JP6772536B2 - COD-containing water treatment method and treatment equipment - Google Patents

COD-containing water treatment method and treatment equipment Download PDF

Info

Publication number
JP6772536B2
JP6772536B2 JP2016096240A JP2016096240A JP6772536B2 JP 6772536 B2 JP6772536 B2 JP 6772536B2 JP 2016096240 A JP2016096240 A JP 2016096240A JP 2016096240 A JP2016096240 A JP 2016096240A JP 6772536 B2 JP6772536 B2 JP 6772536B2
Authority
JP
Japan
Prior art keywords
water
cod
decarboxylation
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096240A
Other languages
Japanese (ja)
Other versions
JP2017202465A (en
Inventor
望 東
望 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016096240A priority Critical patent/JP6772536B2/en
Publication of JP2017202465A publication Critical patent/JP2017202465A/en
Application granted granted Critical
Publication of JP6772536B2 publication Critical patent/JP6772536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明はCOD(化学的要求酸素量)成分を含有する水を、オゾンと過酸化水素を用いた促進酸化法(AOP)により処理する方法と装置に関するものであり、詳しくは、水中の無機炭素(IC)によるAOP処理阻害を有効に防止して、効率的にCODを分解除去するCOD含有水の処理方法及び処理装置に関する。 The present invention relates to a method and apparatus for treating water containing a COD (Chemical Oxygen Demand) component by an accelerated oxidation method (AOP) using ozone and hydrogen peroxide. Specifically, the present invention relates to inorganic carbon in water. The present invention relates to a method and an apparatus for treating COD-containing water that effectively prevents inhibition of AOP treatment by (IC) and efficiently decomposes and removes COD.

COD含有水の処理方法として、オゾンと過酸化水素を併用するAOP法がある。AOP法は、オゾンと過酸化水素とを併用することでOHラジカルの形成を促進するものであり、酸化力が強く、かつ汚泥等の副生成物を生じないため、工業的にも有利な処理方法である。 As a method for treating COD-containing water, there is an AOP method in which ozone and hydrogen peroxide are used in combination. The AOP method promotes the formation of OH radicals by using ozone and hydrogen peroxide in combination, has strong oxidizing power, and does not generate by-products such as sludge, so it is an industrially advantageous treatment. The method.

しかし、AOP法では、被処理水中に無機炭素(IC)が含まれていると、炭素イオン(CO −2)や重炭酸イオン(HCO )がラジカルスカベンジャーとなり、AOP処理の阻害要因となる。 However, the AOP process, the inclusion of inorganic carbon (IC) in the for-treatment water, carbon ions (CO 3 -2) and bicarbonate ion (HCO 3 -) is a radical scavenger, a disincentive for AOP process Become.

AOP法で処理される被処理水の代表的なものとして、染色排水があるが、反応染料を用いる染色工場では、プロセスにおいて数%オーダーでソーダ灰(NaCO)を用いることがあるため、排出される染色排水中にはICが多く含まれている。この場合には、排水中のICによる阻害でCODを十分に低減することができず、放流水のCOD放流基準を満たせなくなる可能性がある。 Dyeing wastewater is a typical example of water to be treated by the AOP method, but dyeing factories that use reactive dyes sometimes use soda ash (Na 2 CO 3 ) on the order of several percent in the process. , The dyed wastewater discharged contains a large amount of IC. In this case, the COD cannot be sufficiently reduced due to the inhibition by the IC in the wastewater, and the COD discharge standard of the discharged water may not be satisfied.

従来、AOP処理時の炭素根による阻害を防止するために、AOP処理に先立ち、金属イオンの添加で炭酸成分を金属塩として析出させて除去する方法や、フェントン酸化と空気曝気を行う方法、酸を添加してpH酸性にした後空気曝気により炭酸根を除去する方法などが提案されている(特許文献1〜3)。 Conventionally, in order to prevent inhibition by carbon roots during AOP treatment, prior to AOP treatment, a method of precipitating and removing a carbonic acid component as a metal salt by adding a metal ion, a method of performing fenton oxidation and air aeration, and an acid A method of removing carbonic acid roots by air aeration after making the pH acidic by adding is proposed (Patent Documents 1 to 3).

特開昭58−166985号公報Japanese Unexamined Patent Publication No. 58-166985 特開昭58−166986号公報Japanese Unexamined Patent Publication No. 58-166986 特開昭58−166987号公報Japanese Unexamined Patent Publication No. 58-166987

しかしながら、従来法では、炭酸成分をどの程度除去するかが明らかにされておらず、被処理水の水質によってはICによるAOP処理阻害を確実に防止し得ない課題があった。 However, in the conventional method, it has not been clarified to what extent the carbonic acid component is removed, and there is a problem that the inhibition of AOP treatment by IC cannot be reliably prevented depending on the water quality of the water to be treated.

本発明は、COD含有水をAOP処理して水中のCODを分解除去するに当たり、水中のICによるAOP処理阻害をより確実に防止して、効率的にCODを分解除去して高水質の処理水を得ることができるCOD含有水の処理方法及び処理装置を提供することを課題とする。 In the present invention, when COD-containing water is AOP-treated to decompose and remove COD in water, the inhibition of AOP treatment by IC in water is more reliably prevented, and COD is efficiently decomposed and removed to decompose and remove high-quality treated water. It is an object of the present invention to provide a treatment method and a treatment apparatus for COD-containing water capable of obtaining the above.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、COD含有水のIC/TOC比が所定値以下となるように脱炭酸処理を行うことにより、ICによるAOP処理阻害をより確実に防止することができることを見出した。 As a result of diligent studies to solve the above problems, the present inventor performs decarboxylation treatment so that the IC / TOC ratio of COD-containing water is equal to or less than a predetermined value, thereby more surely inhibiting AOP treatment by IC. It was found that it can be prevented.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved based on such findings, and the gist of the present invention is as follows.

[1] COD含有水を脱炭酸処理した後、オゾンと過酸化水素を用いて促進酸化処理するCOD含有水の処理方法であって、該脱炭酸処理により、該COD含有水の無機炭素/全有機炭素比を3以下とすることを特徴とするCOD含有水の処理方法。 [1] A method for treating COD-containing water in which COD-containing water is decarbonated and then accelerated oxidation treatment using ozone and hydrogen peroxide. The decarbonization treatment results in inorganic carbon / total of the COD-containing water. A method for treating COD-containing water, which comprises setting the organic carbon ratio to 3 or less.

[2] [1]において、前記COD含有水の無機炭素/全炭素比が0.5以上であることを特徴とするCOD含有水の処理方法。 [2] The method for treating COD-containing water according to [1], wherein the COD-containing water has an inorganic carbon / total carbon ratio of 0.5 or more.

[3] [1]又は[2]において、前記COD含有水を濃縮した後前記脱炭酸処理を行うことを特徴とするCOD含有水の処理方法。 [3] The method for treating COD-containing water according to [1] or [2], wherein the COD-containing water is concentrated and then the decarboxylation treatment is performed.

[4] [1]ないし[3]のいずれかにおいて、前記脱炭酸処理を脱炭酸塔を用いて行うことを特徴とするCOD含有水の処理方法。 [4] The method for treating COD-containing water according to any one of [1] to [3], wherein the decarboxylation treatment is performed using a decarboxylation tower.

[5] [4]において、前記脱炭酸塔の充填材高さが500mm以上であり、ガス/液流量比10以上、通水LV30m/hr以下で脱炭酸処理することを特徴とするCOD含有水の処理方法。 [5] In [4], COD-containing water is characterized in that the filler height of the decarboxylation tower is 500 mm or more, the gas / liquid flow rate ratio is 10 or more, and the decarboxylation treatment is performed at a water flow rate of 30 m / hr or less. Processing method.

[6] [1]ないし[5]のいずれかにおいて、前記COD含有水が、生物処理水であることを特徴とするCOD含有水の処理方法。 [6] The method for treating COD-containing water according to any one of [1] to [5], wherein the COD-containing water is biologically treated water.

[7] [1]ないし[5]のいずれかにおいて、前記COD含有水が染色排水であることを特徴とするCOD含有水の処理方法。 [7] The method for treating COD-containing water according to any one of [1] to [5], wherein the COD-containing water is dyed wastewater.

[8] COD含有水を脱炭酸処理する脱炭酸手段と、該脱炭酸処理水をオゾンと過酸化水素を用いて促進酸化処理する酸化処理手段とを有するCOD含有水の処理装置であって、該脱炭酸処理水の無機炭素/全有機炭素比が3以下であることを特徴とするCOD含有水の処理装置。 [8] A COD-containing water treatment apparatus comprising a decarbonizing means for decarbonizing COD-containing water and an oxidation treatment means for promoting oxidation treatment of the decarbonized water with ozone and hydrogen peroxide. A COD-containing water treatment apparatus characterized in that the inorganic carbon / total organic carbon ratio of the decarbonated water is 3 or less.

[9] [8]において、前記COD含有水の無機炭素/全炭素比が0.5以上であることを特徴とするCOD含有水の処理装置。 [9] The COD-containing water treatment apparatus according to [8], wherein the COD-containing water has an inorganic carbon / total carbon ratio of 0.5 or more.

[10] [8]又は[9]において、前記脱炭酸手段の前段に前記COD含有水を濃縮する濃縮手段を有することを特徴とするCOD含有水の処理装置。 [10] The COD-containing water treatment apparatus according to [8] or [9], wherein a concentrating means for concentrating the COD-containing water is provided in front of the decarboxylation means.

[11] [8]ないし[10]のいずれかにおいて、前記脱炭酸手段が脱炭酸塔であることを特徴とするCOD含有水の処理装置。 [11] The COD-containing water treatment apparatus according to any one of [8] to [10], wherein the decarboxylation means is a decarboxylation tower.

本発明によれば、COD含有水をAOP処理して水中のCODを分解除去するに当たり、水中のICによるAOP処理阻害をより確実に防止して、効率的にCODを分解除去して高水質の処理水を得ることができる。 According to the present invention, when COD-containing water is AOP-treated to decompose and remove COD in water, the inhibition of AOP treatment by IC in water is more reliably prevented, and COD is efficiently decomposed and removed to achieve high water quality. Treated water can be obtained.

本発明のCOD含有水の処理装置の実施の形態の一例を示す系統図である。It is a system diagram which shows an example of embodiment of the COD-containing water treatment apparatus of this invention. 本発明のCOD含有水の処理装置の実施の形態の他の例を示す系統図である。It is a system diagram which shows another example of embodiment of the COD-containing water treatment apparatus of this invention. 実験例1におけるAOP処理におけるO/H比及びO/TOC比とCODCr分解率との関係を示すグラフである。It is a graph which shows the relationship between the O 3 / H 2 O 2 ratio and the O 3 / TOC ratio, and the COD Cr decomposition rate in the AOP treatment in Experimental Example 1.

以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.

本発明においては、COD含有水のAOP処理に先立ち、脱炭酸処理、好ましくは濃縮及び脱炭酸処理を行って、無機炭素/全有機炭素(IC/TOC)比3以下の脱炭酸処理水を得、この脱炭酸処理水をAOP処理する。 In the present invention, decarboxylation treatment, preferably concentration and decarboxylation treatment are performed prior to the AOP treatment of COD-containing water to obtain decarboxylated water having an inorganic carbon / total organic carbon (IC / TOC) ratio of 3 or less. , This decarboxylated water is AOP treated.

本発明で処理するCOD含有水(以下「被処理水」と称す場合がある。)としては、TOC濃度1mg/L以上、例えば1〜100mg/Lで、pH6.5以上、例えば7〜9、IC濃度30mg/L以上、例えば100〜1000mg/L、Mアルカリ度40mg/L以上、例えば100〜5000mg/Lの水が挙げられ、染色排水であれば更にアニリンを0.02mg/L以上、例えば0.5〜5mg/L含み、色度1以上、例えば15〜150度である。 The COD-containing water to be treated in the present invention (hereinafter, may be referred to as "water to be treated") has a TOC concentration of 1 mg / L or more, for example, 1 to 100 mg / L, and a pH of 6.5 or more, for example, 7 to 9. Water having an IC concentration of 30 mg / L or more, for example 100 to 1000 mg / L, M alkalinity 40 mg / L or more, for example 100 to 5000 mg / L can be mentioned, and in the case of dyed wastewater, aniline is further added to 0.02 mg / L or more, for example. It contains 0.5 to 5 mg / L and has a chromaticity of 1 or more, for example, 15 to 150 degrees.

本発明は特に、無機炭素/全炭素(IC/TC)比が0.5以上、例えば0.6〜0.9であるようなIC割合の多いCOD含有水の処理に有効であることから、特に、染色排水や生物処理水(とりわけ嫌気性生物処理水)のように、有機物質、イオン類などの無機物質を含有した排水中のCODを分解するのに好適であり、とりわけ高色度、高Mアルカリ度の排水の処理に極めて好適である。 Since the present invention is particularly effective for treating COD-containing water having a high IC ratio such that the inorganic carbon / total carbon (IC / TC) ratio is 0.5 or more, for example, 0.6 to 0.9. In particular, it is suitable for decomposing COD in wastewater containing inorganic substances such as organic substances and ions, such as dyed wastewater and biologically treated water (particularly anaerobic biologically treated water), and is particularly suitable for high color. It is extremely suitable for treating wastewater with high M alkalinity.

被処理水は、濃縮、或いは脱炭酸処理に先立ち、凝集、沈殿/加圧浮上、濾過の前処理や、生物処理(好気/無酸素/嫌気)、凝集、沈殿/加圧浮上、濾過(濾材濾過/膜濾過)の前処理が施されていてもよい。 Prior to concentration or decarbonization treatment, the water to be treated is aggregated, precipitated / pressurized flotation, pretreated for filtration, biological treatment (aerobic / anoxic / anaerobic), aggregated, precipitated / pressurized flotation, filtered ( Pretreatment of filter medium filtration / membrane filtration) may be performed.

また、被処理水はポリマー系又は無機系の分散剤を含有していてもよい。
被処理水の水温は通常10℃以上、例えば25〜50℃である。
Further, the water to be treated may contain a polymer-based or inorganic-based dispersant.
The water temperature of the water to be treated is usually 10 ° C. or higher, for example, 25 to 50 ° C.

このような被処理水は、AOP処理を行う前に濃縮することが好ましく、被処理水中に含まれる有機物を濃縮することにより、脱炭酸後のAOP処理を効率良く行うことが可能となる。 Such water to be treated is preferably concentrated before the AOP treatment, and by concentrating the organic substances contained in the water to be treated, the AOP treatment after decarboxylation can be efficiently performed.

濃縮方法としては特に制限はなく、逆浸透(RO)膜装置やエバポレーターなど公知の濃縮手段を用いることができる。 The concentration method is not particularly limited, and known concentration means such as a reverse osmosis (RO) membrane device and an evaporator can be used.

被処理水をRO膜装置で濃縮する場合、炭酸成分をRO透過水側に透過させるために、pHを6〜7程度とすることが好ましい。また、RO膜面でのスケール生成を防止するために、必要に応じてスケール防止剤を添加してもよい。 When the water to be treated is concentrated by the RO membrane device, the pH is preferably about 6 to 7 in order to allow the carbonic acid component to permeate the RO permeated water side. Further, in order to prevent scale formation on the RO film surface, a scale inhibitor may be added as needed.

スケール防止剤としては、アルカリ領域で解離して金属イオンと錯体を形成し易いエチレンジアミン四酢酸(EDTA)やニトリロ三酢酸(NTA)などキレート系スケール防止剤、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。これらのスケール防止剤は1種を単独で用いても良く、2種以上を併用してもよい。 Examples of the anti-scale agent include chelate-based anti-scale agents such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), which easily dissociate in the alkaline region to form a complex with metal ions, (meth) acrylic acid polymers and salts thereof. , Low molecular weight polymers such as maleic acid polymers and salts thereof, ethylenediaminetetramethylenephosphonic acid and its salts, hydroxyethylidenediphosphonic acid and its salts, nitrilotrimethylenephosphonic acid and its salts, phosphonobutanetricarboxylic acid and its salts, etc. Inorganic polymerized phosphoric acid and inorganically polymerized phosphate such as phosphonic acid and phosphonate, hexamethaphosphate and its salt, tripolyphosphoric acid and its salt can be used. One of these antiscale agents may be used alone, or two or more thereof may be used in combination.

スケール防止剤の添加量については特に制限はないが、通常の場合1〜10mg/L程度とすることが好ましい。 The amount of the anti-scale agent added is not particularly limited, but is usually preferably about 1 to 10 mg / L.

濃縮倍率は1倍以上、例えば2〜4倍とすることが、濃縮によるコストを上げることなく、良好な濃縮効果を得る上で好ましい。 It is preferable that the concentration ratio is 1 time or more, for example, 2 to 4 times, in order to obtain a good concentration effect without increasing the cost of concentration.

脱炭酸手段としては特に制限はなく、気泡塔、脱気膜、脱炭酸塔などの一般的な脱炭酸手段を用いることができる。 The decarboxylation means is not particularly limited, and general decarboxylation means such as a bubble tower, a degassing membrane, and a decarbonation tower can be used.

脱炭酸手段としては、特に安価であることから脱炭酸塔を用いることが好ましい。脱炭酸塔は、ラシヒリング等の充填材が充填された塔内に、被処理水を散水すると共に、下部から空気を吹き込んで向流接触させることにより、炭酸成分を炭酸ガスとして除去するものであり、その充填材の高さは500mm以上、例えば700〜1000mm程度であることが好ましい。また、空気と被処理水との流量比であるガス/液流量比は10以上、例えば10〜20で、被処理水の通水LVは30m/hr以下、例えば10〜20m/hrとすることが脱炭酸効率の面から好ましい。 As the decarboxylation means, it is preferable to use a decarboxylation tower because it is particularly inexpensive. The decarboxylation tower removes carbon dioxide components as carbon dioxide gas by sprinkling water to be treated into the tower filled with a filler such as Raschig ring and blowing air from the lower part to make countercurrent contact. The height of the filler is preferably 500 mm or more, for example, about 700 to 1000 mm. The gas / liquid flow rate ratio, which is the flow rate ratio of air and water to be treated, is 10 or more, for example, 10 to 20, and the water flow LV of the water to be treated is 30 m / hr or less, for example, 10 to 20 m / hr. Is preferable from the viewpoint of decarboxylation efficiency.

なお、脱炭酸に供する被処理水は、水中の炭酸成分を炭酸ガスに変換して脱炭酸効率を高めるためにpH6.5以下、例えば4.5以上6.5未満、好ましくは5.5〜6.0程度の酸性とすることが好ましく、被処理水のpHがこれよりも高い場合には、必要に応じて酸を添加してpH調整することが好ましい。 The water to be treated for decarboxylation has a pH of 6.5 or less, for example, 4.5 or more and less than 6.5, preferably 5.5, in order to convert the carbonic acid component in the water into carbonic acid gas to increase the decarboxylation efficiency. It is preferable to make the acidity of about 6.0, and when the pH of the water to be treated is higher than this, it is preferable to add an acid as necessary to adjust the pH.

本発明では脱炭酸処理により、水中のIC/TOC比を3以下、好ましくは0.5〜2とする。IC/TOC比が3を超えるとICによるAOP処理阻害を十分に防止することができない。IC/TOC比を過度に低くするためには脱炭酸処理の負荷が増大しコスト面で好ましくない。
このようにIC/TOC比を3以下に低減することにより、AOPによる酸化分解対象のCOD(TOC)に対するラジカルスカベンジャー濃度(IC)が下がるため、OHラジカルの利用効率が向上し、COD分解率を高めることができる。
In the present invention, the IC / TOC ratio in water is set to 3 or less, preferably 0.5 to 2, by decarboxylation treatment. If the IC / TOC ratio exceeds 3, it is not possible to sufficiently prevent the inhibition of AOP processing by the IC. In order to make the IC / TOC ratio excessively low, the load of decarboxylation treatment increases, which is not preferable in terms of cost.
By reducing the IC / TOC ratio to 3 or less in this way, the radical scavenger concentration (IC) with respect to the COD (TOC) to be oxidatively decomposed by AOP is lowered, so that the utilization efficiency of OH radicals is improved and the COD decomposition rate is increased. Can be enhanced.

脱炭酸処理水のAOP処理は、常法に従って、脱炭酸処理水に過酸化水素(H)とオゾン(O)を添加して反応させることにより行うことができる。
このときAOP処理の被処理水に添加するO/H重量比(以下、単に「O/H比」と称す。)には最適値が存在し、O/H比は1〜4、例えば3程度が好適である。この範囲よりもHが多過ぎると、Hがラジカルスカベンジャーとして寄与し、非効率であり、少な過ぎるとOHラジカル発生量が不足し、分解能力不足する。
The AOP treatment of the decarboxylated water can be carried out by adding hydrogen peroxide (H 2 O 2 ) and ozone (O 3 ) to the decarboxylated water and reacting them according to a conventional method.
At this time, there is an optimum value for the O 3 / H 2 O 2 weight ratio (hereinafter, simply referred to as “O 3 / H 2 O 2 ratio”) added to the water to be treated with AOP, and O 3 / H The 2 O 2 ratio is preferably 1 to 4, for example, about 3. If there is too much H 2 O 2 than this range, H 2 O 2 contributes as a radical scavenger, which is inefficient. If it is too small, the amount of OH radicals generated is insufficient and the decomposition ability is insufficient.

また、AOP処理の被処理水のTOCに対するO添加量の割合、O/TOC重量比(以下、単に「O/TOC比」と称す。)は、オゾンの発生コストとCOD分解率の観点から1〜6程度とすることが好ましい。 The ratio of O 3 amount for TOC of treated water AOP process, O 3 / TOC ratio by weight (hereinafter simply referred to as "O 3 / TOC ratio".) Is, the generation cost and COD decomposition rate of ozone From the viewpoint, it is preferably about 1 to 6.

なお、AOP処理時のpHは8.5〜10のアルカリ性であることが好ましく、従って、脱炭酸処理水には必要に応じて水酸化ナトリウム、水酸化カリウム等のアルカリを添加してpH調整した後AOP処理に供する。
また、AOP処理時の水温については特に制限はなく、通常20〜40℃程度で実施される。
The pH at the time of AOP treatment is preferably 8.5 to 10 alkaline. Therefore, the pH of the decarboxylated water was adjusted by adding an alkali such as sodium hydroxide or potassium hydroxide as needed. It is then subjected to AOP processing.
The water temperature during the AOP treatment is not particularly limited, and is usually carried out at about 20 to 40 ° C.

本発明のCOD含有水の処理装置は、脱炭酸塔等の脱炭酸手段とAOP反応塔とを有し、好ましくは更に、脱炭酸手段の前段にRO膜装置等の被処理水の濃縮手段を有する。
図1,2はこのような本発明のCOD含有水の処理装置の一例を示す系統図であり、図1,2において同一機能を奏する部材には同一符号を付してある。
The COD-containing water treatment apparatus of the present invention has a decarboxylation means such as a decarboxylation column and an AOP reaction column, and more preferably, a means for concentrating water to be treated such as an RO membrane device is provided in front of the decarboxylation means. Have.
FIGS. 1 and 2 are system diagrams showing an example of such a COD-containing water treatment apparatus of the present invention, and members having the same function in FIGS. 1 and 2 are designated by the same reference numerals.

図1の装置は、保安フィルター1とRO膜装置2と脱炭酸塔3とAOP反応塔4とがこの順で連結されたものであり、RO膜装置2は、それぞれRO膜エレメントを内蔵したROベッセル20が複数並列配置された第1バンク21と第2バンク22とを有し、第1バンク21の濃縮水が更に第2バンク22で濃縮され、第2バンク22の濃縮水が脱炭酸塔3に送給される。第1バンク21と第2バンク22のRO透過水は系外へ排出される。 In the device of FIG. 1, the safety filter 1, the RO membrane device 2, the decarboxylation tower 3, and the AOP reaction tower 4 are connected in this order, and each RO membrane device 2 has an RO membrane element built-in. It has a first bank 21 and a second bank 22 in which a plurality of vessels 20 are arranged in parallel, the concentrated water of the first bank 21 is further concentrated in the second bank 22, and the concentrated water of the second bank 22 is a decarboxylation tower. It will be sent to 3. The RO permeated water in the first bank 21 and the second bank 22 is discharged to the outside of the system.

図1のRO膜装置2は、第1バンク21に16本のROベッセルを有し、第2バンク22に9本のROベッセル20を有するものを想定しているが、ベッセルの数は何らこの本数に限定されるものではない。 The RO membrane device 2 of FIG. 1 is assumed to have 16 RO vessels in the first bank 21 and 9 RO vessels 20 in the second bank 22, but the number of vessels is this. It is not limited to the number.

AOP反応塔4は、H注入ライン41とO注入ライン42とを有し、脱炭酸処理水は塔下部から上向流で通水され、塔内でAOP処理され、AOP処理水が塔上部から排出される。 The AOP reaction column 4 has an H 2 O 2 injection line 41 and an O 3 injection line 42, and the decarboxylated water is passed from the lower part of the column by an upward flow, is AOP-treated in the column, and is AOP-treated water. Is discharged from the top of the tower.

図2の装置は、図1におけるRO膜装置2を省略したものであり、被処理水の濃縮を行わないこと以外は、図1におけると同様に処理が行われる。 The apparatus of FIG. 2 is an omission of the RO membrane apparatus 2 of FIG. 1, and the treatment is performed in the same manner as in FIG. 1 except that the water to be treated is not concentrated.

以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例I−1]
染色工場排水の生物処理水を被処理水として、図1に示す装置で処理した。即ち、保安フィルター1で処理した被処理水をRO膜装置2で濃縮した後、RO濃縮水を脱炭酸塔3で脱炭酸処理し、脱炭酸処理水に水酸化ナトリウムを添加してpH約9に調整した後、AOP反応塔4でAOP処理した。被処理水には、ポリアクリル酸系スケール防止剤(栗田工業社製「クリバータN900」)を5mg/L添加して日東電工社製RO膜「ES−20−D8」を用いて3倍程度に濃縮し、脱炭酸塔3の脱炭酸処理、AOP塔4のAOP処理は以下の条件で行った。
[Example I-1]
The biologically treated water from the wastewater of the dyeing factory was treated as the water to be treated by the apparatus shown in FIG. That is, after the water to be treated by the safety filter 1 is concentrated by the RO membrane device 2, the RO concentrated water is decarboxylated by the decarboxylation tower 3, and sodium hydroxide is added to the decarboxylated water to have a pH of about 9. After adjusting to, AOP treatment was performed in the AOP reaction tower 4. Add 5 mg / L of polyacrylic acid-based scale inhibitor (Kurita Water Industries, Ltd. "Crivata N900") to the water to be treated, and use Nitto Denko's RO film "ES-20-D8" to triple the amount. After concentration, the decarboxylation treatment of the decarboxylation tower 3 and the AOP treatment of the AOP tower 4 were performed under the following conditions.

<脱炭酸塔>
pH:4.8(RO濃縮水に硫酸添加)
充填材(ラシヒリング)充填層高さ:1000mm
G/L比:15
通水LV:10m/hr
<Decarboxylation tower>
pH: 4.8 (sulfuric acid added to RO concentrated water)
Filler (Raschig ring) Filler height: 1000 mm
G / L ratio: 15
Water flow LV: 10m / hr

<AOP反応塔>
/TOC比:1.0
/H比:3.0
水温:35℃
<AOP reaction tower>
O 3 / TOC ratio: 1.0
O 3 / H 2 O 3 ratio: 3.0
Water temperature: 35 ° C

被処理水及びRO濃縮水の水質を表1に、脱炭酸処理水の水質とAOP処理結果を表2に示す。 Table 1 shows the water quality of the water to be treated and the RO concentrated water, and Table 2 shows the water quality of the decarboxylated water and the AOP treatment result.

[実施例I−2,3、比較例I−1,2]
実施例I−1において、脱炭酸塔における脱炭酸処理条件をそれぞれ以下の通り変更したこと以外は同様にして、濃縮、脱炭酸処理、AOP処理を行った。脱炭酸処理水の水質とAOP処理結果を表2に示す。
実施例I−2:脱炭酸塔の給水pH5.0
実施例I−3:脱炭酸塔の給水pH5.5
比較例I−1:脱炭酸塔の給水pH6.5
比較例I−2:脱炭酸塔の給水pH8.0
[Examples I-2, 3, Comparative Examples I-1, 2]
In Example I-1, the concentration, the decarboxylation treatment, and the AOP treatment were carried out in the same manner except that the decarboxylation treatment conditions in the decarboxylation tower were changed as follows. Table 2 shows the water quality of the decarboxylated water and the results of the AOP treatment.
Example I-2: Water supply pH 5.0 of decarboxylation tower
Example I-3: Water supply pH 5.5 of decarboxylation tower
Comparative Example I-1: Water supply pH 6.5 of the decarboxylation tower
Comparative Example I-2: Water supply pH of decarboxylation tower 8.0

Figure 0006772536
Figure 0006772536

Figure 0006772536
Figure 0006772536

[実験例1]
実施例I−1において、AOP反応塔におけるO/H比、O/TOC比を種々変えてAOP処理を行った以外は同条件にてCODCr分解率を求め、結果を図3に示した。
図3より、O/TOC比、O/H比が高い程CODCr分解率を高めることができることが分かる。
[Experimental Example 1]
In Example I-1, the COD Cr decomposition rate was obtained under the same conditions except that the AOP treatment was performed by changing the O 3 / H 2 O 2 ratio and the O 3 / TOC ratio in the AOP reaction column, and the results are shown in the figure. Shown in 3.
From FIG. 3, it can be seen that the higher the O 3 / TOC ratio and the O 3 / H 2 O 2 ratio, the higher the COD Cr decomposition rate can be.

1 保安フィルター
2 RO膜装置
3 脱炭酸塔
4 AOP反応塔
1 Security filter 2 RO membrane device 3 Decarboxylation tower 4 AOP reaction tower

Claims (9)

被処理水である、無機炭素濃度が30mg/L以上のCOD含有水を逆浸透膜装置で濃縮し、前記濃縮により得られた濃縮水を脱炭酸処理した後、オゾンと過酸化水素を用いて促進酸化処理するCOD含有水の処理方法であって、
前記被処理水に対する前記濃縮水の濃縮倍率が〜4倍であり
前記脱炭酸処理により得られる脱炭酸処理水の無機炭素/全有機炭素比を3以下とするように前記脱炭酸処理を行うことを特徴とするCOD含有水の処理方法。
COD-containing water having an inorganic carbon concentration of 30 mg / L or more , which is the water to be treated, is concentrated by a reverse osmosis membrane device, the concentrated water obtained by the concentration is decarbonated, and then ozone and hydrogen peroxide are used. A method for treating COD-containing water to be subjected to accelerated oxidation treatment.
Wherein a 2-4 fold concentration rate of the concentrated water is water to be treated,
A method for treating COD-containing water, which comprises performing the decarboxylation treatment so that the inorganic carbon / total organic carbon ratio of the decarboxylated water obtained by the decarboxylation treatment is 3 or less.
請求項1において、前記被処理水の無機炭素/全炭素比が0.5以上であることを特徴とするCOD含有水の処理方法。 The method for treating COD-containing water according to claim 1, wherein the inorganic carbon / total carbon ratio of the water to be treated is 0.5 or more. 請求項1又は2において、前記脱炭酸処理を脱炭酸塔を用いて行うことを特徴とするCOD含有水の処理方法。 The method for treating COD-containing water according to claim 1 or 2, wherein the decarboxylation treatment is performed using a decarboxylation tower. 請求項3において、前記脱炭酸塔の充填材高さが500mm以上であり、ガス/液流量比10以上、通水LV30m/hr以下で脱炭酸処理することを特徴とするCOD含有水の処理方法。 The method for treating COD-containing water according to claim 3, wherein the filler height of the decarboxylation tower is 500 mm or more, the gas / liquid flow rate ratio is 10 or more, and the decarboxylation treatment is performed at a water flow rate of 30 m / hr or less. .. 請求項1ないし4のいずれか1項において、前記被処理水が、生物処理水であることを特徴とするCOD含有水の処理方法。 The method for treating COD-containing water according to any one of claims 1 to 4, wherein the water to be treated is biologically treated water. 請求項1ないし4のいずれか1項において、前記被処理水が染色排水であることを特徴とするCOD含有水の処理方法。 The method for treating COD-containing water according to any one of claims 1 to 4, wherein the water to be treated is dyed wastewater. 被処理水である、無機炭素濃度が30mg/L以上のCOD含有水を濃縮する逆浸透膜装置と、
前記濃縮により得られた濃縮水を脱炭酸処理する脱炭酸手段と、
前記脱炭酸処理水をオゾンと過酸化水素を用いて促進酸化処理する酸化処理手段とを有するCOD含有水の処理装置であって、
前記被処理水に対する前記濃縮水の濃縮倍率が〜4倍であり
前記脱炭酸手段は、前記脱炭酸処理により得られる脱炭酸処理水の無機炭素/全有機炭素比が3以下とするように前記脱炭酸処理を行うことを特徴とするCOD含有水の処理装置。
A reverse osmosis membrane device that concentrates COD-containing water with an inorganic carbon concentration of 30 mg / L or more , which is the water to be treated .
A decarboxylation means for decarboxylating the concentrated water obtained by the concentration ,
The decarboxylation process water a processor of COD-containing water having an oxidation processing means for promoting oxidation with ozone and hydrogen peroxide,
Wherein a 2-4 fold concentration rate of the concentrated water is water to be treated,
The decarboxylation means is a COD-containing water treatment apparatus characterized in that the decarboxylation treatment is performed so that the inorganic carbon / total organic carbon ratio of the decarboxylated water obtained by the decarboxylation treatment is 3 or less.
請求項7において、前記被処理水の無機炭素/全炭素比が0.5以上であることを特徴とするCOD含有水の処理装置。 The COD-containing water treatment apparatus according to claim 7, wherein the inorganic carbon / total carbon ratio of the water to be treated is 0.5 or more. 請求項7又は8において、前記脱炭酸手段が脱炭酸塔であることを特徴とするCOD含有水の処理装置。 The COD-containing water treatment apparatus according to claim 7 or 8, wherein the decarboxylation means is a decarboxylation tower.
JP2016096240A 2016-05-12 2016-05-12 COD-containing water treatment method and treatment equipment Active JP6772536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096240A JP6772536B2 (en) 2016-05-12 2016-05-12 COD-containing water treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096240A JP6772536B2 (en) 2016-05-12 2016-05-12 COD-containing water treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2017202465A JP2017202465A (en) 2017-11-16
JP6772536B2 true JP6772536B2 (en) 2020-10-21

Family

ID=60321765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096240A Active JP6772536B2 (en) 2016-05-12 2016-05-12 COD-containing water treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6772536B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317846A (en) * 1992-05-21 1993-12-03 Kurita Water Ind Ltd Diffusion treatment of water
JP2001113291A (en) * 1999-10-19 2001-04-24 Kurita Water Ind Ltd Apparatus for treating organic matter-containing water

Also Published As

Publication number Publication date
JP2017202465A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
EP2559667B1 (en) Method and system for the treatment of wastewater containing persistent substances
CN102815836A (en) Treating system and treating method for hardly degradable organic waste water
CN102295378A (en) Treatment and recycling method of ammonia nitrogen containing high-salt catalyst wastewater
KR101352247B1 (en) Apparatus for treating waste water
CN102659291A (en) Nano-filtration and reverse osmosis concentrated solution reduction treatment system and method
CN107915354A (en) A kind of desulfurization wastewater zero-emission and resource utilization device and method
CN102050533A (en) Method for treating and recycling circulating water and sewage
JP5702221B2 (en) Method and apparatus for treating wastewater containing ethanolamine and hydrazine
CN111995155A (en) Method for recycling ammoniacal nitrogen-containing acidic wastewater
TWI613153B (en) Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater
KR101533979B1 (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
CN110759540B (en) Treatment method of chemical nickel plating waste liquid
JP2012076058A (en) Method for treating wastewater containing persistent substance
JP6772536B2 (en) COD-containing water treatment method and treatment equipment
CN103253832B (en) Reusing treatment method of coking wastewater
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
CN114477558A (en) Ammonia-removing treatment method for ammonia nitrogen wastewater
KR101279701B1 (en) Waste Water Reclamation System
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
CN112794472A (en) Concentration system and concentration method for high-salinity wastewater
CN113213518A (en) High ammonia nitrogen high alkalinity waste water resource system
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
CN105152377A (en) Sewage purifying and recycling system
CN212713109U (en) Treatment system for fine chemical wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250