JP6772036B2 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
JP6772036B2
JP6772036B2 JP2016220003A JP2016220003A JP6772036B2 JP 6772036 B2 JP6772036 B2 JP 6772036B2 JP 2016220003 A JP2016220003 A JP 2016220003A JP 2016220003 A JP2016220003 A JP 2016220003A JP 6772036 B2 JP6772036 B2 JP 6772036B2
Authority
JP
Japan
Prior art keywords
sieve
residue
furnace
sieving
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220003A
Other languages
Japanese (ja)
Other versions
JP2018075541A (en
Inventor
勝志 青木
勝志 青木
英俊 笹岡
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016220003A priority Critical patent/JP6772036B2/en
Publication of JP2018075541A publication Critical patent/JP2018075541A/en
Application granted granted Critical
Publication of JP6772036B2 publication Critical patent/JP6772036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、処理方法に関する。 The present invention relates to a processing method.

一般家庭ごみの焼却灰に対して、乾燥、磁力選別、篩分け、粉砕、渦電流選別等の処理を行い、処理後の焼却灰中から取り出されたセメント原料を、コンクリート製品、住宅用外製材、生コンクリートなどに利用する技術が知られている。 The incinerated ash of general household waste is processed by drying, magnetic force sorting, sieving, crushing, eddy current sorting, etc., and the cement raw material extracted from the incinerated ash after processing is used as concrete products and external sawn timber for housing. , The technology used for ready-mixed concrete is known.

また、処理後の焼却灰からセメント原料や鉄成分などを除き、ローラーミルで粉砕、分級して得られた残渣には、銅、亜鉛、金、銀、パラジウム、白金などの有価金属が含まれているため、これらを回収する技術も知られている(例えば、特許文献1等参照)。 In addition, the residue obtained by removing cement raw materials and iron components from the incinerated ash after treatment, crushing and classifying with a roller mill contains valuable metals such as copper, zinc, gold, silver, palladium, and platinum. Therefore, a technique for recovering these is also known (see, for example, Patent Document 1 and the like).

特開2016−89196号公報Japanese Unexamined Patent Publication No. 2016-89196

しかしながら、特許文献1に記載の技術では、残渣を適切に処理できているとはいえず、残渣から有価金属を適切に回収できないおそれがある。 However, it cannot be said that the technique described in Patent Document 1 can properly treat the residue, and there is a possibility that the valuable metal cannot be properly recovered from the residue.

本発明は上記の課題に鑑みてなされたものであり、一般家庭ごみの焼却灰からセメント原料を除いた残渣を適切に処理し、さらに、残渣から有価金属を効率よく回収することが可能な処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of appropriately treating the residue obtained by removing the cement raw material from the incineration ash of general household waste, and further efficiently recovering valuable metals from the residue. The purpose is to provide a method.

発明者らは、一般家庭ごみの焼却灰からセメント原料を除いた残渣を、2種類以上の篩を用いて篩選別することで、適切にアルミニウムと有価金属を篩別処理できることを見出した。さらに、特定のサイズ以下に選別することで有価金属を効率よく濃縮することができ、有価金属が回収できることを見出した。 The inventors have found that aluminum and valuable metals can be appropriately sieved by sieving the residue obtained by removing the cement raw material from the incineration ash of general household waste using two or more types of sieves. Furthermore, they have found that valuable metals can be efficiently concentrated and the valuable metals can be recovered by sorting them to a specific size or smaller.

すなわち、本発明の処理方法は、一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目の直径が14〜18mmの第1の篩を用いて篩分けする第1篩分け工程と、前記第1篩分け工程において得られた篩下の残渣を、篩目の直径が8〜12mmの第2の篩を用いて篩分けする第2篩分け工程と、前記第2篩分け工程において得られた篩上の残渣を第1の溶融炉に投入して溶融する第1溶融工程と、前記第2篩分け工程において得られた篩下の残渣を、篩目の直径が3〜5mmの第3の篩を用いて篩分けする第3篩分け工程と、前記第3の篩の篩上の残渣と篩下の残渣とに対して、異なる条件下で比重選別と形状選別を行い、アルミニウムを取り除く処理工程と、前記第3の篩の篩上の残渣からアルミニウムを取り除いた残渣と、前記第3の篩の篩下の残渣からアルミニウムを取り除いた残渣と、を第2の溶融炉に投入して溶融する第2溶融工程と、を含んでいる。
That is, the treatment method of the present invention includes a first sieving step of sieving the residue obtained by removing the cement raw material from the incineration ash of general household waste using a first sieve having a sieve mesh diameter of 14 to 18 mm. the residue under sieve obtained in the first screening process, a second screening process the diameter of the sieve mesh is sieved using a second sieve 8 to 12 mm, obtained in the second screening process The residue on the sieve is put into the first melting furnace and melted, and the residue under the sieve obtained in the second sieving step is combined with a sieve having a mesh diameter of 3 to 5 mm. The third sieving step of sieving using the sieve of No. 3 and the residue on the sieve and the residue under the sieve of the third sieve are subjected to specific gravity sorting and shape sorting under different conditions to obtain aluminum. The processing step of removing, the residue obtained by removing aluminum from the residue on the sieve of the third sieve, and the residue obtained by removing aluminum from the residue under the sieve of the third sieve are put into a second melting furnace. It includes a second melting step of melting .

本発明の処理方法は、一般家庭ごみの焼却灰からセメント原料を除いた残渣を適切に処理し、さらには、該残渣から有価金属を効率よく回収することができるという効果を奏する。 The treatment method of the present invention has an effect that the residue obtained by removing the cement raw material from the incineration ash of general household waste can be appropriately treated, and the valuable metal can be efficiently recovered from the residue.

一実施形態に係る処理方法を示す工程図である。It is a process drawing which shows the processing method which concerns on one Embodiment. 粒径ごとの残渣の組成(化学分析値)を示す表である。なお、図2において、貴金属類とは、金、銀、白金、パラジウム等を意味する。It is a table which shows the composition (chemical analysis value) of the residue for each particle size. In addition, in FIG. 2, precious metals mean gold, silver, platinum, palladium and the like.

以下、一実施形態について、図1、図2に基づいて、詳細に説明する。図1は、一実施形態に係る処理方法を示す工程図である。 Hereinafter, one embodiment will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a process diagram showing a processing method according to an embodiment.

本実施形態では、一般家庭ごみの焼却灰に対して、乾燥、磁力選別、篩分け、粉砕、渦電流選別等の処理を行い、焼却灰中の鉄成分やアルミニウム成分、セメント原料となる成分の大部分を除き、ローラーミルで粉砕、分級して得られた残渣をスタート原料とする。この処理により、この原料(残渣)には、銅、金、銀、パラジウム、白金などの有価金属が含まれている。 In the present embodiment, the incinerated ash of general household waste is subjected to processing such as drying, magnetic force sorting, sieving, crushing, and eddy current sorting, and the iron component, aluminum component, and cement raw material component in the incinerated ash are added. Except for most, the residue obtained by crushing and classifying with a roller mill is used as a starting material. By this treatment, this raw material (residue) contains valuable metals such as copper, gold, silver, palladium, and platinum.

残渣は、図1に示すように、まず、3種類の篩を用いて篩別する。ここで、3種類の篩には、篩目の直径が14〜18mm(本実施形態では16mm)の篩と、篩目の直径が8〜12mm(本実施形態では10mm)の篩と、篩目の直径が3〜5mm(本実施形態では3mm)の篩と、が含まれる。これら3種類の篩を用いて残渣を篩別することで、図1に示すように、篩目16mmで篩別した篩上;粒径16mm以上、篩目16mmで篩別した篩下を篩目10mmで篩別した篩上;粒径10〜16mm程度、篩目10mmで篩別した篩下を篩目3mmで篩別した篩上;粒径3〜10mm程度、篩目3mmで篩別した篩下;粒径0〜3mm程度の4種類に分けることができる。なお、本発明において、粒径の記載に「程度」という表記を付しているのは、それぞれの篩目サイズで篩別した場合の篩上、篩下に存在する残渣の粒径サイズを意味する。さらに、「粒径0〜3mm程度」との表記に関して、実際には、0mmサイズの残渣は存在することはないが、0mmより大きく3mm程度までのサイズの篩下の残渣の粒径の範囲を、記載の便宜上、「粒径0〜3mm程度」と表記するものとする。 As shown in FIG. 1, the residue is first sieved using three types of sieves. Here, the three types of sieves include a sieve having a mesh diameter of 14 to 18 mm (16 mm in the present embodiment), a sieve having a sieve diameter of 8 to 12 mm (10 mm in the present embodiment), and a sieve. Includes a sieve having a diameter of 3 to 5 mm (3 mm in this embodiment). By sieving the residue using these three types of sieves, as shown in FIG. 1, on the sieve sieved with a sieve mesh of 16 mm; sieve under the sieve sieved with a sieve size of 16 mm or more and a sieve mesh of 16 mm. On a sieve separated by 10 mm; on a sieve sieved by a sieve mesh of about 10 to 16 mm and a sieve mesh of 10 mm; on a sieve sieved by a sieve mesh of 3 mm; a sieve sieved by a sieve particle of about 3 to 10 mm and a sieve mesh of 3 mm. Bottom: It can be divided into four types with a particle size of about 0 to 3 mm. In the present invention, the notation "degree" in the description of the particle size means the particle size of the residue existing on and under the sieve when sieved according to each mesh size. To do. Further, regarding the notation of "particle size of about 0 to 3 mm", in reality, there is no residue of 0 mm size, but the range of the particle size of the residue under the sieve having a size larger than 0 mm and up to about 3 mm is defined. , For convenience of description, it shall be expressed as "particle size 0 to 3 mm".

なお、篩目の直径が16mmの篩を用いるのは、16mm以上の残渣であれば、ステンレス鋼(例えば、線屑、スプーン等)等の分離性を向上できるためである。また、篩目の直径が10mmの篩を用いるのは、直径10mm程度よりも小さい残渣には、有価金属が多く含まれるため、アルミニウム(Al)を除去した後、銅の製錬工程等に投入することで、有価金属を濃縮して回収することができるからである。また、後述する比重選別と形状選別(エアーテーブル)における処理可能粒径の上限が10mm程度であることも篩目の直径が10mmの篩を用いる理由の1つである。さらに、篩目の直径が3mmの篩を用いるのは、エアーテーブルの処理条件として、3〜10mmと0〜3mmに分けて、異なる処理条件で処理することが好ましい等の理由からである。ここで、図2には、粒径ごとの、残渣の組成(化学分析値)が示されている。図2に示すように、0〜10mm程度の残渣には、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、銅(Cu)等の有価金属が多く含まれていることがわかる。なお、アルミニウムについては、粒径にかかわらず、残渣中に所定量(17〜21%)含まれていることが分かる。 The reason why a sieve having a mesh diameter of 16 mm is used is that if the residue is 16 mm or more, the separability of stainless steel (for example, wire chips, spoon, etc.) can be improved. Further, the reason why a sieve having a mesh diameter of 10 mm is used is that a residue smaller than about 10 mm in diameter contains a large amount of valuable metal, so after removing aluminum (Al), it is put into a copper smelting process or the like. This is because the valuable metal can be concentrated and recovered. Further, the upper limit of the processable particle size in the specific gravity sorting and the shape sorting (air table) described later is about 10 mm, which is one of the reasons for using a sieve having a mesh diameter of 10 mm. Further, the reason why a sieve having a mesh diameter of 3 mm is used is that it is preferable to divide the air table into 3 to 10 mm and 0 to 3 mm and treat them under different treatment conditions. Here, FIG. 2 shows the composition (chemical analysis value) of the residue for each particle size. As shown in FIG. 2, the residue of about 0 to 10 mm contains a large amount of valuable metals such as gold (Au), silver (Ag), palladium (Pd), platinum (Pt), and copper (Cu). You can see that. It can be seen that aluminum is contained in a predetermined amount (17 to 21%) in the residue regardless of the particle size.

次に、篩別された残渣の処理方法について説明する。 Next, a method for treating the sieved residue will be described.

(粒径が16mm以上の残渣の処理について)
粒径が16mm以上の残渣(篩目の直径が16mmの篩を用いた篩分けにおいて得られた篩上)については、図1に示すように、ピッキング処理を実行する。この場合、例えば、手選別により、外観形状が特定形状の物体、例えば線屑や、板状、塊状、円板状の形状を有する焼却灰の残渣を選別し、除外する。塊状の焼却灰には、スプーンなど、焼却処理前の原形を留める形状の物も含まれる。なお、ピッキング処理としては、手選別に限らず、色彩選別を行うこととしてもよい。色彩選別は、残渣をカメラで撮影し、色や形状などを基準にピッキング対象物を自動的に特定し、特定したピッキング対象物をヘラや空気圧を高めた圧力波等により選別する方法である。なお、残渣から選別されたステンレス鋼等は、鉄屑として外販される。一方、ステンレス鋼等が取り除かれた残渣(アルミニウム(Alメタル)やその他の金属を含む)に対しては、粒径が10〜16mm程度の残渣と同様の処理が実行される。
(Regarding the treatment of residues with a particle size of 16 mm or more)
For the residue having a particle size of 16 mm or more (on the sieve obtained by sieving using a sieve having a mesh diameter of 16 mm), a picking process is performed as shown in FIG. In this case, for example, by hand sorting, an object having a specific external shape, for example, wire dust and a residue of incineration ash having a plate-like, lump-like, or disc-like shape are selected and excluded. The lumpy incineration ash also includes things such as spoons that retain their original shape before incineration. The picking process is not limited to manual selection, and color selection may be performed. The color selection is a method in which the residue is photographed with a camera, the picking object is automatically identified based on the color, shape, etc., and the identified picking object is selected by a spatula, a pressure wave with increased air pressure, or the like. Stainless steel and the like selected from the residue are sold outside as iron scraps. On the other hand, the residue from which stainless steel or the like has been removed (including aluminum (Al metal) and other metals) is subjected to the same treatment as the residue having a particle size of about 10 to 16 mm.

(粒径が10〜16mm程度の残渣の処理について)
粒径が10〜16mm程度の残渣(篩目の直径が10mmの篩を用いた篩分けにおいて得られた篩上)については、溶融処理して、固められた物は、外販するか、必要に応じてリサイクル処理を行う。溶融に用いる炉は、特定しないが、該残渣を溶融して、メタルとスラグを形成させ、分離処理できる溶融炉が望ましい。具体的には、直接、粗銅(ブラックカッパー等)を製錬する、例えば、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉等の溶融炉があげられる。この場合、残渣に含まれているアルミニウムはスラグ化処理により系外に除去することができる。
(Regarding the treatment of residues with a particle size of about 10 to 16 mm)
Residues with a particle size of about 10 to 16 mm (on the sieve obtained by sieving using a sieve with a mesh diameter of 10 mm) are melt-treated, and the solidified product is sold outside or required. Recycle according to the situation. The furnace used for melting is not specified, but a melting furnace capable of melting the residue to form metal and slag and separating them is desirable. Specifically, smelting blister copper (black copper, etc.) is directly smelted, for example, melting furnaces such as tilting reverberatory furnaces, shaft furnaces with hearths, oval furnaces, drum furnaces, and upper blowing converters. Be done. In this case, the aluminum contained in the residue can be removed from the system by slagging treatment.

なお、残渣中のアルミニウム含有量(処理量)が多い場合には、アルミニウム含有スラグの処理量が多くなり、溶融炉の操業の負荷が大きくなる。この場合、粒径が10〜16mm程度の残渣の前処理として、アルミニウムとその他の粉砕物とを選別する処理を行うこととしてもよい。例えば、前処理としては、比重選別、形状選別、渦電流選別、ソーター選別(光学、電磁誘導、透過X線、蛍光X線等)、乾式溶解、湿式溶解、外観による手選別などの公知の処理を採用することができる。 When the aluminum content (treatment amount) in the residue is large, the treatment amount of the aluminum-containing slag becomes large, and the operation load of the melting furnace becomes large. In this case, as a pretreatment for the residue having a particle size of about 10 to 16 mm, a treatment for selecting aluminum and other pulverized products may be performed. For example, as pretreatment, known treatments such as specific gravity sorting, shape sorting, eddy current sorting, sorter sorting (optical, electromagnetic induction, transmitted X-ray, fluorescent X-ray, etc.), dry dissolution, wet dissolution, and manual selection by appearance are performed. Can be adopted.

(粒径が3〜10mm程度の残渣の処理について)
篩目の直径が10mmである篩を用いて篩分した篩下の残渣(粒径が0〜10mm程度)には、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、銅(Cu)等の多くの有価金属が含まれている。この粒径0〜10mm程度の残渣を、有価金属が回収できる工程で処理することで、有価金属を効率よく回収できることが本発明の特徴である。例えば、粒径が3〜10mm程度の残渣(篩目の直径が3mmの篩を用いた篩分けにおいて得られた篩上)については、有価金属を回収できる工程へ移行される。有価金属を回収できる工程では、溶融炉を用いる乾式処理を含む処理工程により有価金属を回収してもよいし、酸あるいはアルカリ溶液で重比物を直接溶解し、中和沈殿処理や吸着剤処理等による湿式処理により有価金属を回収してもよい。
(Regarding the treatment of residues with a particle size of about 3 to 10 mm)
The residue under the sieve (particle size is about 0 to 10 mm) sieved using a sieve having a mesh diameter of 10 mm includes gold (Au), silver (Ag), palladium (Pd), and platinum (Pt). , Copper (Cu) and many other valuable metals are contained. It is a feature of the present invention that the valuable metal can be efficiently recovered by treating the residue having a particle size of about 0 to 10 mm in a step in which the valuable metal can be recovered. For example, a residue having a particle size of about 3 to 10 mm (on a sieve obtained by sieving using a sieve having a mesh diameter of 3 mm) is shifted to a step in which valuable metals can be recovered. In the step in which the valuable metal can be recovered, the valuable metal may be recovered by a treatment step including a dry treatment using a melting furnace, or the heavy weight compound is directly dissolved in an acid or alkaline solution to be neutralized and precipitated or treated with an adsorbent. Valuable metals may be recovered by wet treatment such as.

なお、乾式処理において用いる溶融炉の種類は問わないが、溶融したメタル分を鋳造できればよい。たとえば、銅製錬工程に用いられる自溶炉、転炉や、電気炉、その他、上述した粒径10〜16mm程度の残渣の処理に用いることができる炉(傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉等)を別途用いて、粒径0〜10mm程度の残渣を溶融し、鋳造してもよい。鋳造されたインゴットは、公知の方法、たとえば電解精製や電解採取、電解殿物の湿式処理等の方法を経て有価金属を回収することができる。 The type of melting furnace used in the dry treatment is not limited, but it is sufficient that the molten metal can be cast. For example, a self-melting furnace used in a copper smelting process, a converter, an electric furnace, and other furnaces that can be used for treating the above-mentioned residue having a particle size of about 10 to 16 mm (tilt type reflection furnace, shaft with hearth) A furnace, an oval furnace, a drum furnace, an upper blowing type converter, etc.) may be used separately to melt and cast a residue having a particle size of about 0 to 10 mm. The cast ingot can recover valuable metals through known methods such as electrolytic refining, electrowinning, and wet treatment of electrolytic ridges.

有価金属が回収できる工程として乾式処理の典型的な例は、銅製錬である。銅製錬は、銅鉱石(銅精鉱)から製錬して銅を得ると、同時に鉱石に含まれる他の有価金属は銅電解で発生する電解殿物とし、それぞれの工程で回収される。したがって、銅製錬に用いられる自溶炉や転炉に粒径が0〜10mm程度の残渣を投入すれば、残渣中の有価金属は鉱石中の有価金属と一緒に回収される。 A typical example of dry processing as a process in which valuable metals can be recovered is copper smelting. In copper smelting, copper is obtained by smelting from copper ore (copper concentrate), and at the same time, other valuable metals contained in the ore are used as electrolysis deposits generated by copper electrolysis, and are recovered in each process. Therefore, if a residue having a particle size of about 0 to 10 mm is put into a flash smelting furnace or converter used for copper smelting, the valuable metal in the residue is recovered together with the valuable metal in the ore.

また、粒径が0〜10mm程度の残渣を篩目の直径が3mmの篩を用いて篩別することも有効である。篩別する理由としては、後述するエアーテーブルの処理条件として、3〜10mmと0〜3mmに分けて、異なる処理条件で処理することが好ましいためであることが挙げられる。 It is also effective to sift the residue having a particle size of about 0 to 10 mm using a sieve having a mesh diameter of 3 mm. The reason for sieving is that it is preferable to divide the air table into 3 to 10 mm and 0 to 3 mm and treat them under different treatment conditions as the treatment conditions of the air table described later.

(粒径が0〜3mm程度の残渣の処理について)
篩目の直径が3mmの篩を用いて、粒径が3〜10mm程度の残渣(篩上)、粒径が0〜3mm程度の残渣(篩下)に分けた後、各々の残渣にアルミニウムを除去する工程を追加してもよい。アルミニウムを除去する工程としては、比重選別と形状選別を組み合わせて行うことが有効であり、具体的にはエアーテーブルを用いることが望ましい。
(Regarding the treatment of residues with a particle size of about 0 to 3 mm)
Using a sieve with a mesh diameter of 3 mm, the residue is divided into a residue having a particle size of about 3 to 10 mm (on the sieve) and a residue having a particle size of about 0 to 3 mm (below the sieve), and then aluminum is added to each residue. A step of removing may be added. As a step of removing aluminum, it is effective to perform a combination of specific gravity sorting and shape sorting, and specifically, it is desirable to use an air table.

粒径が3〜10mm程度の残渣及び粒径が0〜3mm程度の残渣は、エアーテーブルを用いて、軽比物としてのアルミニウムと、重比物としての銅、金、銀等と、いずれにも選別されない残渣と、に分けることができる。また、いずれにも選別されない残渣(未選別物)に対しては、上記の比重選別と形状選別を組み合わせた処理工程を繰り返して実行する。粒径が3〜10mm程度の残渣及び粒径が0〜3mm程度の残渣からアルミニウムが除去された各々の重比物(銅、金、銀等)は、有価金属を回収する工程に送られる。有価金属を回収する工程としては、乾式処理でも湿式処理でもよいが、乾式処理の具体的な例としては、銅製錬の自溶炉や転炉に投入する。 The residue having a particle size of about 3 to 10 mm and the residue having a particle size of about 0 to 3 mm can be used in any of aluminum as a light ratio and copper, gold, silver, etc. as a heavy ratio using an air table. Can also be divided into unsorted residues. Further, for the residue (unsorted product) that is not sorted by any of them, the processing step that combines the above-mentioned specific gravity sorting and shape sorting is repeatedly executed. Each of the heavy weight products (copper, gold, silver, etc.) from which aluminum has been removed from the residue having a particle size of about 3 to 10 mm and the residue having a particle size of about 0 to 3 mm is sent to a step of recovering valuable metals. The step of recovering the valuable metal may be a dry treatment or a wet treatment, but as a specific example of the dry treatment, it is put into a flash smelting furnace or a converter for copper smelting.

なお、粒径が0〜3mm程度の残渣の比重選別と形状選別においては、粒径が3〜10mm程度の残渣の比重選別と形状選別の場合よりも、エアーテーブルから吹き出すエアーの風速を小さくし、エアーテーブルの振動数を大きくし、エアーテーブルの傾斜角を小さくする。例えば、粒径が0〜3mm程度の残渣に対する比重選別と形状選別の際には、エアーの風速を2.2〜2.4m/s、振動数を554〜586rpm、エアーテーブルのX軸方向(エアーテーブル上面内の振動方向)の水平面に対する傾斜角θを9〜11°、Y軸方向(エアーテーブル上面内でX軸方向に直交する方向)の水平面に対する傾斜角ψを6.5〜8.0°、より好ましくは7.0〜8.0°に設定するとよい。一方、粒径が3〜10mm程度の残渣に対する比重選別と形状選別の際には、エアーの風速を2.7〜2.9m/s、振動数を500〜540rpm、X軸方向の水平面に対する傾斜角θを9〜11°、Y軸方向の水平面に対する傾斜角ψを8.5〜10°、より好ましくは8.5〜9.5°に設定できる。 In the specific gravity sorting and shape sorting of the residue having a particle size of about 0 to 3 mm, the wind speed of the air blown from the air table is made smaller than in the case of the specific gravity sorting and shape sorting of the residue having a particle size of about 3 to 10 mm. , Increase the frequency of the air table and decrease the inclination angle of the air table. For example, when sorting the specific gravity and shape of a residue having a particle size of about 0 to 3 mm, the air velocity is 2.2 to 2.4 m / s, the frequency is 554 to 586 rpm, and the X-axis direction of the air table ( The inclination angle θ with respect to the horizontal plane in the vibration direction in the upper surface of the air table) is 9 to 11 °, and the inclination angle ψ with respect to the horizontal plane in the Y-axis direction (direction orthogonal to the X-axis direction in the upper surface of the air table) is 6.5 to 8. It may be set to 0 °, more preferably 7.0 to 8.0 °. On the other hand, when selecting the specific gravity and shape of the residue having a particle size of about 3 to 10 mm, the air velocity is 2.7 to 2.9 m / s, the frequency is 500 to 540 rpm, and the inclination with respect to the horizontal plane in the X-axis direction. The angle θ can be set to 9 to 11 °, and the inclination angle ψ with respect to the horizontal plane in the Y-axis direction can be set to 8.5 to 10 °, more preferably 8.5 to 9.5 °.

この場合にも、軽比物(アルミニウム)に対しては、粒径が10〜16mm程度の残渣と同様の処理を実行する。 In this case as well, the same treatment as for the residue having a particle size of about 10 to 16 mm is performed on the light ratio product (aluminum).

以上、詳細に説明したように、本実施形態によると、一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目の直径が16mmの篩を用いて篩分け、得られた篩下の残渣を、篩目の直径が10mmの篩を用いて篩分けし、篩分けられた残渣それぞれに異なる処理を施す。これにより、残渣に対して、粒径に応じた適切な処理を行うことが可能である。また、粒径に応じた適切な処理を行うことで、直径が10mmの篩の篩下の残渣から有価金属を効率的に回収することが可能となる。 As described in detail above, according to the present embodiment, the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved using a sieve having a mesh diameter of 16 mm, and the obtained sieve under the sieve. The residue is sieved using a sieve having a mesh diameter of 10 mm, and each of the sieved residues is subjected to a different treatment. This makes it possible to perform an appropriate treatment on the residue according to the particle size. Further, by performing an appropriate treatment according to the particle size, it becomes possible to efficiently recover valuable metals from the residue under the sieve of a sieve having a diameter of 10 mm.

また、本実施形態では、直径が10mmの篩の篩上の残渣を溶融して処理する。このように、溶融処理された塊状物は鉄やアルミニウムを含有しており、外販によってリサイクルされる。 Further, in the present embodiment, the residue on the sieve having a diameter of 10 mm is melted and treated. As described above, the melt-treated lump contains iron and aluminum and is recycled by external sales.

また、本実施形態では、粒径が3〜10mm程度と0〜3mm程度の残渣に対して、異なる条件下で比重選別と形状選別を行い、アルミニウムを取り除く処理を行う。これにより、粒径に応じた適切な条件下で比重選別と形状選別ができるので、残渣からアルミニウムを効率的に取り除くことが可能となる。 Further, in the present embodiment, the residue having a particle size of about 3 to 10 mm and about 0 to 3 mm is subjected to specific gravity sorting and shape sorting under different conditions to remove aluminum. As a result, specific gravity sorting and shape sorting can be performed under appropriate conditions according to the particle size, so that aluminum can be efficiently removed from the residue.

また、本実施形態では、篩目の直径が16mmの篩を用いて篩分けられた篩上の残渣から、外観形状が特定形状の物体を選別して除外することとしている。これにより、粒径16mm以上の残渣の中から適切な方法で鉄屑等を除外することができる。 Further, in the present embodiment, an object having a specific appearance shape is selected and excluded from the residue on the sieve sieved using a sieve having a mesh diameter of 16 mm. Thereby, iron scraps and the like can be excluded from the residue having a particle size of 16 mm or more by an appropriate method.

また、本実施形態では、篩目の直径が16mmの篩を用いて篩分けられた篩下の残渣を、篩目の直径が10mmの篩を用いて篩分けした後に、篩目の直径が3mmの篩を用いて篩分けを行う。これにより、粒径が3〜10mm程度と0〜3mm程度の残渣それぞれに対して異なる処理を行うことができる。したがって、適切な方法で、粒径が3〜10mm程度の残渣と粒径が0〜3mm程度の残渣を処理することができる。 Further, in the present embodiment, the residue under the sieve sieved using a sieve having a mesh diameter of 16 mm is sieved using a sieve having a sieve mesh diameter of 10 mm, and then the sieve mesh diameter is 3 mm. Sieve using the sieve of. As a result, different treatments can be performed on the residues having a particle size of about 3 to 10 mm and about 0 to 3 mm. Therefore, a residue having a particle size of about 3 to 10 mm and a residue having a particle size of about 0 to 3 mm can be treated by an appropriate method.

また、本実施形態では、比重選別と形状選別によりアルミニウムが取り除かれた残渣を溶融炉(銅製錬の自溶炉や転炉や、電気炉、傾転式反射炉等)に投入するので、溶融炉内で発生するアルミニウム含有スラグの処理量の増大を抑制でき、溶融炉の操業負荷の増大を防止できる。また、残渣中のアルミニウム含有量(処理量)が多いと、アルミニウムがスラグの粘度を高め、スラグの流動性悪化に繋がり、溶融炉におけるスラグの連続的なタップが困難になることから、好ましくないので、残渣中のアルミニウム選別除去が重要である。 Further, in the present embodiment, the residue from which aluminum has been removed by specific gravity sorting and shape sorting is put into a melting furnace (self-melting furnace or converter for copper smelting, electric furnace, tilting reverberatory furnace, etc.), and thus melted. It is possible to suppress an increase in the amount of aluminum-containing slag generated in the furnace and prevent an increase in the operating load of the melting furnace. Further, if the aluminum content (treatment amount) in the residue is large, the aluminum increases the viscosity of the slag, which leads to deterioration of the fluidity of the slag, and it becomes difficult to continuously tap the slag in the melting furnace, which is not preferable. Therefore, selective removal of aluminum in the residue is important.

上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred embodiments of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

Claims (11)

一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目の直径が14〜18mmの第1の篩を用いて篩分けする第1篩分け工程と、
前記第1篩分け工程において得られた篩下の残渣を、篩目の直径が8〜12mmの第2の篩を用いて篩分けする第2篩分け工程と、
前記第2篩分け工程において得られた篩上の残渣を第1の溶融炉に投入して溶融する第1溶融工程と、
前記第2篩分け工程において得られた篩下の残渣を、篩目の直径が3〜5mmの第3の篩を用いて篩分けする第3篩分け工程と、
前記第3の篩の篩上の残渣と篩下の残渣とに対して、異なる条件下で比重選別と形状選別を行い、アルミニウムを取り除く処理工程と、
前記第3の篩の篩上の残渣からアルミニウムを取り除いた残渣と、前記第3の篩の篩下の残渣からアルミニウムを取り除いた残渣と、を第2の溶融炉に投入して溶融する第2溶融工程と、
を含む処理方法。
A first sieving step in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved using a first sieve having a mesh diameter of 14 to 18 mm.
A second sieving step in which the residue under the sieving obtained in the first sieving step is sieved using a second sieve having a mesh diameter of 8 to 12 mm.
In the first melting step, the residue on the sieve obtained in the second sieving step is put into the first melting furnace and melted.
A third sieving step of sieving the residue under the sieve obtained in the second sieving step using a third sieve having a mesh diameter of 3 to 5 mm.
The residue on the sieve and the residue under the sieve of the third sieve are subjected to specific gravity sorting and shape sorting under different conditions to remove aluminum.
The residue obtained by removing aluminum from the residue on the sieve of the third sieve and the residue obtained by removing aluminum from the residue under the sieve of the third sieve are put into a second melting furnace and melted. Melting process and
Processing method including.
前記第2の溶融炉が、溶融により残渣中の有価金属を回収できる炉であることを特徴とする請求項1に記載の処理方法。 The processing method according to claim 1, wherein the second melting furnace is a furnace capable of recovering valuable metals in a residue by melting. 前記第2の溶融炉が、電気炉、銅製錬の自溶炉及び転炉のいずれかの炉であることを特徴とする請求項2に記載の処理方法。 The processing method according to claim 2, wherein the second melting furnace is any one of an electric furnace, a flash smelting furnace for copper smelting, and a converter. 前記第2の溶融炉が、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉のいずれかであることを特徴とする請求項2に記載の処理方法。 The processing method according to claim 2, wherein the second melting furnace is any one of a tilting reverberatory furnace, a shaft furnace with a hearth, an oval furnace, a drum furnace, and an upper blowing type converter. .. 前記第1の溶融炉が、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉のいずれかであることを特徴とする請求項1〜4のいずれか一項に記載の処理方法。 Any of claims 1 to 4, wherein the first melting furnace is any one of a tilting reverberatory furnace, a shaft furnace with a hearth, an oval furnace, a drum furnace, and an upper blowing type converter. The processing method described in item 1. 一般家庭ごみの焼却灰からセメント原料を除いた残渣を、篩目の直径が14〜18mmの第1の篩を用いて篩分けする第1篩分け工程と、 A first sieving step in which the residue obtained by removing the cement raw material from the incineration ash of general household waste is sieved using a first sieve having a mesh diameter of 14 to 18 mm.
前記第1篩分け工程において得られた篩下の残渣を、篩目の直径が8〜12mmの第2の篩を用いて篩分けする第2篩分け工程と、 A second sieving step in which the residue under the sieving obtained in the first sieving step is sieved using a second sieve having a mesh diameter of 8 to 12 mm.
前記第2篩分け工程において得られた篩上の残渣を溶融炉に投入して溶融する溶融工程と、 A melting step in which the residue on the sieve obtained in the second sieving step is put into a melting furnace and melted.
前記第2篩分け工程において得られた篩下の残渣を、篩目の直径が3〜5mmの第3の篩を用いて篩分けする第3篩分け工程と、 A third sieving step in which the residue under the sieving obtained in the second sieving step is sieved using a third sieve having a mesh diameter of 3 to 5 mm.
前記第3の篩の篩上の残渣と篩下の残渣とに対して、異なる条件下で比重選別と形状選別を行い、アルミニウムを取り除く処理工程と、 The residue on the sieve and the residue under the sieve of the third sieve are subjected to specific gravity sorting and shape sorting under different conditions to remove aluminum.
前記第3の篩の篩上の残渣からアルミニウムを取り除いた残渣と、前記第3の篩の篩下の残渣からアルミニウムを取り除いた残渣と、を酸溶液又はアルカリ溶液で溶解する溶解工程と、 A dissolution step of dissolving the residue obtained by removing aluminum from the residue on the sieve of the third sieve and the residue obtained by removing aluminum from the residue under the sieve of the third sieve with an acid solution or an alkaline solution.
を含む処理方法。 Processing method including.
前記溶融炉が、傾転式反射炉、炉床付きシャフト炉、長円形炉、ドラム炉、上部吹き込み式転炉のいずれかであることを特徴とする請求項6に記載の処理方法。 The processing method according to claim 6, wherein the melting furnace is any one of a tilting reverberatory furnace, a shaft furnace with a hearth, an oval furnace, a drum furnace, and an upper blowing type converter. 前記第1篩分け工程及び前記第2篩分け工程で篩分けられた残渣それぞれからアルミニウムを取り除く工程を更に含む、請求項1〜7のいずれか一項に記載の処理方法 The treatment method according to any one of claims 1 to 7, further comprising a step of removing aluminum from each of the first sieving step and the residue sifted in the second sieving step. 前記第1篩分け工程で篩分けられた篩上の残渣から、外観形状が特定形状の物体を選別して除外する工程を更に含む、ことを特徴とする請求項1〜8のいずれか一項に記載の処理方法。 Any one of claims 1 to 8, further comprising a step of selecting and excluding an object having a specific external shape from the residue on the sieve screened in the first sieving step. The processing method described in. 前記特定形状の物体は、線状、板状、塊状、円板状の残渣の少なくとも1つを含むことを特徴とする請求項9に記載の処理方法。 The processing method according to claim 9, wherein the object having the specific shape contains at least one of linear, plate-like, lump-like, and disc-like residues. 前記一般家庭ごみの焼却灰からセメント原料を除いた残渣は、金、銀、パラジウム、白金、銅、アルミニウム、鉄の少なくとも1つの元素を含む、請求項1〜10のいずれか一項に記載の処理方法。 The residue obtained by removing the cement raw material from the incineration ash of general household waste contains at least one element of gold, silver, palladium, platinum, copper, aluminum, and iron, according to any one of claims 1 to 10. Processing method.
JP2016220003A 2016-11-10 2016-11-10 Processing method Active JP6772036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220003A JP6772036B2 (en) 2016-11-10 2016-11-10 Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220003A JP6772036B2 (en) 2016-11-10 2016-11-10 Processing method

Publications (2)

Publication Number Publication Date
JP2018075541A JP2018075541A (en) 2018-05-17
JP6772036B2 true JP6772036B2 (en) 2020-10-21

Family

ID=62150023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220003A Active JP6772036B2 (en) 2016-11-10 2016-11-10 Processing method

Country Status (1)

Country Link
JP (1) JP6772036B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084883B2 (en) * 2019-01-08 2022-06-15 太平洋セメント株式会社 Waste incineration ash resource recycling method and resource recycling equipment

Also Published As

Publication number Publication date
JP2018075541A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6050222B2 (en) Disposal of electrical and electronic parts waste
JP6936344B2 (en) How to dispose of scraps of electronic and electrical equipment parts
KR102591293B1 (en) Processing method and processing device for electronic/electrical device parts scrap
JP6885709B2 (en) Processing method
JP6772036B2 (en) Processing method
JP5270934B2 (en) Method for recovering tantalum from electronic substrates
JP2002355661A (en) Method for recovering metal from electronic or electric part with resin
JP7076178B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP6888965B2 (en) How to process recycled materials
JP2018171591A (en) Method for treating general waste incineration ash
JP4355334B2 (en) Operation method of copper smelting
JP6791726B2 (en) Processing method
JP7137532B2 (en) Metal-containing waste treatment apparatus and treatment method
JP6770547B2 (en) How to collect silver
CA3094156C (en) Method for processing electronic and electrical device component scrap
JP6885904B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP2012021218A (en) Method for recovering tantalum
JP2020143350A (en) Waste electronic substrate processing method and processing apparatus
JP7461167B2 (en) Bottom ash treatment equipment
JP7062748B2 (en) How to treat general waste incinerator ash
JP2011094208A (en) Method for recovering dust in scrap shredder facility
JP2022095035A (en) Pretreatment system
KR100725443B1 (en) Copper converter dust treatment method
JP2018031062A (en) Method for processing copper-containing scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R151 Written notification of patent or utility model registration

Ref document number: 6772036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250