JP6772098B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP6772098B2
JP6772098B2 JP2017058134A JP2017058134A JP6772098B2 JP 6772098 B2 JP6772098 B2 JP 6772098B2 JP 2017058134 A JP2017058134 A JP 2017058134A JP 2017058134 A JP2017058134 A JP 2017058134A JP 6772098 B2 JP6772098 B2 JP 6772098B2
Authority
JP
Japan
Prior art keywords
ground
vibration
sand
rod
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058134A
Other languages
Japanese (ja)
Other versions
JP2018159247A (en
Inventor
久 深田
久 深田
淳 大林
淳 大林
渡辺 英次
英次 渡辺
健一 今給黎
健一 今給黎
鈴木 亮彦
亮彦 鈴木
章治 森鼻
章治 森鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2017058134A priority Critical patent/JP6772098B2/en
Publication of JP2018159247A publication Critical patent/JP2018159247A/en
Application granted granted Critical
Publication of JP6772098B2 publication Critical patent/JP6772098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤中に砂杭を造成して地盤を締固めて地盤改良を行う地盤改良方法に関する。 The present invention relates to a ground improvement method for constructing sand piles in the ground and compacting the ground to improve the ground.

地盤を締固めて改良する地盤改良方法においては、その一例として砂圧入式静的締固め工法が知られている。
砂圧入式静的締固め工法は、下端より流動化砂を地盤中に圧入するロッドを有し、ロッドを所定深度まで貫入して、ロッドから地盤中に流動化砂を所定圧になるまで圧入して流動化砂を地盤中で拡径させることによって、その周囲の地盤を締固める。これを所定深度から上方にわたって行うことで、地盤中に砂杭を造成して地盤を締固めて改良する。
As an example of a ground improvement method for compacting and improving the ground, a sand press-fit type static compaction method is known.
The sand press-fit type static compaction method has a rod that press-fits fluidized sand into the ground from the lower end, penetrates the rod to a predetermined depth, and press-fits the fluidized sand from the rod into the ground until it reaches a predetermined pressure. By expanding the diameter of the fluidized sand in the ground, the surrounding ground is compacted. By doing this from a predetermined depth upward, sand piles are created in the ground to compact and improve the ground.

この砂圧入式静的締固め工法では、予め設計上の目標改良率を求め、設計上の目標改良率から流動化砂の地盤中への圧入量を算出し、この圧入量に基づいて流動化砂を地盤中に圧入する。なお、設計上の目標改良率は、従来から用いられている適宜の算出方法によって求められる。
ところが、地盤のN値や密度などはそれぞれの地盤さらには深度においてバラツキがあり、予め求める設計上の目標改良率は、これらのバラツキによって大きく影響される。
即ち、砂圧入式静的締固め工法では、設計上の目標改良率から算出した圧入量に基づいて流動化砂を圧入し、地盤中に砂杭を造成して地盤を締固めるようにするが、この砂杭の造成時において、地盤中に圧入した流動化砂によって、地表面が大きく隆起したり、あるいは地盤の浅部において水平方向に変位する側方変位が起こったりする虞がある。
In this sand press-fit type static compaction method, the design target improvement rate is obtained in advance, the press-fit amount of fluidized sand into the ground is calculated from the design target improvement rate, and fluidization is performed based on this press-fit amount. Press the sand into the ground. The target improvement rate in design is obtained by an appropriate calculation method that has been conventionally used.
However, the N value and density of the ground vary depending on the ground and the depth, and the target improvement rate in the design obtained in advance is greatly affected by these variations.
That is, in the sand press-fit type static compaction method, fluidized sand is press-fitted based on the press-fit amount calculated from the design target improvement rate, and sand piles are created in the ground to compact the ground. During the construction of this sand pile, the fluidized sand press-fitted into the ground may cause a large uplift of the ground surface or a lateral displacement that displaces in the horizontal direction in the shallow part of the ground.

そこで、従来、砂圧入式静的締固め工法において、ロッドの下端に振動機を取り付け、ロッドを所定深度まで貫入し、貫入後、振動機によって周囲の地盤に振動を加えて締固める。続いて、ロッドを所定ピッチ引抜きながら所定量の流動化砂を圧入させて周囲の地盤を締固める。これを所定深度から上方にわたって行う。このとき、振動による体積減少分と地盤中への流動化砂の圧入による体積増加分とを同じにする。これにより、砂杭の造成時に、地表面が大きく隆起したり、あるいは地盤の浅部での側方変位が起こったりするのを低減することができる(特許文献1参照)。 Therefore, conventionally, in the sand press-fit type static compaction method, a vibrator is attached to the lower end of the rod, the rod is penetrated to a predetermined depth, and after penetration, the vibrating ground is vibrated and compacted. Subsequently, while pulling out the rod at a predetermined pitch, a predetermined amount of fluidized sand is press-fitted to compact the surrounding ground. This is done from a predetermined depth to the top. At this time, the volume decrease due to vibration and the volume increase due to press-fitting of fluidized sand into the ground are made the same. As a result, it is possible to reduce the occurrence of a large uplift of the ground surface or lateral displacement in a shallow part of the ground when the sand pile is constructed (see Patent Document 1).

しかしながら、この砂圧入式静的締固め工法では、振動による締固めを行い、次に、流動化砂の圧入による締固めを行う。その後、再び振動による締固めを行い、次に、流動化砂の圧入による締固めを行う。つまり、振動による締固めと、流動化砂の圧入による締固めを交互に行って、これを所定深度から上方にわたって行う。そのため、一本の砂杭を造成するのに多大な時間を要し、地盤改良の工期が長くなる虞がある。また、作業に使用する装置は、流動化砂を地盤中に圧入するロッドに振動機を取り付けて、振動による締固めと流動化砂の圧入による締固めの両方を行えるようにすることから、その構造が複雑でかつ高価な専用機械となる。そのため、地盤改良の工事におけるコストが高くなる。 However, in this sand press-fit type static compaction method, compaction is performed by vibration, and then compaction is performed by press-fitting fluidized sand. After that, compaction is performed again by vibration, and then compaction is performed by press-fitting the fluidized sand. That is, compaction by vibration and compaction by press fitting of fluidized sand are alternately performed, and this is performed from a predetermined depth to the upper side. Therefore, it takes a lot of time to construct one sand pile, and there is a risk that the construction period for ground improvement will be long. In addition, the equipment used for work is equipped with a vibrator attached to a rod that presses fluidized sand into the ground so that both compaction by vibration and compaction by press fitting of fluidized sand can be performed. It is a dedicated machine with a complicated structure and high cost. Therefore, the cost of ground improvement work is high.

特開2014−177797号公報Japanese Unexamined Patent Publication No. 2014-177977

本発明は、このような問題に鑑みてなされたものであって、その目的は、地盤を締固めて改良する地盤改良の工事において、その工期の短縮とコストダウンを図ることである。 The present invention has been made in view of such a problem, and an object of the present invention is to shorten the construction period and reduce the cost in the ground improvement work for compacting and improving the ground.

本発明は、地盤中に貫入及び引き抜き可能にし、かつ振動や衝撃を発生する振動・衝撃発生手段を取り付けた上下に向かう第一棒状部材を有し、第一棒状部材を所定深度まで貫入して、振動・衝撃発生手段によって周囲の地盤に振動や衝撃を加えて締固め、振動や衝撃による周囲の地盤の締固めを所定深度から上方にわたって行う第1工程と、地盤中に貫入及び引き抜き可能にし、かつ下端より砂材料を排出する上下に向かう第二棒状部材を有し、第1工程の後、第二棒状部材を所定深度まで貫入して、第二棒状部材から砂材料を地盤中に排出し、砂材料を拡径させて周囲の地盤を締固め、砂材料の拡径による周囲の地盤の締固めを所定深度から上方にわたって行って砂杭を造成する第2工程と、を有する地盤改良方法である。 The present invention has a first rod-shaped member that can penetrate and pull out into the ground and is equipped with a vibration / impact generating means that generates vibration or impact, and penetrates the first rod-shaped member to a predetermined depth. , The first step of compacting the surrounding ground by applying vibration or impact to the surrounding ground by means of vibration / impact generating means, and compacting the surrounding ground by vibration or impact from a predetermined depth upward, and enabling penetration and withdrawal into the ground. It also has a second rod-shaped member that goes up and down to discharge the sand material from the lower end, and after the first step, the second rod-shaped member penetrates to a predetermined depth and the sand material is discharged from the second rod-shaped member into the ground. The ground improvement has a second step of expanding the diameter of the sand material to compact the surrounding ground, and expanding the diameter of the sand material to compact the surrounding ground from a predetermined depth upward to create a sand pile. The method.

本発明によれば、第1工程の振動・衝撃発生手段によって地盤に振動や衝撃を加えて締固める作業と、第2工程の砂材料を地盤中に排出して砂材料を拡径させて地盤を締固める作業とを、従来のように交互に行うことなく、個別に行うことで、それぞれの作業を効率よく行うことができ、工期の短縮を図ることができる。
また、装置は、第1工程で使用する装置と第2工程で使用する装置とを別々にして、それぞれの装置を構造が簡単でかつ安価な機械にする。これにより、従来のような構造が複雑でかつ高価な専用機械を使用することなく、作業を行うことができ、地盤改良の工事におけるコストダウンを図ることができる。
According to the present invention, the work of applying vibration or impact to the ground by the vibration / impact generating means of the first step to compact the ground, and discharging the sand material of the second step into the ground to expand the diameter of the sand material to expand the ground. By performing the compaction work individually instead of alternately performing the work as in the conventional case, each work can be performed efficiently and the construction period can be shortened.
Further, as the apparatus, the apparatus used in the first step and the apparatus used in the second step are separated, and each apparatus is made into a machine having a simple structure and inexpensive. As a result, the work can be performed without using a dedicated machine having a complicated structure and expensive as in the conventional case, and the cost in the ground improvement work can be reduced.

本発明の地盤改良方法において用いる第一装置の説明図である。It is explanatory drawing of the 1st apparatus used in the ground improvement method of this invention. 第一装置の振動・衝撃発生手段の動作を示す説明図である。It is explanatory drawing which shows the operation of the vibration / shock generating means of the 1st apparatus. 本発明の地盤改良方法において用いる第二装置の説明図である。It is explanatory drawing of the 2nd apparatus used in the ground improvement method of this invention. 本発明の地盤改良方法の第1工程を示す説明図である。It is explanatory drawing which shows the 1st step of the ground improvement method of this invention. 本発明の地盤改良方法の第2工程を示す説明図である。It is explanatory drawing which shows the 2nd step of the ground improvement method of this invention. 第1工程及び第2工程の作業の状態を示す説明図である。It is explanatory drawing which shows the working state of the 1st process and 2nd process. 第1工程及び第2工程での地盤の状態を説明するための模式図である。It is a schematic diagram for demonstrating the state of the ground in the 1st step and the 2nd step. 地盤を改良するときの地盤の状態を示す説明図である。It is explanatory drawing which shows the state of the ground when the ground is improved. 第3工程の作業を示す説明図である。It is explanatory drawing which shows the work of the 3rd process. 既設構造物に生じる変位の状態を示す説明図である。It is explanatory drawing which shows the state of the displacement which occurs in the existing structure.

本発明の地盤改良方法の一実施形態について、図面を参照して説明する。
地盤改良方法は、概略的には、第一棒状部材を所定深度まで貫入して、周囲の地盤に振動や衝撃を加えて締固め、これを所定深度から上方にわたって行う第1工程と、第1工程の後、第二棒状部材を所定深度まで貫入して、砂材料を地盤中に排出し、砂材料を拡径させて周囲の地盤を締固め、これを所定深度から上方にわたって行って砂杭を造成する第2工程と、を有する。
An embodiment of the ground improvement method of the present invention will be described with reference to the drawings.
The ground improvement method is roughly a first step of penetrating a first rod-shaped member to a predetermined depth, applying vibration or impact to the surrounding ground to compact it, and performing this from a predetermined depth upward. After the process, the second rod-shaped member is penetrated to a predetermined depth, the sand material is discharged into the ground, the diameter of the sand material is expanded to compact the surrounding ground, and this is performed from the predetermined depth upward to the sand pile. It has a second step of creating the above.

なお、本実施形態の地盤改良方法において、第2工程では、地盤改良工法の中の一つである砂圧入式静的締固め工法による地盤改良を例に採り説明するが、この第2工程では、これに限定されるものではなく、サンドコンパクションパイル工法などの他の工法による地盤改良であってもよい。 In the ground improvement method of the present embodiment, in the second step, the ground improvement by the sand press-fit type static compaction method, which is one of the ground improvement methods, will be described as an example. However, the ground improvement is not limited to this, and the ground may be improved by other construction methods such as the sand compaction pile construction method.

この地盤改良方法によって地盤改良を行う装置は、第1工程で用いる第一装置1と、第2工程で用いる第二装置2とから構成される。
図1は、本実施形態の地盤改良方法において用いる第一装置の説明図、図2は、第一装置の振動・衝撃発生手段の動作を示す説明図、図3は、本実施形態の地盤改良方法において用いる第二装置の説明図である。
The device for improving the ground by this ground improvement method is composed of a first device 1 used in the first step and a second device 2 used in the second step.
FIG. 1 is an explanatory view of the first device used in the ground improvement method of the present embodiment, FIG. 2 is an explanatory view showing the operation of the vibration / impact generating means of the first device, and FIG. 3 is the ground improvement of the present embodiment. It is explanatory drawing of the 2nd apparatus used in the method.

第一装置1は、図1に示すように、自走可能な施工機10を有し、施工機10は、例えば、アーム11を有する一般的な建設機械である。施工機10は、アーム11の先端に第一棒状部材12を有し、第一棒状部材12は、上下に向かうケーシングであり、地盤中に貫入及び引き抜き可能にする。 As shown in FIG. 1, the first device 1 has a self-propelled construction machine 10, and the construction machine 10 is, for example, a general construction machine having an arm 11. The construction machine 10 has a first rod-shaped member 12 at the tip of the arm 11, and the first rod-shaped member 12 is a casing that goes up and down so that it can penetrate and pull out into the ground.

第一棒状部材12には、振動や衝撃を発生する振動・衝撃発生手段13を取り付ける。ここでは、振動・衝撃発生手段13は、衝撃Sを発生させるものである。振動・衝撃発生手段13は、図2(A)に示すように、第一棒状部材12の内部に、上下に移動する重錘14と、重錘14を移動させるエアーシリンダ15とを設けるとともに、重錘14の下にくさび状のスライダー16を4つ設け、4つのスライダー16に相対するように4つの衝撃発生板17を設け、衝撃発生板17が第一棒状部材12から水平方向に突出する。 A vibration / shock generating means 13 that generates vibration or shock is attached to the first rod-shaped member 12. Here, the vibration / shock generating means 13 generates a shock S. As shown in FIG. 2A, the vibration / impact generating means 13 is provided with a weight 14 that moves up and down and an air cylinder 15 that moves the weight 14 inside the first rod-shaped member 12. Four wedge-shaped sliders 16 are provided under the weight 14, and four impact generating plates 17 are provided so as to face the four sliders 16, and the impact generating plates 17 project horizontally from the first rod-shaped member 12. ..

この振動・衝撃発生手段13の動作は、図2(B)に示すように、上方に位置する重錘14をエアーシリンダ15で勢いよく押し下げ、重錘14によってスライダー16が押し下げられて、図2(C)に示すように、4つの衝撃発生板17が第一棒状部材12から水平方向に勢いよく突出する。この衝撃発生板17の突出により、地盤に衝撃Sを加えることができる。 In the operation of the vibration / impact generating means 13, as shown in FIG. 2 (B), the weight 14 located above is pushed down vigorously by the air cylinder 15, and the slider 16 is pushed down by the weight 14, and FIG. As shown in (C), the four impact generating plates 17 project vigorously in the horizontal direction from the first rod-shaped member 12. The impact S can be applied to the ground by the protrusion of the impact generating plate 17.

なお、第一棒状部材12に取り付ける振動・衝撃発生手段13は、前述の機構のものに限定されるものではなく、その他の機構のものでもよい。また、衝撃Sを発生させるのではなく、振動を発生させるようにしてもよい。振動を発生させる振動・衝撃発生手段13としては、図示はしないが、例えば、第一棒状部材12の内部に回転用モータと偏心回転する偏心錘などを設けて、偏心錘の回転によって第一棒状部材12を振動させるタイプ、あるいは第一棒状部材12の上端に振動発生機を装着し、振動発生機によって第一棒状部材12全体を振動させるタイプでもよい。 The vibration / impact generating means 13 attached to the first rod-shaped member 12 is not limited to that of the above-mentioned mechanism, and may be of another mechanism. Further, the vibration S may be generated instead of generating the impact S. Although not shown, the vibration / shock generating means 13 that generates vibration is provided with, for example, a rotating motor and an eccentric weight that rotates eccentrically inside the first rod-shaped member 12, and the first rod-shaped member is rotated by the rotation of the eccentric weight. A type that vibrates the member 12 or a type in which a vibration generator is attached to the upper end of the first rod-shaped member 12 and the entire first rod-shaped member 12 is vibrated by the vibration generator may be used.

第二装置2は、図3に示すように、自走可能な施工機20を有し、施工機20は、その前部にマスト21を立設するとともに、マスト21に沿った第二棒状部材22を有する。第二棒状部材22は、上下に向かうケーシングであり、地盤中に貫入及び引き抜き可能にし、その内部に流動化砂(砂材料)や圧縮空気が通る。第二棒状部材22の上部には、第二棒状部材22を回転させる回転部23と、第二棒状部材22を地盤中に貫入したり引き抜いたりする昇降部24を有する。また、第二棒状部材22の下端には、流動化砂を地盤中に排出するための排出口25を有する。
ここで、流動化砂とは、砂に流動化剤を混合して流動化処理した砂材料のことである。
また、砂材料は、流動化砂に限定されるものではなく、例えば、第2工程においてサンドコンパクションパイル工法による地盤改良を行う場合、砂材料は、砂又は砕石又はスラグあるいはこれらの混合物などである。
As shown in FIG. 3, the second device 2 has a self-propellable construction machine 20, and the construction machine 20 has a mast 21 erected in front of the mast 21 and a second rod-shaped member along the mast 21. 22 has. The second rod-shaped member 22 is a casing that faces up and down, and allows penetration and withdrawal into the ground, through which fluidized sand (sand material) and compressed air pass. The upper part of the second rod-shaped member 22 has a rotating portion 23 for rotating the second rod-shaped member 22 and an elevating portion 24 for penetrating or pulling out the second rod-shaped member 22 into the ground. Further, at the lower end of the second rod-shaped member 22, a discharge port 25 for discharging fluidized sand into the ground is provided.
Here, the fluidized sand is a sand material that has been fluidized by mixing a fluidizing agent with the sand.
Further, the sand material is not limited to fluidized sand. For example, when the ground is improved by the sand compaction pile method in the second step, the sand material is sand, crushed stone, slag, or a mixture thereof. ..

また、第二装置2は、施工機20の第二棒状部材22に流動化砂を供給する周辺設備30を有し、周辺設備30は、砂に流動化剤を混合して流動化砂を生成する流動化砂生成装置31を有し、流動化砂生成装置31から圧送ポンプ32により流動化砂を送り出し、圧力計33を経由して第二棒状部材22に流動化砂を供給する。 Further, the second device 2 has a peripheral equipment 30 for supplying fluidized sand to the second rod-shaped member 22 of the construction machine 20, and the peripheral equipment 30 mixes a fluidizing agent with the sand to generate fluidized sand. The fluidized sand generator 31 is provided, and the fluidized sand is sent out from the fluidized sand generator 31 by a pressure pump 32, and the fluidized sand is supplied to the second rod-shaped member 22 via the pressure gauge 33.

次に、本実施形態の地盤改良方法について、具体的に説明する。
図4は、第1工程を示す説明図、図5は、第2工程を示す説明図、図6は、第1工程及び第2工程の作業の状態を示す説明図である。
Next, the ground improvement method of this embodiment will be specifically described.
FIG. 4 is an explanatory diagram showing the first step, FIG. 5 is an explanatory diagram showing the second step, and FIG. 6 is an explanatory diagram showing the working states of the first step and the second step.

第1工程は、図4(A)に示すように、第一装置1の第一棒状部材12を所定深度、例えば地表面から5〜6mまで貫入する。貫入後、図4(B)に示すように、第一棒状部材12に取り付けた振動・衝撃発生手段13を作動して、周囲の地盤に衝撃Sを加えて締固める。締固め後、第一棒状部材12を上方に例えば50〜100cm引抜く。その後再び、図4(C)に示すように、振動・衝撃発生手段13を作動して、周囲の地盤に衝撃Sを加えて締固める。図4(D)に示すように、これを所定深度から上方にわたって繰り返し行って、図4(E)に示すように、衝撃Sによる地盤の締固めを地表面近傍まで行う。
この衝撃Sによる地盤の締固めは、所定の複数の箇所P1に順次行われる。即ち、図6(A)に示すように、衝撃Sによる地盤の締固める箇所P1は、例えば、横10m、縦20mの範囲で、1〜2mの間隔で行われる。この衝撃Sによる地盤の締固めによって、地表面が沈下する。
In the first step, as shown in FIG. 4A, the first rod-shaped member 12 of the first device 1 is penetrated to a predetermined depth, for example, 5 to 6 m from the ground surface. After the penetration, as shown in FIG. 4B, the vibration / impact generating means 13 attached to the first rod-shaped member 12 is operated to apply an impact S to the surrounding ground to compact it. After compaction, the first rod-shaped member 12 is pulled upward by, for example, 50 to 100 cm. After that, as shown in FIG. 4C, the vibration / impact generating means 13 is operated again to apply an impact S to the surrounding ground to compact it. As shown in FIG. 4 (D), this is repeated from a predetermined depth upward, and as shown in FIG. 4 (E), the ground is compacted by the impact S to the vicinity of the ground surface.
The compaction of the ground by the impact S is sequentially performed at a plurality of predetermined locations P1. That is, as shown in FIG. 6A, the ground compaction portion P1 by the impact S is performed at intervals of 1 to 2 m in a range of, for example, 10 m in width and 20 m in length. The ground surface sinks due to the compaction of the ground by this impact S.

第1工程の後の第2工程は、第1工程の衝撃Sによる地盤の締固めの結果に基づいて行われるもので、図5(A)に示すように、第二装置2の第二棒状部材22を所定深度、例えば地表面から5〜6mまで貫入する。貫入後、図5(B)に示すように、第二棒状部材22を上方に例えば20〜30cm引抜きながら、排出口25から所定量の流動化砂Rを地盤中に圧入(排出)し、地盤中に圧入した流動化砂Rを拡径させて周囲の地盤を締固める。その後再び、図5(C)に示すように、第二棒状部材22を上方に例えば20〜30cm引抜きながら、排出口25から所定量の流動化砂Rを地盤中に圧入して周囲の地盤を締固める。図5(D)に示すように、これを所定深度から上方にわたって繰り返し行って、図5(E)に示すように、地盤中への流動化砂Rの圧入による地盤の締固めを地表面近傍まで行う。これにより、所定深度から地表面近傍まで拡径された砂杭Tが造成される。
この地盤中への流動化砂Rの圧入による地盤の締固めは、所定の複数の箇所P2に順次行われる。即ち、図6(B)に示すように、地盤中への流動化砂Rの圧入による地盤の締固める箇所P2は、第1工程の衝撃Sによる地盤の締固めた箇所P1の近傍に所定の間隔、例えば、1〜2mの間隔で行われる。この地盤中への流動化砂Rの圧入(拡径する砂杭Tを造成する)による地盤の締固めによって、第1工程で沈下した地表面が隆起し、これにより、地表面の沈下がなくなり元の平坦な面に戻る。
The second step after the first step is performed based on the result of compaction of the ground by the impact S of the first step, and as shown in FIG. 5 (A), the second rod shape of the second device 2. The member 22 is penetrated to a predetermined depth, for example, 5 to 6 m from the ground surface. After the penetration, as shown in FIG. 5 (B), a predetermined amount of fluidized sand R is press-fitted (discharged) into the ground from the discharge port 25 while pulling out the second rod-shaped member 22 upward by, for example, 20 to 30 cm. The fluidized sand R press-fitted inside is expanded in diameter to compact the surrounding ground. After that, as shown in FIG. 5C, while pulling out the second rod-shaped member 22 upward by, for example, 20 to 30 cm, a predetermined amount of fluidized sand R is press-fitted into the ground from the discharge port 25 to remove the surrounding ground. Compact. As shown in FIG. 5 (D), this is repeated from a predetermined depth upward, and as shown in FIG. 5 (E), the ground is compacted by press-fitting the fluidized sand R into the ground near the ground surface. Do up to. As a result, a sand pile T whose diameter is expanded from a predetermined depth to the vicinity of the ground surface is created.
The compaction of the ground by press-fitting the fluidized sand R into the ground is sequentially performed at a plurality of predetermined locations P2. That is, as shown in FIG. 6B, the portion P2 for compacting the ground by press-fitting the fluidized sand R into the ground is predetermined in the vicinity of the portion P1 for compacting the ground due to the impact S in the first step. It is performed at intervals, for example, at intervals of 1 to 2 m. The compaction of the ground by press-fitting the fluidized sand R into the ground (creating a sand pile T that expands in diameter) raises the ground surface that sank in the first step, thereby eliminating the subsidence of the ground surface. Return to the original flat surface.

なお、地盤中への流動化砂Rの圧入による地盤の締固める箇所P2は、第1工程の衝撃Sによる地盤の締固めた箇所P1の近傍に所定の間隔で行うようにしているが、これに限定されるものではなく、第1工程の衝撃Sによる地盤の締固めの結果に基づいて、箇所P2を所定の間隔で行うのではなく、任意の箇所に行うようにしてもよい。 It should be noted that the ground compaction points P2 due to the press-fitting of the fluidized sand R into the ground are performed at predetermined intervals in the vicinity of the ground compaction points P1 due to the impact S in the first step. Based on the result of compaction of the ground by the impact S in the first step, the locations P2 may be performed at arbitrary locations instead of at predetermined intervals.

次に、第1工程で地表面が沈下し、第2工程で沈下した地表面が隆起して元の平坦な面に戻る原理について説明する。
図7は、第1工程及び第2工程での地盤の状態を説明するための模式図である。ここには、地盤の相対密度Drを分かり易くするために間隙比を示す。
図7(A)は、第1工程の作業前の地盤の状態であって、例えば、相対密度Drが45%のときの初期間隙比e0を示している。
図7(B)は、第1工程において、振動・衝撃発生手段13によって地盤に衝撃Sを加えて締固めたときの地盤の状態であって、相対密度Drが45%から65%に高くなり、間隙比e1もその分だけ小さくなり、衝撃Sによる体積減少(図中の破線部分)が起こっていることを示している。
図7(C)は、第2工程において、流動化砂Rを地盤中に圧入して流動化砂Rを拡径させて地盤を締固めたときの地盤の状態であって、第1工程の地盤に衝撃Sを加えて締固めたときに減少した体積と同体積Δeの流動化砂Rを地盤中に圧入した状態を示している。これにより、相対密度Drが65%から75%に高くなり、地盤が締固められる。
即ち、この地盤改良方法では、衝撃Sによる体積減少分と地盤中への流動化砂Rの圧入による体積増加分とを同じにする。このような原理により、第1工程の作業にて沈下した地表面が第2工程の作業にて隆起して、地表面の沈下がなくなり元の平坦な面に戻る。また、第2工程の後に、地表面が大きく隆起したり、あるいは地盤の浅部での側方変位が起こったりすることがない。
Next, the principle that the ground surface subsides in the first step and the ground surface subsided in the second step rises and returns to the original flat surface will be described.
FIG. 7 is a schematic diagram for explaining the state of the ground in the first step and the second step. Here, the gap ratio is shown in order to make the relative density Dr of the ground easy to understand.
FIG. 7A shows the state of the ground before the work of the first step, for example, the initial gap ratio e0 when the relative density Dr is 45%.
FIG. 7B shows a state of the ground when the ground is compacted by applying an impact S to the ground by the vibration / impact generating means 13 in the first step, and the relative density Dr increases from 45% to 65%. The gap ratio e1 is also reduced by that amount, indicating that the volume is reduced (broken line portion in the figure) due to the impact S.
FIG. 7C shows the state of the ground when the fluidized sand R is press-fitted into the ground to expand the volume of the fluidized sand R and compact the ground in the second step. It shows a state in which fluidized sand R having the same volume Δe as the volume decreased when the ground is compacted by applying an impact S is press-fitted into the ground. As a result, the relative density Dr increases from 65% to 75%, and the ground is compacted.
That is, in this ground improvement method, the volume decrease due to the impact S and the volume increase due to the press-fitting of the fluidized sand R into the ground are made the same. According to such a principle, the ground surface subsided in the work of the first step rises in the work of the second step, the subsidence of the ground surface disappears, and the original flat surface is restored. In addition, after the second step, the ground surface does not rise significantly or lateral displacement in the shallow part of the ground does not occur.

以上説明したように、本実施形態の地盤改良方法によれば、第1工程では、振動・衝撃発生手段13によって地盤に衝撃Sを加えて締固める作業のみを行うとともに、第2工程では、流動化砂R(砂材料)を地盤中に圧入(排出)して流動化砂Rを拡径させて地盤を締固める作業のみを行う。これにより、地盤に衝撃Sを加えて締固める作業と、流動化砂Rを地盤中に圧入して流動化砂Rを拡径させて地盤を締固める作業とを、交互に行うことなく、それぞれの工程において個別に行うことで、それぞれの作業を効率よく行うことができ、工期の短縮を図ることができる。
また、例えば、第1工程の後の第2工程の作業を行うとき、別の箇所で第1工程の作業を行うことにより、2つの作業を並行して行うことができ、これによっても、工期の短縮を図ることができる。
As described above, according to the ground improvement method of the present embodiment, in the first step, only the work of applying an impact S to the ground by the vibration / impact generating means 13 to compact the ground is performed, and in the second step, the flow is performed. Only the work of press-fitting (discharging) the fossilized sand R (sand material) into the ground to expand the diameter of the fluidized sand R and compact the ground is performed. As a result, the work of applying an impact S to the ground to compact it and the work of press-fitting the fluidized sand R into the ground to expand the diameter of the fluidized sand R and compacting the ground are not performed alternately. By performing each of the steps individually, each work can be performed efficiently and the construction period can be shortened.
Further, for example, when the work of the second step after the first step is performed, the two works can be performed in parallel by performing the work of the first step at another place, and this also allows the construction period. Can be shortened.

地盤改良方法において、第1工程では、流動化砂Rの圧入を伴わない衝撃Sによる地盤の締固めを行い、第2工程では、第1工程の衝撃Sによる地盤の締固めの結果(第1工程の衝撃Sによる地盤の締固めによって生じた地盤の沈下量)に基づいて、流動化砂Rを圧入して地盤の締固めを行う。これにより、第2工程の地盤中に圧入する流動化砂Rを適正な量にすることができ、精度の高い地盤改良を行うことができる。また、無駄な流動化砂Rの使用をなくして、流動化砂Rの使用量を減らすことで、地盤改良の工事におけるコストダウンを図ることもできる。 In the ground improvement method, in the first step, the ground is compacted by the impact S without press-fitting the fluidized sand R, and in the second step, the result of the compaction of the ground by the impact S in the first step (first step). Based on the amount of ground subsidence caused by the compaction of the ground due to the impact S of the process), the fluidized sand R is press-fitted to compact the ground. As a result, the amount of fluidized sand R press-fitted into the ground in the second step can be adjusted to an appropriate amount, and the ground can be improved with high accuracy. Further, by eliminating the useless use of fluidized sand R and reducing the amount of fluidized sand R used, it is possible to reduce the cost in the ground improvement work.

装置は、第1工程で使用する装置(第一装置1)と第2工程で使用する装置(第二装置2)とを別々にして、それぞれの装置を構造が簡単でかつ安価な機械にする。これにより、振動による締固めと流動化砂の圧入による締固めの両方を行える高価な専用機械を使用することなく、作業を行うことができ、地盤改良の工事におけるコストダウンを図ることができる。 As for the device, the device used in the first process (first device 1) and the device used in the second process (second device 2) are separated, and each device is made into a machine having a simple structure and inexpensive. .. As a result, the work can be performed without using an expensive dedicated machine capable of both compaction by vibration and compaction by press-fitting of fluidized sand, and the cost in the ground improvement work can be reduced.

地盤改良方法において、第2工程の流動化砂R(砂材料)の地盤中への圧入(排出)は、適正な量の流動化砂R(砂材料)を地盤中に圧入(排出)するように、その圧入量(排出量)を算出し、算出した圧入量(排出量)に基づいて地盤中に流動化砂R(砂材料)を排出する。流動化砂R(砂材料)の圧入量(排出量)は、第1工程の振動や衝撃による地盤の締固めの結果に基づいて算出されるものである。 In the ground improvement method, the press-fitting (discharge) of the fluidized sand R (sand material) into the ground in the second step is such that an appropriate amount of the fluidized sand R (sand material) is press-fitted (discharged) into the ground. The press-fitting amount (discharge amount) is calculated, and the fluidized sand R (sand material) is discharged into the ground based on the calculated press-fitting amount (discharge amount). The press-fitting amount (discharge amount) of the fluidized sand R (sand material) is calculated based on the result of compaction of the ground due to vibration or impact in the first step.

この地盤中への流動化砂Rの圧入量は、次のようにして算出する。
まず、第1工程の振動や衝撃による地盤の締固めによって生じる改良率as1を求め、この改良率as1から目標改良率as2を定める。この目標改良率as2は、予め求める設計上の目標改良率asから第1工程の振動や衝撃による地盤の締固めによって生じる改良率as1を差し引いて求めるものである。
即ち、目標改良率as2を求める式は、as2=as−as1である。
このようにして求めた目標改良率as2から、流動化砂Rの圧入後に目標改良率as2になるような流動化砂Rの圧入量を算出する。
ここで、改良率は、地盤を改良する際の効果を示す値のことで、置換率と言う場合もある。
The amount of fluidized sand R press-fitted into the ground is calculated as follows.
First, the improvement rate as1 generated by the compaction of the ground due to the vibration or impact of the first step is obtained, and the target improvement rate as2 is determined from this improvement rate as1. This target improvement rate as2 is obtained by subtracting the improvement rate as1 generated by the compaction of the ground due to the vibration or impact of the first step from the design target improvement rate as obtained in advance.
That is, the formula for obtaining the target improvement rate as2 is as2 = as-as1.
From the target improvement rate as2 thus obtained, the press-fitting amount of the fluidized sand R so as to reach the target improvement rate as2 after the press-fitting of the fluidized sand R is calculated.
Here, the improvement rate is a value indicating an effect when improving the ground, and is sometimes called a replacement rate.

次に、設計上の目標改良率asと第1工程の振動や衝撃による地盤の締固めによって生じる改良率as1の求め方について説明する。 Next, a design target improvement rate as and a method of obtaining an improvement rate as1 caused by compaction of the ground due to vibration or impact in the first step will be described.

図8は、地盤を改良するときの地盤の状態を示す説明図である。
地盤の改良前は、図8(A)に示すように、1+e0の体積の地盤である。地盤の改良後は、図8(B)に示すように、Δe(e0−e1)に相当する流動化砂Rを圧入して地盤が改良される。このときの設計上の目標改良率asの基本的な計算式は、次式で示される。なお、e0は、初期の地盤の間隙比、e1は、改良後の地盤の間隙比であり、これらは、予め行う予備試験あるいは既存の関係式などから求める。
FIG. 8 is an explanatory diagram showing a state of the ground when the ground is improved.
Before the improvement of the ground, as shown in FIG. 8 (A), the ground has a volume of 1 + e0. After the improvement of the ground, as shown in FIG. 8B, the fluidized sand R corresponding to Δe (e0-e1) is press-fitted to improve the ground. The basic calculation formula of the design target improvement rate as at this time is shown by the following formula. In addition, e0 is the gap ratio of the initial ground, and e1 is the gap ratio of the ground after improvement, and these are obtained from a preliminary test conducted in advance or an existing relational expression.

Figure 0006772098
Figure 0006772098

この計算式により、設計上の目標改良率asを求めることができる。 From this calculation formula, the target improvement rate as in design can be obtained.

次に、第1工程の振動や衝撃による地盤の締固めによって生じる改良率as1を求める。この場合、まず、地盤の平均的な沈下量Sを求める。地盤の平均的な沈下量Sは、次式で示される。なお、e0は、初期の地盤の間隙比、e1は、改良後の地盤の間隙比、Hは、改良する層の厚みである。 Next, the improvement rate as1 generated by the compaction of the ground due to the vibration or impact of the first step is obtained. In this case, first, the average subsidence amount S of the ground is obtained. The average subsidence amount S of the ground is expressed by the following equation. In addition, e0 is the gap ratio of the initial ground, e1 is the gap ratio of the ground after improvement, and H is the thickness of the layer to be improved.

Figure 0006772098
Figure 0006772098

この計算式で求めた地盤の平均的な沈下量Sから改良率as1を求める。地盤の平均的な沈下量Sを求める式の中のΔe/(1+e0)が改良率as1であるから、改良率as1は、次式で示される。 The improvement rate as1 is obtained from the average subsidence amount S of the ground obtained by this calculation formula. Since Δe / (1 + e0) in the equation for obtaining the average subsidence amount S of the ground is the improvement rate as1, the improvement rate as1 is expressed by the following equation.

Figure 0006772098
Figure 0006772098

この計算式により、第1工程の振動や衝撃による地盤の締固めによって生じる改良率as1を求めることができる。 From this calculation formula, the improvement rate as1 caused by the compaction of the ground due to the vibration or impact of the first step can be obtained.

以上説明したように、本実施形態の地盤改良方法によれば、第2工程において、適正な量の流動化砂R(砂材料)が地盤中に圧入(排出)されることから、第1工程で沈下した地表面が隆起する際、元の平坦な面よりも大きく隆起したり、あるいは地盤の浅部での側方変位が起こったりするのをなくすことができる。また、無駄な流動化砂R(砂材料)の使用をなくすことにより、合理化を図るとともに、地盤改良の工事におけるコストダウンを図ることができる。 As described above, according to the ground improvement method of the present embodiment, an appropriate amount of fluidized sand R (sand material) is press-fitted (discharged) into the ground in the second step, so that the first step When the ground surface subsided in the above is raised, it is possible to prevent the ground surface from being raised more than the original flat surface or lateral displacement in the shallow part of the ground. Further, by eliminating the use of wasteful fluidized sand R (sand material), rationalization can be achieved and the cost in the ground improvement work can be reduced.

次に、本発明の地盤改良方法の別の実施形態について説明する。
地盤改良方法は、前述の実施形態と同様の第1工程と第2工程とを有するとともに、第2工程の後に、第3工程を有する。
第3工程は、第1工程と同様、第一棒状部材12を所定深度まで貫入して、振動・衝撃発生手段13によって周囲の地盤に振動や衝撃Sを加えて締固め、振動や衝撃による周囲の地盤の締固めを所定深度から上方にわたって行う。
Next, another embodiment of the ground improvement method of the present invention will be described.
The ground improvement method has the same first step and second step as in the above-described embodiment, and has a third step after the second step.
In the third step, as in the first step, the first rod-shaped member 12 is penetrated to a predetermined depth, and the surrounding ground is compacted by applying vibration or shock S by the vibration / shock generating means 13, and the surroundings due to vibration or shock. The ground is compacted from a predetermined depth to the upper side.

このような第3工程を有する地盤改良方法は、既設構造物Kが存在している場所での地盤改良に有効である。
図9は、第3工程の作業を示す説明図、図10は、既設構造物に生じる変位の状態を示す説明図である。
即ち、既設構造物Kに近接した場所の地盤において、第2工程の地盤中への流動化砂Rの圧入による地盤の締固めを行うと、近接する既設構造物Kに変位を生じさせ、既設構造物Kに悪影響を与えてしまう虞がある。そのため、既設構造物Kに近接した場所では、図9に示すように、第2工程の後に、既設構造物Kに悪影響を与える虞の少ない振動や衝撃Sによる地盤の締固め(第3工程)を行う。この第3工程の振動や衝撃Sによる地盤の締固める箇所P3は、例えば、第1工程の地盤の締固める箇所P1の間隔より狭める。これにより、既設構造物Kに近接した場所の地盤を、既設構造物Kに悪影響を与えることなく、確実に締固めて地盤改良を行うことができる。
The ground improvement method having such a third step is effective for ground improvement in the place where the existing structure K exists.
FIG. 9 is an explanatory diagram showing the work of the third step, and FIG. 10 is an explanatory diagram showing a state of displacement occurring in the existing structure.
That is, when the ground is compacted by press-fitting the fluidized sand R into the ground in the second step in the ground near the existing structure K, the adjacent existing structure K is displaced and the existing structure K is installed. There is a risk of adversely affecting the structure K. Therefore, in a place close to the existing structure K, as shown in FIG. 9, after the second step, the ground is compacted by vibration or impact S, which is less likely to adversely affect the existing structure K (third step). I do. The ground compaction portion P3 due to the vibration or impact S in the third step is narrower than, for example, the interval of the ground compaction portion P1 in the first step. As a result, the ground at a location close to the existing structure K can be reliably compacted and the ground can be improved without adversely affecting the existing structure K.

この地盤改良方法において、既設構造物Kに生じる変位について説明する。
なお、既設構造物Kに生じる変位は、既設構造物Kのすぐ近くに設置する変位杭によって計測するものである。
図10に示すように、第1工程の振動や衝撃Sによる地盤の締固めを行うと、既設構造物Kから締固め箇所に向かって既設構造物Kを引き込もうとする引き込み側の変位Daが生じる。次に、第2工程の地盤中への流動化砂Rの圧入による地盤の締固めを行うと、締固め箇所から既設構造物Kに向かって既設構造物Kを押し出そうとする押し出し側の変位Dbが生じる。次に、第3工程の振動や衝撃Sによる地盤の締固めを行うと、再び、既設構造物Kから締固め箇所に向かって既設構造物Kを引き込もうとする引き込み側の変位Dcが生じる。
In this ground improvement method, the displacement that occurs in the existing structure K will be described.
The displacement generated in the existing structure K is measured by a displacement pile installed in the immediate vicinity of the existing structure K.
As shown in FIG. 10, when the ground is compacted by the vibration or impact S in the first step, a displacement Da on the retracting side that tries to attract the existing structure K from the existing structure K toward the compacted portion occurs. .. Next, when the ground is compacted by press-fitting the fluidized sand R into the ground in the second step, the extruding side that tries to extrude the existing structure K from the compacted portion toward the existing structure K. Displacement Db occurs. Next, when the ground is compacted by the vibration or impact S in the third step, the displacement Dc on the retracting side that tries to attract the existing structure K from the existing structure K toward the compacted portion is generated again.

即ち、第1工程では引き込み側の変位Daが生じ、第2工程では押し出し側の変位Dbが生じ、第3工程では引き込み側の変位Dcが生じる。これにより、第2工程において生じた押し出し側の変位Dbを、第3工程において生じる引き込み側の変位Dcによって修正するようにして、最終的に、既設構造物Kに生じる変位を許容範囲内(図中の斜線部)に収めることができ、既設構造物Kに悪影響を与えないようにすることができる。 That is, in the first step, the displacement Da on the pull-in side is generated, in the second step, the displacement Db on the push-out side is generated, and in the third step, the displacement Dc on the pull-in side is generated. As a result, the displacement Db on the extrusion side generated in the second step is corrected by the displacement Dc on the pull-in side generated in the third step, and finally the displacement generated in the existing structure K is within the allowable range (FIG. It can be stored in the shaded area inside) so as not to adversely affect the existing structure K.

1…第一装置、2…第二装置、10…施工機、11…アーム、12…第一棒状部材、13…振動・衝撃発生手段、14…重錘、15…エアーシリンダ、16…スライダー、17…衝撃発生板、20…施工機、21…マスト、22…第二棒状部材、23…回転部、24…昇降部、25…排出口、30…周辺設備、31…流動化砂生成装置、32…圧送ポンプ、33…圧力計。 1 ... 1st device, 2 ... 2nd device, 10 ... Construction machine, 11 ... Arm, 12 ... First rod-shaped member, 13 ... Vibration / shock generating means, 14 ... Weight, 15 ... Air cylinder, 16 ... Slider, 17 ... Impact generator, 20 ... Construction machine, 21 ... Mast, 22 ... Second rod-shaped member, 23 ... Rotating part, 24 ... Elevating part, 25 ... Discharge port, 30 ... Peripheral equipment, 31 ... Fluidized sand generator, 32 ... Pressure pump, 33 ... Pressure gauge.

Claims (4)

地盤中に砂杭を造成して地盤を締固めて地盤改良を行う地盤改良方法であって、
地盤中に貫入及び引き抜き可能にし、かつ振動や衝撃を発生する振動・衝撃発生手段を取り付けた上下に向かう第一棒状部材を有し、第一棒状部材を所定深度まで貫入して、振動・衝撃発生手段によって周囲の地盤に振動や衝撃を加えて締固め、振動や衝撃による周囲の地盤の締固めを所定深度から上方にわたって行う第1工程と、
地盤中に貫入及び引き抜き可能にし、かつ下端より砂材料を排出する上下に向かう第二棒状部材を有し、第1工程の後、第二棒状部材を所定深度まで貫入して、第二棒状部材から砂材料を地盤中に排出し、砂材料を拡径させて周囲の地盤を締固め、砂材料の拡径による周囲の地盤の締固めを所定深度から上方にわたって行って砂杭を造成する第2工程と、
を有することを特徴とする地盤改良方法。
It is a ground improvement method that creates sand piles in the ground to compact the ground and improve the ground.
It has a first rod-shaped member that can penetrate and pull out into the ground and is equipped with a vibration / shock generating means that generates vibrations and shocks, and penetrates the first rod-shaped member to a predetermined depth to vibrate / shock. The first step in which vibration or impact is applied to the surrounding ground by the generating means to compact the surrounding ground, and the surrounding ground is compacted by vibration or impact from a predetermined depth upward.
It has a second rod-shaped member that can penetrate and pull out into the ground and that discharges sand material from the lower end, and after the first step, the second rod-shaped member is penetrated to a predetermined depth to allow the second rod-shaped member to penetrate. The sand material is discharged into the ground from the ground, the diameter of the sand material is expanded to compact the surrounding ground, and the surrounding ground is compacted by expanding the diameter of the sand material from a predetermined depth to the upper side to create a sand pile. 2 steps and
A ground improvement method characterized by having.
請求項1に記載された地盤改良方法において、
第1工程の振動や衝撃による地盤の締固めによって生じる改良率を求め、この改良率から目標改良率を定め、目標改良率から第2工程における砂材料の地盤中への排出量を算出し、算出した排出量に基づいて地盤中に砂材料を排出することを特徴とする地盤改良方法。
In the ground improvement method according to claim 1,
The improvement rate caused by the compaction of the ground due to vibration and impact in the first process is obtained, the target improvement rate is set from this improvement rate, and the amount of sand material discharged into the ground in the second process is calculated from the target improvement rate. A ground improvement method characterized in that sand material is discharged into the ground based on the calculated discharge amount.
請求項2に記載された地盤改良方法において、
目標改良率は、予め求める設計上の目標改良率から第1工程の振動や衝撃による地盤の締固めによって生じる改良率を差し引いて求めることを特徴とする地盤改良方法。
In the ground improvement method according to claim 2,
The target improvement rate is a ground improvement method characterized in that it is obtained by subtracting the improvement rate generated by compaction of the ground due to vibration or impact in the first step from the design target improvement rate obtained in advance.
請求項1ないし3のいずれかに記載された地盤改良方法において、
第2工程の後、第一棒状部材を所定深度まで貫入して、振動・衝撃発生手段によって周囲の地盤に振動や衝撃を加えて締固め、振動や衝撃による周囲の地盤の締固めを所定深度から上方にわたって行う第3工程を有することを特徴とする地盤改良方法。
In the ground improvement method according to any one of claims 1 to 3,
After the second step, the first rod-shaped member is penetrated to a predetermined depth, and the surrounding ground is compacted by applying vibration or shock by the vibration / shock generating means, and the surrounding ground is compacted by the vibration or shock to the predetermined depth. A ground improvement method characterized by having a third step performed from the top to the top.
JP2017058134A 2017-03-23 2017-03-23 Ground improvement method Active JP6772098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058134A JP6772098B2 (en) 2017-03-23 2017-03-23 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058134A JP6772098B2 (en) 2017-03-23 2017-03-23 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2018159247A JP2018159247A (en) 2018-10-11
JP6772098B2 true JP6772098B2 (en) 2020-10-21

Family

ID=63796491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058134A Active JP6772098B2 (en) 2017-03-23 2017-03-23 Ground improvement method

Country Status (1)

Country Link
JP (1) JP6772098B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997130B2 (en) * 1992-05-30 2000-01-11 前田建設工業株式会社 Vibration compaction method
JP3712883B2 (en) * 1999-03-12 2005-11-02 不動建設株式会社 Ground improvement pile creation device
WO2001096669A1 (en) * 2000-06-15 2001-12-20 Geotechnical Reinforcement Company, Inc. Lateral displacement pier and method of installing the same
JP4540022B2 (en) * 2000-08-01 2010-09-08 佐藤工業株式会社 Ground improvement method combined with blasting method
JP6150328B2 (en) * 2013-03-14 2017-06-21 株式会社不動テトラ Ground improvement method and apparatus

Also Published As

Publication number Publication date
JP2018159247A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
CN104074186B (en) The casing device of pore-forming and construction method thereof in a kind of building lot
JP5598999B2 (en) Compaction method and uplift amount management device
JP5167302B2 (en) Steel pile placing method including deaeration process
JP6934697B2 (en) Ground improvement method
KR100750640B1 (en) Gravel compaction pilling method reform ground and apparatus thereof
JP6772098B2 (en) Ground improvement method
DE102010022661A1 (en) Methods for soil compaction of sands and gravels, involves generating vertical vibration movements of compression tool by vibration device which is fitted on upper end of compression tool
JP2020165206A (en) Compaction ground improvement method
JP6876526B2 (en) Specification setting method for sandy ground compaction method
CN103911978A (en) Offshore prefabricated platform and mounting method thereof
US9062431B2 (en) Device and method for soil compaction and/or soil stabilization
JP2019157385A (en) Compaction management method and compaction management device
US3570258A (en) Method and apparatus for vibrating concrete columns
KR101525410B1 (en) The Construction Method of Ground Electrode Without Damage and The Simultaneous Construction Method of Grounding Resistance Reducing Materials
CN106192980A (en) A kind of method of dither closely knit sandstone ground
JP5649755B1 (en) Steel pipe pile structure
JP2013096166A (en) Crusher for bedrock and the like
JP2023105455A (en) Ground improvement method by compaction
JP7138862B2 (en) SOIL IMPROVEMENT DEVICE AND SOIL IMPROVEMENT METHOD
CN109826178A (en) A kind of cement-soil compaction pile earth filling tamping time control construction method
SU962453A1 (en) Method of constructing cast-in-place piles with expanded bottom portions
JP3973401B2 (en) Ground compaction method
CN110565619B (en) Foundation tamping device for civil engineering
DE19740800A1 (en) Plank introduction device into ground using pile-driver
EP3051027B1 (en) Method for vibration driving and vibration driving assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6772098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150