JP6771170B2 - Power storage system, power storage device, and operation method of power storage device - Google Patents

Power storage system, power storage device, and operation method of power storage device Download PDF

Info

Publication number
JP6771170B2
JP6771170B2 JP2015119778A JP2015119778A JP6771170B2 JP 6771170 B2 JP6771170 B2 JP 6771170B2 JP 2015119778 A JP2015119778 A JP 2015119778A JP 2015119778 A JP2015119778 A JP 2015119778A JP 6771170 B2 JP6771170 B2 JP 6771170B2
Authority
JP
Japan
Prior art keywords
power storage
power
storage devices
current
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015119778A
Other languages
Japanese (ja)
Other versions
JP2017005930A (en
Inventor
晃 吉武
晃 吉武
昂洋 吉松
昂洋 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015119778A priority Critical patent/JP6771170B2/en
Priority to PCT/JP2016/002639 priority patent/WO2016199377A1/en
Publication of JP2017005930A publication Critical patent/JP2017005930A/en
Application granted granted Critical
Publication of JP6771170B2 publication Critical patent/JP6771170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、一般に蓄電システム、蓄電装置、および蓄電装置の運転方法、より詳細には連系運転と自立運転とを切り替えることができる蓄電システム、蓄電装置、および蓄電装置の運転方法に関する。 The present invention generally relates to an operation method of a power storage system, a power storage device, and a power storage device, and more particularly, an operation method of a power storage system, a power storage device, and a power storage device capable of switching between interconnection operation and independent operation.

従来、蓄電装置を並列運転させて負荷へ電力を供給するシステムがある。 Conventionally, there is a system in which power storage devices are operated in parallel to supply electric power to a load.

例えば、特許文献1に記載されている技術は、蓄電池を用いた第1の蓄電回路に加えて、電気二重層コンデンサを用いた第2の蓄電回路を備えている。そして、外部負荷の消費電力が瞬間的に増加した場合、第2の蓄電回路から電力を供給した後に第1の蓄電回路から電力を供給している。 For example, the technique described in Patent Document 1 includes a second power storage circuit using an electric double layer capacitor in addition to the first power storage circuit using a storage battery. When the power consumption of the external load increases momentarily, the power is supplied from the second power storage circuit and then the power is supplied from the first power storage circuit.

特開2002−110210号公報JP-A-2002-110210

従来、連系運転と自立運転とを切り替えることができる複数の蓄電装置を備えて、複数の蓄電装置の各自立出力が並列接続されている蓄電システムがある。 Conventionally, there is a power storage system in which a plurality of power storage devices capable of switching between interconnection operation and independent operation are provided, and the independent outputs of the plurality of power storage devices are connected in parallel.

このような蓄電システムにおいて、複数の蓄電装置が自立運転した場合、負荷に供給される総負荷電流は複数の蓄電装置によって分担される。しかしながら、従来の技術では、いずれかの蓄電装置に負担の程度(出力電流の負担の程度)が偏ることがあった。この場合、他の蓄電装置よりも出力電流が増大して過電流状態になる蓄電装置が発生したり、出力電流が負荷電流とは逆極性になる充電モードで動作する蓄電装置が発生することがある。 In such a power storage system, when a plurality of power storage devices operate independently, the total load current supplied to the load is shared by the plurality of power storage devices. However, in the conventional technique, the degree of burden (the degree of burden on the output current) may be biased to any of the power storage devices. In this case, there may be a power storage device in which the output current increases more than other power storage devices and becomes an overcurrent state, or a power storage device that operates in a charging mode in which the output current has the opposite polarity to the load current may occur. is there.

本発明は、上記事由に鑑みてなされたものであり、その目的は、自立運転する複数の蓄電装置のそれぞれの出力が並列接続している場合に、複数の蓄電装置のそれぞれの負担の程度の偏りを抑制することができる蓄電システム、蓄電装置、および蓄電装置の運転方法を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to determine the degree of burden on each of the plurality of power storage devices when the outputs of the plurality of power storage devices operating independently are connected in parallel. It is an object of the present invention to provide a power storage system, a power storage device, and an operation method of the power storage device capable of suppressing bias.

本発明の蓄電システムは、蓄電池、前記蓄電池の直流電力を交流電力に変換して出力するパワーコンディショナを有して、連系運転と自立運転とを切り替えることができる複数の蓄電装置を備えて、前記自立運転時における前記複数の蓄電装置の各出力は、負荷が接続された電路間に並列接続されており、前記複数の蓄電装置のそれぞれが前記自立運転を行う場合、前記複数の蓄電装置のうちいずれか1台の蓄電装置がマスター装置に設定され、且つ他の蓄電装置がスレーブ装置に設定され、前記マスター装置のパワーコンディショナは、出力電圧を目標電圧に制御する電圧制御を行い、前記スレーブ装置は、前記負荷に供給されている総負荷電流の測定データを取得するデータ取得部をさらに備えており、前記スレーブ装置のパワーコンディショナは、前記総負荷電流と前記蓄電装置の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行い、前記マスター装置が前記自立運転を開始して前記電圧制御を行ってから、前記スレーブ装置が前記自立運転を開始して前記電流制御を行うことを特徴とする。 The power storage system of the present invention has a storage battery and a power conditioner that converts the DC power of the storage battery into AC power and outputs the power conditioner, and includes a plurality of power storage devices capable of switching between interconnection operation and independent operation. The outputs of the plurality of power storage devices during the self-sustaining operation are connected in parallel between the electric paths to which the loads are connected, and when each of the plurality of power storage devices performs the self-sustaining operation, the plurality of power storage devices One of the power storage devices is set as the master device, and the other power storage device is set as the slave device. The power conditioner of the master device performs voltage control for controlling the output voltage to the target voltage. The slave device further includes a data acquisition unit that acquires measurement data of the total load current supplied to the load, and the power conditioner of the slave device includes the total load current and the number of power storage devices. There line current control for controlling the output current to the determined target current on the basis of the from the master device performs said voltage control by starting the self-sustained operation, the slave device starts the autonomous operation It is characterized in that the current control is performed .

本発明の蓄電装置は、上述の蓄電システムで用いられることを特徴とする。 The power storage device of the present invention is characterized in that it is used in the above-mentioned power storage system.

本発明の蓄電装置の運転方法は、蓄電池、前記蓄電池の直流電力を交流電力に変換して出力するパワーコンディショナを有して、連系運転と自立運転とを切り替えることができる複数の蓄電装置を備える蓄電システムに用いられる蓄電装置の運転方法であって、前記自立運転時における前記複数の蓄電装置の各出力は、負荷が接続された電路間に並列接続されており、前記複数の蓄電装置のうちいずれか1台の蓄電装置がマスター装置となり、他の蓄電装置がスレーブ装置となって、前記マスター装置のパワーコンディショナは、出力電圧を目標電圧に制御する電圧制御を行い、前記スレーブ装置のパワーコンディショナは、前記負荷に供給されている総負荷電流と前記蓄電装置の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行い、前記マスター装置が前記自立運転を開始して前記電圧制御を行ってから、前記スレーブ装置が前記自立運転を開始して前記電流制御を行うことを特徴とする。 The operation method of the power storage device of the present invention has a storage battery and a power conditioner that converts the DC power of the storage battery into AC power and outputs the power conditioner, and is capable of switching between interconnection operation and independent operation. A method of operating a power storage device used in a power storage system including the above, wherein each output of the plurality of power storage devices during the self-sustaining operation is connected in parallel between electric currents to which a load is connected, and the plurality of power storage devices are connected in parallel. One of the power storage devices becomes the master device, the other power storage device becomes the slave device, and the power conditioner of the master device performs voltage control for controlling the output voltage to the target voltage, and the slave device. power conditioner may have line current control for controlling the output current to the determined target current on the basis of the total load current supplied to the load and the number of the electric storage device, the master device is the self-sustained operation Is started to perform the voltage control, and then the slave device starts the self-sustaining operation to perform the current control .

以上説明したように、本発明では、自立運転する複数の蓄電装置のそれぞれの出力が並列接続している場合に、複数の蓄電装置のそれぞれの負担の程度の偏りを抑制することができるという効果がある。 As described above, the present invention has an effect that when the outputs of a plurality of self-operating power storage devices are connected in parallel, it is possible to suppress a bias in the degree of burden on each of the plurality of power storage devices. There is.

実施形態の蓄電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power storage system of embodiment. 実施形態の蓄電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power storage device of embodiment. 実施形態の自立運転を行う複数の蓄電装置と自立負荷との接続形態を示す概略図である。It is a schematic diagram which shows the connection form of a plurality of power storage devices which perform self-sustaining operation of embodiment, and a self-sustaining load. 図4A、図4B、図4C、図4Dのそれぞれは、本実施形態とは異なる自立出力制御を行った場合の各部の電流波形を示す波形図である。4A, 4B, 4C, and 4D are waveform diagrams showing current waveforms of each part when self-sustaining output control different from that of the present embodiment is performed. 図5A、図5B、図5C、図5Dのそれぞれは、本実施形態の自立出力制御を行った場合の各部の電流波形を示す波形図である。5A, 5B, 5C, and 5D are waveform diagrams showing current waveforms of each part when the self-sustaining output control of the present embodiment is performed. 実施形態の別の蓄電システムの構成を示すブロック図である。It is a block diagram which shows the structure of another power storage system of embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態の蓄電システムは、図1に示す構成を備えており、電力会社から商用電力を供給されている集合住宅の各住戸、戸建て住宅、工場、事務所等の各建物において用いられる。本システムは、分電盤1、複数の蓄電装置2、切替盤3、コントローラ4を主構成として備える。なお、複数の蓄電装置2を区別する場合、複数の蓄電装置2のそれぞれを蓄電装置21,22,23,...と呼ぶ。
(Embodiment 1)
The power storage system of the present embodiment has the configuration shown in FIG. 1, and is used in each dwelling unit, detached house, factory, office, or other building of an apartment house to which commercial power is supplied from an electric power company. This system includes a distribution board 1, a plurality of power storage devices 2, a switching board 3, and a controller 4 as main configurations. When distinguishing a plurality of power storage devices 2, each of the plurality of power storage devices 2 is referred to as power storage devices 21, 22, 23 ,. .. .. Called.

分電盤1は、建物内に引き込まれた幹線電路81が接続され、電力会社の商用電源9から幹線電路81を介して商用電力が供給される。そして、分電盤1は、主電源ブレーカ1a、分岐ブレーカ1b、分散電源用ブレーカ1cが収納されている。幹線電路81は、主電源ブレーカ1aを介して複数の分岐ブレーカ1b、分散電源用ブレーカ1cのそれぞれに接続される。 The main line 81 drawn into the building is connected to the distribution board 1, and commercial power is supplied from the commercial power source 9 of the electric power company via the main line 81. The distribution board 1 houses a main power supply breaker 1a, a branch breaker 1b, and a distributed power supply breaker 1c. The main electric circuit 81 is connected to each of the plurality of branch breakers 1b and the distributed power supply breakers 1c via the main power supply breaker 1a.

そして、幹線電路81は、各分岐ブレーカ1bを介して複数の分岐電路82に分岐する。分岐電路82のそれぞれは、照明機器、空調機器、家電機器等の系統負荷71が接続されており、これらの系統負荷71へ交流電力を供給する。但し、複数の分岐電路82のうち、1つの分岐電路82aは、切替盤3に接続している。 Then, the main electric circuit 81 branches into a plurality of branch electric circuits 82 via each branch breaker 1b. System loads 71 of lighting equipment, air conditioning equipment, home appliances, etc. are connected to each of the branch electric lines 82, and AC power is supplied to these system loads 71. However, one of the plurality of branch electric circuits 82 a is connected to the switching board 3.

複数の蓄電装置2のそれぞれは、図2に示すように、蓄電池2aと、パワーコンディショナ2bと、通信部2cと、制御部2dと、データ取得部2eとを備える。 As shown in FIG. 2, each of the plurality of power storage devices 2 includes a storage battery 2a, a power conditioner 2b, a communication unit 2c, a control unit 2d, and a data acquisition unit 2e.

蓄電池2aは、例えばリチウムイオン電池等の二次電池で構成されており、パワーコンディショナ2bに接続している。パワーコンディショナ2bは、交流電力を直流電力に変換して蓄電池2aを充電するAC/DC変換機能と、蓄電池2aの直流電力を交流電力に変換して出力するDC/AC変換機能とを備える。 The storage battery 2a is composed of a secondary battery such as a lithium ion battery, and is connected to the power conditioner 2b. The power conditioner 2b includes an AC / DC conversion function that converts AC power into DC power to charge the storage battery 2a, and a DC / AC conversion function that converts the DC power of the storage battery 2a into AC power and outputs it.

パワーコンディショナ2bの連系接続部2fは、商用電源9から分散電源用ブレーカ1cを介して商用電力を受電し、パワーコンディショナ2bは、受電した商用電力を直流電力に変換して蓄電池2aを充電することができる。 The interconnection connection 2f of the power conditioner 2b receives commercial power from the commercial power supply 9 via the breaker 1c for distributed power supply, and the power conditioner 2b converts the received commercial power into DC power to convert the received commercial power into DC power to convert the received commercial power into DC power to store the storage battery 2a. It can be charged.

また、蓄電池2aの放電電力は、パワーコンディショナ2bに供給され、パワーコンディショナ2bによって交流電力に変換される。このパワーコンディショナ2bは、連系運転と自立運転とを切替可能に動作する。パワーコンディショナ2bは、連系接続部2fに入力される交流電圧を検出することによって、商用電源9が商用電力を供給している通常時と、商用電源9から商用電力の供給が停止している停電時との判別を行う。 Further, the discharge power of the storage battery 2a is supplied to the power conditioner 2b, and is converted into AC power by the power conditioner 2b. The power conditioner 2b operates so as to be able to switch between interconnection operation and independent operation. By detecting the AC voltage input to the interconnection connection 2f, the power conditioner 2b stops the supply of commercial power from the commercial power supply 9 during normal times when the commercial power supply 9 is supplying commercial power and when the commercial power supply 9 stops supplying commercial power. Determine when there is a power outage.

具体的に、パワーコンディショナ2bは、商用電源9が通電している通常時に連系運転を行い、商用電源9の停電時に自立運転を行う。そして、パワーコンディショナ2bは、連系運転時において、商用電源9(商用電力系統)と連系して、蓄電池2aの放電電力から生成した交流電力を連系接続部2fから出力する。また、パワーコンディショナ2bは、自立運転時において、商用電力系統と連系せずに、蓄電池2aの放電電力から生成した交流電力を自立接続部2gから出力する。 Specifically, the power conditioner 2b performs interconnection operation when the commercial power source 9 is energized, and operates independently when the commercial power source 9 has a power failure. Then, the power conditioner 2b interconnects with the commercial power source 9 (commercial power system) during the interconnection operation, and outputs the AC power generated from the discharge power of the storage battery 2a from the interconnection connection unit 2f. Further, the power conditioner 2b outputs AC power generated from the discharge power of the storage battery 2a from the self-sustaining connection unit 2g without being connected to the commercial power system during self-sustaining operation.

なお、連系接続部2fから出力される交流電力を連系出力と呼び、自立接続部2gから出力される交流電力を自立出力と呼ぶ。 The AC power output from the interconnection connection 2f is called an interconnection output, and the AC power output from the self-supporting connection 2g is called a self-sustaining output.

そして、連系接続部2fは交流電路83に接続しており、連系出力は、交流電路83から分電盤1の分散電源用ブレーカ1cを介して、幹線電路81に供給される。而して、連系出力は、幹線電路81から分岐ブレーカ1bを介して分岐電路82へ供給される。パワーコンディショナ2bは、連系出力を、商用電源9が供給する商用電力に協調させる系統連系機能を有する。 The interconnection connection portion 2f is connected to the AC electric circuit 83, and the interconnection output is supplied from the AC electric circuit 83 to the main electric circuit 81 via the distributed power breaker 1c of the distribution board 1. Thus, the interconnection output is supplied from the main electric circuit 81 to the branch electric circuit 82 via the branch breaker 1b. The power conditioner 2b has a grid interconnection function for coordinating the interconnection output with the commercial power supplied by the commercial power source 9.

また、自立接続部2gは交流電路84に接続しており、自立出力は、交流電路84を介して切替盤3に入力される。切替盤3は、自立電路85の接続先を、分岐電路82aと交流電路84とのいずれかに切り替える。自立電路85は、照明機器、空調機器、家電機器等の自立負荷72が接続されている。 Further, the self-supporting connection unit 2g is connected to the AC electric circuit 84, and the self-sustaining output is input to the switching board 3 via the AC electric circuit 84. The switching board 3 switches the connection destination of the self-supporting electric circuit 85 to either the branch electric circuit 82a or the AC electric circuit 84. The self-supporting electric circuit 85 is connected to a self-sustaining load 72 such as a lighting device, an air-conditioning device, and a home electric appliance.

そして、切替盤3の接続状態は、コントローラ4によって切替制御される。コントローラ4は、例えば主電源ブレーカ1aの一次側の電圧を検出することによって、商用電源9が商用電力を供給している通常時と、商用電源9から商用電力の供給が停止している停電時との判別を行う。そして、コントローラ4は、通常時であると判別した場合、切替盤3を切替制御して、自立電路85を分岐電路82aに接続させる。また、コントローラ4は、停電時であると判別した場合、切替盤3を切替制御して、自立電路85を交流電路84に接続させる。 Then, the connection state of the switching board 3 is switched and controlled by the controller 4. The controller 4 detects the voltage on the primary side of the main power breaker 1a, for example, during a normal time when the commercial power supply 9 is supplying commercial power and during a power failure when the commercial power supply 9 is stopped supplying commercial power. Is determined. Then, when the controller 4 determines that it is in the normal state, it switches and controls the switching board 3 to connect the self-supporting electric circuit 85 to the branch electric circuit 82a. If the controller 4 determines that a power failure has occurred, the controller 4 switches and controls the switching panel 3 to connect the self-supporting electric circuit 85 to the AC electric circuit 84.

切替盤3によって自立電路85が分岐電路82aに接続された場合、分岐電路82aから自立電路85に至る電路が導通し幹線電路81の電力(商用電力と連系出力との和)が自立電路85に供給される。また、切替盤3によって自立電路85が交流電路84に接続された場合、交流電路84から自立電路85に至る電路が導通し、自立出力が自立電路85に供給される。 When the self-sustaining electric circuit 85 is connected to the branch electric circuit 82a by the switching board 3, the electric circuit from the branch electric circuit 82a to the self-sustaining electric circuit 85 is conducted, and the electric power (sum of commercial power and interconnection output) of the main electric circuit 81 is the self-sustaining electric circuit 85. Is supplied to. Further, when the independent electric circuit 85 is connected to the AC electric circuit 84 by the switching board 3, the electric circuit from the AC electric circuit 84 to the independent electric circuit 85 is conducted, and the independent electric circuit is supplied to the independent electric circuit 85.

本システムにおいて、分岐電路82に接続した系統負荷71は、商用電源9が通電状態である通常時にのみ電力を供給される負荷である。一方、自立電路85に接続した自立負荷72は、商用電源9が通電状態である通常時、および商用電源9の停電時の両方において電力を供給される負荷である。 In this system, the system load 71 connected to the branch electric circuit 82 is a load to which electric power is supplied only when the commercial power source 9 is energized. On the other hand, the self-sustaining load 72 connected to the self-sustaining electric circuit 85 is a load to which power is supplied both in the normal state when the commercial power source 9 is energized and in the power failure of the commercial power source 9.

自立負荷72が電気的に接続した自立電路85には、電流センサ51〜53が設けられている。電流センサ51〜53は、自立電路85を流れる電流を測定することで、自立負荷72に供給されている負荷電流の合計である総負荷電流を測定している。電流センサ51は総負荷電流の測定データを蓄電装置21へ出力し、電流センサ52は総負荷電流の測定データを蓄電装置22へ出力し、電流センサ53は総負荷電流の測定データを蓄電装置23へ出力する。蓄電装置2のそれぞれのデータ取得部2eは、自装置に送信された測定データを受信して、制御部2dに測定データを引き渡す。 Current sensors 51 to 53 are provided in the self-supporting electric circuit 85 to which the self-supporting load 72 is electrically connected. The current sensors 51 to 53 measure the total load current, which is the total load current supplied to the self-supporting load 72, by measuring the current flowing through the self-supporting electric circuit 85. The current sensor 51 outputs the measurement data of the total load current to the power storage device 21, the current sensor 52 outputs the measurement data of the total load current to the power storage device 22, and the current sensor 53 outputs the measurement data of the total load current to the power storage device 23. Output to. Each data acquisition unit 2e of the power storage device 2 receives the measurement data transmitted to its own device and delivers the measurement data to the control unit 2d.

また、蓄電装置2の通信部2cは、他の蓄電装置2の通信部2cとの間で有線または無線による通信を行うことができ、制御部2dが通信部2cの通信制御を行う。 Further, the communication unit 2c of the power storage device 2 can perform wired or wireless communication with the communication unit 2c of the other power storage device 2, and the control unit 2d controls the communication of the communication unit 2c.

以下、停電時における蓄電装置2による自立運転について、図3を用いて説明する。図3は、自立運転を行う複数の蓄電装置2と自立負荷72との接続形態のみを示す概略図である。 Hereinafter, independent operation by the power storage device 2 in the event of a power failure will be described with reference to FIG. FIG. 3 is a schematic view showing only a connection mode between a plurality of power storage devices 2 that perform independent operation and an independent load 72.

蓄電装置2の自立接続部2gに接続されている交流電路84は、配線L1,L2の2線である。また、自立電路85は、配線L11,L12の2線であり、配線L11,L12間に自立負荷72が電気的に接続されている。配線L1と配線L11とが、切替盤3を介して電気的に接続しており、配線L2と配線L12とが、切替盤3を介して電気的に接続している。すなわち、自立運転時における複数の蓄電装置2(パワーコンディショナ2b)の各出力(自立接続部2g)は、自立負荷72が接続された電路間に電気的に並列接続されている。本実施形態では、3台の蓄電装置21,22,23の各出力が並列接続されている。 The AC electric circuit 84 connected to the self-supporting connection portion 2g of the power storage device 2 is two wires L1 and L2. Further, the self-supporting electric circuit 85 is two wires L11 and L12, and the self-supporting load 72 is electrically connected between the wirings L11 and L12. The wiring L1 and the wiring L11 are electrically connected via the switching board 3, and the wiring L2 and the wiring L12 are electrically connected via the switching board 3. That is, each output (self-supporting connection portion 2g) of the plurality of power storage devices 2 (power conditioner 2b) during self-sustaining operation is electrically connected in parallel between the electric lines to which the self-sustaining load 72 is connected. In this embodiment, the outputs of the three power storage devices 21, 22, and 23 are connected in parallel.

蓄電装置21,22,23のそれぞれの制御部2dは、連系運転時および自立運転時の両方で、通信部2cを介して他の蓄電装置2との間で、残容量データの授受を定期的に行う。残容量データとは、蓄電池2aの充電レベルを表しており、蓄電装置21,22,23のそれぞれの制御部2dは、他の蓄電装置2の現在の残容量(充電レベル)を知ることができる。蓄電装置21,22,23のそれぞれの制御部2dは、自装置と他の蓄電装置2の残容量を比較し、自装置の残容量が最も多ければ、自装置をマスター装置に設定する。また、蓄電装置21,22,23のそれぞれの制御部2dは、自装置と他の蓄電装置2の残容量を比較し、自装置の残容量が最も多くなければ(自装置より残容量が多い他の蓄電装置2があれば)、自装置をスレーブ装置に設定する。 Each of the control units 2d of the power storage devices 21, 22, and 23 periodically exchanges the remaining capacity data with the other power storage devices 2 via the communication unit 2c during both the interconnection operation and the independent operation. Do it. The remaining capacity data represents the charge level of the storage battery 2a, and each control unit 2d of the power storage devices 21, 22, and 23 can know the current remaining capacity (charge level) of the other power storage devices 2. .. Each control unit 2d of the power storage devices 21, 22, and 23 compares the remaining capacity of the own device and the other power storage devices 2, and if the remaining capacity of the own device is the largest, sets the own device as the master device. Further, each control unit 2d of the power storage devices 21, 22, and 23 compares the remaining capacity of the own device with that of the other power storage device 2, and if the remaining capacity of the own device is not the largest (the remaining capacity is larger than that of the own device). (If there is another power storage device 2), set the own device as a slave device.

すなわち、蓄電装置21,22,23のそれぞれの制御部2dによって、設定部6が構成されている。設定部6は、複数の蓄電装置2のそれぞれが自立運転を行う場合に、複数の蓄電装置2のうちいずれか1台の蓄電装置2をマスター装置とし、他の蓄電装置2をスレーブ装置とする機能を備える。このように、複数の蓄電装置2のそれぞれは、設定部6によってマスター装置またはスレーブ装置に定期的に設定されることによって、マスター装置とスレーブ装置とのいずれかに切り替えられている。 That is, the setting unit 6 is configured by the control units 2d of the power storage devices 21, 22, and 23, respectively. When each of the plurality of power storage devices 2 operates independently, the setting unit 6 uses any one of the plurality of power storage devices 2 as the master device and the other power storage device 2 as the slave device. It has a function. In this way, each of the plurality of power storage devices 2 is switched to either the master device or the slave device by being periodically set to the master device or the slave device by the setting unit 6.

以降、マスター装置である蓄電装置2をマスター装置2と呼び、スレーブ装置である蓄電装置2をスレーブ装置2と呼ぶ。ここでは、蓄電装置21がマスター装置21であり、蓄電装置22,23がスレーブ装置22,23であるとする。 Hereinafter, the power storage device 2 which is a master device is referred to as a master device 2, and the power storage device 2 which is a slave device is referred to as a slave device 2. Here, it is assumed that the power storage device 21 is the master device 21 and the power storage devices 22 and 23 are the slave devices 22 and 23.

また、制御部2dは、他の蓄電装置2との間で残容量データの授受を定期的に行うときに、システム内の蓄電装置2の台数を認識することができ、システム内の蓄電装置2の台数のデータを保持しておく。 Further, the control unit 2d can recognize the number of power storage devices 2 in the system when periodically exchanging the remaining capacity data with and from the other power storage devices 2, and the power storage devices 2 in the system can be recognized. Hold the data of the number of units.

そして、マスター装置21、スレーブ装置22,23のそれぞれが自立運転を開始すると、マスター装置21では、制御部2dがパワーコンディショナ2bに対して定電圧運転を指示する。具体的に、マスター装置21の制御部2dは、パワーコンディショナ2bに対して目標電圧を通知する。定電圧運転を指示されたパワーコンディショナ2bは、自立出力の電圧が目標電圧に一致するように電圧制御を行う。目標電圧は、商用電力の公称電圧に設定されており、ここでは100Vまたは200Vに設定される。 Then, when each of the master device 21, the slave devices 22, and 23 starts the independent operation, in the master device 21, the control unit 2d instructs the power conditioner 2b to perform the constant voltage operation. Specifically, the control unit 2d of the master device 21 notifies the power conditioner 2b of the target voltage. The power conditioner 2b instructed to operate at a constant voltage performs voltage control so that the voltage of the self-sustaining output matches the target voltage. The target voltage is set to the nominal voltage of commercial power, where it is set to 100V or 200V.

自立運転を開始したスレーブ装置22,23のそれぞれでは、制御部2dがパワーコンディショナ2bに対して定電流運転を指示する。具体的に、スレーブ装置22,23の各制御部2dは、パワーコンディショナ2bに対して目標電流を通知する。定電流運転を指示されたパワーコンディショナ2bは、自立出力の電流が目標電流に一致するように電流制御を行う。定電流運転を指示されたパワーコンディショナ2bでは、自立出力の電圧は、商用電力の公称電圧近傍となる。 In each of the slave devices 22 and 23 that have started the self-sustaining operation, the control unit 2d instructs the power conditioner 2b to perform a constant current operation. Specifically, each control unit 2d of the slave devices 22 and 23 notifies the power conditioner 2b of the target current. The power conditioner 2b instructed to operate at a constant current controls the current so that the self-sustaining output current matches the target current. In the power conditioner 2b instructed to operate at a constant current, the voltage of the self-supporting output is close to the nominal voltage of commercial power.

なお、マスター装置21が自立運転を開始して電圧制御を行ってから、スレーブ装置22,23のそれぞれが自立運転を開始して電流制御を行うことで、自立出力の同期を図ることができる。あるいは、マスター装置21、スレーブ装置22,23のそれぞれが互いに通信することで、自立出力の同期を図ることも可能である。 After the master device 21 starts the self-sustaining operation and performs voltage control, each of the slave devices 22 and 23 starts the self-sustaining operation and performs current control, so that the self-sustaining output can be synchronized. Alternatively, the master device 21, the slave devices 22, and 23 can communicate with each other to synchronize the independent outputs.

具体的に、スレーブ装置22,23のそれぞれの制御部2dは、総負荷電流の測定データから、総負荷電流I0を知ることができる。そこで、制御部2dは、総負荷電流I0を蓄電装置2の台数(この場合は3台)で除した値を目標電流とする。すなわち、スレーブ装置22,23のそれぞれは、システム内の蓄電装置2のそれぞれが総負荷電流I0を均等に分割して負担するように、目標電流を設定する。したがって、スレーブ装置22,23のそれぞれの自立出力の電流値および波形は互いに同じになり、電圧制御を行うマスター装置21の自立出力も、結果的にスレーブ装置22,23のそれぞれの自立出力と同じ電流値および波形となる。 Specifically, the control units 2d of the slave devices 22 and 23 can know the total load current I0 from the measurement data of the total load current. Therefore, the control unit 2d sets the value obtained by dividing the total load current I0 by the number of power storage devices 2 (three in this case) as the target current. That is, each of the slave devices 22 and 23 sets the target current so that each of the power storage devices 2 in the system bears the total load current I0 evenly divided. Therefore, the current values and waveforms of the independent outputs of the slave devices 22 and 23 are the same as each other, and the independent outputs of the master device 21 that controls the voltage are also the same as the independent outputs of the slave devices 22 and 23 as a result. It becomes the current value and the waveform.

図4A、図4B、図4C、図4Dは、マスター装置21が電圧制御を行い、スレーブ装置22,23のそれぞれが本実施形態とは異なる電流制御を行った場合の各部の電流波形を示す。この場合、スレーブ装置22,23のそれぞれが行う電流制御は、自立出力の電流波形を正弦波とする点が、本実施形態の電流制御とは異なる。 4A, 4B, 4C, and 4D show current waveforms of each part when the master device 21 performs voltage control and the slave devices 22 and 23 each perform current control different from that of the present embodiment. In this case, the current control performed by each of the slave devices 22 and 23 is different from the current control of the present embodiment in that the current waveform of the independent output is a sine wave.

図4Aは、総負荷電流I0の波形を示し、図4Bは、マスター装置21の自立出力の電流(自立電流)I1の波形を示し、図4Cは、スレーブ装置22の自立電流I2の波形を示し、図4Dは、スレーブ装置23の自立電流I3の波形を示す。 FIG. 4A shows the waveform of the total load current I0, FIG. 4B shows the waveform of the independent output current (independent current) I1 of the master device 21, and FIG. 4C shows the waveform of the independent current I2 of the slave device 22. 4D shows the waveform of the self-supporting current I3 of the slave device 23.

この場合、自立負荷72は、容量性の負荷(例えば、コンデンサインプット型の負荷など)を含んでおり、総負荷電流I0は、電圧ピーク時の近傍で急激に増大して、波形が歪んでいる。そして、スレーブ装置22,23のそれぞれが、自立出力の電流波形を正弦波とする電流制御を行うと、マスター装置21がこの波形歪み成分の殆どを負担して、マスター装置21、スレーブ装置22,23の間で出力の偏りが生じる可能性がある。例えば図4Bに示すように、マスター装置21の自立電流I1が総負荷電流I0の波形歪み成分の殆どを負担すると、自立電流I1が歪んで過電流状態になり(図4B中の領域X1)、マスター装置21の動作が不安定になる。また、マスター装置21の自立電流I1が、総負荷電流I0とは逆極性になる充電モードとなる場合があり(図4B中の領域X2)、システムの安全性に影響を与える可能性がある。 In this case, the self-supporting load 72 includes a capacitive load (for example, a capacitor input type load), and the total load current I0 rapidly increases in the vicinity of the voltage peak, and the waveform is distorted. .. Then, when each of the slave devices 22 and 23 performs current control in which the current waveform of the self-sustaining output is a sine wave, the master device 21 bears most of the waveform distortion component, and the master device 21, the slave device 22, There is a possibility that the output will be biased between 23. For example, as shown in FIG. 4B, when the independent current I1 of the master device 21 bears most of the waveform distortion components of the total load current I0, the independent current I1 is distorted and becomes an overcurrent state (region X1 in FIG. 4B). The operation of the master device 21 becomes unstable. Further, the self-sustaining current I1 of the master device 21 may be in a charging mode having the opposite polarity to the total load current I0 (region X2 in FIG. 4B), which may affect the safety of the system.

そこで、本実施形態では上述のように、マスター装置21が電圧制御を行い、スレーブ装置22,23のそれぞれが、総負荷電流I0を蓄電装置2の台数で除した値を目標電流とする電流制御を行う。 Therefore, in the present embodiment, as described above, the master device 21 controls the voltage, and each of the slave devices 22 and 23 sets the value obtained by dividing the total load current I0 by the number of power storage devices 2 as the target current. I do.

図5A、図5B、図5C、図5Dは、マスター装置21が電圧制御を行い、スレーブ装置22,23のそれぞれが上述の目標電流を用いた電流制御を行った場合の各部の電流波形を示す。図5Aは、総負荷電流I0の波形を示し、図5Bは、マスター装置21の自立電流I1の波形を示し、図5Cは、スレーブ装置22の自立電流I2の波形を示し、図5Dは、スレーブ装置23の自立電流I3の波形を示す。 5A, 5B, 5C, and 5D show current waveforms of each part when the master device 21 performs voltage control and each of the slave devices 22 and 23 performs current control using the above-mentioned target current. .. 5A shows the waveform of the total load current I0, FIG. 5B shows the waveform of the independent current I1 of the master device 21, FIG. 5C shows the waveform of the independent current I2 of the slave device 22, and FIG. 5D shows the slave. The waveform of the self-sustaining current I3 of the apparatus 23 is shown.

この場合も、自立負荷72は、容量性の負荷を含んでおり、総負荷電流I0は、電圧ピーク時の近傍で急激に増大して、波形が歪んでいる。しかしながら、マスター装置21が上述の電圧制御を行い、スレーブ装置22,23のそれぞれが上述の目標電流を用いた電流制御を行うことによって、マスター装置21、スレーブ装置22,23のそれぞれの自立電流I1,I2,I3の電流値および波形はほぼ同じになって、自立電流I1,I2,I3はほぼ偏りがない状態となる。 In this case as well, the self-sustaining load 72 includes a capacitive load, and the total load current I0 rapidly increases in the vicinity of the voltage peak, and the waveform is distorted. However, the master device 21 performs the above-mentioned voltage control, and each of the slave devices 22 and 23 performs the current control using the above-mentioned target current, so that the independent currents I1 of the master device 21, the slave devices 22, and 23 are respectively. , I2, I3 have almost the same current value and waveform, and the independent currents I1, I2, I3 are in a state where there is almost no bias.

したがって、総負荷電流I0の波形歪み成分も、自立電流I1,I2,I3がほぼ均等に負担し、総負荷電流I0とは逆極性になる充電モードの発生も抑えられる。すなわち、本実施形態の蓄電システムでは、自立運転する複数の蓄電装置2のそれぞれの出力が並列接続している場合に、複数の蓄電装置2のそれぞれの負担の程度の偏りを抑制することができる。 Therefore, the waveform distortion component of the total load current I0 is also borne by the independent currents I1, I2, and I3 almost evenly, and the occurrence of the charging mode having the opposite polarity to the total load current I0 can be suppressed. That is, in the power storage system of the present embodiment, when the outputs of the plurality of power storage devices 2 that operate independently are connected in parallel, it is possible to suppress a bias in the degree of burden on each of the plurality of power storage devices 2. ..

また、本実施形態では、蓄電装置21をマスター装置とし、蓄電装置22,23をスレーブ装置としたが、マスター装置、スレーブ装置の設定は、残容量データに基づいて定期的に更新される。 Further, in the present embodiment, the power storage device 21 is used as the master device and the power storage devices 22 and 23 are used as slave devices, but the settings of the master device and the slave device are periodically updated based on the remaining capacity data.

すなわち、蓄電装置2は、蓄電池2aと、蓄電池2aの直流電力を交流電力に変換して出力するパワーコンディショナ2bとを備えて、連系運転と自立運転とを切り替えることができる。そして、蓄電装置2は、自立運転を行う場合、マスター装置またはスレーブ装置となることが好ましい。蓄電装置2がマスター装置となった場合、パワーコンディショナ2bは、出力電圧を目標電圧に制御する電圧制御を行う。また、蓄電装置2がスレーブ装置となった場合、パワーコンディショナ2bは、負荷(自立負荷)に供給されている総負荷電流と蓄電池2の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行う。 That is, the power storage device 2 includes a storage battery 2a and a power conditioner 2b that converts the DC power of the storage battery 2a into AC power and outputs the power conditioner 2b, and can switch between interconnection operation and independent operation. The power storage device 2 is preferably a master device or a slave device when performing self-sustaining operation. When the power storage device 2 becomes the master device, the power conditioner 2b performs voltage control for controlling the output voltage to the target voltage. When the power storage device 2 becomes a slave device, the power conditioner 2b sets the output current to the target current determined based on the total load current supplied to the load (self-sustaining load) and the number of storage batteries 2. Performs current control to be controlled.

あるいは、それぞれの蓄電装置2に対して、マスター装置またはスレーブ装置の設定が固定的になされて、蓄電池システムは、マスター装置専用の蓄電装置2、スレーブ装置専用の蓄電装置2を備える構成であってもよい。 Alternatively, the master device or the slave device is fixedly set for each power storage device 2, and the storage battery system includes a power storage device 2 dedicated to the master device and a power storage device 2 dedicated to the slave device. May be good.

また、通常時においても、マスター装置は、電圧制御による連系運転を行い、スレーブ装置は、電流制御による連系運転を行う。あるいは、通常時においては、スレーブ装置だけでなく、マスター装置においても、電流制御による連系運転を行ってもよい。 Further, even in the normal state, the master device performs the interconnection operation by the voltage control, and the slave device performs the interconnection operation by the current control. Alternatively, in the normal state, not only the slave device but also the master device may perform the interconnection operation by current control.

上述の蓄電システムは、複数の蓄電装置2を備える。複数の蓄電装置2のそれぞれは、蓄電池2a、蓄電池2aの直流電力を交流電力に変換して出力するパワーコンディショナ2bを有して、連系運転と自立運転とを切り替えることができる。自立運転時における複数の蓄電装置2の各出力は、負荷(自立負荷72)が接続された電路間に並列接続されている。複数の蓄電装置2のそれぞれが自立運転を行う場合、複数の蓄電装置2のうちいずれか1台の蓄電装置2がマスター装置に設定され、且つ他の蓄電装置2がスレーブ装置に設定される。 The above-mentioned power storage system includes a plurality of power storage devices 2. Each of the plurality of power storage devices 2 has a power conditioner 2b that converts the DC power of the storage battery 2a and the storage battery 2a into AC power and outputs the power conditioner 2b, and can switch between interconnection operation and independent operation. Each output of the plurality of power storage devices 2 during the self-sustaining operation is connected in parallel between the electric circuits to which the load (self-sustaining load 72) is connected. When each of the plurality of power storage devices 2 operates independently, any one of the plurality of power storage devices 2 is set as the master device, and the other power storage device 2 is set as the slave device.

そして、マスター装置のパワーコンディショナ2bは、出力電圧を目標電圧に制御する電圧制御を行う。スレーブ装置は、負荷に供給されている総負荷電流の測定データを取得するデータ取得部2eをさらに備えている。スレーブ装置のパワーコンディショナ2bは、総負荷電流と蓄電装置2の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行う。 Then, the power conditioner 2b of the master device performs voltage control for controlling the output voltage to the target voltage. The slave device further includes a data acquisition unit 2e that acquires measurement data of the total load current supplied to the load. The power conditioner 2b of the slave device performs current control for controlling the output current to a target current determined based on the total load current and the number of power storage devices 2.

すなわち、総負荷電流と蓄電装置2の台数とに基づいて目標電流が決定され、スレーブ装置は、出力電流を目標電流に制御する電流制御を行う。したがって、蓄電システムは、自立運転する複数の蓄電装置2のそれぞれの出力が並列接続している場合に、複数の蓄電装置2のそれぞれの負担の程度の偏りを抑制することができる。 That is, the target current is determined based on the total load current and the number of power storage devices 2, and the slave device performs current control for controlling the output current to the target current. Therefore, when the outputs of the plurality of power storage devices 2 that operate independently are connected in parallel, the power storage system can suppress a bias in the degree of burden on each of the plurality of power storage devices 2.

また、複数の蓄電装置2のうち、蓄電池2aの残容量が最も多い蓄電装置2がマスター装置となることが好ましい。 Further, among the plurality of power storage devices 2, the power storage device 2 having the largest remaining capacity of the storage battery 2a is preferably the master device.

したがって、蓄電池2aの残容量が最も多い蓄電装置2をマスター装置とすることによって、安定した電圧制御が行われて、負荷に印加される電圧の安定性が向上する。 Therefore, by using the power storage device 2 having the largest remaining capacity of the storage battery 2a as the master device, stable voltage control is performed and the stability of the voltage applied to the load is improved.

また、複数の蓄電装置2のそれぞれは、他の蓄電装置2との間で通信を行うことができる通信部2cをさらに備えることが好ましい。 Further, it is preferable that each of the plurality of power storage devices 2 further includes a communication unit 2c capable of communicating with another power storage device 2.

したがって、複数の蓄電装置2の相互間でデータの共有が可能となって、システムとして複数の蓄電装置2のそれぞれの状態に応じた制御を行うことが可能になる。 Therefore, data can be shared between the plurality of power storage devices 2, and the system can perform control according to each state of the plurality of power storage devices 2.

また、複数の蓄電装置2のそれぞれは、自装置の蓄電池2aの残容量のデータを他の蓄電装置2へ送信し、複数の蓄電装置2のそれぞれの蓄電池2aの残容量に基づいて、自装置をマスター装置またはスレーブ装置に設定する制御部2dをさらに備えることが好ましい。そして、複数の蓄電装置2のうち、蓄電池2aの残容量が最も多い蓄電装置2の制御部2dが自装置をマスター装置に設定し、他の蓄電装置2の制御部2dが自装置をスレーブ装置に設定する。 Further, each of the plurality of power storage devices 2 transmits data of the remaining capacity of the storage battery 2a of the own device to the other power storage device 2, and based on the remaining capacity of each storage battery 2a of the plurality of power storage devices 2, the own device It is preferable to further include a control unit 2d for setting the above in the master device or the slave device. Then, among the plurality of power storage devices 2, the control unit 2d of the power storage device 2 having the largest remaining capacity of the storage battery 2a sets its own device as the master device, and the control unit 2d of the other power storage device 2 sets its own device as the slave device. Set to.

したがって、蓄電装置2によって設定部6の機能が実現されるので、設定部を別に設ける必要がなく、システム構成の簡略化を図ることができる。 Therefore, since the function of the setting unit 6 is realized by the power storage device 2, it is not necessary to separately provide the setting unit, and the system configuration can be simplified.

また、スレーブ装置のパワーコンディショナ2bは、総負荷電流を複数の蓄電装置2の台数で除した値を目標電流とすることが好ましい。 Further, the power conditioner 2b of the slave device preferably has a value obtained by dividing the total load current by the number of the plurality of power storage devices 2 as the target current.

したがって、複数の蓄電装置2のそれぞれの出力の電流値および波形は、ほぼ同じになって、各出力はほぼ偏りがない状態となる。 Therefore, the current values and waveforms of the respective outputs of the plurality of power storage devices 2 are substantially the same, and the respective outputs are in a state of being substantially unbiased.

また、蓄電装置21,22,23のそれぞれの制御部2dは、上述のように、通信部2cを介して他の蓄電装置2との間で、残容量データの授受を定期的に行っている。そこで、マスター装置21の制御部2dは、自装置およびスレーブ装置22,23の各残容量データに基づいて、スレーブ装置22,23の各目標電流に重み付けをするための重み付け係数を導出する。 Further, as described above, each of the control units 2d of the power storage devices 21, 22, and 23 periodically exchanges the remaining capacity data with and from the other power storage devices 2 via the communication unit 2c. .. Therefore, the control unit 2d of the master device 21 derives a weighting coefficient for weighting each target current of the slave devices 22 and 23 based on the remaining capacitance data of the own device and the slave devices 22 and 23.

具体的に、マスター装置21の制御部2dは、自装置およびスレーブ装置22,23の各残容量データに基づいて、自装置の残容量に対するスレーブ装置22,23の各残容量の比[スレーブ装置の残容量/マスター装置の残容量]を、重み付け係数αとして求める。すなわち、スレーブ装置22の重み付け係数α2は、[スレーブ装置22の残容量/マスター装置21の残容量]となる。スレーブ装置23の重み付け係数α3は、[スレーブ装置23の残容量/マスター装置21の残容量]となる。そして、マスター装置21の制御部2dは、重み付け係数α2のデータをスレーブ装置22へ送信し、重み付け係数α3のデータをスレーブ装置23へ送信する。 Specifically, the control unit 2d of the master device 21 determines the ratio of the remaining capacity of the slave devices 22 and 23 to the remaining capacity of the own device based on the remaining capacity data of the own device and the slave devices 22 and 23 [slave device]. Remaining capacity of / Master device] is obtained as a weighting coefficient α. That is, the weighting coefficient α2 of the slave device 22 is [remaining capacity of the slave device 22 / remaining capacity of the master device 21]. The weighting coefficient α3 of the slave device 23 is [remaining capacity of the slave device 23 / remaining capacity of the master device 21]. Then, the control unit 2d of the master device 21 transmits the data of the weighting coefficient α2 to the slave device 22, and transmits the data of the weighting coefficient α3 to the slave device 23.

スレーブ装置22の制御部2dは、総負荷電流I0を蓄電装置2の台数で除した値に重み付け係数α2を乗算した結果を、目標電流に設定する。また、スレーブ装置23の制御部2dは、総負荷電流I0を蓄電装置2の台数で除した値に重み付け係数α3を乗算した結果を、目標電流に設定する。 The control unit 2d of the slave device 22 sets the target current as the result of multiplying the value obtained by dividing the total load current I0 by the number of power storage devices 2 by the weighting coefficient α2. Further, the control unit 2d of the slave device 23 sets the result of multiplying the value obtained by dividing the total load current I0 by the number of power storage devices 2 by the weighting coefficient α3 as the target current.

すなわち、スレーブ装置は、自装置が有する蓄電池2aの残容量に関するデータである残容量データをマスター装置へ送信する。マスター装置は、スレーブ装置の残容量データと自装置の残容量データとに基づいて、残容量が多いほど高い値となる係数(重み付け係数)を蓄電装置2毎に設定して、スレーブ装置のそれぞれへ対応する係数のデータを送信する。スレーブ装置のパワーコンディショナ2bは、総負荷電流を複数の蓄電装置2の台数で除した値に係数を乗算した値を目標電流とする。 That is, the slave device transmits the remaining capacity data, which is the data related to the remaining capacity of the storage battery 2a of the own device, to the master device. Based on the remaining capacity data of the slave device and the remaining capacity data of the own device, the master device sets a coefficient (weighting coefficient) that becomes higher as the remaining capacity increases for each power storage device 2, and each of the slave devices Send the data of the corresponding coefficient to. The power conditioner 2b of the slave device sets the target current as a value obtained by multiplying the total load current by the number of the plurality of power storage devices 2 by a coefficient.

すなわち、残容量が多い蓄電装置2から供給される自立電流が多くなり、残容量が少ない蓄電装置2から供給される自立電流が少なくなる。したがって、蓄電システムは、複数の蓄電装置2のそれぞれが出力する交流電力の偏りを抑制でき、且つ蓄電装置2毎の残容量に応じた電流負担として、各蓄電装置2の蓄電池2aの残容量の均等化を図ることができる。 That is, the self-sustaining current supplied from the power storage device 2 having a large remaining capacity increases, and the self-sustaining current supplied from the power storage device 2 having a small remaining capacity decreases. Therefore, the power storage system can suppress the bias of the AC power output by each of the plurality of power storage devices 2, and the remaining capacity of the storage battery 2a of each power storage device 2 is set as the current burden according to the remaining capacity of each power storage device 2. Equalization can be achieved.

また、蓄電システムは、図6に示すように、蓄電装置2とは別に設定部6Aを備えてもよい。この場合、設定部6Aは、複数の蓄電装置2のそれぞれから残容量データを定期的に取得し、蓄電池2aの残容量が最も多い蓄電装置2をマスター装置とし、他の蓄電装置2をスレーブ装置とする。設定部6Aは、複数の蓄電装置2のそれぞれに対して、マスター装置の設定指示またはスレーブ装置の設定指示を送信する。蓄電装置2の制御部2dは、設定指示に応じて、自装置をマスター装置またはスレーブ装置に設定する。 Further, as shown in FIG. 6, the power storage system may include a setting unit 6A separately from the power storage device 2. In this case, the setting unit 6A periodically acquires the remaining capacity data from each of the plurality of power storage devices 2, the power storage device 2 having the largest remaining capacity of the storage battery 2a is used as the master device, and the other power storage devices 2 are slave devices. And. The setting unit 6A transmits a setting instruction of the master device or a setting instruction of the slave device to each of the plurality of power storage devices 2. The control unit 2d of the power storage device 2 sets its own device as a master device or a slave device in response to a setting instruction.

また、上述の蓄電装置2は、本実施形態の蓄電システムで用いられることを特徴としている。したがって、蓄電装置2も、自立運転する複数の蓄電装置2のそれぞれの出力が並列接続している場合に、複数の蓄電装置2のそれぞれの負担の程度の偏りを抑制することができる。 Further, the above-mentioned power storage device 2 is characterized in that it is used in the power storage system of the present embodiment. Therefore, the power storage device 2 can also suppress a bias in the degree of burden on each of the plurality of power storage devices 2 when the outputs of the plurality of power storage devices 2 that operate independently are connected in parallel.

また、上述の蓄電装置の運転方法は、蓄電システムに用いられる蓄電装置2の運転方法である。蓄電システムは、蓄電池2a、蓄電池2aの直流電力を交流電力に変換して出力するパワーコンディショナ2bを有して、連系運転と自立運転とを切り替えることができる複数の蓄電装置2を備える。自立運転時における複数の蓄電装置2の各出力は、負荷(自立負荷72)が接続された電路間に並列接続されている。そして、複数の蓄電装置2のうちいずれか1台の蓄電装置2がマスター装置となり、他の蓄電装置2がスレーブ装置となる。マスター装置のパワーコンディショナ2bは、出力電圧を目標電圧に制御する電圧制御を行う。スレーブ装置のパワーコンディショナ2bは、負荷に供給されている総負荷電流と蓄電装置2の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行う。 Further, the above-mentioned operation method of the power storage device is an operation method of the power storage device 2 used in the power storage system. The power storage system includes a storage battery 2a, a power conditioner 2b that converts the DC power of the storage battery 2a into AC power and outputs the power conditioner 2b, and includes a plurality of power storage devices 2 capable of switching between interconnection operation and independent operation. Each output of the plurality of power storage devices 2 during the self-sustaining operation is connected in parallel between the electric circuits to which the load (self-sustaining load 72) is connected. Then, any one of the plurality of power storage devices 2 becomes the master device, and the other power storage device 2 becomes the slave device. The power conditioner 2b of the master device performs voltage control for controlling the output voltage to the target voltage. The power conditioner 2b of the slave device performs current control for controlling the output current to a target current determined based on the total load current supplied to the load and the number of power storage devices 2.

したがって、この蓄電装置の運転方法も、自立運転する複数の蓄電装置2のそれぞれの出力が並列接続している場合に、複数の蓄電装置2のそれぞれの負担の程度の偏りを抑制することができる。 Therefore, this method of operating the power storage device can also suppress a bias in the degree of burden on each of the plurality of power storage devices 2 when the outputs of the plurality of power storage devices 2 that operate independently are connected in parallel. ..

また、蓄電装置2は、コンピュータを搭載しており、このコンピュータがプログラムを実行することによって、上述の蓄電装置2の制御部2dの機能が実現されている。コンピュータは、プログラムを実行するプロセッサを備えたデバイスと、他の装置との間でデータを授受するためのインターフェイス用のデバイスと、データを記憶するための記憶用のデバイスとを主な構成要素として備える。プロセッサを備えたデバイスは、半導体メモリと別体であるCPU(Central Processing Unit)またはMPU(Micro Processing Unit)のほか、半導体メモリを一体に備えるマイコンのいずれであってもよい。記憶用のデバイスは、半導体メモリのようにアクセス時間が短い記憶装置と、ハードディスク装置のような大容量の記憶装置とが併用される。 Further, the power storage device 2 is equipped with a computer, and the function of the control unit 2d of the power storage device 2 described above is realized by executing the program by the computer. A computer is mainly composed of a device having a processor for executing a program, a device for an interface for exchanging data between other devices, and a device for storing data. Be prepared. The device provided with the processor may be either a CPU (Central Processing Unit) or MPU (Micro Processing Unit) that is separate from the semiconductor memory, or a microcomputer that is integrally provided with the semiconductor memory. As the storage device, a storage device having a short access time such as a semiconductor memory and a large-capacity storage device such as a hard disk device are used in combination.

プログラムの提供形態としては、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。 The program is provided in a form in which a computer-readable ROM (Read Only Memory), a form in which the program is stored in advance in a recording medium such as an optical disk, a form in which the program is supplied to the recording medium via a wide area communication network including the Internet, etc. There is.

なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 The above-described embodiment is an example of the present invention. Therefore, the present invention is not limited to the above-described embodiment, and even if it is not the embodiment, it varies depending on the design and the like as long as it does not deviate from the technical idea of the present invention. Of course, it is possible to change.

1 分電盤
2(21,22,23) 蓄電装置
2a 蓄電池
2b パワーコンディショナ
2c 通信部
2d 制御部
2e データ取得部
2f 連系接続部
2g 自立接続部
3 切替盤
4 コントローラ
51,52,53 電流センサ
6 設定部
71 系統負荷
72 自立負荷
81 幹線電路
82 分岐電路
83 交流電路
84 交流電路
85 自立電路
1 Distribution board 2 (21, 22, 23) Power storage device 2a Storage battery 2b Power conditioner 2c Communication unit 2d Control unit 2e Data acquisition unit 2f Interconnection connection unit 2g Independent connection unit 3 Switching board 4 Controller 51, 52, 53 Current Sensor 6 Setting unit 71 System load 72 Independent load 81 Main line line 82 Branch line line 83 AC line line 84 AC line line 85 Independent line line

Claims (8)

蓄電池、前記蓄電池の直流電力を交流電力に変換して出力するパワーコンディショナを有して、連系運転と自立運転とを切り替えることができる複数の蓄電装置を備えて、
前記自立運転時における前記複数の蓄電装置の各出力は、負荷が接続された電路間に並列接続されており、
前記複数の蓄電装置のそれぞれが前記自立運転を行う場合、前記複数の蓄電装置のうちいずれか1台の蓄電装置がマスター装置に設定され、且つ他の蓄電装置がスレーブ装置に設定され、
前記マスター装置のパワーコンディショナは、出力電圧を目標電圧に制御する電圧制御を行い、
前記スレーブ装置は、前記負荷に供給されている総負荷電流の測定データを取得するデータ取得部をさらに備えており、前記スレーブ装置のパワーコンディショナは、前記総負荷電流と前記蓄電装置の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行い、
前記マスター装置が前記自立運転を開始して前記電圧制御を行ってから、前記スレーブ装置が前記自立運転を開始して前記電流制御を行う
ことを特徴とする蓄電システム。
It has a storage battery, a power conditioner that converts the DC power of the storage battery into AC power and outputs it, and is equipped with a plurality of power storage devices that can switch between interconnection operation and independent operation.
Each output of the plurality of power storage devices during the self-sustaining operation is connected in parallel between the electric circuits to which the loads are connected.
When each of the plurality of power storage devices performs the self-sustaining operation, any one of the plurality of power storage devices is set as the master device, and the other power storage device is set as the slave device.
The power conditioner of the master device performs voltage control for controlling the output voltage to the target voltage.
The slave device further includes a data acquisition unit that acquires measurement data of the total load current supplied to the load, and the power conditioner of the slave device includes the total load current and the number of power storage devices. There line current control for controlling the output current to the determined target current on the basis of,
A power storage system characterized in that after the master device starts the self-sustaining operation and performs the voltage control, the slave device starts the self-sustaining operation and performs the current control .
前記複数の蓄電装置のうち、蓄電池の残容量が最も多い蓄電装置が前記マスター装置となることを特徴とする請求項1記載の蓄電システム。 The power storage system according to claim 1, wherein the power storage device having the largest remaining capacity of the storage battery is the master device among the plurality of power storage devices. 前記複数の蓄電装置のそれぞれは、他の蓄電装置との間で通信を行うことができる通信部をさらに備えることを特徴とする請求項1または2記載の蓄電システム。 The power storage system according to claim 1 or 2, wherein each of the plurality of power storage devices further includes a communication unit capable of communicating with another power storage device. 前記複数の蓄電装置のそれぞれは、自装置の蓄電池の残容量のデータを他の蓄電装置へ送信し、前記複数の蓄電装置のそれぞれの蓄電池の残容量に基づいて、自装置を前記マスター装置または前記スレーブ装置に設定する制御部をさらに備えており、
前記複数の蓄電装置のうち、蓄電池の残容量が最も多い蓄電装置の制御部が自装置を前記マスター装置に設定し、他の蓄電装置の制御部が自装置を前記スレーブ装置に設定する
ことを特徴とする請求項3記載の蓄電システム。
Each of the plurality of power storage devices transmits data of the remaining capacity of the storage battery of the own device to another power storage device, and based on the remaining capacity of each storage battery of the plurality of power storage devices, the own device is used as the master device or It further includes a control unit to be set in the slave device.
Among the plurality of power storage devices, the control unit of the power storage device having the largest remaining capacity of the storage battery sets its own device as the master device, and the control unit of the other power storage device sets its own device as the slave device. The power storage system according to claim 3, which is characterized.
前記スレーブ装置のパワーコンディショナは、前記総負荷電流を前記複数の蓄電装置の台数で除した値を目標電流とすることを特徴とする請求項1乃至4いずれか一項に記載の蓄電システム。 The power storage system according to any one of claims 1 to 4, wherein the power conditioner of the slave device has a value obtained by dividing the total load current by the number of the plurality of power storage devices as a target current. 前記スレーブ装置は、自装置が有する前記蓄電池の残容量に関するデータである残容量データを前記マスター装置へ送信し、
前記マスター装置は、前記スレーブ装置の前記残容量データと自装置の残容量データとに基づいて、残容量が多いほど高い値となる係数を前記蓄電装置毎に設定して、前記スレーブ装置のそれぞれへ対応する前記係数のデータを送信し、
前記スレーブ装置のパワーコンディショナは、前記総負荷電流を前記複数の蓄電装置の台数で除した値に前記係数を乗算した値を前記目標電流とする
ことを特徴とする請求項3または4記載の蓄電システム。
The slave device transmits the remaining capacity data, which is data related to the remaining capacity of the storage battery owned by the own device, to the master device.
Based on the remaining capacity data of the slave device and the remaining capacity data of the own device, the master device sets a coefficient that becomes higher as the remaining capacity increases for each power storage device, and each of the slave devices Send the data of the coefficient corresponding to
The power conditioner of the slave device according to claim 3 or 4, wherein the target current is a value obtained by multiplying the total load current by the number of the plurality of power storage devices by the coefficient. Power storage system.
請求項1乃至6いずれか一項に記載の蓄電システムで用いられることを特徴とする蓄電装置。 A power storage device used in the power storage system according to any one of claims 1 to 6. 蓄電池、前記蓄電池の直流電力を交流電力に変換して出力するパワーコンディショナを有して、連系運転と自立運転とを切り替えることができる複数の蓄電装置を備える蓄電システムに用いられる蓄電装置の運転方法であって、
前記自立運転時における前記複数の蓄電装置の各出力は、負荷が接続された電路間に並
列接続されており、
前記複数の蓄電装置のうちいずれか1台の蓄電装置がマスター装置となり、他の蓄電装置がスレーブ装置となって、
前記マスター装置のパワーコンディショナは、出力電圧を目標電圧に制御する電圧制御を行い、
前記スレーブ装置のパワーコンディショナは、前記負荷に供給されている総負荷電流と前記蓄電装置の台数とに基づいて決定された目標電流に出力電流を制御する電流制御を行い、
前記マスター装置が前記自立運転を開始して前記電圧制御を行ってから、前記スレーブ装置が前記自立運転を開始して前記電流制御を行う
ことを特徴とする蓄電装置の運転方法。
A storage battery, a power storage device used in a power storage system having a power conditioner that converts the DC power of the storage battery into AC power and outputs the power conditioner, and has a plurality of power storage devices capable of switching between interconnection operation and independent operation. It ’s a driving method,
Each output of the plurality of power storage devices during the self-sustaining operation is connected in parallel between the electric circuits to which the loads are connected.
One of the plurality of power storage devices serves as a master device, and the other power storage device serves as a slave device.
The power conditioner of the master device performs voltage control for controlling the output voltage to the target voltage.
The power conditioner of the slave device have line current control for controlling the output current to the determined target current on the basis of the total load current supplied to the load and the number of said power storage device,
A method of operating a power storage device, wherein the master device starts the self-sustaining operation to perform the voltage control, and then the slave device starts the self-sustaining operation to perform the current control .
JP2015119778A 2015-06-12 2015-06-12 Power storage system, power storage device, and operation method of power storage device Active JP6771170B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015119778A JP6771170B2 (en) 2015-06-12 2015-06-12 Power storage system, power storage device, and operation method of power storage device
PCT/JP2016/002639 WO2016199377A1 (en) 2015-06-12 2016-06-01 Power storage system, power storage device, and operation method for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119778A JP6771170B2 (en) 2015-06-12 2015-06-12 Power storage system, power storage device, and operation method of power storage device

Publications (2)

Publication Number Publication Date
JP2017005930A JP2017005930A (en) 2017-01-05
JP6771170B2 true JP6771170B2 (en) 2020-10-21

Family

ID=57503703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119778A Active JP6771170B2 (en) 2015-06-12 2015-06-12 Power storage system, power storage device, and operation method of power storage device

Country Status (2)

Country Link
JP (1) JP6771170B2 (en)
WO (1) WO2016199377A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532018B2 (en) * 2015-06-12 2019-06-19 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and method of operating power storage device
JP6875888B2 (en) * 2017-03-13 2021-05-26 清水建設株式会社 Power supply system
JP7314707B2 (en) * 2019-08-09 2023-07-26 住友電気工業株式会社 Electricity storage system and its control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149653A (en) * 1995-11-22 1997-06-06 Nippon Telegr & Teleph Corp <Ntt> Ac power supply, ac power supply dedicated for master unit and ac power supply dedicated for slave unit
JP2008043184A (en) * 2006-05-25 2008-02-21 Ebara Corp Power supply unit, and method for synchronously operating power conversion device
JP5166379B2 (en) * 2009-09-18 2013-03-21 ルネサスエレクトロニクス株式会社 Power coordination system
WO2014020644A1 (en) * 2012-07-31 2014-02-06 三洋電機株式会社 Power supply system, master power storage system, and slave power storage system

Also Published As

Publication number Publication date
WO2016199377A1 (en) 2016-12-15
JP2017005930A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US20210325922A1 (en) Method and apparatus for control of intelligent loads in microgrids
US7825542B2 (en) Electrical power supply apparatus
WO2016199380A1 (en) Power storage system, power storage device, and operation method for power storage device
WO2016121273A1 (en) Power control device, power control method, and power control system
JP6452331B2 (en) Power generation system control method, power generation system, and power generation apparatus
JP2011101529A (en) Power distribution system
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid&#39;s islanding
JP6771170B2 (en) Power storage system, power storage device, and operation method of power storage device
WO2011051765A1 (en) Power source optimisation device for electric power supply system
JP6376997B2 (en) Power system and control method of power system
JP6620937B2 (en) Power storage system, operation method
JP2008072774A (en) Natural energy generated output equalization arrangement
JP7248023B2 (en) Power storage system for independent operation, power storage unit, and control method
JP6252927B2 (en) Power distribution system and wiring apparatus used therefor
TWI552485B (en) Dc backup equipment
WO2016117315A1 (en) Electric power supply device
JP6757700B2 (en) Power conditioner, power storage system with this power conditioner, and wiring method
JP2011083059A (en) Storage battery operation controller of power supply system
JP2019103333A (en) Charger-discharger, control device and charging and discharging system
JP2014239588A (en) Power supply system
JP6368606B2 (en) Distributed power system and power conditioner
JP6694930B2 (en) Power control system control method, power control system, and power control device
JP6136684B2 (en) Power supply system, power supply method, and load conversion device
JP2015204656A (en) Power supply control device and power supply control method
JP6026296B2 (en) Power control apparatus, power control system, and power control method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191021

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200526

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200714

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200818

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R151 Written notification of patent or utility model registration

Ref document number: 6771170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151