JP6773811B2 - 液冷式磁気素子 - Google Patents

液冷式磁気素子 Download PDF

Info

Publication number
JP6773811B2
JP6773811B2 JP2018559702A JP2018559702A JP6773811B2 JP 6773811 B2 JP6773811 B2 JP 6773811B2 JP 2018559702 A JP2018559702 A JP 2018559702A JP 2018559702 A JP2018559702 A JP 2018559702A JP 6773811 B2 JP6773811 B2 JP 6773811B2
Authority
JP
Japan
Prior art keywords
coil
conductive
coils
magnetic element
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018559702A
Other languages
English (en)
Other versions
JP2019519102A (ja
Inventor
イー.リペル ウォリー
イー.リペル ウォリー
イー.リペル エリック
イー.リペル エリック
Original Assignee
プリペル テクノロジーズ,リミティド ライアビリティ カンパニー
プリペル テクノロジーズ,リミティド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プリペル テクノロジーズ,リミティド ライアビリティ カンパニー, プリペル テクノロジーズ,リミティド ライアビリティ カンパニー filed Critical プリペル テクノロジーズ,リミティド ライアビリティ カンパニー
Publication of JP2019519102A publication Critical patent/JP2019519102A/ja
Application granted granted Critical
Publication of JP6773811B2 publication Critical patent/JP6773811B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/20Cooling by special gases or non-ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Transformer Cooling (AREA)

Description

関連出願の相互参照
本出願は、「液冷式トロイダル磁気」(LIQUID‐COOLED TOROIDAL MAGNETICS)と題する、2016年5月13日に出願された米国仮特許出願第62/336,466号に対して優先権を主張し、その利益を主張する。本出願は、「液冷式トロイダル磁気の開示」(DISCLOSURE OF LIQUID‐COOLED TOROIDAL MAGNETICS)と題する、2016年9月28日に出願された米国仮特許出願第62/401,139号に対して優先権を主張し、その利益を主張する。この両仮特許出願の全体の内容は参照することによって本明細書に組み込まれる。
本発明による実施形態の1つ又は複数の態様は、磁気素子に関し、さらに詳細には、液冷式トロイダル磁気素子に関する。
変圧器及びインダクタのような磁気素子は、さまざまな電力処理システムにて重要な機能を果たす。磁気素子のサイズ及びコストを最小限に抑えるために、電流密度及び電気周波数を可能な限り高くすることができる。そのようなシステムでは、巻線とコアとの両方からの熱伝達を効率的なものとし、さらに巻線内とコア内の両方にて低渦損失とすることが有利であり得る。トロイダル形状を有する磁気素子には、さまざまな利点があり得るが、その製造には特殊な巻線装置を使用することがあり、高電流巻線の製造が困難である可能性がある。
このため、磁気素子のための改良された設計が必要とされている。
本開示の実施形態の態様は、トロイダル磁気素子に向けられている。複数のコイルがトロイダル構成に配置されている。各コイルは、平角線をロール状に巻くことによって形成された中空円筒であってもよい。コイルはスペーサと交互に配置され、スペーサの各々は楔状のものであってもよい。コイルは巻線方向を交互にしてもよく、各コイルの内側端部は、接続ピンを介して隣接するコイルの内側端部に接続されてもよい。例えば、各楔部の両面に、コイルが当接する複数の隆起リブを有する結果として、コイルと楔部との間に小さな間隙が形成される。冷却流体がその間隙を通って流れ、コイルを冷却する。
本発明の一実施形態によれば、第1の環状面と第2の環状面とを有する第1の導電性コイルと、第1の平面と第2の平面とを有する第1の電気絶縁スペーサであって、第1の平面は第1の間隙によって前記第1の環状面から分離される、第1の電気絶縁スペーサと、流体入口と、流体出口と、を備える磁気素子が提供される。流体経路が第1の間隙を介して流体入口から流体出口へ延びる。
一実施形態では、第1のコイルは中空円筒コイルであって、第1の電気絶縁スペーサは第1の楔部である。
一実施形態では、磁気素子は第2の中空円筒コイルを備える。第2のコイルは、第1の楔部の第2の平面と共に第2の間隙を形成する第1の環状面を有する。
一実施形態では、第1のコイルは外側端部と内側端部とを有し、第2のコイルは外側端部と、第1のコイルの内側端部に接続される内側端部とを有し、両コイルを順次流れる電流からの第1のコイルの中心の磁界への寄与が、第2のコイルを通って流れる電流からの磁界への寄与と同一方向である。
一実施形態では、磁気素子は第1のコイルと第2のコイルとを含むコイルの複数の対を備える。各コイルは内側端部と外側端部とを有し、各対の内側端部は互いに接続され、コイルはトーラスを形成するように配置される。
一実施形態では、磁気素子は、第1の楔部を含む複数の能動楔部と、複数の受動楔部とを備える。能動楔部のそれぞれは、2つの平面を有し、コイルのそれぞれの対の2つのコイルの間にあり、コイルの対の一方のコイルは一方の平面にあり、コイルの対の他方のコイルは他方の平面にあり、受動楔部のそれぞれは、コイルの対のうちの1つと、コイルの別の対のうちの1つとの間にある。
一実施形態では、各能動楔部は、能動楔部を通って延びる導電性ピンを備え、能動楔部の一方の平面上のコイルの内側端部はピンの一方の端部に接続され固定され、能動楔部の他方の平面上のコイルの内側端部はピンの他方の端部に接続され固定される。
一実施形態では、複数の能動楔部及び複数の受動楔部のダクト付き楔部(ducted wedge)が、トーラスの外側からトーラスの内部体積に延びる流体通路を有する。
一実施形態では、磁気素子は、トーラスの内部体積にて複数のコアセグメントを備える。
一実施形態では、複数のコアセグメントのうちの1つが強磁性体である。
一実施形態では、流体経路は第3の間隙を通ってさらに延び、第3の間隙はコアセグメントと第1のコイル及び/又は第1の楔部との間の半径方向間隙である。
一実施形態では、コアセグメントのそれぞれは、コアセグメントを通ってトロイダル方向に延びる穴を有し、流体経路は、穴の1つを通り、複数のコアセグメントの2つの隣接するコアセグメントの間のトロイダル間隙を通ってさらに延びる。
本発明の一実施形態によれば、トーラスを形成するように配置される複数の導電性コイルと、
複数の電気絶縁スペーサであって、スペーサのそれぞれは複数のコイルの2つの隣接するコイルの間にある、電気絶縁スペーサと、を備えるトロイダル磁気素子が提供される。複数のコイルのそれぞれは、フェース巻き(face-wound)の導電体を備え、第1の内側端部と第1の外側端部とを有する。
一実施形態では、コイルのそれぞれの巻線方向は、トーラスの少なくとも一部周りに交互に変わり、複数のコイルのそれぞれの第1の内側端部は複数のコイルのそれぞれの隣接するコイルの第1の内側端部に接続される。
一実施形態では、トロイダル磁気素子は、n個の共巻きの導体を備え、第1の内側端部を含むn個の内側端部と、第1の外側端部を含むn個の外側端部とを有する。複数のコイルの1つのj番目の内側端部が、複数のコイルのそれぞれの隣接するコイルの(n−j+1)番目の内側端部に接続される。
一実施形態では、コイルのそれぞれは、2つの平行な環状面を有する中空円筒である。なお、本明細書における「環状面」とは、字句から明らかなように、リング状の平面であって、2つの同心円で囲まれた平面を意味する。
一実施形態では、スペーサのそれぞれは、2つの平面を有する楔部である。
一実施形態では、コイルのそれぞれの各環状面は、間隙によって隣接する楔部の隣接する面から分離される。
一実施形態では、トロイダル磁気素子は、トーラスを含むハウジングであって、ハウジングは流体入口と流体出口とを備えるハウジングと、流体入口から流体出口に至る流体経路であって、その一部が間隙のうちの1つの内部にある流体経路とを備える。
一実施形態では、2つのコイルであって、そのそれぞれの内側端部にて互いに接続される2つのコイルそれぞれは、それぞれの内側端部の間の接続を形成する導電性接続ピンを有するスペーサによって分離される。
一実施形態では、複数のコイルの第1のコイルの外側端部が第1のバスバーによって複数のコイルの第2のコイルの外側端部に接続される。
一実施形態では、トロイダル磁気素子は、第1の端子と、第2の端子と、第3の端子とを備え、第1の端子に接続される第1の端部と、第2の端子に接続される第2の端部とを有し、複数のコイルの第1のコイル及び複数のコイルの第2のコイルであって、第1のコイル及び第2のコイルは直列に接続されるコイルを備える第1の巻線と、第3の端子に接続される第1の端部と、第2の端部とを有し、複数のコイルの第3のコイル及び複数のコイルの第4のコイルであって、第3のコイル及び第4のコイルは直列に接続されるコイルを備える第2の巻線と、を備える。
本発明の一実施形態によれば、トーラスを形成するように配置された複数の導電性コイルと、複数の電気絶縁スペーサと、流体入口と、流体出口と、を具備する、液冷式トロイダル磁気素子が提供される。スペーサのそれぞれは、複数のコイルの2つの隣接するコイルの間にあり、コイルのそれぞれはフェース巻きの導電体を備え、コイルのそれぞれは2つの環状面を有し、コイルのそれぞれの各環状面は、間隙によって隣接するスペーサの隣接する面から分離され、それぞれの流体経路が間隙のそれぞれを通って流体入口から流体出口に延びる。
一実施形態では、間隙のそれぞれは、0.001インチ(0.025mm)を上回り0.02インチ(0.508mm)を下回る幅を有する。
本発明のこれまでに挙げた特徴及び利点をはじめとする特徴及び利点は、明細書、特許請求の範囲及び添付の図面を参照して評価され理解されるであろう。
本発明の一実施形態による、トロイダルアセンブリの部分切り欠き斜視図。 本発明の一実施形態による、トロイダルアセンブリの部分切り欠き斜視図。 本発明の一実施形態によるトロイダルアセンブリの一部の断面図。 本発明の一実施形態によるトロイダルアセンブリの楔部の斜視図。 本発明の一実施形態によるトロイダルアセンブリの楔部の斜視図。 本発明の一実施形態によるトロイダルアセンブリのコアセグメントの斜視図。 本発明の一実施形態によるトロイダルアセンブリの一部の斜視図。 本発明の一実施形態によるトロイダルアセンブリの一部の斜視図。 本発明の一実施形態によるトロイダルアセンブリの一部の分解斜視図。 本発明の一実施形態による液冷式磁気素子の分解斜視図。
添付図面に関連して以下に記載する詳細な説明は、本発明に従って提供される液冷式磁気素子の例示的な実施形態を説明することを意図しており、本発明を構成するか利用することができる唯一の形態を表すことを意図するものではない。説明は、図示の実施形態に関連して本発明の特徴を説明する。しかし、本発明の精神及び範囲内に包含されることも意図した異なる実施形態によって、同一又は同等の機能及び構造が達成され得ることを理解されたい。本明細書の他の部分に示すように、類似する要素番号は類似する要素又は特徴を示すことを意図している。
いくつかの実施形態では、液冷式トロイダル磁気素子が、1つの実施形態による液冷式磁気素子のハウジング(図8、明瞭化のために図1では省略されている)内に、図1に示すトロイダルアセンブリ101を備える。いくつかの実施形態では、トロイダルアセンブリ101は、略トロイダル形状を有する構成のコイル102と楔部104、105の組を交互に備える。楔部104、105は、コイルを互いに絶縁し、コイル102をトロイダル形状に位置決めし整列させるための絶縁スペーサとして作用することができる。コイル102への接続はトロイダル磁気素子の上部にある端子106を用いて実施され、端子の各々はそれぞれのバスバー108、109を介して1つまたは複数のコイル102に接続され得る。
電気絶縁材料からなるオーバーモールド110が、端子106を共に固定する。バスバー108、109の各々は、オーバーモールド110がバスバー108、109に機械的に係止され、バスバー108、109がオーバーモールド110を補強するように、オーバーモールド110が嵌着される1つ以上のバスバー穴112を備える。端子106、バスバー108、109及びオーバーモールド110からなるサブアセンブリは、例えば、端子106及びバスバー108、109を適切な成形型に固定し、端子106及びバスバー108、109周りに、バスバー108、109にて穴112を貫通するように、オーバーモールド110を成形することによって、別途組み立てられてもよい。オーバーモールドの成形は、例えば、成形型内で硬化される熱硬化性樹脂を用いて射出成形又は鋳造によって実施することができる。オーバーモールド110は、例えば、コイル102の外側端部132(図2)がバスバー108、109にはんだ付けされるときに暴露する温度に耐えるような絶縁材料で構成してもよい。例えば、オーバーモールド110は、ポリエーテルエーテルケトン(PEEK)で構成してもよい。図1は、12個の端子106と、36個のコイル102と、36個の楔部104、105とを有する実施形態を示す。他の実施形態では、このような構成要素のいくつか又は全部が、多くなっても少なくなってもよい。
図2は、図1に示すトロイダルアセンブリ101の一部を示す。このほか、構造内の位置及び方向を識別するために本明細書で使用されるトロイダル座標系を定義する矢印が示される。第1の矢印113はトロイダル方向を指し、第2の矢印114はポロイダル方向を指し、第3の矢印115は半径方向を指す。動作中、電流は各コイル102にて実質的にポロイダル方向に流れ、コイル102の内部にて実質的にトロイダル方向に磁場を形成する。以下でさらに詳細に説明するように、コイル102は、2つの異なるコイル巻線方向、第1の巻線方向と第2の巻線方向との間で交互になるように配置される。第1の巻線方向を有するコイル102では、電流が、(図2のコイル102aの場合のように)正のポロイダル方向に流れるときに径方向外側に進行する螺旋経路に沿って流れ、第2の巻線方向を有するコイル102では、電流が、(図2のコイル102bの場合のように)正のポロイダル方向に流れるときに径方向内側に進行する螺旋経路に沿って流れる。コイル102は、各コイル102の内側端部が隣接するコイルの内側端部に接続された状態で、二つを一組にして直列に接続される。コイル102の巻線方向を交互にする結果として、そのような組のいずれでも一方のコイル102からの寄与は、電流がその組の2つのコイル102を通って直列に流れるときに、その組の他方のコイル102からの寄与と2つのコイル102の軸に沿って同一の方向となる。
コアセグメント118は、コイルの内側に略トロイダル形状の複合コアを形成するように配置される。本明細書で使用される「コイル」は、導体(例えば、平角線)の1つ以上の巻回を有し、導体の内側端部から外側端部まで(例えば、螺旋状に)延在する導体素子である。本明細書で使用される「巻線」は、1つ以上のコイルを含み、2つのそれぞれの端子に接続された2つの端部を有する導体素子である。例えば、以下でさらに詳細に説明するように、巻線が、それぞれの内側端部が互いに接続された2つのコイルから構成されてもよい。それぞれの外側端部は巻線の2つの端部であり、2つのそれぞれの端子に接続される。本明細書で使用される「複合巻線」は、1つ以上の巻線の直列及び/又は並列の組み合わせである2端子素子である。本明細書で使用される「複合コイル」は、それぞれの導体のそれぞれの内側端部からそれぞれの外側端部まで(例えば、螺旋状に)それぞれ延びる2つ以上の共巻き導体を含む導電素子である。
以下でさらに詳細に考察するように、図1及び図2の端末106のそれぞれは、並列に接続された3つの巻線からなる複合巻線に接続することができ、各巻線は直列に接続された2つのコイルからなる。このように、トロイダルアセンブリ101は、6つの複合巻線からなり、このような複合巻線は、端子に適切に接続することによって、変圧器又はインダクタとなるように構成することができる。例えば、複合巻線の適切な並列又は直列の組み合わせがインダクタとして作用してもよい。複合巻線の第1のサブセットを第1の並列又は直列の組み合わせで接続し、複合巻線の第2のサブセット(例えば、複合巻線の残りの部分)を第2の並列又は直列の組み合わせで接続することにより、変圧器を形成してもよい。変圧器のコアは、他の点では類似するインダクタのコアとは異なる場合がある。変圧器では、セグメント間の間隙を最小にして磁化電流を最小限に抑えながら、コアの透磁率を高くしてもよい。インダクタでは、コア飽和が防止されるように、コア材料のいずれかが低透磁率であるか、有限の間隙が確立されてもよい(あるいはその両方)。場合によっては、「フライバック変圧器」の場合のように、インダクタンスと変圧器の両方の動作が存在する。そのような場合はいずれも、本発明の実施形態では、巻線を所望に応じて接続し、相互接続することを可能にする。変圧器の漏れインダクタンスは、例えば、(漏れインダクタンスを減少させるために)第1のサブセットで使用する交互の複合巻線を選択することによって、あるいは(漏れインダクタンスを増大させるために)第1のサブセットで使用する連続する複合巻線を選択することによって調整されてもよい。
熱を取り出すために、冷却流体(又は「冷却剤」又は「冷却液」)をコイルとコアとの間及び周囲に流してもよい。いくつかの実施形態では、冷却剤は、液体、例えば、オイル又はトランスミッション液である。他の実施形態では、ガス、例えば空気である。本明細書で使用される場合、「流体」は、特に明記しない限り、液体又は気体のいずれかを指す。各コイル102は、内側端部130及び外側端部132を有する、フェース巻きの平角線(すなわち、テープをロール状に巻いたもの)から形成される。平角線は、約0.16インチ(約4.06mm)の幅(例えば、0.163インチ(4.14mm)の幅)及び約0.020インチ(約0.508mm)の厚さ(例えば、0.023インチ(0.584mm)の厚さ)を有してもよい。内側端部130は、接続ピン128に巻き付けられてもよく、その結果、接続ピン128に固定され、電気的に接続される。内側端部130は、接続ピン128にはんだ付けされてもよい。各コイル102の外側端部132は、平角線が90度方向を変えるように、45度の折り目133(又は小さな半径の曲がり部)を有してもよく、歪み緩衝体134(図4A)、例えば楔部104、105の1つの長孔を通り、バスバー108、109の1つに(例えば、バスバー長孔152にはんだ付けすることによって)接続されてもよい。
各コイル102は、別々に製造してもよい。平角線は、コイル状に巻かれる前に、平角線上に直接に被覆するか、平角線上の絶縁層上に自己接着性の絶縁被覆を施して被覆してもよい。平角線上の絶縁材の全厚さは、例えば、0.002インチ(0.051mm)であってもよい。コイルは、適切なマンドレル周りに平角線を巻いて、平角線を通して電流を(例えば、30秒間)流して、平角線及び自己接着性の絶縁材を加熱して、その結果、隣接する巻回が互いに結合され、コイルが、内側端部130及び外側端部132を除いて、硬質中空円筒形ユニットになるようにすることによって形成されてもよい。
図3は、4つのコアセグメント118と、2つのコイル102と、3つの楔部104、105とを備える液冷式磁気素子の一部の拡大上面図を示す。冷却剤は、矢印で示される方向に流れ、3つの楔部の中央楔部105内の入口通路122を通って、(冷却剤入口174からハウジング(図8)の入口穴175を通って)構造体内に流入する。第1の半径方向間隙124内ではトロイダル方向かつポロイダル方向に流れ、複数のトロイダル間隙126を通って半径方向外側に流れる。トロイダル間隙126の各々は、図3に示すように、幅g(例えば、0.004インチ(0.102mm))を有してもよい。流体は、(流体がトロイダルアセンブリ101の中心127付近のポロイダル座標でトロイダル間隙126から流出する場合)トロイダル間隙126のいずれか1つから、トロイダルアセンブリ101の中心127に直接流入してもよく、あるいは複数の第2の半径方向間隙129(各々はコイル102の外面とハウジング(図8)の内面との間の間隙の1つ)を通ってポロイダル方向に流れ、トロイダルアセンブリ101の中心127に流入する。第1及び第2の半径方向間隙はそれぞれ、約0.05インチ(約1.27mm)の半径方向寸法を有してもよく、この寸法はgよりもかなり大きくてもよい。このように、第1の半径方向間隙124は入口マニホールドとして作用し、トロイダルアセンブリ101の第2の半径方向間隙及び中心127は、複数のトロイダル間隙126を通る流体流れのために出口マニホールドとして作用し、トロイダル間隙126のそれぞれのポロイダル方向の範囲を横切り、さらにポロイダル方向の範囲に沿って実質的に等しい圧力降下を生じる。
第1の半径方向間隙124内の流体流れは、コアセグメント118を冷却してもよい。さらに、コアセグメント118間の間隙内の圧力勾配(概してトロイダルアセンブリ101の中心に近いほど圧力が低い)があると、このような間隙を通って流体が流れることがあり、コアセグメント118をさらに冷却する。いくつかの実施形態では、コアは、それぞれがトロイダル貫通孔を有するコアセグメントから構成され、その結果、コアは中空であり、コアセグメントの1つは、(適切な変更された形状を有し得る)入口通路122と一直線に並んだ入口穴を有し、その結果、冷却剤は先ず、コアの中空内部に流入し、この中空内部内をトロイダル方向に流れ、次に、コアセグメント118間のトロイダル間隙を通って第1の半径方向間隙124に流入する。結果として、コアは、コアの中空中心を通る冷却剤の流れと、コアセグメント118間のトロイダル間隙を通る冷却剤の流れの両方によって冷却され得る。いくつかの実施形態では、入口通路122を含む楔部104、105は、突起部又は類似する機構を有して(あるいは、くさびと入口穴を有するコアセグメントとの間にシーラントが適用されて)ダムを形成し、冷却剤が入口通路から第1の半径方向間隙124に直接的に逃げないようにする。
コイル102と冷却剤との間の熱伝達を、主にトロイダル間隙126内で発生させてもよい。このような間隙の寸法及び冷却剤流量は、以下のように進行し得る熱伝達解析を使用して選択してもよい。平行面(各面は領域Aを有し、両面は距離dだけ離れている)の間の間隙での流体(例えば、油)の流れが層流である場合(すなわち、粘性、流量及び間隙の幅が層流をもたらす場合)、熱伝達は、この場合は2つの項の和である熱抵抗(θ)によって特徴づけられてもよい。第1項(θ1)は液体の熱質量及び流量と相関があり、1/(CpρF)に等しい。ここでCpは比熱であり、ρは質量密度であり、Fは容積流量である。第2項(θ2)は液体の熱伝導率と相関がある。
2つの表面の一方からPdの割合で熱が流出し、他方の表面から熱が流出しない場合、冷却剤内の平均熱流距離(流体内の温度勾配を無視する)はd/2であり、このためθ2の値はd/(2KA)であり、ここでKは冷却剤の熱伝導率である。2つの面のそれぞれからPd/2の割合で熱が流出する場合、平均熱流距離はd/4であり、この場合のθ2の値はd/(8KA)である。いずれの場合も、dが減少し、Aが増加すると、θ2が減少し、熱伝達が改善される。しかし、dが減少すると、冷却剤揚程損失が増加する。このため、冷却剤循環ポンプによって提供される流量対圧力特性に基づいて、熱伝達率が最大となるdの値が存在する。
上記関係は、巻線からの熱伝達の場合に利用されてもよい。例えば、図3に示す実施形態では、トロイダル間隙126の各々に流れる流体が層流を呈し、熱がコイル102のそれぞれの各端部の実質的に平坦な環状端面からそれぞれのトロイダル間隙126を通って流れる流体に流入してもよい。トロイダル間隙126のそれぞれの他の表面は、熱が流出しない楔部の表面であってもよい。熱がコイル102から冷却剤に流れる総表面積は、コイル102の数に比例し、大きくてもよい。トロイダル間隙126の幅は、θ1とθ2の和が所与のポンプ流量特性に対して最小になるように選択してもよい。巻線の数が増えると、実効巻線充填率が低下し、(固定出力密度の)放熱が増大する可能性がある。このため、達成可能な出力密度が最大である多数のコイルが存在し得る。
図1に示されているような磁気素子を、例えば、インダクタ又は変圧器として使用してもよい。変圧器では、低磁化電流を維持するために高透磁率コアを使用してもよい。パワーインダクタでは、電流を磁化することが目的であり、変圧器の作用が存在しない場合がある。このため、インダクタの有用なコア構成は、間隙のある高透磁率積層構造と、間隙のあるフェライト構造と、間隙のない低透磁率粉末コアと、空芯構造とを備えることができる。粉末は、粉末コアを形成するために、焼結プロセスに類似するプロセスで結合させて、硬質固体とすることができる。
間隙のある積層コアの場合、間隙の大きさはアンペアターンの数に比例し、アンペアターンの数は線形寸法の二乗に電流密度を掛けたものに比例する。達成可能な電流密度は、熱伝達が改善されるにつれて増大し、良好な熱伝達を有する大きなインダクタでは、間隙サイズが不当に大きくなる可能性がある。そのような場合には、粉体コア又は空芯のいずれかを使用することができる。トロイダルコア構造には、変圧器及びインダクタの両方に対して利点があり得る。1つには、特に空芯磁気素子では、対称性により漏れ磁場が小さいことが挙げられる。この特性は、高電流が関与し、放射界に感度がある場合に重要である。トロイダル形状にはこのほか、質量対動力比と質量対体積比の点で利点があり得る。最後に、トロイダル構造の対称性により、循環電流を発生させることなく多数の巻線を相互接続することができる。磁気コア(すなわち、空芯ではないコア)を有する磁気素子の場合、コア内の(例えば、渦電流による)電力損失が顕著であることがあり、例えば、上記のようにコアを冷却するようにしてもよい。
電力がいくつかの機構によって巻線内で消散することがある。DC抵抗損失に加えて、電流及び/又は周波数が増大すると、表皮損失及び近接損失がますます重要になる可能性がある。表皮損失は、導体の中心に向かって電流密度が低下する現象であり、B磁場が導体に入る速度が導体の電気伝導率によって制限されることによるものである。導電率が低いほど、B磁場が速く入ることができ、効果はあまり顕著ではない。このため、最良の導体(銅など)が最も顕著な表皮効果を有する。並列接続された多数の導体を使用することにより、表皮効果の影響を低減することができる。このような多導体構成では、内部導体と外部導体とが転置され、誘導電圧が平均化され、循環電流が消滅し、結果として電流がほぼ均一となる。複数の導体は、誘導電圧が正確に一致するように対称的に配置され、個々の導体間の循環電流が生じることがないようにしてもよい。近接効果は、外部導体によって生成された磁場が所与の導体に入ったときに循環電流及び損失を生じさせる現象であり、循環電流を誘導し、次に循環電流が所与の導体内の損失をもたらす。円形導体の場合、このような損失の大きさは、磁界の二乗に導体の直径の四乗を掛けたものに比例する。このように、インダクタなどの大きな構造体の場合、表皮損失成分のようなこの損失成分は、並列に接続された多数の導体又は多数の巻線を使用することによって低減され得る。
楔部104、105の各々は、能動楔部104(図4A)又は受動楔部105(図4B)のいずれかであってもよい。図4Aを参照すると、いくつかの実施形態では、各能動楔部は、導電性電気接続ピン128を備える。この接続ピンは、能動楔部104の一方の面に設置されたコイル102の内側端部を、能動楔部104の他方の面に設置されたコイル102の内側端部に接続し得る。2つの長孔が歪み緩衝長孔134として作動する。接続ピン128を除いて、各楔部は絶縁材料、例えばPEEKで構成されてもよい。他の実施形態では、冷却流体に耐えることができる異なる材料、例えば作動中に高温であり得る変圧器油が採用される。候補物質の例には、ナイロン、ポリフェニレンオキシド(PPO)及びポリフェニレンスルフィド(PPS)が挙げられる。
図4Bを参照すると、液冷式磁気素子の残りの楔部は、電気接続ピン128を欠いた受動楔部105であってもよい。トロイダルアセンブリ101では、受動楔部105が能動楔部104と交互になってもよい。各能動楔部104は、能動楔部104の接続ピン128によってそれぞれの内側端部にて互いに接続された一対のコイル102の間に挟まれてもよい。各受動楔部105には、接続ピン128用の穴がなくてもよく、歪み緩衝長孔134がなくもよい。いくつかの実施形態では、製造を容易にするために、全楔部が同じ形状を有し、いくつかの楔部のいくつかの特徴は使用されない。例えば、楔部(能動楔部)の半分のみが接続ピン128を備え、歪み緩衝長孔134の半分が使用されないことがある。いくつかの実施形態では、能動楔部104の対応する歪み緩衝長孔の代わりに、受動楔部105の歪み緩衝長孔134の一方又は両方(歪み緩衝長孔134が受動楔部105に存在する場合)を使用することがある。
2つの楔面136の各々には、複数のリブ135が存在する。各リブ135は、それが配置されている面の上方に距離hだけ突出していてもよく、ここでhは、コイル102の環状面と楔面136(図3)との間のトロイダル間隙126の幅gに等しい。その結果、コイル102が、その環状面の1つがリブ135に当接するように、設置されるときに、トロイダル間隙126は(リブ135を除いて)幅gを有する。冷却剤は、このトロイダル間隙126を通って流れ、平角線絶縁体と直接接触するようにしてもよく、コイルの導体と冷却剤との間の熱抵抗は比較的小さいものになり得る。各コイルの各巻回の導体と冷却剤との間の熱経路の長さは、導体(ただし、良好な熱導体であり得る)内の比較的長い距離及び平角線絶縁を通る部分を含み得る。平角線絶縁体は、熱伝導率が比較的低い導体であってもよいが、絶縁体を通る熱経路の長さは、絶縁体の厚さと同じ、即ち、きわめて短くてもよい。リブ135の各々は、間隙126の幅gが0.004インチ(0.102mm)になるように、例えば0.004インチ(0.102mm)だけ楔面の上に突出してもよい。いくつかの実施形態では、楔部上のリブ135の代わりに、あるいはそれに加えて、コイルの環状表面上にリブが形成される。リブは、例えば、テープ(例えば、接着テープ)の帯状体又は別の適切なシム材料の帯状体を使用してコイル上に形成されてもよい。楔部104、105の各々は、各コイル102のボアの内側に嵌合し、(接続ピン128に固定されるコイルの内側端部130と共に)コイル102をコア及び他のコイルと一直線上に維持する複数のコイルセンタリング爪138を有してもよい。いくつかの実施形態では、爪は主に組み立てのために使用され、組み立て後、コイルは、圧縮力(例えば圧縮バンド148(図8)によって生成された力、以下でさらに詳細に説明する)によって定位置に保持される。他の実施形態では、組み立て中に位置合わせを維持するために別の方法が使用され、例えば(冷却剤を汚染しない)接着剤を使用してもよい。2つのコイル支持突起140は、各楔部104、105の開口部内に延在し、(接続ピン128用の穴を備える)接続ピンタブ142と共に、コアセグメント118を開口内に支持してもよい。各コイル支持突起140及び接続ピンタブ142上のボスは、隣接するコアセグメント118間の適切なトロイダル分離を維持するコアセパレータ144として作動する。楔部104、105の各々は、圧縮バンド148(図8)のための1つ以上のレジスタ146を備えてもよい。この圧縮バンドは、トロイダルアセンブリの外周周りに延在し、各楔部104、105に内向きの力を加えて、コイル102及び楔部104、105のすべてに対する圧縮力を維持する。図4Cを参照すると、各コアセクション118は、接続ピンタブ142のためのクリアランスを提供するための凹部150を有する円筒の楔形セクションであってもよい。「ダクト付き楔部」(ducted wedge)と呼ばれることがある楔部104、105の1つは、第1の半径方向間隙124に流体経路を提供する入口穴122を備える。図4Bは、受動楔部105の入口穴122を示す。他の実施形態では、この入口穴は、代わりに能動楔部104にあり、あるいはいくつかの楔部(例えば、全楔部)が、その一部(又はそのうちの1つを除くすべて)が使用されていない入口穴122を備えてもよい。
図5を参照すると、いくつかの実施形態では、端子106のそれぞれは、内側バスバー108又は外側バスバー109のいずれかに接続される。バスバー108、109のそれぞれは、コイル102のそれぞれの外側端部132をバスバー108、109に(はんだ付け又は溶接によって)固定するのに使用される1つ又は複数のバスバー長孔152を有する。図5の実施形態では、バスバー108、109の各対は3つの巻線を並列に接続する。各巻線は、直列に接続された2つのコイル102を含む。各巻線の2つのコイルの内側端部130は、2つのコイルの間にある能動楔部104の接続ピン128によって互いに接続される。
当業者には明らかであるように、記載された実施形態に関する多数の変形が可能である。例えば、図6を参照すると、いくつかの実施形態では、単純コイル102の代わりに複合コイル154a、154bが使用される。複合コイル154a、154bの各々は、図示のように2つの共巻きされたフェース巻きの平角線を含み、その結果、複合コイルは2つの内側端部156及び2つの外側端部158を備える。この実施形態の能動楔部160は、第1の複合コイル154aの2つの内側端部の一方を第2の複合コイル154bの2つの内側端部のうちの対応する一方にそれぞれ接続する2つの接続ピン128を備える。例えば、図2及び図5に示す実施形態の場合のように、2つの複合コイル154a、154bは、楔部160の2つのそれぞれの面上に異なる巻線方向に設置されているため、例えば、電流が(図6に見られるように)第1の複合コイル154aの外側端部から内側端部に時計回りに流れ、次に2つの接続ピン128を介して第2の複合コイル154bの2つの内側端部に、次に再び時計回りに第2の複合コイル154bの内側端部から外側端部に流れる。この構成では、2つの複合コイル154a、154bによって生成される磁界寄与は、2つの複合コイル154a、154bの中心軸に沿って同じ方向(即ち、反対方向ではない)にある。他の実施形態では、(例えば、3つ、4つ、5つ又はそれ以上の共巻き導体を使用して)2つ以上の共巻き導体をそれぞれ含む複合コイルを使用してもよい。そのような取り組みによって、近接効果による損失及び表皮効果による損失の両方を低減することができる。例えば、図6の実施形態では、第1の複合コイル154aの内側にある導体は、第2の複合コイル154bの外側にある導体に、接続ピン128の1つによって接続される。さらに一般的には、各複合コイル内にn個(nは正の整数)の共巻き導体を有する実施形態では、能動楔部104の一方の側の複合コイルから(例えば、最も内側の導体から外側に数えて)j番目の導体は、能動楔部104の他方の側の複合コイルの(同様に、例えば最も内側の導体から外側に数えて)(n−j+1)番目の導体に接続されてもよい。この接続は、例えば、約4の約数(又は、n個の共巻き導体が使用される場合、ほぼn2の約数)によって近接損失の減少をもたらす可能性のある転置を提供する。
別の例として、図7を参照すると、いくつかの実施形態では、楔形コイル162は円板形スペーサ163と交互に配置されてトロイダルアセンブリを形成する。このようなコイルの端面は、環状の形状から僅かに逸脱することがあるが、(端面がかなりの程度までは楕円にならないように)楔角度が小さく、(内側半径及び外側半径が1巻回を通して大きく変化しないように)平角線の厚さが小さい場合には、ほぼ環状になる可能性がある。コイル162を形成するために使用される平角線の幅は、その長さに沿って変化し、コイル162の製造に大きな課題をもたらす可能性がある。しかし、トロイダルアセンブリの曲線因子は、トロイダルアセンブリの平角線で構成される部分が大きくなり、円板形スペーサ163の絶縁材料から構成される部分が小さくなるほど、例えば、対応する部品の比率が図2に示す実施形態のものである場合よりも大きくなることがある。
図8は、一実施形態による液冷式磁気素子の分解図を示す。トロイダルアセンブリ101は、下側半体164と上側半体166とを含むハウジング内に封入され、ハウジングOリング168と共に封止されている。シールを、それぞれの端子Oリング170によって各端子周りに形成することができる。下側半体164及び上側半体166は、複数のハウジング耳部172にて、ネジ留め具173によって、互いに固定されてもよい。下側半体164及び上側半体166は、絶縁体(例えば、ポリマー)又は金属から構成されてもよい。金属が使用される場合には、端子106周りに絶縁性の軸受筒を用いて、端子を上側半体166から絶縁してもよい。取り付けブラケット177を、液冷式磁気素子を適切な取り付け面に固定するために使用してもよい。流体は、(下側半体164の内面の入口穴175を介して、さらに楔104、105のうちの1つの入口穴を介して第1の半径方向間隙124に接続された)流体入口174を介して、液冷式磁気素子に流入してもよい。さらに、トロイダルアセンブリ101の中心127から(トロイダル間隙126を通って流れてコイル102を冷却した後)、下側半体164の内面の出口穴176を介して、さらに流体出口178を介して流出してもよい。上側半体166は、隣接する端子106間の沿面距離を増大させるための絶縁体セパレータ180を備えてもよい。
いくつかの実施形態では、下側半体164の内周面は円筒形ではないが、(製造中に下側半体164を成形型から取り外すことを容易にする抜き勾配としても機能し得る)僅かなテーパを有する。圧縮バンド148は、レジスタ146にバンド装着され、トロイダルアセンブリ101の構成要素を圧縮するように締め付けられる代わりに、楔部104、105と下側半体164との間のテーパ状間隙に押し込まれてほぼ同じ効果を得ることができる円周シムであってもよい。他の実施形態では、この動作は、下側半体164の代わりに上側半体166を使用して実施される。図8に示すバンド148は、(レジスタ146内で整列されることなく)楔部104、105周りに堅固に固定されている圧縮バンドであるか、円周シムであってもよい。2つの実施形態は外観が類似していてもよい。本明細書に記載された流体経路は、一方向、例えばトロイダル間隙126を通る半径方向外側の流体流れを含むが、他の実施形態では、流体が流体入口174の代わりに流体出口178に圧送される場合、ハウジングはさらに大きな静水圧力にさらされる可能性があるが、流体はほぼ同じ効果を得るために反対方向に流れてもよい。
液冷式磁気素子の例示的な実施形態を本明細書に具体的に記載し説明したが、多くの修正及び変形が当業者には明らかであろう。このため、本発明の原理に従って構成された液冷式磁気素子が、本明細書に具体的に記載されたもの以外のものとして具体化され得ることが理解されるべきである。本発明はこのほか、添付の特許請求の範囲及びその等価物にて定義される。

Claims (22)

  1. 第1の環状面と第2の環状面とを有する第1の導電性コイルと、
    第1の環状面と第2の環状面とを有する第2の導電性コイルと、
    前記第1の導電性コイルと前記第2の導電性コイルとの間のスペーサであって、該スペーサは第1の平面を有し、該第1の平面は第1の間隙によって前記第1の導電性コイルの前記第1の環状面から分離される、スペーサと、
    を具備する磁気素子であって、
    前記磁気素子は、
    前記第1の導電性コイルと前記第2の導電性コイルとを含む複数の導電性コイル対であって、各コイルは内側端部と外側端部とを有し、各対の内側端部は互いに接続された、複数の導電性コイル対と、
    前記スペーサを含む、複数の第1のスペーサと、
    複数の第2のスペーサとを備え、
    前記第1のスペーサの1つは、2つの平面を有し、それぞれのコイル対の2つのコイルの間にあり、
    前記第2のスペーサの1つは、1つのコイル対のコイルと、別の1つのコイル対のコイルとの間にある、磁気素子。
  2. 前記第1の導電性コイルは中空円筒コイルある、請求項1に記載の磁気素子。
  3. 前記第1の導電性コイルは外側端部と内側端部とを有し、前記第2の導電性コイルは外側端部と、前記第1の導電性コイルの内側端部に接続される内側端部とを有し、両導電性コイルを順次流れる電流からの前記第1の導電性コイルの中心の磁界への寄与が、前記第2の導電性コイルを通って流れる電流からの磁界への寄与と同一方向である、請求項に記載の磁気素子。
  4. ーラスを形成するように配置される、コイルの複数の対を具備する、請求項に記載の磁気素子。
  5. 各第1のスペーサは能動楔部であり、各第2のスペーサは受動楔部である、請求項4に記載の磁気素子。
  6. 各能動楔部は、前記能動楔部を通って延びる導電性ピンを備え、前記能動楔部の一方の平面上の前記コイルの内側端部は前記導電性ピンの一方の端部に接続され固定され、前記能動楔部の他方の平面上の前記コイルの内側端部は前記導電性ピンの他方の端部に接続され固定される、請求項に記載の磁気素子。
  7. 第1の環状面と第2の環状面とを有する第1の導電性コイルと、
    第1の環状面と第2の環状面とを有する第2の導電性コイルと、
    前記第1の導電性コイルと前記第2の導電性コイルとの間のスペーサであって、該スペーサは第1の平面を有し、該第1の平面は第1の間隙によって前記第1の導電性コイルの前記第1の環状面から分離される、スペーサと、
    を具備する磁気素子であって、
    前記磁気素子は、
    前記第1の導電性コイルと前記第2の導電性コイルとを含む複数の導電性コイル対であって、各コイルは内側端部と外側端部とを有し、各対の内側端部は互いに接続された、複数の導電性コイル対と、
    前記スペーサを含む、複数の第1のスペーサと、
    複数の第2のスペーサとを備え、
    前記複数の導電性コイル対のコイルはトーラスを形成するように配置され、
    前記複数の第1のスペーサと前記複数の第2のスペーサの1つのスペーサが、前記スペーサの外側から前記スペーサの内部体積に延びる流体通路を有する、気素子。
  8. 前記トーラスの内部体積にて複数のコアセグメントをさらに具備する、請求項に記載の磁気素子。
  9. 前記複数のコアセグメントのうちの1つのコアセグメントが強磁性体である、請求項に記載の磁気素子。
  10. 流体入口と、
    流体出口と、をさらに具備し、
    体経路が、前記流体入口から前記流体出口へ、前記第1の間隙を通り第2の間隙を通って延び、前記第の間隙は前記コアセグメントと前記第1の導電性コイル及び/又は前記スペーサとの間の半径方向間隙である、請求項に記載の磁気素子。
  11. 流体入口と、
    流体出口と、をさらに具備し、
    流体経路が、前記流体入口から前記流体出口へ、前記第1の間隙を通って延び、前記コアセグメントのそれぞれは、前記コアセグメントを通ってトロイダル方向に延びる穴を有し、前記流体経路は、前記穴の1つを通り、前記複数のコアセグメントの2つの隣接するコアセグメントの間のトロイダル間隙を通ってさらに延びる、請求項に記載の磁気素子。
  12. トーラスを形成するように配置される複数の導電性コイルと、
    複数の第1のスペーサであって、該第1のスペーサのそれぞれは前記複数の導電性コイルの2つの隣接する導電性コイルの間にある、第1のスペーサと、
    複数の第2のスペーサであって、該第2のスペーサのそれぞれは前記複数の導電性コイルの2つの隣接する導電性コイルの間にある、第2のスペーサと、
    を具備するトロイダル磁気素子であって、
    前記複数の導電性コイルのそれぞれは、フェース巻きの導電体を備え、第1の内側端部と第1の外側端部とを有しており
    前記複数の導電性コイルは、対で配置されており、各コイルは内側端部と外側端部とを有し、各対の内側端部は互いに接続され、
    前記第1のスペーサの1つは、2つの平面を有し、それぞれのコイル対の2つのコイルの間にあり、
    前記第2のスペーサの1つは、1つのコイル対のコイルと、別の1つのコイル対のコイルとの間にある、
    トロイダル磁気素子。
  13. 前記コイルのそれぞれの巻線方向は、前記トーラスの少なくとも一部周りに交互に変わる、請求項12に記載のトロイダル磁気素子。
  14. 前記複数の導電性コイルのそれぞれは、n個の共巻きの導体を備え、前記第1の内側端部を含むn個の内側端部と、前記第1の外側端部を含むn個の外側端部とを有する複合コイルであり、
    前記複数の導電性コイルのうちの1つのコイルのj番目の内側端部が、前記複数の導電性コイルのそれぞれの隣接するコイルの(n−j+1)番目の内側端部に接続される、請求項13に記載のトロイダル磁気素子。
  15. 前記コイルのそれぞれは、2つの平行な環状面を有する中空円筒である、請求項13に記載のトロイダル磁気素子。
  16. 前記コイルのそれぞれの各環状面は、間隙によって隣接するスペーサの隣接する面から分離される、請求項15に記載のトロイダル磁気素子。
  17. 前記トーラスを含むハウジングであって、前記ハウジングは流体入口と流体出口とを備えるハウジングと、前記流体入口から前記流体出口に至る流体経路であって、その一部が前記間隙のうちの1つの内部にある流体経路とをさらに具備する、請求項16に記載のトロイダル磁気素子。
  18. 2つのコイルであって、そのそれぞれの内側端部にて互いに接続される2つのコイルはそれぞれ、前記それぞれの内側端部の間の接続を形成する導電性接続ピンを有するスペーサによって分離される、請求項13に記載のトロイダル磁気素子。
  19. 前記複数の導電性コイルの第1の導電性コイルの外側端部が、第1のバスバーによって、前記複数の導電性コイルの第2の導電性コイルの外側端部に接続される、請求項13に記載のトロイダル磁気素子。
  20. 第1の端子と、
    第2の端子と、
    第3の端子とをさらに具備し、
    前記第1の端子に接続される第1の端部と、前記第2の端子に接続される第2の端部とを有し、前記複数の導電性コイルの第1の導電性コイル及び前記複数の導電性コイルの第2の導電性コイルであって、前記第1の導電性コイル及び前記第2の導電性コイルは直列に接続される、前記第1の導電性コイル及び前記第2の導電性コイルを備える、第1の巻線と、
    前記第3の端子に接続される第1の端部と、第2の端部とを有し、前記複数の導電性コイルの第3の導電性コイル及び前記複数の導電性コイルの第4の導電性コイルであって、前記第3の導電性コイル及び前記第4の導電性コイルは直列に接続される、前記第3の導電性コイル及び前記第4の導電性コイルを備える、第2の巻線と、を具備する、請求項12に記載のトロイダル磁気素子。
  21. トーラスを形成するように配置された複数の導電性コイルと、
    複数の第1のスペーサであって、前記第1のスペーサのそれぞれは、前記複数の導電性コイルの2つの隣接するコイルの間にある、複数の第1のスペーサと、
    複数の第2のスペーサであって、前記第2のスペーサのそれぞれは、前記複数の導電性コイルの2つの隣接するコイルの間にある、複数の第2のスペーサと、
    流体入口と、
    流体出口と、を具備する、液冷式トロイダル磁気素子であって、
    前記コイルのそれぞれはフェース巻きの導電体を備え、
    前記コイルのそれぞれは2つの環状面を有し、
    前記コイル環状面は、間隙によって隣接するスペーサの隣接する面から分離され、
    体経路が前記間隙通って前記流体入口から前記流体出口に延び
    前記複数の導電性コイルは、対で配置されており、各コイルは内側端部と外側端部とを有し、各対の内側端部は互いに接続され、
    前記第1のスペーサの1つは、2つの平面を有し、それぞれのコイル対の2つのコイルの間にあり、
    前記第2のスペーサの1つは、1つのコイル対のコイルと、別の1つのコイル対のコイルとの間にある、
    液冷式トロイダル磁気素子。
  22. 前記間隙のそれぞれは、0.001インチ(0.025mm)を上回り0.02インチ(0.508mm)を下回る幅を有する、請求項21に記載の液冷式トロイダル磁気素子。
JP2018559702A 2016-05-13 2017-05-12 液冷式磁気素子 Active JP6773811B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662336466P 2016-05-13 2016-05-13
US62/336,466 2016-05-13
US201662401139P 2016-09-28 2016-09-28
US62/401,139 2016-09-28
PCT/US2017/032559 WO2017197368A1 (en) 2016-05-13 2017-05-12 Liquid cooled magnetic element

Publications (2)

Publication Number Publication Date
JP2019519102A JP2019519102A (ja) 2019-07-04
JP6773811B2 true JP6773811B2 (ja) 2020-10-21

Family

ID=60267976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018559702A Active JP6773811B2 (ja) 2016-05-13 2017-05-12 液冷式磁気素子

Country Status (5)

Country Link
US (1) US10600548B2 (ja)
JP (1) JP6773811B2 (ja)
CN (1) CN109155180B (ja)
DE (1) DE112017002471T5 (ja)
WO (1) WO2017197368A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009144B2 (en) * 2007-04-05 2024-06-11 Grant A. MacLennan Cooled / cast inductor apparatus and method of use thereof
US11508509B2 (en) 2016-05-13 2022-11-22 Enure, Inc. Liquid cooled magnetic element
US10529479B2 (en) * 2016-11-04 2020-01-07 Ford Global Technologies, Llc Inductor cooling systems and methods
US11387030B2 (en) 2017-06-28 2022-07-12 Prippell Technologies, Llc Fluid cooled magnetic element
US11915850B2 (en) * 2017-12-20 2024-02-27 Applied Materials, Inc. Two channel cosine-theta coil assembly
WO2020112918A1 (en) * 2018-11-29 2020-06-04 Prippell Technologies, Llc Fluid cooled magnetic element
US20220384084A1 (en) * 2021-05-28 2022-12-01 Ford Global Technologies, Llc Back pressure adjustment for inductor cooling
CN116612972A (zh) * 2022-02-09 2023-08-18 Abb电动汽车有限责任公司 电抗器
EP4266332A1 (fr) * 2022-04-20 2023-10-25 Effitech Dispositif de couplage magnétique et procédé de fabrication d'un tel dispositif de couplage magnétique

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865086A (en) * 1953-03-16 1958-12-23 Western Electric Co Method of making a toroidal magnetic device
US3028566A (en) 1958-10-08 1962-04-03 Gen Electric Cooling system for electrical induction apparatus
US4173746A (en) 1978-05-26 1979-11-06 Electric Power Research Institute, Inc. Vaporization cooled electrical apparatus
JPS6033082A (ja) * 1983-08-03 1985-02-20 株式会社東芝 核融合装置
FR2617327B1 (fr) * 1987-06-26 1989-10-27 Optelec Applic Optique Electro Transformateur torique a dispositif d'auto-induction integre
FR2653949B1 (fr) 1989-10-30 1992-02-07 Celduc Const Elect Centre Dispositif de refroidissement pour inducteur de moteur lineaire.
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
JPH06251956A (ja) 1993-03-02 1994-09-09 Hitachi Ltd 変圧器巻線
US6211595B1 (en) * 1997-07-18 2001-04-03 Sankyo Seiki Mfg. Co., Ltd. Armature structure of toroidal winding type rotating electric machine
US6273022B1 (en) 1998-03-14 2001-08-14 Applied Materials, Inc. Distributed inductively-coupled plasma source
DE50001960D1 (de) * 1999-02-12 2003-06-05 Helmut Schiller Elektrische maschine
US6755150B2 (en) * 2001-04-20 2004-06-29 Applied Materials Inc. Multi-core transformer plasma source
US7564336B2 (en) * 2004-08-26 2009-07-21 Cooper Technologies Company Surface mount magnetic core with coil termination clip
US7808359B2 (en) * 2005-10-21 2010-10-05 Rao Dantam K Quad-gapped toroidal inductor
WO2008014584A1 (en) * 2006-08-04 2008-02-07 Clean Current Power Systems Incorporated Axial air gap machine having stator and rotor discs formed of multiple detachable segments
FI122085B (fi) * 2007-12-04 2011-08-15 Vacon Oyj Suotokuristinjärjestely
WO2009138101A1 (de) * 2008-05-13 2009-11-19 Abb Technology Ag Modularer ringkern
US8057805B1 (en) * 2010-07-29 2011-11-15 Schweitzer Biotech Company Ltd. Edwardsiella ictaluri E-ict-VL33 strain, vaccines thereof, and a method for protecting fishes using said vaccines
US20130257574A1 (en) * 2012-04-03 2013-10-03 Hamilton Sundstrand Corporation Immersion cooled toroid inductor assembly
US8902033B2 (en) * 2012-04-18 2014-12-02 Hamilton Sundstrand Corporation Sealed inductor connection using litz wire
EP2696358B1 (de) * 2012-08-10 2018-10-10 STS Spezial-Transformatoren-Stockach GmbH & Co. KG Mittelfrequenz-Transformator
JP2014056861A (ja) * 2012-09-11 2014-03-27 Sht Co Ltd コイル装置
US9496085B2 (en) * 2014-01-03 2016-11-15 Hamilton Sundstrand Corporation Method of manufacturing an inductor coil
US10056184B2 (en) * 2015-10-20 2018-08-21 Madison Daily Segmented core cap system for toroidal transformers

Also Published As

Publication number Publication date
DE112017002471T5 (de) 2019-01-24
JP2019519102A (ja) 2019-07-04
US20170330670A1 (en) 2017-11-16
WO2017197368A1 (en) 2017-11-16
CN109155180B (zh) 2022-06-07
US10600548B2 (en) 2020-03-24
CN109155180A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
JP6773811B2 (ja) 液冷式磁気素子
US10707011B2 (en) Multilayer conductors with integrated capacitors and associated systems and methods
US11508509B2 (en) Liquid cooled magnetic element
US10060682B2 (en) Fluid-cooled wound strip structure
TWI438798B (zh) 線圈裝置
US7911308B2 (en) Low thermal impedance conduction cooled magnetics
US20200082968A1 (en) Fluid cooled toroidal axial flux machine
US10692650B2 (en) Three-phase transformer
US10756583B2 (en) Wound strip machine
US11621113B2 (en) Electromagnetic device with thermally conductive former
TW385454B (en) A transformer
JP6631722B2 (ja) インダクタ
JP7255153B2 (ja) リアクトルおよびその製造方法
JP2018190910A (ja) リアクトル装置およびその製造方法
US20200176174A1 (en) Fluid cooled magnetic element
US11387030B2 (en) Fluid cooled magnetic element
JP2020141013A (ja) 巻線機器
JP2009105180A (ja) トランス
JP4968588B2 (ja) コイル装置
JP2008270347A (ja) トランス
JP6809439B2 (ja) リアクトル
US12125628B2 (en) Fluid cooled magnetic element
TW202341196A (zh) 電感器及提供電感器的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250