (miso balls), and a step of making koji, potassium chloride and seed water. It is obtained through a step of adding the rest of steamed soybeans and a step of fermenting and aging, if desired, and the lactic acid concentration and potassium concentration are the above-mentioned relational expressions (1) to (3) or (4) to (6). The production method is not limited to these steps as long as it satisfies the requirements.

本発明の減塩米味噌は、通常、原料の米を蒸煮する工程、蒸煮した米、麦等のデンプン原料の一部に乳酸菌と麹菌(種麹)とを添加して製麹する工程、麹に適宜蒸煮した大豆と塩化カリウムと種水とを加えて仕込む工程、発酵・熟成する工程を経て得られるが、乳酸濃度及びカリウム濃度が上記関係式(7)〜(9)または(10)〜(12)を満たすものであれば、製造方法はこれらの工程に限定されるものではない。 The low-salt rice miso of the present invention is usually a step of steaming raw rice, a step of adding lactic acid bacteria and aspergillus (seed koji) to a part of starch raw materials such as steamed rice and wheat, and koji. It is obtained through a step of adding steamed soybeans, potassium chloride and seed water to the mixture, and a step of fermenting and aging. The lactic acid concentration and the potassium concentration are the above relational expressions (7) to (9) or (10) to. The production method is not limited to these steps as long as it satisfies (12).

本発明の減塩味噌において、上記乳酸濃度に調整する方法としては特に限定されないが、例えば、食品添加物の50%乳酸で調整する方法、過度に乳酸発酵させた味噌を使用する方法、アミノ酸の分解によりアンモニアを生成する乳酸菌で発酵させた味噌を使用する方法、アルギニンからオルニチンを生成する乳酸菌で発酵させた味噌を使用する方法、グルタミン酸からGABAを生成する乳酸菌で発酵させた味噌を使用する方法、アスパラギン酸をβ−アラニンに変換する乳酸菌で発酵させた味噌を使用する方法等が挙げられる。なお、上記乳酸菌による反応は2つ以上の組み合わせであってもよい。いずれの方法を採用する場合も、製麹工程、仕込み工程、発酵熟成工程またはその後の工程のいずれかの段階で塩化カリウムを人為的に添加することを前提とする。 In the low-salt miso of the present invention, the method for adjusting the lactic acid concentration is not particularly limited, but for example, a method for adjusting with 50% lactic acid as a food additive, a method using excessively lactic acid-fermented miso, and a method for amino acids. Method using miso fermented with lactic acid bacteria that produce ammonia by decomposition, method using miso fermented with lactic acid bacteria that produce ornithine from arginine, method using miso fermented with lactic acid bacteria that produce GABA from glutamic acid , A method of using miso fermented with a lactic acid bacterium that converts aspartic acid into β-alanine and the like can be mentioned. The reaction by the lactic acid bacteria may be a combination of two or more. Whichever method is adopted, it is premised that potassium chloride is artificially added at any stage of the koji making step, the preparation step, the fermentation aging step or the subsequent step.

本発明の減塩味噌において、減塩率に応じたカリウム濃度に調整する方法としては特に限定されないが、例えば、予め常法より少なめの塩化ナトリウムで仕込み熟成した味噌に塩化カリウムを添加する方法、塩化ナトリウムと塩化カリウムとを混合して仕込みを行う方法、塩化ナトリウム単独で仕込んだ味噌と塩化カリウム単独で仕込んだ味噌とを混合する方法等が挙げられる。 In the low-salt miso of the present invention, the method of adjusting the potassium concentration according to the salt reduction rate is not particularly limited, but for example, a method of adding potassium chloride to miso prepared in advance with a smaller amount of sodium chloride than a conventional method and aged. Examples thereof include a method of mixing sodium chloride and potassium chloride to prepare the mixture, and a method of mixing miso prepared with sodium chloride alone and miso prepared with potassium chloride alone.

得られた減塩味噌の水分量は、加工前の段階で通常38〜50質量%である。 The water content of the obtained low-salt miso is usually 38 to 50% by mass in the stage before processing.

本発明の減塩味噌は、核酸系調味料、アミノ酸系調味料、甘味料、γ−ポリグルタミン酸等の呈味改善剤を加工後の総重量に対して0%〜15%、好ましくは10%以下、より好ましくは5%以下で含有してもよい。呈味改善剤として、好ましくはカルテイク(γ-ポリグルタミン酸)(味の素ヘルシーサプライ株式会社)を使用することができる。含有することで、相乗的に塩味を増強でき、また、みそ汁としての完成度もより高くなる。同様の理由で上記減塩味噌は、かつお節、宗田節、さば節等の節類を含有してもよい。 The low-salt miso of the present invention is obtained by adding a taste improving agent such as a nucleic acid-based seasoning, an amino acid-based seasoning, a sweetener, and γ-polyglutamic acid to 0% to 15%, preferably 10%, based on the total weight after processing. Hereinafter, it may be contained in an amount of 5% or less, more preferably. As the taste improving agent, Caltake (γ-polyglutamic acid) (Ajinomoto Healthy Supply Co., Ltd.) can be preferably used. By containing it, the salty taste can be synergistically enhanced, and the degree of perfection as miso soup becomes higher. For the same reason, the low-salt miso may contain bonito flakes, Soda flakes, mackerel flakes and the like.

上記減塩味噌はまた、砂糖、昆布エキス、酒精(アルコール)、みりん、pH調整剤を含んでいてもよい。 The low-salt miso may also contain sugar, kelp extract, alcohol, mirin, and a pH adjuster.

本発明の減塩味噌は、様々な形態で提供することができ、例えば、顆粒状物、粉末状物等の乾燥固形物、ペースト状物等の半固形状物、味噌液等の液状物、味噌液の凍結乾燥物、味噌液と具材との混合状態での凍結乾燥物等を提供しうる。また、生タイプ、酵素失活を施したタイプ、殺菌処理を施したタイプのいずれでも提供することができる。 The low-salt miso of the present invention can be provided in various forms, for example, dry solids such as granules and powders, semi-solids such as pastes, and liquids such as miso liquid. A lyophilized product of miso liquid, a frost-dried product of a mixed state of miso liquid and ingredients, and the like can be provided. In addition, any of a raw type, an enzyme-inactivated type, and a sterilized type can be provided.

本発明の減塩味噌の製造方法は、一実施態様において、原料の米、豆、麦を蒸煮する工程、蒸煮した米、豆、麦等のデンプン原料の全部または一部に乳酸菌と麹菌(種麹)とを添加して製麹する工程、所望によりさらに蒸煮した大豆を加える工程、塩化カリウム及び種水を加えて仕込む工程、発酵・熟成する工程を含んでなる。 In one embodiment, the method for producing low-salt miso of the present invention includes a step of steaming rice, beans, and wheat as raw materials, and lactic acid bacteria and aspergillus (seed) in all or part of the starch raw materials such as steamed rice, beans, and wheat. It includes a step of adding koji) to make koji, a step of adding steamed soybeans if desired, a step of adding potassium chloride and seed water, and a step of fermentation and aging.

製麹工程で使用する乳酸菌としては、非耐塩性乳酸菌または耐塩性乳酸菌のいずれを使用することもできる。(条件1)仕込みより前の段階で喫食時のpH及び乳酸濃度が上記範囲に入るまで乳酸発酵すること、および、(条件2)仕込み時に食塩を含む水溶液を添加することは、耐塩性乳酸菌を使用するのに適した条件ではあるが、耐塩性乳酸菌を使用するからといって必ずしも(条件1)(条件2)が必須とされるわけではない。乳酸菌の添加量は、通常、10CFU/g以上とするが、製造条件等に応じて10CFU/g未満とすることも許容される。 As the lactic acid bacterium used in the koji making step, either a non-salt tolerant lactic acid bacterium or a salt tolerant lactic acid bacterium can be used. (Condition 1) Lactic acid fermentation until the pH and lactic acid concentration at the time of eating fall within the above ranges at the stage prior to the preparation, and (Condition 2) Add an aqueous solution containing salt at the time of preparation to obtain salt-tolerant lactic acid bacteria. Although the conditions are suitable for use, the use of salt-tolerant lactic acid bacteria does not necessarily mean that (Condition 1) and (Condition 2) are indispensable. Amount of lactic acid bacteria is usually a 10 5 CFU / g or more, it is allowed to be less than 10 5 CFU / g depending on the manufacturing conditions.

乳酸菌としては、アミノ酸分解能を有する乳酸菌が特に好適に採用される。本明細書においてアミノ酸分解能とは、豆類若しくは穀物由来のアミノ酸またはその塩のうち少なくとも1種を分解する能力を意味する。アミノ酸分解能を有する乳酸菌としては特に限定されないが、例えば、テトラジェノコッカスハロフィラスDA−353株(イチビキ社)、ペディオコッカス・アシディラクティシ等のアルギニンをオルニチンに変換する乳酸菌;ラクトバチラスハロフィラスDA−722株(イチビキ社)、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスNIAI527、ラクトバチルス・プランタラムIFO3070(特開2011-004723)、ラクトバチルス・ブレビス、ラクトバチルスsp.Y−3株(特開2004-357535)等のグルタミン酸をGABAに変換する乳酸菌;テトラジェノコッカスハロフィラスDA−588株(イチビキ社)、テトラジェノコッカスハロフィラスS−2株(キッコーマン社、特開2003-079363)等のアスパラギン酸をβ−アラニンに変換する乳酸菌;ラクトバチルス・ブレビスUAS−4株(ユニチカ社、特開2008-017703)等のアルギニンをオルニチンに変換し、かつグルタミン酸をGABAに変換する乳酸菌等を好適に採用することができる。 As the lactic acid bacterium, a lactic acid bacterium having amino acid decomposing ability is particularly preferably adopted. As used herein, amino acid resolution means the ability to decompose at least one of amino acids derived from beans or grains or salts thereof. The lactic acid bacterium having amino acid decomposing ability is not particularly limited, but for example, a lactic acid bacterium that converts arginine into ornithine such as tetragenococcus halophilus DA-353 strain (Ichibiki), pediococcus acidilactisi; S DA-722 strain (Ichibiki Co., Ltd.), Lactococcus lactis subspecies lactis NIAI527, Lactobacillus plantarum IFO3070 (Japanese Patent Laid-Open No. 2011-004723), Lactobacillus brevis, Lactobacillus sp. Lactic acid bacteria that convert glutamic acid into GABA, such as Y-3 strain (Japanese Patent Laid-Open No. 2004-357535); Tetragenococcus halophilus DA-588 strain (Ichibiki), Tetragenococcus halophilus S-2 strain (Kikkoman, Inc., Lactic acid bacteria that convert aspartic acid to β-alanine such as JP-A-2003-079363); arginine such as Lactobacillus brevis UAS-4 strain (Unitica, JP-A-2008-017703) to ornithine, and glutamic acid to GABA Lactic acid bacteria and the like that convert to can be preferably adopted.

仕込み工程で加える塩化カリウムは、直接粉末の形態で添加してもよいが、水溶液の形態で味噌原料に添加することもできる。該水溶液は、塩化ナトリウムその他の添加物を含んでいてもよいが、塩化カリウムのみからなる水溶液であってもよい。すなわち、塩化ナトリウムその他の添加物を塩化カリウム水溶液とは別の形態で添加してもよい。 Potassium chloride added in the preparation step may be added directly in the form of powder, or may be added to the miso raw material in the form of an aqueous solution. The aqueous solution may contain sodium chloride or other additives, but may be an aqueous solution consisting only of potassium chloride. That is, sodium chloride and other additives may be added in a form different from that of the potassium chloride aqueous solution.

塩化カリウムの添加法としては他にも、塩化ナトリウム単独で仕込んだ味噌と塩化カリウム単独で仕込んだ味噌とを混合する方法を採用しうる。この方法は、製麹工程により得られた麹に対して、実質的に塩化カリウムのみからなる水溶液を加えて第1仕込み槽を設け、塩化ナトリウムを含む水溶液を加える第2仕込み槽を設ける。その後、第1仕込み槽と第2仕込み槽とを別個に発酵熟成させ、得られた味噌を所定割合で混合することで塩化カリウムを添加したのと同等の効果を得る、という手法である。なお本方法において、第1仕込み槽と第2仕込み槽とで異なる製造条件(乳酸菌の種類、発酵熟成の温度、期間等)を採用することは自由である。 As another method for adding potassium chloride, a method of mixing miso prepared with sodium chloride alone and miso prepared with potassium chloride alone can be adopted. In this method, an aqueous solution containing substantially only potassium chloride is added to the jiuqu obtained in the koji making step to provide a first charging tank, and a second charging tank to which an aqueous solution containing sodium chloride is added is provided. After that, the first preparation tank and the second preparation tank are separately fermented and aged, and the obtained miso is mixed in a predetermined ratio to obtain the same effect as the addition of potassium chloride. In this method, it is free to adopt different production conditions (type of lactic acid bacteria, fermentation and aging temperature, period, etc.) between the first charging tank and the second charging tank.

上記以外の工程は、常法に従って行えばよく、発酵・熟成は、25℃〜35℃で2週間から6ヶ月程度行われるが、これに限定されるものではない。発酵・熟成後の味噌は、生味噌のまま最終製品に加工してもよいし、70〜95℃で5分以上加熱殺菌または酵素失活してから最終製品に加工してもよい。 Steps other than the above may be carried out according to a conventional method, and fermentation and aging are carried out at 25 ° C. to 35 ° C. for about 2 weeks to 6 months, but the present invention is not limited to this. The fermented and aged miso may be processed into a final product as raw miso, or may be processed into a final product after heat sterilization or enzyme deactivation at 70 to 95 ° C. for 5 minutes or more.

製麹工程、仕込み工程または発酵熟成工程のいずれかにおいて酵母を添加してもよい。
以下、実施例に即して本発明を具体的に説明するが、本発明の技術的範囲はこれらの記載によってなんら制限されるものではない。
Yeast may be added in any of the koji making step, the preparation step and the fermentation aging step.
Hereinafter, the present invention will be specifically described with reference to Examples, but the technical scope of the present invention is not limited by these descriptions.

実施例1(現在市販されている食塩低減味噌製品群と本願減塩味噌との比較検討)
本願減塩味噌は、以下の手法により製出した。
(1)本願減塩豆味噌の製造
原料大豆103kgを重量が1.5〜1.6倍になるまで浸漬し、水切り後、蒸し釜に入れ、0.7〜1.0kg/cmで90分間蒸し、蒸し大豆を得た。次いで冷却後、みそ玉を作り、これに種麹を常法に従い適量まぶし、これを25〜35°Cの品温で約48時間かけて豆麹を製造し、これを圧潰した。このように用意した豆麹155kgを、塩化カリウム20.3kgと種水16.2kgと共に仕込み容器内に仕込んだ。これに上蓋と重石を載せて25〜35°Cの範囲で発酵・熟成し、水分約42%、カリウム濃度約10.5%のKCl豆みそを製造した。
これとは別に、原料大豆103kgを重量が1.5〜1.6倍になるまで浸漬し、水切り後、蒸し釜に入れ、0.7〜1.0kg/cmで90分間蒸し、蒸し大豆を得た。次いで冷却後、アルギニンをオルニチンに変換する乳酸菌としてTetragenococcus halophilus DA−353(イチビキ社)を蒸し大豆に対して10cell/gとなるように添加して、味噌玉を作成した。これに種麹を常法に従い適量まぶし、これを25〜35°Cの品温で約48時間かけて豆麹を製造し、これを圧潰した。このように用意した豆麹155kgを、塩化カリウム19.37kgと種水23.28kgと共に仕込み容器内に仕込んだ。これに上蓋と重石を載せて25°C〜35°Cの範囲で発酵・熟成し、水分約42%、カリウム濃度約9.7%のKClオルニチン豆みそを製造した。
得られたKCl豆味噌200.7質量部およびKClオルニチン豆味噌373.4質量部に対し、グルタミン酸ナトリウム49.0質量部、砂糖39.0質量部、IN0.2質量部、水268.2質量部、食塩64.9質量部、アルコール26.0質量部を混合して最終的な本願減塩豆味噌を製造した。得られた本願減塩豆味噌20gを採って160mlの熱湯を加えて喫食時の状態とし、上述した手法によって、乳酸濃度、カリウム濃度を定量分析した。pHは、ガラス電極法を使用した卓上型pHメーター(東亜DKK株式会社、HM-25R)により測定した。結果を表1に示す。
Example 1 (Comparison study between the salt-reduced miso product group currently on the market and the salt-reduced miso of the present application)
The low-salt miso of the present application was produced by the following method.
(1) Production of low-salt soybean miso of the present application 103 kg of raw soybean is soaked until the weight becomes 1.5 to 1.6 times, drained, put in a steaming pot, and 0.7 to 1.0 kg / cm 2 for 90 minutes. Steamed to obtain steamed soybeans. Then, after cooling, a miso ball was made, and an appropriate amount of seed koji was sprinkled on the miso ball according to a conventional method, and the bean koji was produced at a product temperature of 25 to 35 ° C. for about 48 hours and crushed. 155 kg of soybean jiuqu prepared in this way was charged into a charging container together with 20.3 kg of potassium chloride and 16.2 kg of seed water. A top lid and a heavy stone were placed on this and fermented and aged in the range of 25 to 35 ° C. to produce KCl bean miso having a water content of about 42% and a potassium concentration of about 10.5%.
Separately, 103 kg of raw soybeans are soaked until the weight becomes 1.5 to 1.6 times, drained, placed in a steaming pot, steamed at 0.7 to 1.0 kg / cm 2 for 90 minutes, and steamed soybeans. Got Then after cooling, arginine was added as a 10 5 cell / g against soybean steamed Tetragenococcus halophilus DA-353 as a lactic acid bacteria to convert ornithine (Ichibiki Co.) to prepare a miso ball. An appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was produced at a product temperature of 25 to 35 ° C for about 48 hours, and this was crushed. 155 kg of soybean jiuqu prepared in this way was charged into a charging container together with 19.37 kg of potassium chloride and 23.28 kg of seed water. A top lid and a heavy stone were placed on this and fermented and aged in the range of 25 ° C to 35 ° C to produce KCl ornithine bean miso having a water content of about 42% and a potassium concentration of about 9.7%.
49.0 parts by mass of sodium glutamate, 39.0 parts by mass of sugar, 0.2 parts by mass of IN, 268.2 parts by mass of water with respect to 200.7 parts by mass of the obtained KCl soybean miso and 373.4 parts by mass of KCl ornithine soybean paste. A part, 64.9 parts by mass of salt, and 26.0 parts by mass of alcohol were mixed to produce the final low-salt soybean miso of the present application. 20 g of the obtained low-salt bean miso of the present application was taken and 160 ml of boiling water was added to bring it into a state at the time of eating, and the lactic acid concentration and potassium concentration were quantitatively analyzed by the above-mentioned method. The pH was measured with a desktop pH meter (Toa DKK Corporation, HM-25R) using the glass electrode method. The results are shown in Table 1.

(2)本願減塩米味噌の製造
原料大豆27.2kgを一晩水に浸漬し、水切り後、蒸し釜に入れ、0.5〜1.0kg/cmで15〜50分間蒸して、蒸し大豆を得た。この蒸し大豆を網目寸法4〜5mm程度で摺り潰した状態の蒸し豆を用意した。原料米20.0kgを一晩水に浸漬し、水切り後、30〜60分蒸し、蒸し米を得た。次いで冷却後、これに種麹を常法に従い適量まぶし、これを25〜40°Cの品温で約44時間かけて米麹を得た。このように用意した蒸し大豆56.0kgと米糀22.0kgを、塩化カリウム11.15kgと種水5.5kgと共に仕込み容器内に仕込んだ。これに上蓋を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、カリウム濃度約11.7%のKCl米味噌を製造した。
これとは別に、原料大豆27.2kgを一晩水に浸漬し、水切り後、蒸し釜に入れ、0.5〜1.0kg/cmで15〜50分間蒸して、蒸し大豆を得た。この蒸し大豆を網目寸法4〜5mm程度で摺り潰した状態の蒸し豆を用意した。原料米20.0kgを一晩水に浸漬し、水切り後、30〜60分蒸し、蒸し米を得た。次いで冷却後、これに種麹を常法に従い適量まぶし、これを25〜40°Cの品温で約44時間かけて米麹を得た。なお、製麹工程中に乳酸菌としてTetragenococcus halophilus DA−353(イチビキ社)を蒸し米に対して10cell/gとなるように添加した。このように用意した蒸し大豆56.0kgと米糀16.0kgを、塩化カリウム7.4kgと種水1.0kgと共に仕込み容器内に仕込んだ。これに上蓋を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、カリウム濃度約10.3%のKClオルニチン米味噌を製造した。
得られたKCl米味噌142.9質量部およびKClオルニチン米味噌435.9質量部に対して、常法によって得られた豆味噌14.0質量部、常法によって得られたNaCl米味噌24.7質量部、上記KClオルニチン米味噌と同じ乳酸菌を使用して常法により得られたNaClオルニチン米味噌74.0質量部、グルタミン酸ナトリウム78.0質量部、砂糖13.0質量部、IN1.7質量部、水165.0質量部、食塩43.1質量部、アルコール19.6質量部を混合して最終的な本願減塩米味噌を製造した。喫食時のpH、乳酸濃度、カリウム濃度の結果を表1に示す。
(2) Production of low-salt rice miso of the present application 27.2 kg of raw soybean is soaked in water overnight, drained, placed in a steaming pot, steamed at 0.5 to 1.0 kg / cm 2 for 15 to 50 minutes, and steamed. I got soybeans. Steamed beans in a state in which the steamed soybeans were ground to a mesh size of about 4 to 5 mm were prepared. 20.0 kg of raw material rice was immersed in water overnight, drained and steamed for 30 to 60 minutes to obtain steamed rice. Then, after cooling, an appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was sprinkled with a product temperature of 25 to 40 ° C. over about 44 hours to obtain rice koji. 56.0 kg of steamed soybeans and 22.0 kg of rice bran prepared in this way were charged into a container together with 11.15 kg of potassium chloride and 5.5 kg of seed water. A top lid was placed on the top and fermented and aged in the range of 25 to 35 ° C to produce KCl rice miso having a water content of about 44% and a potassium concentration of about 11.7%.
Separately, 27.2 kg of raw soybean was immersed in water overnight, drained, placed in a steaming kettle, and steamed at 0.5 to 1.0 kg / cm 2 for 15 to 50 minutes to obtain steamed soybean. Steamed beans in a state in which the steamed soybeans were ground to a mesh size of about 4 to 5 mm were prepared. 20.0 kg of raw material rice was immersed in water overnight, drained and steamed for 30 to 60 minutes to obtain steamed rice. Then, after cooling, an appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was sprinkled with a product temperature of 25 to 40 ° C. over about 44 hours to obtain rice koji. Incidentally, was added to rice steamed Tetragenococcus halophilus DA-353 as Lactobacillus (Ichibiki Co.) such that the 10 5 cell / g during the koji process. 56.0 kg of steamed soybeans and 16.0 kg of rice bran prepared in this way were charged into a container together with 7.4 kg of potassium chloride and 1.0 kg of seed water. A top lid was placed on this and fermented and aged in the range of 25 to 35 ° C. to produce KCl ornithine rice miso having a water content of about 44% and a potassium concentration of about 10.3%.
142.9 parts by mass of KCl rice miso and 435.9 parts by mass of KCl ornithine rice miso, 14.0 parts by mass of soybean miso obtained by a conventional method, and NaCl rice miso obtained by a conventional method 24. 7 parts by mass, 74.0 parts by mass of NaCl ornithine rice miso obtained by a conventional method using the same lactic acid bacteria as the above KCl ornithine rice miso, 78.0 parts by mass of sodium glutamate, 13.0 parts by mass of sugar, IN 1.7 The final salt-reduced rice miso of the present application was produced by mixing 165.0 parts by mass of water, 43.1 parts by mass of salt, and 19.6 parts by mass of alcohol. Table 1 shows the results of pH, lactic acid concentration, and potassium concentration at the time of eating.

(3)市販品の調査
比較対照として、現在市販されている各メーカーの食塩低減味噌製品群(即席味噌)について、各包装等で指示された標準的な方法に従って味噌および添付の具材を合わせて熱湯で溶いて食する状態として、pH、カリウム濃度、乳酸濃度を測定した結果を表1に示す。pHが低いもの、喫食時のカリウム濃度または乳酸濃度が有意に高いものについては適宜喫食して味を評価した。なお、減塩率は、各社包装の表記であり、メーカーごとに標準品が異なると考えられることからあくまで参考値である。
(3) Survey of commercially available products As a comparative control, for the salt-reduced miso product group (immediate miso) of each manufacturer currently on the market, the miso and attached ingredients are combined according to the standard method instructed in each packaging. Table 1 shows the results of measuring the pH, potassium concentration, and lactic acid concentration in a state of being melted in boiling water and eaten. Those having a low pH and those having a significantly high potassium concentration or lactic acid concentration at the time of eating were appropriately eaten and the taste was evaluated. The salt reduction rate is a notation for each company's packaging, and is a reference value only because it is considered that the standard product differs for each manufacturer.

Figure 0006774711
Figure 0006774711

表1から、市場にある減塩みそ汁においては、塩味強化のための塩化カリウムの利用や酸味の原因となる乳酸量を増大する試みはほとんどないことがわかった。このことは、塩化カリウムを使用して不快味を呈さず、風味の優れた減塩味噌類を提供することの困難性を示唆する。一方で、本願減塩豆味噌及び本願減塩米味噌は、塩化カリウムの添加による塩味の増強とともに生じる苦味やえぐ味が乳酸発酵によって低減され、味のしっかりした減塩味噌汁が得られることがわかった。なお、喫食時0.06%程度のカリウムは、味噌由来、即ち大豆中に自然に含まれるカリウムによるものと考えられる。 From Table 1, it was found that in the low-salt miso soup on the market, there are few attempts to use potassium chloride to enhance saltiness or increase the amount of lactic acid that causes sourness. This suggests that it is difficult to provide low-salt miso with excellent flavor without exhibiting an unpleasant taste using potassium chloride. On the other hand, it was found that in the low-salt soybean miso of the present application and the low-salt rice miso of the present application, the bitterness and harsh taste caused by the enhancement of the salty taste by the addition of potassium chloride are reduced by lactic acid fermentation, and the low-salt miso soup with a solid taste can be obtained. .. It is considered that about 0.06% of potassium at the time of eating is derived from miso, that is, potassium naturally contained in soybeans.

実施例2(塩化カリウムで仕込むことによる効果)
(1)本願減塩豆味噌(KClオルニチン豆味噌)の製造
原料大豆103kgを重量が1.5〜1.6倍になるまで浸漬し、水切り後、蒸し釜に入れ、0.7〜1.0kg/cmで90分間蒸し、蒸し大豆を得た。次いで冷却後、乳酸菌としてTetragenococcus halophilus DA−353(イチビキ社)を蒸し大豆に対して10cell/gとなるように添加して、味噌玉を作成した。これに種麹を常法に従い適量まぶし、これを25〜35°Cの品温で約48時間かけて豆麹を製造し、これを圧潰した。このように用意した豆麹155kgを、塩化カリウム17.5kgと種水23.28kgと共に仕込み容器内に仕込んだ。これに上蓋と重石を載せて25〜35°Cの範囲で発酵・熟成を開始し、1週間後、2週間後までの経過に伴うオルニチン含量をポストカラム誘導体化法によるHPLC(移動相:株式会社島津製作所、アミノ酸移動相NA型、カラム:Shim-Pack AMINO-Na)で測定した値である。にかけてモニタリングするとともに、最終的に得られたKClオルニチン豆味噌中の乳酸濃度をイオン排除モードのHPLC(移動相:4mM過塩素酸、カラム:shodex RSpak KC-LG+KC-811)で測定した。結果を表2及び表4に示す。
(2)本願減塩豆味噌(KCl/NaClオルニチン豆味噌)の製造
KClの仕込み量を17.5kg(8.7%)から4.5%にし、代わりにNaCl4.2%としたほかは、(1)と同様にしてKCl/NaClオルニチン豆味噌を得、(1)と同様にモニタリング測定した。
(3)通常豆味噌(NaClオルニチン豆味噌)の製造
NaClの仕込み量を17.5kg(濃度を8.7%)としたほかは、(1)と同様にしてNaClオルニチン豆味噌を得、(1)と同様にモニタリング測定した。
(4)本願減塩米味噌(KClオルニチン米味噌)の製造
原料大豆27.2kgを一晩水に浸漬し、水切り後、蒸し釜に入れ、0.5〜1.0kg/cmで15〜50分間蒸して、蒸し大豆を得た。この蒸し大豆を網目寸法4〜5mm程度で摺り潰した状態の蒸し豆を用意した。原料米20.0kgを一晩水に浸漬し、水切り後、30〜60分蒸し、蒸し米を得た。次いで冷却後、これに種麹を常法に従い適量まぶし、これを25〜40°Cの品温で約44時間かけて米麹を得た。なお、製麹工程中に乳酸菌としてTetragenococcus halophilus DA−353(イチビキ社)を蒸し米に対して10cell/gとなるように添加した。このように用意した蒸し大豆56.0kgと米糀16.0kgを、塩化カリウム7.4kgと種水1.0kgと共に仕込み容器内に仕込んだ。これに上蓋を載せて25〜35°Cの範囲で発酵・熟成を開始し、1週間後、2週間後までの経過に伴うオルニチン含量をモニタリングするとともに、最終的に得られたKClオルニチン米味噌中の乳酸濃度を測定した。結果を表3及び表4に示す。
(5)本願減塩米味噌(KCl/NaClオルニチン米味噌)の製造
KClの仕込み量を7.4kg(9.2%)から3.86kg(4.8%)にし、代わりにNaClを3.54kg(4.2%)仕込んだほかは、(4)と同様にしてKCl/NaClオルニチン米味噌を得、(4)と同様にモニタリング測定した。
(6)通常米味噌(NaClオルニチン米味噌)の製造
NaClの仕込み量を7.4kg(9.2%)としたほかは、(4)と同様にしてNaClオルニチン米味噌を得、(4)と同様にモニタリング測定した。
Example 2 (Effect of charging with potassium chloride)
(1) Production of low-salt soybean miso of the present application (KCl ornithine soybean miso) 103 kg of raw soybean is soaked until the weight becomes 1.5 to 1.6 times, drained, and placed in a steaming pot, 0.7 to 1.0 kg. Steamed at / cm 2 for 90 minutes to obtain steamed soybeans. Then after cooling, was added to a 10 5 cell / g with respect to soybeans steamed Tetragenococcus as lactic acid halophilus DA-353 (Ichibiki Co.) to prepare a miso ball. An appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was produced at a product temperature of 25 to 35 ° C for about 48 hours, and this was crushed. 155 kg of soybean jiuqu prepared in this way was charged into a charging container together with 17.5 kg of potassium chloride and 23.28 kg of seed water. Fermentation and aging are started in the range of 25 to 35 ° C with a top lid and a heavy stone placed on it, and the ornithine content with the passage of 1 week and 2 weeks is determined by HPLC by the post-column derivatization method (mobile phase: stock). It is a value measured by Shimadzu Corporation, amino acid mobile phase NA type, column: Shim-Pack AMINO-Na). The lactic acid concentration in the finally obtained KCl ornithine bean miso was measured by HPLC in the ion exclusion mode (mobile phase: 4 mM perchloric acid, column: shodex RSpak KC-LG + KC-811). The results are shown in Tables 2 and 4.
(2) Production of low-salt soybean miso (KCl / NaCl ornithine soybean miso) of the present application The amount of KCl charged was changed from 17.5 kg (8.7%) to 4.5%, and instead was changed to 4.2% NaCl. KCl / NaCl ornithine bean miso was obtained in the same manner as in 1), and monitoring and measurement were carried out in the same manner as in (1).
(3) Production of normal soybean miso (NaCl ornithine soybean miso) NaCl ornithine soybean miso was obtained in the same manner as in (1) except that the amount of NaCl charged was 17.5 kg (concentration was 8.7%). Monitoring measurement was performed in the same manner as in 1).
(4) Production of low-salt rice miso (KCl ornithine rice miso) of the present application 27.2 kg of raw soybean is soaked in water overnight, drained, put in a steaming pot, and 0.5 to 1.0 kg / cm 2 for 15 to Steamed for 50 minutes to obtain steamed soybeans. Steamed beans in a state in which the steamed soybeans were ground to a mesh size of about 4 to 5 mm were prepared. 20.0 kg of raw material rice was immersed in water overnight, drained and steamed for 30 to 60 minutes to obtain steamed rice. Then, after cooling, an appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was sprinkled with a product temperature of 25 to 40 ° C. over about 44 hours to obtain rice koji. Incidentally, was added to rice steamed Tetragenococcus halophilus DA-353 as Lactobacillus (Ichibiki Co.) such that the 10 5 cell / g during the koji process. 56.0 kg of steamed soybeans and 16.0 kg of rice bran prepared in this way were charged into a container together with 7.4 kg of potassium chloride and 1.0 kg of seed water. Place the top lid on this and start fermentation and aging in the range of 25 to 35 ° C, monitor the ornithine content over the course of 1 week and 2 weeks, and finally obtain KCl ornithine rice miso. The lactic acid concentration inside was measured. The results are shown in Tables 3 and 4.
(5) Production of low-salt rice miso (KCl / NaCl ornithine rice miso) of the present application The amount of KCl charged was changed from 7.4 kg (9.2%) to 3.86 kg (4.8%), and NaCl was used instead. KCl / NaCl ornithine rice miso was obtained in the same manner as in (4) except that 54 kg (4.2%) was charged, and monitoring measurement was carried out in the same manner as in (4).
(6) Production of normal rice miso (NaCl ornithine rice miso) NaCl ornithine rice miso was obtained in the same manner as in (4), except that the amount of NaCl charged was 7.4 kg (9.2%), and (4) Monitoring and measurement were performed in the same manner as above.

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

表2および表3から、塩化ナトリウムを塩化カリウムによって置換する割合を増やすにつれて、アルギニンをオルニチンに変換する乳酸菌を製麹時に使用した味噌について発酵熟成後最終的に生成する乳酸量が多くなる効果が観察されただけでなく、オルニチンの生成速度が早くなり、オルニチン生成量にも有意な増大が観察された。 From Tables 2 and 3, as the ratio of sodium chloride replaced by potassium chloride is increased, the effect of increasing the amount of lactic acid finally produced after fermentation and aging of miso using lactic acid bacteria that convert arginine to ornithine during koji making is effective. Not only was it observed, but the rate of ornithine production was increased, and a significant increase in ornithine production was observed.

実施例3(多様なアミノ酸分解物を含有する減塩味噌の製造)
実施例2で記載した味噌のほか、以下のKClγ−アミノ酪酸味噌、KClβ−アラニン味噌を製造し、それぞれについて最終製品のサンプルを3つ用意し、ポストカラム誘導体化法によるHPLC(移動相:株式会社島津製作所、アミノ酸移動相NA型、カラム:Shim-Pack AMINO-Na)にかけてアミノ酸含量、アミノ酸分解物含量を検出、定量分析した。結果を表4に示す。
(1)KCLγ−アミノ酪酸豆味噌の製造
原料大豆103kgを重量が1.5〜1.6倍になるまで浸漬し、水切り後、蒸し釜に入れ、0.7〜1.0kg/cmで90分間蒸し、蒸し大豆を得た。次いで冷却後、乳酸菌としてLactobacillus halophilus(DA−722、イチビキ社製)を蒸し大豆に対して10cell/gとなるように添加して、味噌玉を作成した。これに種麹を常法に従い適量まぶし、これを25〜35°Cの品温で約48時間かけて豆麹を製造し、これを圧潰した。このように用意した豆麹155kgを、塩化カリウム19.37kgと種水23.28kgと共に仕込み容器内に仕込んだ。これに上蓋と重石を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、塩化カリウム濃度約9.7%の豆味噌を製造した。
(2)KCLγ−アミノ酪酸米味噌の製造
原料大豆27.2kgを一晩水に浸漬し、水切り後、蒸し釜に入れ、0.5〜1.0kg/cmで15〜50分間蒸して、蒸し大豆を得た。この蒸し大豆を網目寸法4〜5mm程度で播り潰した状態の蒸し豆を用意した。原料米20.0kgを一晩水に浸漬し、水切り後、30〜60分蒸し、蒸し米を得た。次いで冷却後、これに種麹を常法に従い適量まぶし、これを25〜40°Cの品温で約44時間かけて米麹を得た。なお、製麹工程中に乳酸菌としてLactobacillus halophilus(DA−722、イチビキ社製)を蒸し米に対して10cell/gとなるように添加した。このように用意した蒸し大豆56.0kgと米糀16.0kgを、塩化カリウム8.52kgと種水1.0kgと共に仕込み容器内に仕込んだ。これに上蓋を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、塩化カリウム濃度約10.3%の米味噌を製造した。
(3)KCLβ−アラニン豆味噌の製造
原料大豆103kgを重量が1.5〜1.6倍になるまで浸漬し、水切り後、蒸し釜に入れ、0.7〜1.0kg/cmで90分間蒸し、蒸し大豆を得た。次いで冷却後、乳酸菌としてTetragenococcus halophilus(DA−588、イチビキ社製)を蒸し大豆に対して10cell/gとなるように添加して、味噌玉を作成した。これに種麹を常法に従い適量まぶし、これを25〜35°Cの品温で約48時間かけて豆麹を製造し、これを圧潰した。このように用意した豆麹155kgを、塩化カリウム19.37kgと種水23.28kgと共に仕込み容器内に仕込んだ。これに上蓋と重石を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、塩化カリウム濃度約9.7%の豆味噌を製造した。
(4)KCLβ−アラニン米味噌の製造
原料大豆27.2kgを一晩水に浸漬し、水切り後、蒸し釜に入れ、0.5〜1.0kg/cmで15〜50分間蒸して、蒸し大豆を得た。この蒸し大豆を網目寸法4〜5mm程度で播り潰した状態の蒸し豆を用意した。原料米20.0kgを一晩水に浸漬し、水切り後、30〜60分蒸し、蒸し米を得た。次いで冷却後、これに種麹を常法に従い適量まぶし、これを25〜40°Cの品温で約44時間かけて米麹を得た。なお、製麹工程中に乳酸菌としてTetragenococcus halophilus(DA−588、イチビキ社製)を蒸し米に対して10cell/gとなるように添加した。このように用意した蒸し大豆56.0kgと米糀16.0kgを、塩化カリウム8.52kgと種水1.0kgと共に仕込み容器内に仕込んだ。これに上蓋を載せて25〜35°Cの範囲で発酵・熟成し、水分約44%、塩化カリウム濃度約10.3%の米味噌を製造した。
Example 3 (Production of low-salt miso containing various amino acid decomposition products)
In addition to the miso described in Example 2, the following KClγ-aminobutyric acid miso and KClβ-alanine miso were produced, three final product samples were prepared for each, and HPLC (mobile phase: stock) by the post-column derivatization method was performed. Amino acid content and amino acid decomposition product content were detected and quantitatively analyzed by applying to Shimadzu Corporation, amino acid mobile phase NA type, column: Shim-Pack AMINO-Na). The results are shown in Table 4.
(1) Production of KCLγ-aminobutyric acid soybean miso 103 kg of raw soybeans are soaked until the weight becomes 1.5 to 1.6 times, drained, and placed in a steaming pot at 0.7 to 1.0 kg / cm 2 . Steamed for 90 minutes to obtain steamed soybeans. Then after cooling, Lactobacillus halophilus as lactic acid bacteria (DA-722, manufactured by Ichibiki Co.) was added to a 10 5 cell / g with respect to soybeans steamed to prepare a miso ball. An appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was produced at a product temperature of 25 to 35 ° C for about 48 hours, and this was crushed. 155 kg of soybean jiuqu prepared in this way was charged into a charging container together with 19.37 kg of potassium chloride and 23.28 kg of seed water. A top lid and a heavy stone were placed on this and fermented and aged in the range of 25 to 35 ° C. to produce soybean miso having a water content of about 44% and a potassium chloride concentration of about 9.7%.
(2) Production of KCLγ-aminobutyric acid rice miso 27.2 kg of raw soybean is soaked in water overnight, drained, placed in a steaming pot, and steamed at 0.5 to 1.0 kg / cm 2 for 15 to 50 minutes. Obtained steamed soybeans. Steamed beans in a state in which the steamed soybeans were sown and crushed with a mesh size of about 4 to 5 mm were prepared. 20.0 kg of raw material rice was immersed in water overnight, drained and steamed for 30 to 60 minutes to obtain steamed rice. Then, after cooling, an appropriate amount of seed jiuqu was sprinkled on this according to a conventional method, and this was sprinkled with a product temperature of 25 to 40 ° C. for about 44 hours to obtain rice jiuqu. Incidentally, Lactobacillus halophilus (DA-722, manufactured by Ichibiki Ltd.) as a lactic acid bacteria during the koji process was added to a 10 5 cell / g with respect to rice steamed. 56.0 kg of steamed soybeans and 16.0 kg of rice bran prepared in this way were charged into a container together with 8.52 kg of potassium chloride and 1.0 kg of seed water. A top lid was placed on the top and fermented and aged in the range of 25 to 35 ° C to produce rice miso having a water content of about 44% and a potassium chloride concentration of about 10.3%.
(3) Production of KCLβ-alanine soybean miso 103 kg of raw soybeans are soaked until the weight becomes 1.5 to 1.6 times, drained, put in a steaming pot, and 90 at 0.7 to 1.0 kg / cm 2 . Steamed for minutes to obtain steamed soybeans. Then after cooling, as the lactic acid bacteria Tetragenococcus halophilus (DA-588, manufactured by Ichibiki Co.) was added to a 10 5 cell / g with respect to soybeans steamed to prepare a miso ball. An appropriate amount of seed koji was sprinkled on this according to a conventional method, and this was produced at a product temperature of 25 to 35 ° C for about 48 hours, and this was crushed. 155 kg of soybean jiuqu prepared in this way was charged into a charging container together with 19.37 kg of potassium chloride and 23.28 kg of seed water. A top lid and a heavy stone were placed on this and fermented and aged in the range of 25 to 35 ° C. to produce soybean miso having a water content of about 44% and a potassium chloride concentration of about 9.7%.
(4) Production of KCLβ-alanine rice miso 27.2 kg of raw soybeans are soaked in water overnight, drained, placed in a steaming pot, steamed at 0.5 to 1.0 kg / cm 2 for 15 to 50 minutes, and steamed. I got soybeans. Steamed beans in a state in which the steamed soybeans were sown and crushed with a mesh size of about 4 to 5 mm were prepared. 20.0 kg of raw material rice was immersed in water overnight, drained and steamed for 30 to 60 minutes to obtain steamed rice. Then, after cooling, an appropriate amount of seed jiuqu was sprinkled on this according to a conventional method, and this was sprinkled with a product temperature of 25 to 40 ° C. for about 44 hours to obtain rice jiuqu. Incidentally, Tetragenococcus halophilus (DA-588, manufactured by Ichibiki Ltd.) as a lactic acid bacteria during the koji process was added to a 10 5 cell / g with respect to rice steamed. 56.0 kg of steamed soybeans and 16.0 kg of rice bran prepared in this way were charged into a container together with 8.52 kg of potassium chloride and 1.0 kg of seed water. A top lid was placed on the top and fermented and aged in the range of 25 to 35 ° C to produce rice miso having a water content of about 44% and a potassium chloride concentration of about 10.3%.

Figure 0006774711
Figure 0006774711

表4において、通常品との比較に基づいて、各種乳酸菌の作用により、アルギニンを消費してオルニチンを生成したこと、グルタミン酸を消費してγ−アミノ酪酸を生じたこと、アスパラギン酸を消費してアラニンを生成したことが推察され、これらのアミノ酸分解物を有する減塩豆味噌及び減塩米味噌をKClの存在下で特定の乳酸菌を用いて製造できることが実証された。 In Table 4, based on the comparison with the normal product, arginine was consumed to produce ornithine, glutamic acid was consumed to produce γ-aminobutyric acid, and aspartic acid was consumed by the action of various lactic acid bacteria. It was speculated that alanine was produced, and it was demonstrated that low-salt soybean miso and low-salt rice miso having these amino acid decomposition products can be produced using specific lactic acid bacteria in the presence of KCl.

実施例4(官能試験による塩味、苦味、酸味、味の厚み等の評価)
喫食時のカリウム濃度を一定にして、発酵乳酸の配合量や乳酸発酵(減塩)味噌の配合を減塩率30%の減塩豆味噌については表5〜表16、減塩率50%の減塩豆味噌については表20〜表29、減塩率30%の減塩米味噌については表33〜表42、減塩率50%の減塩米味噌については表46〜表53に記載の通りに変えることによって乳酸量が異なる即席味噌を製造し、それぞれ20gを採って160mlの熱湯を加えて喫食し、表17、表30、表43、表54に示す官能基準によって塩味、苦味、酸味、味の厚みの観点、および総合的な印象で5段階評価した。減塩豆味噌の結果を表18、表19、表31、表32に、減塩米味噌の結果を表44、表45、表55、表56にそれぞれ示す。表中、減塩率は、喫食時の食塩相当量が2.31gである豆味噌を標準品としたときの減塩率、MSGはL−グルタミン酸ナトリウム、INは、5’−イノシン酸二ナトリウムである。
なお、KCl豆味噌、KClオルニチン豆味噌は、実施例1の(1)に記載の方法により製造し、NaCl豆味噌及びNaClオルニチン豆味噌は、実施例1の(1)の塩化カリウムを塩化ナトリウムに置き換えて製造した。
Example 4 (Evaluation of saltiness, bitterness, sourness, taste thickness, etc. by sensory test)
Keep the potassium concentration at the time of eating constant, and reduce the amount of fermented lactic acid and lactic acid fermented (reduced salt) miso with a salt reduction rate of 30%. For salt-reduced soybean miso, Tables 5 to 16 and a salt reduction rate of 50%. As described in Tables 20 to 29 for salted soybean miso, Tables 33 to 42 for low salt rice miso with a salt reduction rate of 30%, and Tables 46 to 53 for low salt rice miso with a salt reduction rate of 50%. Instant miso with different amounts of lactic acid is produced by changing the amount, and 20 g of each is taken and 160 ml of boiling water is added for eating. Salt, bitterness, acidity, and taste according to the sensory criteria shown in Table 17, Table 30, Table 43, and Table 54. It was evaluated on a 5-point scale from the viewpoint of the thickness and the overall impression. The results of low-salt bean miso are shown in Table 18, Table 19, Table 31, and Table 32, and the results of low-salt rice miso are shown in Table 44, Table 45, Table 55, and Table 56, respectively. In the table, the salt reduction rate is the salt reduction rate when soybean miso, which has a salt equivalent amount of 2.31 g at the time of eating, is used as the standard product, MSG is sodium L-glutamate, IN is disodium 5'-inosinate. Is.
KCl soybean miso and KCl ornithine soybean miso were produced by the method described in Example 1 (1), and NaCl soybean miso and NaCl ornithine soybean miso were prepared by using potassium chloride of Example 1 (1) as sodium chloride. Manufactured by replacing with.

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

Figure 0006774711
Figure 0006774711

表から、KCl味噌に発酵乳酸を添加した味噌については、KClの配合割合と、添加した発酵乳酸量とが所定の範囲内にあるものについては、通常品と遜色ない(同等程度の塩味を感じる一方、苦味酸味を感じない味噌)ことがわかった。また、KClの存在下で発酵によりオルニチンと乳酸とを産生した味噌を使用した場合、味に厚みが出て、乳酸添加味噌の場合に比べて、乳酸量の許容範囲(上限と下限との間)が広がることがわかった。このことは、減塩率増加と充分な塩味との両立のためにカリウム濃度を高めた結果、顕著に出てくる苦味やえぐ味を抑えるべく乳酸量を多くしても、徒に酸味が際立つことがないことを意味する。 From the table, for miso with fermented lactic acid added to KCl miso, if the blending ratio of KCl and the amount of added fermented lactic acid are within a predetermined range, it is comparable to the normal product (feels the same salty taste). On the other hand, it was found that miso) does not feel bitter and sour. In addition, when miso produced by fermentation in the presence of KCl with ornithine and lactic acid was used, the taste became thicker, and the permissible range of lactic acid amount (between the upper limit and the lower limit) was compared with the case of lactic acid-added miso. ) Was found to spread. This is because, as a result of increasing the potassium concentration in order to achieve both an increase in the salt reduction rate and a sufficient salty taste, even if the amount of lactic acid is increased to suppress the noticeable bitterness and harsh taste, the sourness stands out. It means that there is nothing.

以上、本発明の実施例について説明したが、本発明はこれらの実施例に限られるものではなく、その要旨を逸脱しない範囲内においてさらに種々の形態で実施することができる。 Although the examples of the present invention have been described above, the present invention is not limited to these examples, and can be further carried out in various forms without departing from the gist thereof.

本発明の減塩味噌は、煮魚、佃煮、煮豚、水産加工品(缶詰)、ラーメンスープ、うどんつゆ、即席みそ汁等に特に好適に利用することができる。

The low-salt miso of the present invention can be particularly preferably used for boiled fish, tsukudani, boiled pork, processed marine products (canned food), ramen soup, udon soup, instant miso soup, and the like.

Claims (12)

アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌およびKCl豆味噌と、食品添加物としての乳酸と、所望により食塩とを含み、以下の関係式(1)(2)(3)を全て満たす、標準的な喫食方法についての指示を有する減塩豆味噌。
0.003X+0.03≦A≦0.005X+0.17 (1)
9×10−4X−0.015≦B≦2.75×10−3X−0.0015 (2)
1.5×10−3X+0.025≦(B/A)≦7.0×10−3X+0.07 (3)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである豆味噌を標準としたときの喫食時のナトリウム濃度の低減率(%)であって、Aは喫食時のカリウム濃度(重量%)、Bは喫食時の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
It contains NaCl soybean miso and KCl soybean miso produced without adding lactic acid bacteria having amino acid decomposing ability, lactic acid as a food additive, and optionally salt, and the following relational expressions (1), (2), and (3). Low-salt soybean miso with instructions on standard eating methods that meet all of the requirements.
0.003X + 0.03 ≤ A ≤ 0.005X + 0.17 (1)
9 x 10 -4 X-0.015 ≤ B ≤ 2.75 x 10 -3 X-0.0015 (2)
1.5 × 10 -3 X + 0.025 ≦ (B / A) ≦ 7.0 × 10 -3 X + 0.07 (3)
(Here, X is the reduction rate (%) of the sodium concentration at the time of eating when the soybean miso having the sodium concentration at the time of eating is 0.504 g / 100 g as a standard, and A is the potassium concentration at the time of eating. (% By Weight), B is the lactic acid concentration (% by weight) at the time of eating. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アルギニンをオルニチンに変換するアミノ酸分解能を有する乳酸菌を添加して製造されたNaClオルニチン豆味噌およびKClオルニチン豆味噌と、アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌およびKCl豆味噌とを含む、以下の関係式(4)(5)(6)を全て満たす、標準的な喫食方法についての指示を有する減塩豆味噌。
0.003X+0.03≦C≦0.005X+0.17 (4)
7×10−4X−0.003≦D≦−9.5×10−4X+0.1735 (5)
−1.0×10−3X+0.18≦(D/C)≦−4.0×10−3X+0.73 (6)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである豆味噌を標準としたときの喫食時のナトリウム濃度の低減率(%)であって、Cは喫食時のカリウム濃度(重量%)、Dは喫食時の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
NaCl ornithine bean miso and KCl ornithine bean miso produced by adding lactic acid bacteria having amino acid decomposing ability to convert arginine to ornithine, and NaCl bean miso and KCl soybean miso produced by adding lactic acid bacteria having amino acid decomposing ability. Low-salt bean miso having instructions on a standard eating method, which satisfies all of the following relational expressions (4), (5), and (6), including.
0.003X + 0.03 ≤ C ≤ 0.005X + 0.17 (4)
7 × 10 -4 X-0.003 ≦ D ≦ -9.5 × 10 -4 X + 0.1735 (5)
-1.0 x 10 -3 X + 0.18 ≤ (D / C) ≤-4.0 x 10 -3 X + 0.73 (6)
(Here, X is the reduction rate (%) of the sodium concentration at the time of eating when the soybean miso having the sodium concentration at the time of eating is 0.504 g / 100 g as a standard, and C is the potassium concentration at the time of eating. (% By Weight), D is the lactic acid concentration (% by weight) at the time of eating. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌、NaCl米味噌およびKCl米味噌と、食品添加物としての乳酸と、所望により食塩とを含む、以下の関係式(7)(8)(9)を全て満たす、標準的な喫食方法についての指示を有する減塩米味噌。
6.5×10−3X+0.035≦E≦5.0×10−4X+0.465 (7)
5.0×10−4X+0.002≦F≦3.5×10−4X+0.0715 (8)
1.0×10−3X+0.03≦(F/E)≦1.0×10−3X+0.2 (9)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである米味噌を標準としたときの喫食時のナトリウム濃度の低減率(%)であって、Eは喫食時のカリウム濃度(重量%)、Fは喫食時の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
The following relational expressions (7) and (8) containing NaCl bean miso, NaCl rice miso and KCl rice miso produced without adding lactic acid bacteria having amino acid decomposing ability, lactic acid as a food additive, and optionally salt. ) Low-salt rice miso with instructions on standard eating methods that satisfy all of (9).
6.5 × 10 -3 X + 0.035 ≦ E ≦ 5.0 × 10 -4 X + 0.465 (7)
5.0 × 10 -4 X + 0.002 ≦ F ≦ 3.5 × 10 -4 X + 0.0715 (8)
1.0 × 10 -3 X + 0.03 ≦ (F / E) ≦ 1.0 × 10 -3 X + 0.2 (9)
(Here, X is the reduction rate (%) of the sodium concentration at the time of eating when rice miso having a sodium concentration of 0.504 g / 100 g at the time of eating is used as a standard, and E is the potassium concentration at the time of eating. (% By Weight), F is the lactic acid concentration (% by weight) at the time of eating. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アルギニンをオルニチンに変換するアミノ酸分解能を有する乳酸菌を添加して製造されたNaClオルニチン米味噌およびKClオルニチン米味噌と、アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌、NaCl米味噌およびKCl米味噌とを含む、以下の関係式(10)(11)(12)を全て満たす、標準的な喫食方法についての指示を有する減塩米味噌。
6.5×10−3X+0.035≦G≦5.0×10−4X+0.465 (10)
1.15×10−3X−0.0135≦H≦1×10−4X+0.131 (11)
2.5×10−3X−0.015≦(H/G)≦−8.5×10−3X+0.795 (12)
(ここで、Xは、喫食時のナトリウム濃度が0.504g/100gである米味噌を標準としたときの喫食時のナトリウム濃度の低減率(%)であって、Gは喫食時のカリウム濃度(重量%)、Hは喫食時の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
NaCl ornithine rice miso and KCl ornithine rice miso produced by adding lactic acid bacteria having amino acid decomposing ability to convert arginine to ornithine, and NaCl bean miso, NaCl rice miso and produced without adding lactic acid bacteria having amino acid decomposing ability. Low- salt rice miso having instructions on a standard eating method, which satisfies all of the following relational expressions (10), (11), and (12) , including KCl rice miso.
6.5 × 10 -3 X + 0.035 ≦ G ≦ 5.0 × 10 -4 X + 0.465 (10)
1.15 × 10 -3 X-0.0135 ≦ H ≦ 1 × 10 -4 X + 0.131 (11)
2.5 x 10 -3 X-0.015 ≤ (H / G) ≤ -8.5 x 10 -3 X + 0.795 (12)
(Here, X is the reduction rate (%) of the sodium concentration at the time of eating when the sodium concentration at the time of eating is 0.504 g / 100 g as a standard, and G is the potassium concentration at the time of eating. (% By Weight), H is the lactic acid concentration (% by weight) at the time of eating. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌およびKCl豆味噌と、食品添加物としての乳酸と、所望により食塩とを含む、以下の関係式(1)(2)(3)を全て満たす減塩豆味噌。
0.003X+0.03≦A≦0.005X+0.17 (1)
9×10−4X−0.015≦B≦2.75×10−3X−0.0015 (2)
1.5×10−3X+0.025≦(B/A)≦7.0×10−3X+0.07 (3)
(ここで、Xは、重量比で豆味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである豆味噌を標準としたときの重量比で減塩豆味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Aは重量比で減塩豆味噌1を湯8に溶かした際のカリウム濃度(重量%)、Bは重量比で減塩豆味噌1を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
The following relational expressions (1), (2), and (3) containing NaCl soybean miso and KCl soybean miso produced without adding lactic acid bacteria having amino acid decomposing ability, lactic acid as a food additive, and optionally salt. Low-salt bean miso that meets all of the requirements.
0.003X + 0.03 ≤ A ≤ 0.005X + 0.17 (1)
9 x 10 -4 X-0.015 ≤ B ≤ 2.75 x 10 -3 X-0.0015 (2)
1.5 × 10 -3 X + 0.025 ≦ (B / A) ≦ 7.0 × 10 -3 X + 0.07 (3)
(Here, X is the weight ratio of low-salt soybean miso 1 to hot water 8 when the sodium concentration of soybean miso 1 is 0.504 g / 100 g in hot water 8 as a standard. The reduction rate (%) of the sodium concentration when dissolved, A is the potassium concentration (% by weight) when the low-salt soybean miso 1 is dissolved in hot water 8 by weight, and B is the low-salt soybean miso 1 by weight. It is the lactic acid concentration (% by weight) when dissolved in hot water 8. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アルギニンをオルニチンに変換するアミノ酸分解能を有する乳酸菌を添加して製造されたNaClオルニチン豆味噌およびKClオルニチン豆味噌と、アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌およびKCl豆味噌とを含む、以下の関係式(4)(5)(6)を全て満たす減塩豆味噌。
0.003X+0.03≦C≦0.005X+0.17 (4)
7×10−4X−0.003≦D≦−9.5×10−4X+0.1735 (5)
−1.0×10−3X+0.18≦(D/C)≦−4.0×10−3X+0.73 (6)
(ここで、Xは、重量比で豆味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである豆味噌を標準としたときの重量比で減塩豆味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Cは重量比で減塩豆味噌1を湯8に溶かした際のカリウム濃度(重量%)、Dは重量比で減塩豆味噌を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
NaCl ornithine bean miso and KCl ornithine soybean miso produced by adding lactic acid bacteria having amino acid decomposing ability to convert arginine to ornithine, and NaCl bean miso and KCl soybean miso produced by adding lactic acid bacteria having amino acid decomposing ability. Low-salt bean miso that satisfies all of the following relational expressions (4), (5), and (6), including.
0.003X + 0.03 ≤ C ≤ 0.005X + 0.17 (4)
7 × 10 -4 X-0.003 ≦ D ≦ -9.5 × 10 -4 X + 0.1735 (5)
-1.0 x 10 -3 X + 0.18 ≤ (D / C) ≤-4.0 x 10 -3 X + 0.73 (6)
(Here, X is the weight ratio of low-salt soybean miso 1 to hot water 8 when the sodium concentration of soybean miso 1 is 0.504 g / 100 g in hot water 8 as a standard. The reduction rate (%) of the sodium concentration when dissolved, C is the potassium concentration (% by weight) when the low-salt soybean miso 1 is dissolved in hot water 8 by weight, and D is the low-salt soybean miso by weight. It is the lactic acid concentration (% by weight) when dissolved in 8. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌、NaCl米味噌およびKCl米味噌と、食品添加物としての乳酸と、所望により食塩とを含む、以下の関係式(7)(8)(9)を全て満たす減塩米味噌。
6.5×10−3X+0.035≦E≦5.0×10−4X+0.465 (7)
5.0×10−4X+0.002≦F≦3.5×10−4X+0.0715 (8)
1.0×10−3X+0.03≦(F/E)≦1.0×10−3X+0.2 (9)
(ここで、Xは、重量比で米味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである米味噌を標準としたときの重量比で減塩米味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Eは重量比で減塩米味噌1を湯8に溶かした際のカリウム濃度(重量%)、Fは重量比で減塩米味噌1を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
The following relational expressions (7) and (8) containing NaCl bean miso, NaCl rice miso and KCl rice miso produced without adding lactic acid bacteria having amino acid decomposing ability, lactic acid as a food additive, and optionally salt. ) Low-salt rice miso that satisfies all of (9).
6.5 × 10 -3 X + 0.035 ≦ E ≦ 5.0 × 10 -4 X + 0.465 (7)
5.0 × 10 -4 X + 0.002 ≦ F ≦ 3.5 × 10 -4 X + 0.0715 (8)
1.0 × 10 -3 X + 0.03 ≦ (F / E) ≦ 1.0 × 10 -3 X + 0.2 (9)
(Here, X is a salt-reduced rice miso 1 in hot water 8 by weight ratio when rice miso having a sodium concentration of 0.504 g / 100 g when the rice miso 1 is dissolved in hot water 8 is standardized. The reduction rate (%) of the sodium concentration when dissolved in, E is the potassium concentration (% by weight) when the salt-reduced rice miso 1 is dissolved in hot water 8 by weight, and F is the salt-reduced rice by weight. It is the lactic acid concentration (% by weight) when miso 1 is dissolved in hot water 8. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
アルギニンをオルニチンに変換するアミノ酸分解能を有する乳酸菌を添加して製造されたNaClオルニチン米味噌およびKClオルニチン米味噌と、アミノ酸分解能を有する乳酸菌を添加することなく製造されたNaCl豆味噌、NaCl米味噌およびKCl米味噌とを含む、以下の関係式(10)(11)(12)を全て満たす減塩米味噌。
6.5×10−3X+0.035≦G≦5.0×10−4X+0.465 (10)
1.15×10−3X−0.0135≦H≦1×10−4X+0.131 (11)
2.5×10−3X−0.015≦(H/G)≦−8.5×10−3X+0.795 (12)
(ここで、Xは、重量比で米味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである米味噌を標準としたときの重量比で減塩米味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Gは重量比で減塩米味噌1を湯8に溶かした際のカリウム濃度(重量%)、Hは重量比で減塩米味噌1を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
NaCl ornithine rice miso and KCl ornithine rice miso produced by adding lactic acid bacteria having amino acid decomposing ability to convert arginine to ornithine, and NaCl bean miso, NaCl rice miso and produced without adding lactic acid bacteria having amino acid decomposing ability. A low- salt rice miso that satisfies all of the following relational expressions (10), (11), and (12) , including KCl rice miso.
6.5 × 10 -3 X + 0.035 ≦ G ≦ 5.0 × 10 -4 X + 0.465 (10)
1.15 × 10 -3 X-0.0135 ≦ H ≦ 1 × 10 -4 X + 0.131 (11)
2.5 x 10 -3 X-0.015 ≤ (H / G) ≤ -8.5 x 10 -3 X + 0.795 (12)
(Here, X is a salt-reduced rice miso 1 in hot water 8 by weight ratio when rice miso having a sodium concentration of 0.504 g / 100 g when the rice miso 1 is dissolved in hot water 8 is standardized. The reduction rate (%) of the sodium concentration when dissolved in, G is the potassium concentration (% by weight) when the salt-reduced rice miso 1 is dissolved in hot water 8 by weight, and H is the salt-reduced rice by weight. It is the lactic acid concentration (% by weight) when miso 1 is dissolved in hot water 8. Here, the reduction rate of the sodium concentration is 30 to 50 %.)
さらに呈味改善剤を含有することを特徴とする請求項1ないし請求項8のいずれかに記載の減塩豆味噌または減塩米味噌。 The low- salt bean miso or low-salt rice miso according to any one of claims 1 to 8, further containing a taste improving agent . アミノ酸分解能を有する乳酸菌を蒸し大豆に対して10cell/g以上添加して味噌玉を作成してから麹菌をまぶし、25℃〜35℃の品温で製麹する工程と、圧潰して得られた豆麹に対して塩化カリウムおよび/または塩化ナトリウムおよび種水を添加して仕込む工程と、25℃〜35℃で発酵熟成する工程とによってアミノ酸分解物、KClおよび/またはNaClを含む豆味噌を得るステップと、
アミノ酸分解能を有する乳酸菌を添加することなく蒸し大豆の味噌玉に麹菌をまぶし、25〜35℃の品温で製麹する工程と、圧潰して得られた豆麹に対して塩化ナトリウムおよび/または塩化カリウムおよび種水を添加して仕込む工程と、25℃〜35℃で発酵熟成する工程とによってNaClおよび/またはKClを含む豆味噌を得るステップと、
喫食時に所望するナトリウム濃度の低減率(%)および乳酸濃度に応じて、以下の関係式(4)(5)(6)を全て満たすように喫食時の塩化カリウム濃度を設定し、それに応じた割合で、前記アミノ酸分解物、KClおよび/またはNaClを含む豆味噌に対して、NaClおよび/またはKClを含む豆味噌を混合するステップと、
所望により食塩を添加するステップと
を含む、減塩豆味噌の製造方法。
0.003X+0.03≦C≦0.005X+0.17 (4)
7×10 −4 X−0.003≦D≦−9.5×10 −4 X+0.1735 (5)
−1.0×10 −3 X+0.18≦(D/C)≦−4.0×10 −3 X+0.73 (6)
(ここで、Xは、重量比で豆味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである豆味噌を標準としたときの重量比で減塩豆味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Aは重量比で減塩豆味噌1を湯8に溶かした際のカリウム濃度(重量%)、Bは重量比で減塩豆味噌1を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
Steamed lactic acid bacteria with amino resolution by adding 10 5 cell / g or more with respect to soybean dusted with koji mold after creating a miso ball, comprising the steps of koji at a product temperature of 25 ° C. to 35 ° C., obtained by crushing a step of charging by adding potassium chloride and / or sodium chloride and Tanesui against bean koji which is, bean miso containing 25 ° C. to 35 amino acid decomposition product by the fermenting aged ° C., KCl and / or NaCl And the steps to get
The process of sprinkling Jiuqu on steamed soybean miso balls without adding lactic acid bacteria with amino acid decomposing ability and making Jiuqu at a product temperature of 25 to 35 ° C, and sodium chloride and / or the crushed soybean paste. A step of adding potassium chloride and seed water and charging, and a step of fermenting and aging at 25 ° C to 35 ° C to obtain bean miso containing NaCl and / or KCl.
The potassium chloride concentration at the time of eating was set so as to satisfy all of the following relational expressions (4), (5) and (6) according to the reduction rate (%) of the sodium concentration desired at the time of eating and the lactic acid concentration. The step of mixing the bean miso containing NaCl and / or KCl with the bean miso containing the amino acid degradation product, KCl and / or NaCl, in proportion.
A method for producing low-salt soybean miso, which comprises the step of adding salt if desired .
0.003X + 0.03 ≤ C ≤ 0.005X + 0.17 (4)
7 × 10 -4 X-0.003 ≦ D ≦ -9.5 × 10 -4 X + 0.1735 (5)
-1.0 x 10 -3 X + 0.18 ≤ (D / C) ≤-4.0 x 10 -3 X + 0.73 (6)
(Here, X is the weight ratio of low-salt soybean miso 1 to hot water 8 when the sodium concentration of soybean miso 1 is 0.504 g / 100 g in hot water 8 as a standard. The reduction rate (%) of the sodium concentration when dissolved, A is the potassium concentration (% by weight) when the low-salt soybean miso 1 is dissolved in hot water 8 by weight, and B is the low-salt soybean miso 1 by weight. It is the lactic acid concentration (% by weight) when dissolved in hot water 8. Here, the reduction rate of the sodium concentration is 30 to 50%.)
麹菌とともにアミノ酸分解能を有する乳酸菌を蒸し米に対して10cell/g以上添加して25℃〜40℃の品温で製麹する工程と、得られた米糀に対して網目寸法4〜5mm程度で擂り潰した状態の蒸し豆と塩化カリウムおよび/または塩化ナトリウムを添加して仕込む工程と、25℃〜35℃で発酵熟成する工程とによってアミノ酸分解物、KClおよび/またはNaClを含む米味噌を得るステップと
アミノ酸分解能を有する乳酸菌を添加することなく蒸し大豆の味噌玉に麹菌をまぶし、25〜35℃の品温で製麹する工程と、圧潰して得られた豆麹に対して塩化ナトリウムまたは塩化カリウムおよび種水を添加して仕込む工程と、25℃〜35℃で発酵熟成する工程とによってNaCl豆味噌を得るステップと、
アミノ酸分解能を有する乳酸菌を添加することなく蒸し米に麹菌を添加して25℃〜40℃の品温で製麹する工程と、得られた米糀に対して網目寸法4〜5mm程度で擂り潰した状態の蒸し豆と塩化ナトリウムまたは塩化カリウムを添加して仕込む工程と、25℃〜35℃で発酵熟成する工程とによってNaClおよび/またはKClを含む米味噌を得るステップと、
喫食時に所望するナトリウム濃度の低減率(%)および乳酸濃度に応じて、以下の関係式(10)(11)(12)を全て満たすように喫食時の塩化カリウム濃度を設定し、それに応じた割合で、前記アミノ酸分解物、KClおよび/またはNaClを含む米味噌に対して、NaCl豆味噌、ならびに、NaClおよび/またはKClを含む米味噌を混合するステップと、
所望により食塩を添加するステップと
を含む、減塩米味噌の製造方法。
6.5×10 −3 X+0.035≦G≦5.0×10 −4 X+0.465 (10)
1.15×10 −3 X−0.0135≦H≦1×10 −4 X+0.131 (11)
2.5×10 −3 X−0.015≦(H/G)≦−8.5×10 −3 X+0.795 (12)
(ここで、Xは、重量比で米味噌1を湯8に溶かした際のナトリウム濃度が0.504g/100gである米味噌を標準としたときの重量比で減塩米味噌1を湯8に溶かした際のナトリウム濃度の低減率(%)であって、Gは重量比で減塩米味噌1を湯8に溶かした際のカリウム濃度(重量%)、Hは重量比で減塩米味噌1を湯8に溶かした際の乳酸濃度(重量%)である。ここで、ナトリウム濃度の低減率は、30〜50%である。)
A step of koji at a product temperature of addition to 25 ° C. to 40 ° C. relative to the rice steamed lactic acid bacteria 10 5 cell / g or more with the amino acid resolution with Aspergillus, mesh size for the obtained rice Koji 4~5mm Rice miso containing amino acid decomposition products, KCl and / or NaCl by the step of adding steamed beans and potassium chloride and / or sodium chloride in a state of being ground to a degree and the step of fermenting and aging at 25 ° C to 35 ° C. And the steps to get
The process of sprinkling Jiuqu on steamed soybean miso balls without adding lactic acid bacteria with amino acid decomposing ability and making Jiuqu at a product temperature of 25 to 35 ° C, and sodium chloride or potassium chloride for the crushed soybean paste. And the step of adding seed water and charging, and the step of fermenting and aging at 25 ° C to 35 ° C to obtain NaCl soybean miso.
The process of adding Jiuqu to steamed rice without adding lactic acid bacteria with amino acid decomposing ability to make Jiuqu at a product temperature of 25 ° C to 40 ° C, and mashing the obtained rice bran with a mesh size of about 4 to 5 mm. A step of adding steamed beans and sodium chloride or potassium chloride in a fresh state, and a step of fermenting and aging at 25 ° C to 35 ° C to obtain rice miso containing NaCl and / or KCl.
The potassium chloride concentration at the time of eating was set so as to satisfy all of the following relational expressions (10), (11) and (12) according to the reduction rate (%) of the sodium concentration desired at the time of eating and the lactic acid concentration. A step of mixing NaCl bean miso and rice miso containing NaCl and / or KCl with the rice miso containing the amino acid decomposition products, KCl and / or NaCl in proportion.
A method for producing low-salt rice miso, which comprises the step of adding salt if desired .
6.5 × 10 -3 X + 0.035 ≦ G ≦ 5.0 × 10 -4 X + 0.465 (10)
1.15 × 10 -3 X-0.0135 ≦ H ≦ 1 × 10 -4 X + 0.131 (11)
2.5 x 10 -3 X-0.015 ≤ (H / G) ≤ -8.5 x 10 -3 X + 0.795 (12)
(Here, X is a salt-reduced rice miso 1 in hot water 8 by weight ratio when rice miso having a sodium concentration of 0.504 g / 100 g when the rice miso 1 is dissolved in hot water 8 is standardized. The reduction rate (%) of the sodium concentration when dissolved in, G is the potassium concentration (% by weight) when the salt-reduced rice miso 1 is dissolved in hot water 8 by weight, and H is the salt-reduced rice by weight. It is the lactic acid concentration (% by weight) when miso 1 is dissolved in hot water 8. Here, the reduction rate of the sodium concentration is 30 to 50%.)
前記仕込み工程は、塩化カリウムを添加して仕込む場合、塩化カリウムを添加する第1仕込み槽と、塩化カリウムを実質的に添加しないかまたはカリウム濃度が第1仕込み槽に比べて低い第2仕込み槽とを設ける段階を含み、さらに第1仕込み槽と第2仕込み槽とを別個に発酵熟成させる工程と、第1仕込み槽及び第2仕込み槽で得られた味噌同士を混合する工程とを含むことを特徴とする請求項10または請求項11に記載の減塩味噌の製造方法。
In the preparation step, when potassium chloride is added and charged, a first preparation tank in which potassium chloride is added and a second preparation tank in which potassium chloride is substantially not added or the potassium concentration is lower than that in the first preparation tank. Including the step of providing the above, further including the step of separately fermenting and aging the first and second brewing tanks and the step of mixing the miso obtained in the first brewing tank and the second brewing tank. The method for producing low-salt miso according to claim 10 or 11.
JP2015112354A 2015-06-02 2015-06-02 Low-salt miso and its manufacturing method Active JP6774711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112354A JP6774711B2 (en) 2015-06-02 2015-06-02 Low-salt miso and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015112354A JP6774711B2 (en) 2015-06-02 2015-06-02 Low-salt miso and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016220650A JP2016220650A (en) 2016-12-28
JP6774711B2 true JP6774711B2 (en) 2020-10-28

Family

ID=57746173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112354A Active JP6774711B2 (en) 2015-06-02 2015-06-02 Low-salt miso and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6774711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326181B1 (en) * 2018-02-05 2018-05-16 株式会社吉野家ホールディングス Method for producing beef bowl, stewed beef bowl, and method for producing beef bowl
JP6991520B2 (en) * 2020-04-22 2022-01-12 勝 大谷 How to produce miso products with adjusted aroma and / or taste intensity

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144884A (en) * 1979-04-27 1980-11-12 Kikkoman Corp Preparation of koji
JPS5668372A (en) * 1979-10-20 1981-06-09 Kikkoman Corp Preparation of seasoning containing salt
JPS57146555A (en) * 1981-03-09 1982-09-10 Japan Organo Co Ltd Preparation of miso
JP3527062B2 (en) * 1997-05-14 2004-05-17 マルサンアイ株式会社 Miso manufacturing method
JP3027352B2 (en) * 1997-09-03 2000-04-04 愛知県 Manufacturing method of fermented seasonings
JP4729679B2 (en) * 2000-02-15 2011-07-20 愛知県 Method for producing rice koji using lactic acid bacteria and method for producing rice miso
JP3957132B2 (en) * 2001-09-07 2007-08-15 キッコーマン株式会社 Separation medium for low turbidity soy sauce lactic acid bacteria, separation method for low turbidity soy sauce lactic acid bacteria using the same medium, and method for producing highly clear soy sauce using the same lactic acid bacteria
JP4128892B2 (en) * 2003-03-17 2008-07-30 焼津水産化学工業株式会社 Method for enhancing salty taste of food and drink and seasoning used therefor
JP4313615B2 (en) * 2003-06-03 2009-08-12 ヒガシマル醤油株式会社 Novel lactic acid bacteria having immunostimulatory activity and γ-aminobutyric acid producing ability, and use thereof.
JP4004531B1 (en) * 2006-03-27 2007-11-07 ヤマサ醤油株式会社 Manufacturing method of fermented seasoning
JP5165942B2 (en) * 2006-07-07 2013-03-21 花王株式会社 miso
JP2008017703A (en) * 2006-07-10 2008-01-31 Unitika Ltd METHOD FOR PRODUCING FOOD COMPRISING gamma-AMINOBUTYRIC ACID AND ORNITHINE
JP2008017785A (en) * 2006-07-14 2008-01-31 Mikasa Sangyo Kk METHOD FOR ENRICHING COMMON SALT-CONTAINING FOOD WITH gamma-AMINOBUTYRIC ACID
JP5306768B2 (en) * 2008-10-21 2013-10-02 株式会社永谷園 Method for producing miso containing ornithine
JP5441519B2 (en) * 2009-06-29 2014-03-12 国立大学法人 岡山大学 Lactic acid bacteria having high production ability of γ-aminobutyric acid, food enriched with γ-aminobutyric acid using the same, and method for producing the food
JP2014181214A (en) * 2013-03-19 2014-09-29 Central Miso Research Institute Dopamine production promoter
JP6271172B2 (en) * 2013-07-02 2018-01-31 一般社団法人中央味噌研究所 Vascular smooth muscle cell proliferation inhibitor
JP5523618B1 (en) * 2013-08-09 2014-06-18 ヤマサ醤油株式会社 Reduced salt bean miso with excellent taste
JP6374648B2 (en) * 2013-11-07 2018-08-15 株式会社Adeka Salty taste enhancer

Also Published As

Publication number Publication date
JP2016220650A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Kilcast et al. Sensory issues in reducing salt in food products
JP5680815B2 (en) Method for producing potassium chloride-containing food and drink, and potassium chloride-containing food and drink obtained by the production method
EP2446752B1 (en) Composition for low-salt food or beverage
KR101889113B1 (en) Method for improving salty taste of food or beverage and salty taste improving agent
EP2762010B1 (en) Taste-improving agent
EP2984940B1 (en) Method for reinforcing salty taste of food
EP2138053B1 (en) Method for enhancing salty taste-like taste of food and drink
JP6023813B2 (en) Amino acid seasoning composition containing L-glutamic acid and basic amino acid
CN106231922B (en) Method for preparing chili sauce and chili sauce prepared by the method
JP6774711B2 (en) Low-salt miso and its manufacturing method
CN111447840A (en) Sauce composition and method for preparing the same
EP1491098B1 (en) Process for producing basic seasoning for multipurpose and utilization of the same
EP2499923B1 (en) Liquid seasoning having improved flavor
US20060024422A1 (en) Salt substitute compositions having N-neohexyl-a-aspartyl-l- phenylalanine methyl ester for modifying flavor and methods of manufacturing the same
JP5093101B2 (en) Method for enhancing salty taste of γ-polyglutamic acid-containing food
WO2005070231A1 (en) Method of producing seasoning
KR102083608B1 (en) Process of fabricating sauce with hot taste and sauce with hot sacue
JP4997365B1 (en) Saltiness enhancing method with salty taste enhancer and salt reducing method for salt-containing foods and drinks
JP2016189758A (en) Saltiness promoter
EP1827134B1 (en) Flavour enhancer
JP2015188345A (en) Flavor improving agent and production method thereof
EP2572591B1 (en) Alanine-rich seasoning composition
KR102588191B1 (en) Mixed seasoning composition comprising vegetables and spices
JP6230835B2 (en) Liquid seasoning with improved taste
KR101790582B1 (en) Seasoning as salty-taste enhancer, and process for preparing the seasoning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250