WO2014020644A1 - Power supply system, master power storage system, and slave power storage system - Google Patents

Power supply system, master power storage system, and slave power storage system Download PDF

Info

Publication number
WO2014020644A1
WO2014020644A1 PCT/JP2012/004875 JP2012004875W WO2014020644A1 WO 2014020644 A1 WO2014020644 A1 WO 2014020644A1 JP 2012004875 W JP2012004875 W JP 2012004875W WO 2014020644 A1 WO2014020644 A1 WO 2014020644A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage system
power storage
master
slave
load
Prior art date
Application number
PCT/JP2012/004875
Other languages
French (fr)
Japanese (ja)
Inventor
久保 守
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014527822A priority Critical patent/JPWO2014020644A1/en
Priority to PCT/JP2012/004875 priority patent/WO2014020644A1/en
Publication of WO2014020644A1 publication Critical patent/WO2014020644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power supply system including a storage battery, a master power storage system, and a slave power storage system.
  • Storage systems with storage batteries and bidirectional inverters have become widespread.
  • the power storage system is connected to the grid and used for backup and peak shift in the event of a power failure.
  • There are various types of power storage systems ranging from small to large.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for efficiently operating a plurality of power storage systems in a coordinated manner.
  • a power supply system includes a master power storage system that supplies an alternating current having a predetermined voltage and frequency to a load, and at least one that supplies the alternating current to the load based on an instruction from the master power storage system.
  • the master power storage system and the slave power storage system include a storage battery, a power converter disposed between the storage battery and the load, and a control unit that controls each power storage system, and are parallel to the load. It is connected.
  • the control unit of the master power storage system instructs the control unit of the slave power storage system to supply a current value to be supplied to the load based on the current value detected by the current detector.
  • the control unit of the slave power storage system supplies the load with a current value instructed from the master power storage system at the output voltage and the output frequency detected by the voltage detector.
  • a plurality of power storage systems can be efficiently operated in cooperation.
  • FIGS. 10A and 10B are flowcharts for explaining the operation of the power distribution system according to the fourth embodiment of the present invention. It is a figure which shows the structure of the 1st control part which concerns on the modification 2, and a 2nd control part. 10 is a flowchart for explaining a master setting process according to a second modification.
  • Embodiment of this invention is related with the power distribution system which connects a solar cell in parallel with a commercial power system, supplies electric power to a load from both a commercial power source and a solar cell, and charges a storage battery.
  • a power distribution system is suitable for installation in commercial facilities, public facilities, office buildings, condominiums, and the like.
  • the electricity bill at night time is set lower than the electricity bill at daytime.
  • the daytime time zone is defined as 7 o'clock to 23:00
  • the night time zone is defined as 23 o'clock to 7 o'clock on the next day.
  • the power distribution system stores power in the storage battery with electric power from a commercial power source in the night time zone.
  • the electric power stored in the storage battery is used as a backup power source for operating important devices such as elevators and servers when the commercial power supply fails. Furthermore, the storage battery is generally used as a so-called peak shift that lowers the maximum value of the amount of use in commercial power during the daytime by discharging in the daytime hours when the amount of use of electricity is large.
  • the storage battery has two roles: a role as a backup for a specific load and a role as a peak shift.
  • the commercial power supply performs a peak shift while securing a certain amount of power storage in the storage battery at normal times when the commercial power supply is energized.
  • the storage battery is discharged to supply power to a specific load.
  • FIG. 1 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 1 of the present invention.
  • the power distribution system 50 according to the first embodiment is a system for supplying power to the load 70.
  • the power distribution system 50 includes a plurality of power storage systems 10, a first detector 20, a second detector 30, a first switch SW1, a second switch SW2, and a distribution board 40.
  • the power distribution system 50 includes the first power storage system 10 a and the second power storage system 10 b as the plurality of power storage systems 10. Three or more power storage systems 10 may be provided.
  • FIG. 2 is a diagram showing configurations of the first power storage system 10a and the second power storage system 10b included in the power distribution system 50 according to Embodiment 1 of the present invention.
  • the first power storage system 10a and the second power storage system 10b are the same power storage system, and the first power storage system 10a is a master and the second power storage system 10b is a slave.
  • the first power storage system 10a includes a first storage battery 11a, a first bidirectional inverter 12a, a thirteenth switch SW3a, a first solar battery 13a, and a first control device 14a.
  • the first control device 14a includes a first control unit 15a and a first storage battery management unit 16a.
  • the second power storage system 10b includes a second storage battery 11b, a second bidirectional inverter 12b, a 23rd switch SW3b, a second solar battery 13b, and a second control device 14b.
  • the second control device 14b includes a second control unit 15b and a second storage battery management unit 16b.
  • the first solar cell 13a and the second solar cell 13b are an example of a renewable energy power generator.
  • the load 70 is classified into a first type load 71 and a second type load 72. Both are devices driven by AC power.
  • the first type load 71 is a predetermined specific load that can be preferentially received from the first storage battery 11a and the second storage battery 11b during a power failure.
  • the second type load 72 is a general load.
  • the second type load 72 basically cannot receive backup power from the first storage battery 11a and the second storage battery 11b during a power failure. By giving priority to the load 70 in this way, it is possible to effectively use the limited power stored in the storage battery at the time of a power failure.
  • Commercial power supply 60 is a system power supply supplied from an electric power company.
  • the distribution board 40 is connected to the system and is connected to the first bidirectional inverter 12a and the second bidirectional inverter 12b via the first switch SW1. More specifically, the AC side terminal of the first bidirectional inverter 12a is connected to the first node N1 to which the AC side terminal of the second bidirectional inverter 12b is coupled.
  • Distribution board 40 supplies AC power drawn from the system to load 70 on the premises.
  • the distribution board 40 is connected to the generated power from the first solar battery 13a or the second solar battery 13b, the first storage battery 11a or the second storage battery 11b via the first bidirectional inverter 12a or the second bidirectional inverter 12b. Receive discharge power, or any combined power thereof.
  • the distribution board 40 can also synthesize the power and the power from the grid and supply them to the load 70.
  • the first switch SW1 is provided between the distribution board 40 and the first node N1.
  • the second switch SW2 connects the connection destination of the input terminal of the first type load 71 to the second node N2 between the distribution board 40 and the first switch SW1, or between the first node N1 and the first switch SW1. Or switch to the third node N3.
  • the first switch SW1 and the second switch SW2 are controlled by the first controller 15a.
  • the first control unit 15a controls the first switch SW1 to be off and connects the second switch SW2 to the second node N2 side.
  • the first control unit 15a controls the first switch SW1 to be on and the second switch SW2 is connected to the second node N2 side.
  • the first control unit 15a controls the first switch SW1 to turn off and connects the second switch SW2 to the third node N3 side.
  • the first solar cell 13a and the second solar cell 13b are power generation devices that directly convert light energy into electric power using the photovoltaic effect.
  • a silicon solar cell a solar cell using various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the first solar cell 13a is connected to a fourteenth node N4a between the first bidirectional inverter 12a and the first storage battery 11a via a thirteenth switch SW3a.
  • the second solar cell 13b is connected to the 24th node N4b between the second bidirectional inverter 12b and the second storage battery 11b via the 23rd switch SW3b.
  • the first bidirectional inverter 12a and the second bidirectional inverter 12b convert alternating current power input from the alternating current side terminal into direct current power and output the direct current power to the direct current side terminal, and also convert direct current power input from the direct current side terminal to alternating current. Convert to electric power and output to AC side terminal.
  • the AC power input to the AC side terminals of the first bidirectional inverter 12a and the second bidirectional inverter 12b is supplied from the commercial power supply 60.
  • the DC power input to the DC side terminal of the first bidirectional inverter 12a is supplied from the first storage battery 11a or the first solar battery 13a.
  • DC power input to the DC side terminal of the second bidirectional inverter 12b is supplied from the second storage battery 11b or the second solar battery 13b.
  • each of the first bidirectional inverter 12a and the second bidirectional inverter 12b is configured by a three-phase AC inverter, and each switching element constituting the three-phase AC inverter is configured by an IGBT (Insulated Gate Gate Bipolar Transistor).
  • IGBT Insulated Gate Gate Bipolar Transistor
  • the Each three-phase AC inverter is PWM (pulse width modulation) controlled by the first controller 15a and the second controller 15b.
  • the thirteenth switch SW3a is provided between the first solar cell 13a and the fourteenth node N4a and is controlled by the first control unit 15a.
  • the 23rd switch SW3b is provided between the second solar cell 13b and the 24th node N4b and is controlled by the second control unit 15b. Since the power generation amount of the first solar cell 13a and the second solar cell 13b depends on the amount of sunlight, it is difficult to control the power generation amount. By providing the thirteenth switch SW3a and the twenty-third switch SW3b, it is possible to prevent the first storage battery 11a or the second storage battery 11b from being overcharged by the generated power of the first solar battery 13a or the second solar battery 13b.
  • the first storage battery 11a and the second storage battery 11b are secondary batteries that can be repeatedly charged and discharged.
  • the first storage battery 11a and the second storage battery 11b are formed, for example, by combining a plurality of battery packs incorporating a large number of lithium ion battery cells. Specifically, a plurality of battery packs are connected in series and parallel, and connected / disconnected by the switching unit in series.
  • the first storage battery 11a is connected to the 14th node N4a.
  • the first storage battery 11a is basically charged with the system power converted into DC power by the first bidirectional inverter 12a. It is also charged by the power generated by the first solar cell 13a.
  • the first storage battery 11a supplies the load 70 with discharge power converted from DC power to AC power by the first bidirectional inverter 12a. In particular, the power is supplied to the first type load 71 during a power failure.
  • Each battery pack constituting the first storage battery 11a incorporates a current sensor, a voltage sensor, and a temperature sensor (not shown). Each battery pack constantly monitors the current, voltage, and temperature of each built-in battery cell, and transmits monitoring data to the first storage battery management unit 16a.
  • the first storage battery 11a and the first storage battery management unit 16a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. The above description regarding the first storage battery 11a also applies to the second storage battery 11b.
  • the first detector 20 is provided between the first node N1 and the second node N2. That is, it is provided in a path between the commercial power supply 60 and the first bidirectional inverter 12a and the second bidirectional inverter 12b.
  • the first detector 20 includes a current sensor and a voltage sensor.
  • the 1st detector 20 detects the value of the electric current and voltage supplied to the load 70, and notifies the 1st control part 15a. At the time of a power failure, the current and voltage values supplied to the first type load 71 are detected and notified to the first control unit 15a.
  • the second detector 30 is provided between the AC terminal of the second bidirectional inverter 12b and the first node N1.
  • the second detector 30 includes a current sensor and a voltage sensor.
  • the second detector 30 detects the value of the current flowing into the first node N1 from the second bidirectional inverter 12b and notifies the second controller 15b.
  • the voltage value of the first node N1 is detected and notified to the second control unit 15b.
  • the first detector 20 and the first controller 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicated between them.
  • the second detector 30 and the second controller 15b are also connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicated between them.
  • both the first detector 20 and the second detector 30 may include voltage sensors, and either one may be used. In that case, the detector including the voltage sensor notifies the detected voltage value to both the first control unit 15a and the second control unit 15b.
  • the first storage battery management unit 16a performs charge / discharge control of the first storage battery 11a based on the charge / discharge command and the monitoring data received from the first storage battery 11a.
  • the first storage battery management unit 16a instructs the switching unit of the first storage battery 11a to connect the battery pack and the bus connected to the first bidirectional inverter 12a.
  • the first controller 15a is instructed to cause the first bidirectional inverter 12a to perform AC-DC conversion.
  • the first storage battery management unit 16a instructs the switching unit to connect the battery pack and the bus.
  • the first control unit 15a is instructed to cause the first bidirectional inverter 12a to perform DC-AC conversion.
  • the first storage battery management unit 16a and the first control unit 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them.
  • the above description regarding the first storage battery management unit 16a also applies to the second storage battery management unit 16b.
  • the first storage battery management unit 16a and the second storage battery management unit 16b are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. Ethernet (registered trademark) can be used for this optical communication.
  • the 1st control part 15a can communicate with the 2nd control part 15b via the 1st storage battery management part 16a and the 2nd storage battery management part 16b.
  • the first bidirectional inverter 12a and the first control unit 15a constitute a bidirectional power conditioner.
  • the second bidirectional inverter 12b and the second control unit 15b also constitute a bidirectional power conditioner.
  • the commercial power supply 60 When the commercial power supply 60 is energized, the first bidirectional inverter 12a and the second bidirectional inverter 12b operate at a frequency synchronized with the frequency of the commercial power supply 60 (system linkage operation), and the commercial power supply 60 is in a power failure. Operates at a frequency asynchronous with the frequency of the commercial power source 60 (independent operation).
  • the first control unit 15a controls the entire power distribution system 50 including the first power storage system 10a and the second power storage system 10b.
  • the second control unit 15b controls the second power storage system 10b.
  • the first controller 15a selects one of the grid interconnection operation mode and the independent operation mode when supplying power to the load 70 from the first solar cell 13a and / or the first storage battery 11a.
  • the first solar battery 13a and / or the first storage battery 11a are electrically connected to the commercial power source 60, and the first bidirectional inverter 12a is passing a current synchronized with the commercial power source 60 through the grid.
  • the current flowing through this system is a sine wave having the same frequency as that of the commercial power supply 60 and not including a harmonic current exceeding a specified value, and having a power factor of approximately 1 (the same phase as the voltage of the commercial power supply 60). Current.
  • the first bidirectional inverter 12a supplies power to the first type load 71 with the first solar cell 13a and / or the first storage battery 11a electrically disconnected from the commercial power source 60.
  • the first bidirectional inverter 12a itself generates a sine wave voltage having a prescribed voltage and frequency and having no distortion greater than a prescribed value.
  • the first controller 15a When power is supplied from the first solar cell 13a and / or the first storage battery 11a to the load 70, the first controller 15a operates in the grid connection operation mode when the commercial power source 60 is not out of power. If there is a power failure, operate in autonomous mode.
  • the first control unit 15a controls the first switch SW1 to be on, and controls the connection destination of the second switch SW2 to the second node N2 side.
  • the phase and frequency synchronized with the commercial power source 60 are set in the first bidirectional inverter 12a so as to be linked to the commercial power source 60.
  • the first control unit 15a When operating in the independent operation mode, the first control unit 15a controls the first switch SW1 to be turned off, and controls the connection destination of the second switch SW2 to the third node N3 side. At the same time, a phase and frequency independent of the commercial power source 60 are set in the first bidirectional inverter 12a.
  • the second control unit 15b operates basically in the same manner as the first control unit 15a, but the first switch SW1 and the second switch SW2 are controlled by the master first control unit 15a.
  • the master first control unit 15a controls the cooperative operation of the first power storage system 10a and the second power storage system 10b during a power failure.
  • FIG. 3 is a diagram showing the configuration of the first control unit 15a and the second control unit 15b according to Embodiment 1 of the present invention.
  • the first control unit 15a of the first power storage system 10a set as the master includes a first drive control unit 151a, a first acquisition unit 152a, a first determination unit 153a, a first current value calculation unit 154a, an instruction unit 155a, a target.
  • a value holding unit 158a is provided.
  • the second power storage system 10b set as a slave includes a second drive control unit 151b, a second acquisition unit 152b, a second current value calculation unit 154b, an instruction reception unit 155b, and a target value calculation unit 158b.
  • Each configuration of the first control unit 15a and the second control unit 15b can be realized in hardware by an arbitrary microcomputer, memory, or other LSI, and in software by a program loaded in the memory. Although it is realized, here, functional blocks realized by their cooperation are depicted. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • each component of the first control unit 15a and the second control unit 15b shown in FIG. 3 is necessary for the cooperative operation of the first power storage system 10a and the second power storage system 10b at the time of a power failure, which is noted in this specification. Only the essential components are drawn. Therefore, components for controlling various switches are omitted.
  • the 1st acquisition part 152a acquires the value of the electric current which flows into the 1st type load 71 from the 1st detector 20 at the time of a power failure. Moreover, the 1st acquisition part 152a acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure.
  • the target value holding unit 158a holds the voltage and frequency of the AC power to be output from the first bidirectional inverter 12a when performing a self-sustaining operation at the time of a power failure.
  • the target value holding unit 158a may hold a target voltage value at each sampling point for one cycle in a table, or may hold a mathematical formula for calculating the target voltage value.
  • the sampling point is set, for example, every 15 [kHz].
  • the first drive control unit 151a drives and controls the first bidirectional inverter 12a so that AC power having a preset voltage and frequency is supplied to the system side at the time of a power failure. This voltage and frequency are held in the target value holding unit 158a. In this specification, drive control is performed so that an AC voltage of 200 [V] and 60 [Hz] is output from the AC terminal of the first bidirectional inverter 12a.
  • the first drive control unit 151a adjusts the duty ratio of the drive voltage applied to the gate terminal of each IGBT of the three-phase AC inverter constituting the first bidirectional inverter 12a.
  • the first drive control unit 151a increases the duty ratio of the drive voltage.
  • the first drive control unit 151a decreases the duty ratio of the drive voltage.
  • the first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20 and the target voltage value. The first determination unit 153a compares the calculated output capacity with the rated output capacity of the first bidirectional inverter 12a, and determines whether the former exceeds the latter.
  • the first current value calculation unit 154a should output from the second power storage system 10b to the first node N1 when the calculated output capacity of the first bidirectional inverter 12a exceeds the rated output capacity of the first bidirectional inverter 12a. Calculate the current value.
  • the current of the rated output capacity of the first bidirectional inverter 12a is output from the first power storage system 10a of the master, and the shortage of current is output from the second power storage system 10b of the slave.
  • the first power storage system 10a shares 10 [kVA]
  • the second power storage system 10b shares 5 [kVA].
  • the output capacity determination processing by the first determination unit 153a described above may be skipped. That is, the first current value calculation unit 154a calculates the value of the current to be output from the second power storage system 10b to the first node N1 on the condition that a power failure occurs. When the value of this current becomes negative, the capacity of the first type load 71 is satisfied only by the power supply from the first power storage system 10a.
  • the instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
  • the 2nd acquisition part 152b acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure.
  • the value of the current flowing from the second bidirectional inverter 12b to the first node A1 is acquired from the second detector 30. That is, the value of the output current of the second power storage system 10b is acquired.
  • the second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output an AC voltage synchronized with the voltage detected from the first detector 20 or the second detector 30 in the event of a power failure.
  • the second bidirectional inverter 12b is caused to generate an AC voltage having a phase and frequency synchronized with the phase and frequency of the AC voltage detected from the second detector 30.
  • the phase and frequency can be specified by observing the voltage detected from the first detector 20 or the second detector 30 in time series. For example, by counting the time between zero crossings, the phase and frequency of the AC voltage output from the first bidirectional inverter 12a can be specified.
  • the instruction receiving unit 155b receives a current output command from the instruction unit 155a. At that time, the current value to be shared by the second power storage system 10b is also received. Its value is given as an effective value.
  • the target value calculation unit 158b calculates a target current value at each time based on the value of the current received by the instruction receiving unit 155b and the phase and frequency of the AC voltage described above. The target value calculation unit 158b may calculate a target current value for each sampling point for one cycle to create a target current value table, or may continue to calculate the target current value for each sampling point in real time. Good.
  • the sampling point is set, for example, every 15 [kHz].
  • the second drive control unit 151b is configured so that the current value detected from the second detector 30 at each sampling point matches the target current value of the corresponding sampling point calculated by the target value calculation unit 158b.
  • the bidirectional inverter 12b is driven and controlled.
  • the second drive control unit 151b decreases the duty ratio of the drive voltage for driving the second bidirectional inverter 12b.
  • the second drive controller 151b increases the duty ratio of the drive voltage.
  • a constant current output can be realized by such feedback control.
  • FIG. 4 is a flowchart for explaining the operation of the power distribution system 50 according to the first embodiment of the present invention.
  • the process indicated by the reference sign of step S100 indicates the process of the first power storage system 10a
  • the process indicated by the reference sign of step S200 indicates the process of the second power storage system 10b. .
  • the process shown in the flowchart of FIG. 4 is a process from when a power failure occurs until a state where stable power is supplied to the first type load 71 by the cooperative operation of the first power storage system 10a and the second power storage system 10b. Is shown.
  • the master first drive control unit 151a determines the voltage and frequency in the self-sustaining operation mode (S110). Preset values can be used for the voltage and frequency. In this specification, 200 [V] and 60 [Hz] are used.
  • the first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to supply AC power having the voltage and frequency to the first type load 71 (S120). As a result, power supply to the first type load 71 is started.
  • the first acquisition unit 152a acquires the value of the current flowing from the first detector 20 to the first type load 71 (S130).
  • the first current value calculation unit 154a calculates the difference between the acquired current value and the current value of the rated output capacity of the first bidirectional inverter 12a, and calculates the insufficient current value (S140). .
  • This insufficient current value is a current value that is insufficient when the maximum current is output within the range of the rated output capacity from the first bidirectional inverter 12a at the target voltage value.
  • the capacity of the first type load 71 is large, the output voltage of the first bidirectional inverter 12a decreases.
  • the first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to maintain the output voltage, so that the output current of the first bidirectional inverter 12a increases.
  • the output current exceeds the maximum within the range of the rated output capacity, the current shortage occurs.
  • the instruction unit 155a instructs the second control unit 15b of the slave to give a current output instruction including the calculated insufficient current value (S150).
  • the slave instruction receiving unit 155b acquires a current output instruction from the master instruction unit 155a (S200).
  • the second acquisition unit 152b acquires the value of the voltage applied to the first type load 71 from the first detector 20 or the second detector 30 (S210).
  • the second drive controller 151b drives and controls the second bidirectional inverter 12b so as to output the instructed current with a voltage synchronized with the voltage waveform detected by the first detector 20 or the second detector 30 ( S220).
  • the current from the first power storage system 10 a and the combined current from the second power storage system 10 b are supplied to the first type load 71.
  • the second acquisition unit 152b acquires the value of the current flowing from the second detector 30 into the first node N1 from the second bidirectional inverter 12b (S230).
  • the second drive control unit 151b determines whether or not the acquired current value matches the target current value (S240). If the current value does not match (N in S240), the second bidirectional inverter 12b Is adjusted (S250), and the process proceeds to step S230.
  • the target current value is calculated by the target value calculation unit 158b based on the current value included in the current output instruction and the phase and frequency of the voltage detected by the first detector 20 or the second detector 30. Calculated.
  • the master first acquisition unit 152a is applied to the first type load 71 from the first detector 20 or the second detector 30.
  • the value of the current voltage is acquired (S170).
  • the first determination unit 153a determines whether or not the first type load 71 is satisfied from the voltage value detected by the first detector 20 or the second detector 30 (S180). If the detected voltage value matches the above-mentioned target voltage value, the first type load 71 is satisfied. If the two do not match, the first type load 71 is not satisfied. When the current added from the second power storage system 10b is insufficient, the detected voltage value is lower than the target voltage value.
  • step S180 If the request for the first type load 71 is not satisfied (N in S180), the process proceeds to step S130, and the processes from step S130 to step S170 are repeated.
  • the request for the first type load 71 is satisfied (Y in S180)
  • one unit of the independent operation control at the time of power failure is terminated by cooperation between the first power storage system 10a and the second power storage system 10b at the time of power failure. . Thereafter, each time the capacity of the first type load 71 fluctuates, this independent operation control is repeated.
  • the value of the current that the master first power storage system 10a is insufficient at the time of a power failure is calculated, and the current output of that value is instructed to the slave second power storage system 10b.
  • a some electrical storage system can be efficiently collaborated at the time of a power failure.
  • security is high.
  • a small-sized or medium-sized power storage system can support a small first type load 71 to a large first type load 71. Expansion to an existing power storage system is easy, and the overall scale of the power storage system can be flexibly adjusted.
  • FIG. 5 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 2 of the present invention.
  • the power distribution system 50 according to the second embodiment has a configuration in which a third detector 35 is added to the power distribution system 50 according to the first embodiment.
  • description common to the power distribution system 50 according to Embodiment 1 will be omitted as appropriate, and differences will be described.
  • the third detector 35 is provided between the AC output terminal of the first bidirectional inverter 12a of the first power storage system 10a and the first node N1.
  • the third detector 35 includes a current sensor and a voltage sensor.
  • the third detector 35 detects the value of the current flowing from the first bidirectional inverter 12a into the first node N1, and notifies the first controller 15a.
  • the voltage value of the first node N1 is detected and notified to the first controller 15a.
  • the third detector 35 and the first control unit 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. Note that all of the first detector 20, the second detector 30, and the third detector 35 do not have to include voltage sensors, and any one of them may be provided. For example, when only the 1st detector 20 is provided with a voltage sensor, the 1st detector 20 notifies the value of the detected voltage to both the 1st control part 15a and the 2nd control part 15b.
  • the target value holding unit 158a further holds a current value corresponding to the voltage and frequency of the AC power to be output from the first bidirectional inverter 12a when performing a self-sustained operation during a power failure.
  • the target value holding unit 158a may hold a target current value of each sampling point for one cycle in a table, or may hold a mathematical formula for calculating the target current value.
  • the first drive controller 151a drives the first bidirectional inverter 12a at a constant voltage before instructing the second power storage system 10b to output current, and after instructing the first bidirectional inverter 12a. Is driven at a constant current.
  • the first drive control unit 151a performs the first bidirectional so that the voltage value detected from the first detector 20 or the like at each sampling point matches the target voltage value at the corresponding sampling point.
  • the inverter 12a is driven and controlled.
  • the first drive control unit 151a uses the first bidirectional inverter so that the current value detected from the third detector 35 at each sampling point matches the target current value at the corresponding sampling point. 12a is driven and controlled.
  • the current value calculation unit 154a apportions the value of the current acquired from the first detector 20 by the number of power storage systems 10 connected to the first node N1, and from each power storage system 10. The value of the current to be output to the first node N1 is calculated.
  • M natural number
  • the current value calculation unit 154a sets the current value to 1 / M.
  • the first power storage system 10a and the second power storage system 10b are connected to the first node N1. Therefore, the current value calculation unit 154a halves the current value.
  • the first power storage system 10a shares 7.5 [kVA]
  • the second power storage system 10b shares 7.5 [kVA].
  • the number of power storage systems 10 connected to the first node N1 may be stored in advance in the first control device 14a, or the value of the current to be output from each power storage system 10 to the first node N1. It may be detected when calculating.
  • the first determination unit 153a is not an essential element of the first control unit 15a.
  • the current value calculation unit 154a distributes the value by the number of power storage systems connected to the first node N1.
  • the first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20, and calculates the calculated output capacity and The rated output capacity of the first bidirectional inverter 12a may be compared. Only when the former exceeds the latter, the current value calculation unit 154a performs the above-described distribution process.
  • the instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
  • FIG. 6 is a flowchart for explaining the operation of the power distribution system 50 according to the second embodiment of the present invention.
  • the flowchart in FIG. 6 is different from the flowchart in FIG. 4 in that the processes in steps S140 and S150 are replaced with the processes in steps S141 and S151, respectively, and the processes in steps S161, S162, and S163 are added. is there.
  • step S100 to step S130 in FIG. 6 is the same as those in FIG.
  • the first current value calculation unit 154a apportions the current value acquired from the first detector 20 by the number of power storage systems connected to the first node N1 (S141).
  • the instruction unit 155a instructs the second control unit 15b to give a current output instruction including a current value to be shared by the slave second power storage system 10b (S151).
  • the second value is output so that half of the current value detected by the first detector 20 is output.
  • the control unit 15b is instructed.
  • the processing from step S200 to step S240 is the same as those processing in FIG.
  • the first acquisition unit 152a of the master uses the first bidirectional inverter
  • the value of the current flowing from 12a into the first node N1 is acquired from the third detector 35 (S161).
  • the first drive control unit 151a determines whether or not the acquired current value matches the target current value (S162). If the current value does not match (N in S162), the first bidirectional inverter 12a makes the two match.
  • the drive voltage duty ratio is adjusted (S163).
  • the target current value is held in the target value holding unit 158a. In addition, you may calculate in real time based on numerical formula.
  • the process in step S180 is the same as the process in step S180 in FIG.
  • the value of the current to be supplied to the first type load 71 is apportioned by the number of power storage systems 10 that can supply power to the first type load 71 in the event of a power failure. And the electric current which each should share to each 1st type load 71 is supplied in parallel from each electrical storage system.
  • the usage amount of each storage battery 11 of the plurality of power storage systems 10 included in the power distribution system 50 can be leveled. Therefore, the life of the storage battery 11 of each power storage system 10 can be leveled. Further, it is possible to supply power to the first type load 71 for a long time without switching the power storage system 10. Further, cooperative operation of three or more power storage systems 10 is easy.
  • the power distribution system 50 according to the third embodiment has the same configuration as the power distribution system 50 according to the second embodiment in FIG.
  • description common to the power distribution system 50 according to Embodiment 2 will be omitted as appropriate, and differences will be described.
  • the current value calculation unit 154a determines the current to be output from each power storage system 10 according to the ratio of the remaining capacity in each storage battery 11 of the plurality of power storage systems 10 connected to the first node N1. Calculate the value.
  • the first storage battery management unit 16a acquires the remaining capacity of the first storage battery 11a.
  • the 1st storage battery management part 16a notifies the acquired remaining capacity to the 1st control part 15a.
  • the 2nd storage battery management part 16b acquires the remaining capacity of the 2nd storage battery 11b.
  • the 2nd storage battery management part 16b notifies the acquired remaining capacity to the 1st control part 15a via the 1st storage battery management part 16a.
  • the 1st storage battery management part 16a and the 2nd storage battery management part 16b can represent remaining capacity with SOC (State
  • the current value calculation unit 154a calculates the ratio of the current that should flow from the first power storage system 10a and the current that should flow from the second power storage system 10b based on the SOC ratio between the first storage battery 11a and the second storage battery 11b. For example, when the SOC of the first storage battery 11a is 60% and the SOC of the second storage battery 11b is 30%, the current value calculation unit 154a causes the current to flow from the first power storage system 10a and the current to flow from the second power storage system 10b. The ratio is determined to be 2: 1. In the above example, the first power storage system 10a shares 10 [kVA], and the second power storage system 10b shares 5 [kVA].
  • the first determination unit 153a is not an essential element of the first control unit 15a.
  • the current value calculation unit 154a distributes the value at the remaining capacity ratio.
  • the first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20, and calculates the calculated output capacity and The rated output capacity of the first bidirectional inverter 12a may be compared. Only when the former exceeds the latter, the current value calculation unit 154a performs the above-described distribution process.
  • the instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
  • FIG. 7 is a flowchart for explaining the operation of the power distribution system 50 according to Embodiment 3 of the present invention.
  • the flowchart of FIG. 7 is obtained by adding step S142 and replacing step S141 with step S143, compared to the flowchart of FIG.
  • step S100 to step S130 in FIG. 7 is the same as those in FIG.
  • the storage battery management unit 16 of each power storage system 10 connected to the first node N1 acquires the remaining capacity of the storage battery 11 of each power storage system 10 (S142).
  • the acquired remaining capacity is transmitted to the first control unit 15a.
  • the first current value calculation unit 154a distributes the value of the current detected by the first detector 20 in the ratio of the remaining capacity of each power storage system connected to the first node N1 (S143).
  • the processes from step S151 to step S180 in FIG. 7 are the same as those in FIG.
  • the first type load 71 is supplied according to the ratio of the remaining capacity of the storage battery 11 included in each of the plurality of power storage systems 10 that can supply power to the first type load 71 at the time of a power failure. Distribute the current value to be. Then, a current to be shared is supplied from each power storage system 10 to the first type load 71.
  • the discharge end times of the storage batteries 11 of the plurality of power storage systems 10 included in the power distribution system 50 can be matched. Further, it is possible to supply power to the first type load 71 for a long time without switching the power storage system 10. Further, cooperative operation of three or more power storage systems 10 is easy.
  • FIG. 8 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 4 of the present invention.
  • the power distribution system 50 according to the fourth embodiment is configured such that the first power storage system 10a and the second power storage system 10b of the power distribution system 50 according to the first embodiment are not connected by a communication line.
  • description common to the power distribution system 50 according to Embodiment 1 will be omitted as appropriate, and differences will be described.
  • FIG. 9 is a diagram showing the configuration of the first control unit 15a and the second control unit 15b according to Embodiment 4 of the present invention.
  • the first control unit 15a of the first power storage system 10a set as the master includes a first drive control unit 151a, a first acquisition unit 152a, and a target value holding unit 158a.
  • the second power storage system 10b set as a slave includes a second drive control unit 151b, a second acquisition unit 152b, a second determination unit 153b, a second current value calculation unit 154b, a master information holding unit 157b, and a target value calculation unit 158b. Is provided.
  • a current output instruction is not notified from the master first control unit 15a to the slave second control unit 15b in the event of a power failure. Therefore, the instruction unit 155a for notifying the instruction and the first current value calculation unit 154a for calculating the value of the current to be output from the slave second power storage system 10b are omitted. Further, in the fourth embodiment, since the master does not determine whether or not the capacity of the first type load 71 is satisfied only by the power from the first power storage system 10a, the first determination unit 153a is also omitted. In the fourth embodiment, this determination is performed by the slave second power storage system 10b. The operations of the first drive control unit 151a, the first acquisition unit 152a, and the target value holding unit 158a are the same as those in the first embodiment.
  • a second determination unit 153b, a second current value calculation unit 154b, and a master information holding unit 157b are added to the slave second control unit 15b.
  • the 2nd acquisition part 152b acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure. Further, the value of the current flowing through the first type load 71 is acquired from the first detector 20. The value of the current flowing from the second bidirectional inverter 12b to the first node A1 is acquired from the second detector 30. That is, the value of the output current of the second power storage system 10b is acquired.
  • the master information holding unit 157b has the rated output capacity of the first power storage system 10a set as the master, the voltage and frequency values used in the self-sustaining operation at the time of a power failure, and the rated output in the case of being driven by the voltage value Holds the maximum output current that satisfies the capacity.
  • the second determination unit 153b only supplies power from the first power storage system 10a to the first type load 71 based on the voltage or current value acquired from the first detector 20, and the first type load 71 It is determined whether the capacity is satisfied. Specifically, when the voltage acquired from the first detector 20 is lower than “the value of the voltage used in the self-sustaining operation at the time of power failure” held in the master information holding unit 157b, or the first detector When the current acquired from 20 exceeds the “maximum output current value” held in the master information holding unit 157b, it is determined that the capacity of the first type load 71 is not satisfied, otherwise the first type load It is determined that the capacity of 71 is satisfied.
  • the second current value calculation unit 154b performs the second current value calculation unit 154b from the second power storage system 10b set as a slave when the power supply from the first power storage system 10a alone does not satisfy the capacity of the first type load 71.
  • the value of the current to be output to one node N1 is calculated.
  • the second current value calculation unit 154b subtracts the value of the maximum output current of the first power storage system 10a from the value of the current acquired from the first detector 20, and from the second power storage system 10b. Calculate the current value to be output.
  • the second drive control unit 151b is configured to output a voltage value acquired from the first detector 20 or the second detector 30 and an AC power synchronized with the frequency from the AC side output terminal at the time of a power failure.
  • the direction inverter 12b is driven and controlled.
  • the second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output the current having the value calculated by the second current value calculation unit 154b to the first node N1.
  • the second drive control unit 151b is configured so that the current value detected from the second detector 30 at each sampling point matches the target current value of the corresponding sampling point calculated by the target value calculation unit 158b.
  • the bidirectional inverter 12b is driven and controlled.
  • Embodiment 4 since the current output instruction is not received from the first control unit 15a, the instruction receiving unit 155b is omitted.
  • FIGS. 10A to 10B are flowcharts for explaining the operation of the power distribution system 50 according to the fourth embodiment of the present invention.
  • the flowchart in FIG. 10A shows the operation of the first power storage system 10a
  • the flowchart in FIG. 10B shows the operation of the second power storage system 10b.
  • the master first drive control unit 151a determines the voltage and frequency in the self-sustaining operation mode (S110).
  • the first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to supply AC power having the voltage and frequency to the first type load 71 (S120).
  • the first drive control unit 151a performs constant voltage driving so as to maintain the voltage.
  • the independent operation start-up process of the master first power storage system 10a is as described above.
  • the second acquisition unit 152b acquires the value of the voltage applied to the first type load 71 from the first detector 20 or the second detector 30 (S300).
  • the second determination unit 153b determines whether or not additional power supply from the slave second power storage system 10b to the first type load 71 is necessary (S310). If not necessary (N in S310), the independent operation start-up process of the slave second power storage system 10b is completed.
  • the second acquisition unit 152b acquires the value of the current flowing through the first type load 71 from the first detector 20 (S320).
  • the second current value calculation unit 154b calculates the difference between the acquired current value and the allowable maximum output current value of the first bidirectional inverter 12a, and calculates the insufficient current value (S330). ).
  • the second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output a calculated current with a voltage synchronized with the voltage waveform detected by the first detector 20 or the second detector 30. (S340). As a result, the current from the first power storage system 10 a and the combined current from the second power storage system 10 b are supplied to the first type load 71.
  • the second acquisition unit 152b acquires the value of the current flowing from the second bidirectional inverter 12b into the first node N1 from the second detector 30 (S350).
  • the second drive control unit 151b determines whether or not the acquired current value matches the target current value (S360). If they do not match (N in S360), the second bidirectional inverter 12b Is adjusted (S370), and the process proceeds to step S350. If they match (Y in S360), the process proceeds to step S300.
  • the master information holding unit 157b holds various pieces of information related to the first power storage system 10a set as the master, but at least the voltage value used in the independent operation at the time of a power failure. It is only necessary to hold it.
  • the 2nd determination part 153b compares the value of the voltage acquired from the 1st detector 20, and the value of the voltage used by the independent operation at the time of the power failure currently hold
  • the second determination unit 153b determines that the capacity of the first type load 71 is not satisfied only by the power supply from the first power storage system 10a, the second determination unit 153b supplies the first type load 71 from the second power storage system 10b.
  • a predetermined current value is set in advance.
  • the value of the current that the slave second power storage system 10b lacks in the event of a power failure is calculated and the current is output autonomously.
  • Both can operate together without communication between the first power storage system 10a and the second power storage system 10b. Therefore, a communication line between the two is not necessary, and wiring can be simplified.
  • the first control unit 15a of the first power storage system 10a can operate in the same manner as before the extension. Therefore, the update of the first control unit 15a at the time of expansion can be omitted.
  • the first power storage system 10a may perform a self-sustained operation at the time of a power failure after the addition of the second power storage system 10b and without being aware of the second power storage system 10b as in the case before the extension.
  • Modification 1 is a modification of the power distribution system 50 according to the first embodiment.
  • the power distribution system 50 according to Embodiment 1 can also employ the configuration shown in FIG. That is, the third detector 35 is provided between the first power storage system 10a and the first node N1. According to the first modification, the first power storage system 10a can also be driven at a constant current after the cooperative operation. Therefore, it becomes easy to change the master of the modified example 2 described later.
  • Modification 2 is a modification applicable to the power distribution system 50 according to the modification 1, the power distribution system 50 according to the second embodiment, or the power distribution system 50 according to the third embodiment.
  • a master can be changed among a plurality of power storage systems 10 included in the power distribution system 50.
  • FIG. 11 is a diagram illustrating a configuration of the first control unit 15a and the second control unit 15b according to the second modification.
  • the master first control unit 15a according to Modification 2 has a configuration in which a master setting unit 156a is added to the configuration of the first control unit 15a illustrated in FIG.
  • the slave second control unit 15b according to Modification 2 is the same as the second control unit 15b illustrated in FIG.
  • the master setting unit 156a refers to the deterioration degree of each storage battery 11 of the plurality of storage systems 10 connected to the first node N1, and sets the storage system 10 including the storage battery 11 that is least deteriorated as a master.
  • the 1st storage battery management part 16a acquires the deterioration degree of the 1st storage battery 11a.
  • the 1st storage battery management part 16a notifies the acquired deterioration degree to the 1st control part 15a.
  • the 2nd storage battery management part 16b acquires the deterioration degree of the 2nd storage battery 11b.
  • the 2nd storage battery management part 16b notifies the acquired deterioration degree to the 1st control part 15a via the 1st storage battery management part 16a.
  • the 1st storage battery management part 16a and the 2nd storage battery management part 16b can represent a deterioration degree by SOH (State
  • the master setting unit 156a sets the larger SOH as the master.
  • FIG. 12 is a flowchart for explaining the master setting process according to the second modification.
  • the storage battery management unit 16 of each power storage system 10 acquires the deterioration degree of each storage battery 11 (S191).
  • the master setting timing can be set, for example, every week, every month, every three months, or the like.
  • the master setting unit 156a sets the power storage system 10 including the storage battery 11 that is least deteriorated as a master (S192).
  • the deterioration degree of the storage batteries 11 of the plurality of power storage systems 10 can be leveled by adding a process for changing the master. This is particularly effective when the usage amount of the storage battery 11 differs greatly between the master and the slave, such as when the slave supplies a current value that is insufficient for the rated output capacity of the master to the load.
  • the circuit configuration shown in FIG. 5 is desirable so that constant current driving can be performed regardless of which of the first power storage system 10a and the second power storage system 10b is a slave.
  • the first control unit 15a and the second control unit 15b shown in FIG. 11 include different components, only the components necessary for the description are described in order to facilitate the explanation of the operation of the master and the slave. This is because it is displayed.
  • the first control unit 15a and the second control unit 15b actually include all the components of the master and the slave so as to be switched to either the master or the slave.
  • the invention according to the present embodiment may be specified by the items described below.
  • a master power storage system that supplies an alternating current of a predetermined voltage and frequency to a load; Based on an instruction from the master power storage system, at least one slave power storage system for supplying an alternating current to the load; A current detector for detecting a current supplied from the master power storage system and the slave power storage system to the load; A voltage detector for detecting an output voltage and an output frequency of the master power storage system;
  • the master power storage system and the slave power storage system include a storage battery, a power converter disposed between the storage battery and the load, and a control unit that controls each power storage system, and are parallel to the load.
  • the control unit of the master power storage system instructs a current value to be supplied to the load by the slave power storage system to the control unit of the slave power storage system based on the current value detected by the current detector,
  • the control unit of the slave power storage system supplies the load with a current value instructed from the master power storage system at the output voltage and the output frequency detected by the voltage detector.
  • the master power storage system and the slave power storage system are connected to a commercial power source, The power according to item 1, wherein the master power storage system determines whether the commercial power source is in an energized state or a power failure state, and determines the predetermined voltage and frequency when it is determined that the commercial power source is in a power failure state. Supply system.
  • the control unit of the master power storage system acquires the degree of deterioration of the storage battery of each of the master power storage system and the slave power storage system connected to the load, and determines the power storage system including the storage battery that is least deteriorated as the master power storage.
  • the power supply system according to item 1 or 2 wherein the power supply system is set as a system, and a power storage system including another storage battery is set as the slave power storage system.
  • a master power storage system of a power supply system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system, A master storage battery, A master power converter disposed between the master storage battery and the load; A master control unit that controls the operation of the master power storage system, The master control unit supplies an alternating current having a predetermined voltage and frequency to the load, and a current value detected by a current detector that detects a current supplied from the master power storage system and the slave power storage system to the load. Based on the above, the slave power storage system instructs the slave power storage system to supply a current value to be supplied to the load.
  • the master control unit calculates a current value to be supplied to the load by the slave power storage system based on a current value detected by the current detector and a current value of a rated output capacity of the master power converter.
  • Item 6 The master power storage system according to Item 5.
  • the master control unit supplies the current of the rated output capacity from the master power converter to the load.
  • Item 6 is characterized in that the current value instructed to the slave power storage system is a difference between the current value detected by the current detector and the current value of the rated output capacity of the master power converter. The master power storage system described in 1.
  • the master control unit divides the current value detected by the current detector by the number of the master power storage system and the slave power storage system connected to the load, and the master power storage system and the slave power storage system respectively. 6.
  • the master control unit acquires remaining capacity data of the master storage battery, acquires remaining capacity data of the storage battery of the slave storage system connected to the load, and stores the remaining capacity data of the master storage battery and the storage battery of the slave storage system. 6.
  • the master control unit A drive control unit that drives and controls the master power converter so as to output AC power of the predetermined voltage and frequency to the load; An acquisition unit for acquiring a current value from the current detector; A current calculation unit for calculating a current value for instructing the slave power storage system; The master power storage system according to any one of items 5 to 9, further comprising: an instruction unit that instructs the slave power storage system to output the calculated current value to the load.
  • a power storage system slave power storage system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system, A slave battery, A slave power converter disposed between the slave storage battery and the load; A slave control unit that controls the operation of the slave power storage system, The slave control unit causes the load to supply a current value instructed from the master power storage system at an output voltage and output frequency detected by a voltage detector that detects an output voltage and an output frequency of the master power storage system.
  • a slave power storage system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system, A slave battery, A slave power converter disposed between the slave storage battery and the load; A slave control unit that controls the operation of the slave power storage system, The slave control unit causes the load to supply a current value instructed from the master power storage system at an output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

This power supply system is equipped with: a master power storage system (10a) for supplying an alternating current having predetermined voltage and frequency to a load (71); at least one slave power storage system (10b) for supplying an alternating current to the load (71) on the basis of an instruction from the master power storage system (10a); current detectors for detecting the currents supplied from the master power storage system (10a) and the slave power storage system (10b) to the load (71); and a voltage detector for detecting an output voltage and an output frequency of the master power storage system (10a). A control unit of the master power storage system (10a) indicates, to a control unit (15b) of the slave power storage system (10b), a value of current to be supplied to the load (71) by the slave power storage system (10b) on the basis of the current values detected by the current detectors.

Description

電力供給システム、マスタ蓄電システム及びスレーブ蓄電システムPower supply system, master power storage system and slave power storage system
 本発明は、蓄電池を備える電力供給システム、マスタ蓄電システム及びスレーブ蓄電システムに関する。 The present invention relates to a power supply system including a storage battery, a master power storage system, and a slave power storage system.
 蓄電池と双方向インバータを備える蓄電システムが普及してきている。当該蓄電システムは系統に接続され、停電時のバックアップやピークシフトに利用される。蓄電システムには小型のものから大型のものまでいろいろな種類がある。 Storage systems with storage batteries and bidirectional inverters have become widespread. The power storage system is connected to the grid and used for backup and peak shift in the event of a power failure. There are various types of power storage systems ranging from small to large.
特開2000-287360号公報JP 2000-287360 A
 既存の蓄電システムに新たに別の蓄電システムを増設する場合や、大規模施設に小型または中型の複数の蓄電システムを導入する場合、複数の蓄電システムを連携して動作させる必要が生じる場合がある。例えば、個々の蓄電システムの定格出力容量を上回る負荷容量が発生した場合、複数の蓄電システムを連携して動作させる必要がある。 When adding another power storage system to an existing power storage system or when introducing multiple small or medium power storage systems in a large-scale facility, it may be necessary to operate the plurality of power storage systems in a coordinated manner. . For example, when a load capacity exceeding the rated output capacity of each power storage system occurs, it is necessary to operate a plurality of power storage systems in cooperation.
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数の蓄電システムを効率的に連携運転させる技術を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a technique for efficiently operating a plurality of power storage systems in a coordinated manner.
 本発明のある態様の電力供給システムは、所定の電圧及び周波数の交流電流を負荷へ供給するマスタ蓄電システムと、前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムと、前記マスタ蓄電システム及び前記スレーブ蓄電システムから前記負荷へ供給される電流を検出する電流検出器と、前記マスタ蓄電システムの出力電圧及び出力周波数を検出する電圧検出器と、備える。前記マスタ蓄電システム及び前記スレーブ蓄電システムは、蓄電池と、前記蓄電池と前記負荷との間に配置された電力変換器と、各蓄電システムを制御する制御部とを含み、前記負荷に対して互いに並列接続されている。前記マスタ蓄電システムの制御部は、前記電流検出器によって検出された電流値に基づき、前記スレーブ蓄電システムの制御部に前記スレーブ蓄電システムが前記負荷に供給すべき電流値を指示する。前記スレーブ蓄電システムの制御部は、前記電圧検出器によって検出された前記出力電圧及び前記出力周波数で、前記マスタ蓄電システムから指示された電流値を前記負荷に供給させる。 A power supply system according to an aspect of the present invention includes a master power storage system that supplies an alternating current having a predetermined voltage and frequency to a load, and at least one that supplies the alternating current to the load based on an instruction from the master power storage system. A slave power storage system; a current detector that detects current supplied from the master power storage system and the slave power storage system to the load; and a voltage detector that detects an output voltage and an output frequency of the master power storage system. The master power storage system and the slave power storage system include a storage battery, a power converter disposed between the storage battery and the load, and a control unit that controls each power storage system, and are parallel to the load. It is connected. The control unit of the master power storage system instructs the control unit of the slave power storage system to supply a current value to be supplied to the load based on the current value detected by the current detector. The control unit of the slave power storage system supplies the load with a current value instructed from the master power storage system at the output voltage and the output frequency detected by the voltage detector.
 本発明によれば、複数の蓄電システムを効率的に連携運転させることができる。 According to the present invention, a plurality of power storage systems can be efficiently operated in cooperation.
本発明の実施の形態1に係る配電システムの構成を示す図である。It is a figure which shows the structure of the power distribution system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る配電システムに含まれる第1蓄電システムおよび第2蓄電システムの構成を示す図である。It is a figure which shows the structure of the 1st electrical storage system and the 2nd electrical storage system which are included in the power distribution system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1制御部、第2制御部の構成を示す図である。It is a figure which shows the structure of the 1st control part which concerns on Embodiment 1 of this invention, and a 2nd control part. 本発明の実施の形態1に係る配電システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the power distribution system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る配電システムの構成を示す図である。It is a figure which shows the structure of the power distribution system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る配電システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the power distribution system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る配電システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the power distribution system which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る配電システムの構成を示す図である。It is a figure which shows the structure of the power distribution system which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る第1制御部、第2制御部の構成を示す図である。It is a figure which shows the structure of the 1st control part which concerns on Embodiment 4 of this invention, and a 2nd control part. 図10(a)-(b)は、本発明の実施の形態4に係る配電システムの動作を説明するためのフローチャートである。FIGS. 10A and 10B are flowcharts for explaining the operation of the power distribution system according to the fourth embodiment of the present invention. 変形例2に係る第1制御部、第2制御部の構成を示す図である。It is a figure which shows the structure of the 1st control part which concerns on the modification 2, and a 2nd control part. 変形例2に係るマスタ設定処理を説明するためのフローチャートである。10 is a flowchart for explaining a master setting process according to a second modification.
 本発明の実施の形態は、太陽電池を商用電力系統と並列に接続し、商用電源および太陽電池の両方から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。このような配電システムは、例えば商業施設、公共施設、オフィスビル、マンションなどへの設置に適している。電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも安く設定される。これらの時間帯の一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。このような低い電気料金を有効に利用するために、配電システムは、夜間の時間帯に、商用電源からの電力によって蓄電池に蓄電する。 Embodiment of this invention is related with the power distribution system which connects a solar cell in parallel with a commercial power system, supplies electric power to a load from both a commercial power source and a solar cell, and charges a storage battery. Such a power distribution system is suitable for installation in commercial facilities, public facilities, office buildings, condominiums, and the like. When the electric power company adopts the electricity bill system by time zone, the electricity bill at night time is set lower than the electricity bill at daytime. As an example of these time zones, the daytime time zone is defined as 7 o'clock to 23:00, and the night time zone is defined as 23 o'clock to 7 o'clock on the next day. In order to effectively use such a low electricity bill, the power distribution system stores power in the storage battery with electric power from a commercial power source in the night time zone.
 蓄電池に蓄えられた電力は、商用電源が停電したときに、エレベータやサーバなどの重要な機器を動作させるためのバックアップ電源として用いられる。さらに蓄電池は、一般に電気の使用量が大きくなる昼間の時間帯において放電することによって、昼間の商用電力における使用量の最大値を下げる、いわゆるピークシフトとしても用いられる。 The electric power stored in the storage battery is used as a backup power source for operating important devices such as elevators and servers when the commercial power supply fails. Furthermore, the storage battery is generally used as a so-called peak shift that lowers the maximum value of the amount of use in commercial power during the daytime by discharging in the daytime hours when the amount of use of electricity is large.
 このように、蓄電池は特定の負荷のバックアップとしての役割と、ピークシフトとしての役割の二つの役割を持つ。実施の形態に係る配電システムは、蓄電池に上述の二つの役割を果たさせるために、商用電源が通電中の通常時には蓄電池に一定の蓄電量を確保しつつピークシフトを実行し、商用電源が停電の場合には、蓄電池を放電して特定の負荷に電力を供給する。 Thus, the storage battery has two roles: a role as a backup for a specific load and a role as a peak shift. In the power distribution system according to the embodiment, in order to cause the storage battery to perform the above-described two roles, the commercial power supply performs a peak shift while securing a certain amount of power storage in the storage battery at normal times when the commercial power supply is energized. In the case of a power failure, the storage battery is discharged to supply power to a specific load.
 図1は、本発明の実施の形態1に係る配電システム50の構成を示す図である。実施の形態1に係る配電システム50は負荷70に電力を供給するためのシステムである。当該配電システム50は、複数の蓄電システム10、第1検出器20、第2検出器30、第1スイッチSW1、第2スイッチSW2、分電盤40を備える。図1に示す例では配電システム50は、複数の蓄電システム10として第1蓄電システム10aおよび第2蓄電システム10bの二つを備える。なお三つ以上の蓄電システム10を備えてもよい。 FIG. 1 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 1 of the present invention. The power distribution system 50 according to the first embodiment is a system for supplying power to the load 70. The power distribution system 50 includes a plurality of power storage systems 10, a first detector 20, a second detector 30, a first switch SW1, a second switch SW2, and a distribution board 40. In the example illustrated in FIG. 1, the power distribution system 50 includes the first power storage system 10 a and the second power storage system 10 b as the plurality of power storage systems 10. Three or more power storage systems 10 may be provided.
 図2は、本発明の実施の形態1に係る配電システム50に含まれる第1蓄電システム10aおよび第2蓄電システム10bの構成を示す図である。以下の説明では第1蓄電システム10aと第2蓄電システム10bは同じ蓄電システムであるとし、第1蓄電システム10aをマスタ、第2蓄電システム10bをスレーブとする。 FIG. 2 is a diagram showing configurations of the first power storage system 10a and the second power storage system 10b included in the power distribution system 50 according to Embodiment 1 of the present invention. In the following description, the first power storage system 10a and the second power storage system 10b are the same power storage system, and the first power storage system 10a is a master and the second power storage system 10b is a slave.
 第1蓄電システム10aは第1蓄電池11a、第1双方向インバータ12a、第13スイッチSW3a、第1太陽電池13a、第1制御装置14aを備える。第1制御装置14aは第1制御部15a、第1蓄電池管理部16aを含む。同様に、第2蓄電システム10bは、第2蓄電池11b、第2双方向インバータ12b、第23スイッチSW3b、第2太陽電池13b、第2制御装置14bを備える。第2制御装置14bは第2制御部15b、第2蓄電池管理部16bを含む。第1太陽電池13aおよび第2太陽電池13bは再生可能エネルギー発電装置の一例である。 The first power storage system 10a includes a first storage battery 11a, a first bidirectional inverter 12a, a thirteenth switch SW3a, a first solar battery 13a, and a first control device 14a. The first control device 14a includes a first control unit 15a and a first storage battery management unit 16a. Similarly, the second power storage system 10b includes a second storage battery 11b, a second bidirectional inverter 12b, a 23rd switch SW3b, a second solar battery 13b, and a second control device 14b. The second control device 14b includes a second control unit 15b and a second storage battery management unit 16b. The first solar cell 13a and the second solar cell 13b are an example of a renewable energy power generator.
 以下、図1、図2を参照しながら実施の形態1に係る配電システム50を詳細に説明する。負荷70は、第1種負荷71および第2種負荷72に分類される。両者とも交流電力で駆動される機器である。第1種負荷71は、停電時に第1蓄電池11aおよび第2蓄電池11bから優先的に電力供給を受けることができる予め設定された特定負荷である。例えばエレベータ、サーバなどが該当する。第2種負荷72は一般負荷である。第2種負荷72は停電時には基本的に、第1蓄電池11aおよび第2蓄電池11bからバックアップ電源の供給を受けることができない。このように負荷70に優先順位をつけることにより、停電時に、蓄電池に蓄積された限られた電力を効果的に使用できる。 Hereinafter, the power distribution system 50 according to the first embodiment will be described in detail with reference to FIGS. 1 and 2. The load 70 is classified into a first type load 71 and a second type load 72. Both are devices driven by AC power. The first type load 71 is a predetermined specific load that can be preferentially received from the first storage battery 11a and the second storage battery 11b during a power failure. For example, elevators and servers are applicable. The second type load 72 is a general load. The second type load 72 basically cannot receive backup power from the first storage battery 11a and the second storage battery 11b during a power failure. By giving priority to the load 70 in this way, it is possible to effectively use the limited power stored in the storage battery at the time of a power failure.
 商用電源60は電力会社から供給される系統電源である。分電盤40は系統に接続されるとともに、第1スイッチSW1を介して第1双方向インバータ12aおよび第2双方向インバータ12bに接続される。より具体的には第1双方向インバータ12aの交流側端子と第2双方向インバータ12bの交流側端子が結合される第1ノードN1に接続される。 Commercial power supply 60 is a system power supply supplied from an electric power company. The distribution board 40 is connected to the system and is connected to the first bidirectional inverter 12a and the second bidirectional inverter 12b via the first switch SW1. More specifically, the AC side terminal of the first bidirectional inverter 12a is connected to the first node N1 to which the AC side terminal of the second bidirectional inverter 12b is coupled.
 分電盤40は系統から引き込んだ交流電力を構内の負荷70に供給する。また分電盤40は、第1双方向インバータ12a若しくは第2双方向インバータ12bを介して第1太陽電池13a若しくは第2太陽電池13bからの発電電力、第1蓄電池11a若しくは第2蓄電池11bからの放電電力、またはそれらの任意の合成電力を受ける。分電盤40は、その電力と系統からの電力を合成して負荷70に供給することもできる。 Distribution board 40 supplies AC power drawn from the system to load 70 on the premises. In addition, the distribution board 40 is connected to the generated power from the first solar battery 13a or the second solar battery 13b, the first storage battery 11a or the second storage battery 11b via the first bidirectional inverter 12a or the second bidirectional inverter 12b. Receive discharge power, or any combined power thereof. The distribution board 40 can also synthesize the power and the power from the grid and supply them to the load 70.
 第1スイッチSW1は、分電盤40と第1ノードN1との間に設けられる。第2スイッチSW2は、第1種負荷71の入力端子の接続先を、分電盤40と第1スイッチSW1の間の第2ノードN2に接続するか、第1ノードN1と第1スイッチSW1の間の第3ノードN3に接続するか切り替える。第1スイッチSW1および第2スイッチSW2は第1制御部15aにより制御される。 The first switch SW1 is provided between the distribution board 40 and the first node N1. The second switch SW2 connects the connection destination of the input terminal of the first type load 71 to the second node N2 between the distribution board 40 and the first switch SW1, or between the first node N1 and the first switch SW1. Or switch to the third node N3. The first switch SW1 and the second switch SW2 are controlled by the first controller 15a.
 負荷70に系統電力のみが供給される場合、第1制御部15aは第1スイッチSW1をオフに制御し、第2スイッチSW2を第2ノードN2側に接続させる。負荷70に系統電力と第1蓄電システム10aおよび/または第2蓄電システム10bからの電力が合成されて供給される場合、第1制御部15aは第1スイッチSW1をオンに制御し、第2スイッチSW2を第2ノードN2側に接続させる。停電時は、第1制御部15aは第1スイッチSW1をオフに制御し、第2スイッチSW2を第3ノードN3側に接続させる。 When only the system power is supplied to the load 70, the first control unit 15a controls the first switch SW1 to be off and connects the second switch SW2 to the second node N2 side. When the grid power and the power from the first power storage system 10a and / or the second power storage system 10b are combined and supplied to the load 70, the first control unit 15a controls the first switch SW1 to be on and the second switch SW2 is connected to the second node N2 side. At the time of a power failure, the first control unit 15a controls the first switch SW1 to turn off and connects the second switch SW2 to the third node N3 side.
 第1太陽電池13aおよび第2太陽電池13bは、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。第1太陽電池13aおよび第2太陽電池13bとして、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)などが使用される。第1太陽電池13aは、第13スイッチSW3aを介して第1双方向インバータ12aと第1蓄電池11aとの間の第14ノードN4aに接続される。第2太陽電池13bは、第23スイッチSW3bを介して第2双方向インバータ12bと第2蓄電池11bとの間の第24ノードN4bに接続される。 The first solar cell 13a and the second solar cell 13b are power generation devices that directly convert light energy into electric power using the photovoltaic effect. As the first solar cell 13a and the second solar cell 13b, a silicon solar cell, a solar cell using various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used. The first solar cell 13a is connected to a fourteenth node N4a between the first bidirectional inverter 12a and the first storage battery 11a via a thirteenth switch SW3a. The second solar cell 13b is connected to the 24th node N4b between the second bidirectional inverter 12b and the second storage battery 11b via the 23rd switch SW3b.
 第1双方向インバータ12aおよび第2双方向インバータ12bは、交流側端子から入力される交流電力を直流電力に変換して直流側端子に出力するとともに、直流側端子から入力される直流電力を交流電力に変換して交流側端子に出力する。第1双方向インバータ12aおよび第2双方向インバータ12bの交流側端子に入力される交流電力は商用電源60から供給される。第1双方向インバータ12aの直流側端子に入力される直流電力は、第1蓄電池11aまたは第1太陽電池13aから供給される。同様に第2双方向インバータ12bの直流側端子に入力される直流電力は、第2蓄電池11bまたは第2太陽電池13bから供給される。 The first bidirectional inverter 12a and the second bidirectional inverter 12b convert alternating current power input from the alternating current side terminal into direct current power and output the direct current power to the direct current side terminal, and also convert direct current power input from the direct current side terminal to alternating current. Convert to electric power and output to AC side terminal. The AC power input to the AC side terminals of the first bidirectional inverter 12a and the second bidirectional inverter 12b is supplied from the commercial power supply 60. The DC power input to the DC side terminal of the first bidirectional inverter 12a is supplied from the first storage battery 11a or the first solar battery 13a. Similarly, DC power input to the DC side terminal of the second bidirectional inverter 12b is supplied from the second storage battery 11b or the second solar battery 13b.
 本実施の形態では第1双方向インバータ12aおよび第2双方向インバータ12bはそれぞれ、三相交流インバータで構成され、三相交流インバータを構成する各スイッチング素子はIGBT(Insulated Gate Bipolar Transistor)で構成される。各三相交流インバータは、第1制御部15aおよび第2制御部15bによりそれぞれPWM(pulse width modulation)制御される。 In the present embodiment, each of the first bidirectional inverter 12a and the second bidirectional inverter 12b is configured by a three-phase AC inverter, and each switching element constituting the three-phase AC inverter is configured by an IGBT (Insulated Gate Gate Bipolar Transistor). The Each three-phase AC inverter is PWM (pulse width modulation) controlled by the first controller 15a and the second controller 15b.
 第13スイッチSW3aは、第1太陽電池13aと第14ノードN4aとの間に設けられ、第1制御部15aにより制御される。第23スイッチSW3bは、第2太陽電池13bと第24ノードN4bとの間に設けられ、第2制御部15bにより制御される。第1太陽電池13aおよび第2太陽電池13bの発電量は太陽光の量によって左右されるため、発電量を制御することは困難である。第13スイッチSW3aおよび第23スイッチSW3bを設けることにより、第1太陽電池13aまたは第2太陽電池13bの発電電力により第1蓄電池11aまたは第2蓄電池11bが過充電されることを防止できる。 The thirteenth switch SW3a is provided between the first solar cell 13a and the fourteenth node N4a and is controlled by the first control unit 15a. The 23rd switch SW3b is provided between the second solar cell 13b and the 24th node N4b and is controlled by the second control unit 15b. Since the power generation amount of the first solar cell 13a and the second solar cell 13b depends on the amount of sunlight, it is difficult to control the power generation amount. By providing the thirteenth switch SW3a and the twenty-third switch SW3b, it is possible to prevent the first storage battery 11a or the second storage battery 11b from being overcharged by the generated power of the first solar battery 13a or the second solar battery 13b.
 第1蓄電池11aおよび第2蓄電池11bは、充放電自在で繰り返し使用できる二次電池である。第1蓄電池11aおよび第2蓄電池11bは例えば、多数のリチウムイオン電池セルを内蔵する電池パックが複数組み合わされて形成される。具体的には複数の電池パックは直並列接続され、直列単位でスイッチングユニットにより接続/切断制御される。 The first storage battery 11a and the second storage battery 11b are secondary batteries that can be repeatedly charged and discharged. The first storage battery 11a and the second storage battery 11b are formed, for example, by combining a plurality of battery packs incorporating a large number of lithium ion battery cells. Specifically, a plurality of battery packs are connected in series and parallel, and connected / disconnected by the switching unit in series.
 第1蓄電池11aは第14ノードN4aに接続される。第1蓄電池11aは基本的に、第1双方向インバータ12aによって直流電力に変換された系統電力によって充電される。また第1太陽電池13aが発電した電力によっても充電される。第1蓄電池11aは、第1双方向インバータ12aによって直流電力から交流電力に変換された放電電力を負荷70に供給する。特に停電時、第1種負荷71に供給する。 The first storage battery 11a is connected to the 14th node N4a. The first storage battery 11a is basically charged with the system power converted into DC power by the first bidirectional inverter 12a. It is also charged by the power generated by the first solar cell 13a. The first storage battery 11a supplies the load 70 with discharge power converted from DC power to AC power by the first bidirectional inverter 12a. In particular, the power is supplied to the first type load 71 during a power failure.
 第1蓄電池11aを構成する各電池パックは、図示しない電流センサ、電圧センサ、温度センサを内蔵する。各電池パックは、内蔵する各電池セルの電流、電圧、温度を常時監視し、監視データを第1蓄電池管理部16aに送信する。第1蓄電池11aと第1蓄電池管理部16aは、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。以上の第1蓄電池11aに関する説明は、第2蓄電池11bにもあてはまる。 Each battery pack constituting the first storage battery 11a incorporates a current sensor, a voltage sensor, and a temperature sensor (not shown). Each battery pack constantly monitors the current, voltage, and temperature of each built-in battery cell, and transmits monitoring data to the first storage battery management unit 16a. The first storage battery 11a and the first storage battery management unit 16a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. The above description regarding the first storage battery 11a also applies to the second storage battery 11b.
 第1検出器20は、第1ノードN1と第2ノードN2の間に設けられる。即ち、商用電源60と、第1双方向インバータ12aおよび第2双方向インバータ12bとの間の経路に設けられる。第1検出器20は電流センサおよび電圧センサを含む。第1検出器20は、負荷70に供給される電流および電圧の値を検出して、第1制御部15aに通知する。停電時は、第1種負荷71に供給される電流および電圧の値を検出して、第1制御部15aに通知する。 The first detector 20 is provided between the first node N1 and the second node N2. That is, it is provided in a path between the commercial power supply 60 and the first bidirectional inverter 12a and the second bidirectional inverter 12b. The first detector 20 includes a current sensor and a voltage sensor. The 1st detector 20 detects the value of the electric current and voltage supplied to the load 70, and notifies the 1st control part 15a. At the time of a power failure, the current and voltage values supplied to the first type load 71 are detected and notified to the first control unit 15a.
 第2検出器30は、第2双方向インバータ12bの交流側端子と第1ノードN1の間に設けられる。第2検出器30は電流センサおよび電圧センサを含む。第2検出器30は、第2双方向インバータ12bから第1ノードN1に流れ込む電流の値を検出して、第2制御部15bに通知する。また第1ノードN1の電圧の値を検出して、第2制御部15bに通知する。 The second detector 30 is provided between the AC terminal of the second bidirectional inverter 12b and the first node N1. The second detector 30 includes a current sensor and a voltage sensor. The second detector 30 detects the value of the current flowing into the first node N1 from the second bidirectional inverter 12b and notifies the second controller 15b. The voltage value of the first node N1 is detected and notified to the second control unit 15b.
 第1検出器20と第1制御部15aは、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。同様に第2検出器30と第2制御部15bも、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。 The first detector 20 and the first controller 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicated between them. Similarly, the second detector 30 and the second controller 15b are also connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicated between them.
 なお第1検出器20および第2検出器30の両方が電圧センサを備える必要はなく、いずれか一方でもよい。その場合、電圧センサを備える検出器は、第1制御部15aおよび第2制御部15bの両方に、検出した電圧の値を通知する。 Note that it is not necessary for both the first detector 20 and the second detector 30 to include voltage sensors, and either one may be used. In that case, the detector including the voltage sensor notifies the detected voltage value to both the first control unit 15a and the second control unit 15b.
 第1蓄電池管理部16aは、充放電指令および第1蓄電池11aから受信される監視データをもとに、第1蓄電池11aの充放電制御を行う。充電指令が発動された場合、第1蓄電池管理部16aは第1蓄電池11aのスイッチングユニットに、電池パックと、第1双方向インバータ12aにつながるバスとを接続させるよう指示する。それとともに第1制御部15aに、第1双方向インバータ12aにAC-DC変換させるよう指示する。放電指令が発動された場合、第1蓄電池管理部16aは当該スイッチングユニットに、電池パックと当該バスとを接続させるよう指示する。それとともに第1制御部15aに、第1双方向インバータ12aにDC-AC変換させるよう指示する。第1蓄電池管理部16aと第1制御部15aは、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。以上の第1蓄電池管理部16aに関する説明は、第2蓄電池管理部16bにもあてはまる。 The first storage battery management unit 16a performs charge / discharge control of the first storage battery 11a based on the charge / discharge command and the monitoring data received from the first storage battery 11a. When the charge command is activated, the first storage battery management unit 16a instructs the switching unit of the first storage battery 11a to connect the battery pack and the bus connected to the first bidirectional inverter 12a. At the same time, the first controller 15a is instructed to cause the first bidirectional inverter 12a to perform AC-DC conversion. When the discharge command is issued, the first storage battery management unit 16a instructs the switching unit to connect the battery pack and the bus. At the same time, the first control unit 15a is instructed to cause the first bidirectional inverter 12a to perform DC-AC conversion. The first storage battery management unit 16a and the first control unit 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. The above description regarding the first storage battery management unit 16a also applies to the second storage battery management unit 16b.
 第1蓄電池管理部16aと第2蓄電池管理部16bは、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。この光通信にはイーサネット(登録商標)を利用できる。第1制御部15aは、第1蓄電池管理部16aおよび第2蓄電池管理部16bを介して第2制御部15bと通信できる。 The first storage battery management unit 16a and the second storage battery management unit 16b are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. Ethernet (registered trademark) can be used for this optical communication. The 1st control part 15a can communicate with the 2nd control part 15b via the 1st storage battery management part 16a and the 2nd storage battery management part 16b.
 第1双方向インバータ12aおよび第1制御部15aは双方向パワーコンディショナを構成する。同様に第2双方向インバータ12bおよび第2制御部15bも双方向パワーコンディショナを構成する。第1双方向インバータ12aおよび第2双方向インバータ12bは、商用電源60が通電中の場合は商用電源60の周波数に同期した周波数で動作し(系統連携運転)、商用電源60が停電中の場合は商用電源60の周波数と非同期の周波数で動作する(自立運転)。 The first bidirectional inverter 12a and the first control unit 15a constitute a bidirectional power conditioner. Similarly, the second bidirectional inverter 12b and the second control unit 15b also constitute a bidirectional power conditioner. When the commercial power supply 60 is energized, the first bidirectional inverter 12a and the second bidirectional inverter 12b operate at a frequency synchronized with the frequency of the commercial power supply 60 (system linkage operation), and the commercial power supply 60 is in a power failure. Operates at a frequency asynchronous with the frequency of the commercial power source 60 (independent operation).
 第1制御部15aは第1蓄電システム10aおよび第2蓄電システム10bを含む配電システム50全体を制御する。第2制御部15bは第2蓄電システム10bを制御する。第1制御部15aは、第1太陽電池13aおよび/または第1蓄電池11aから負荷70に給電する際、系統連系運転モードと自立運転モードのいずれかを選択する。系統連系運転モードは、第1太陽電池13aおよび/または第1蓄電池11aが商用電源60と電気的に接続し、第1双方向インバータ12aが商用電源60に同期した電流を系統に流している運転状態をいう。この系統に流している電流は、商用電源60の周波数と同じ周波数で、規定値以上の高調波電流を含まない正弦波であり、力率が概略1(商用電源60の電圧と同じ位相)の電流である。 The first control unit 15a controls the entire power distribution system 50 including the first power storage system 10a and the second power storage system 10b. The second control unit 15b controls the second power storage system 10b. The first controller 15a selects one of the grid interconnection operation mode and the independent operation mode when supplying power to the load 70 from the first solar cell 13a and / or the first storage battery 11a. In the grid connection operation mode, the first solar battery 13a and / or the first storage battery 11a are electrically connected to the commercial power source 60, and the first bidirectional inverter 12a is passing a current synchronized with the commercial power source 60 through the grid. The driving state. The current flowing through this system is a sine wave having the same frequency as that of the commercial power supply 60 and not including a harmonic current exceeding a specified value, and having a power factor of approximately 1 (the same phase as the voltage of the commercial power supply 60). Current.
 自立運転モードは、第1太陽電池13aおよび/または第1蓄電池11aが商用電源60と電気的に切り離された状態で、第1双方向インバータ12aが第1種負荷71に電力を供給している運転状態をいう。自立運転モードでは、第1双方向インバータ12a自体が規定の電圧および周波数で規定値以上の歪みのない正弦波の電圧を発生させる。 In the self-sustaining operation mode, the first bidirectional inverter 12a supplies power to the first type load 71 with the first solar cell 13a and / or the first storage battery 11a electrically disconnected from the commercial power source 60. The driving state. In the self-sustained operation mode, the first bidirectional inverter 12a itself generates a sine wave voltage having a prescribed voltage and frequency and having no distortion greater than a prescribed value.
 第1制御部15aは、第1太陽電池13aおよび/または第1蓄電池11aから負荷70に給電する際、商用電源60が停電していない場合は系統連系運転モードで運転し、商用電源60が停電している場合は自立運転モードで運転する。系統連系運転モードで運転する場合、第1制御部15aは第1スイッチSW1をオンに制御し、第2スイッチSW2の接続先を第2ノードN2側に制御する。それとともに第1双方向インバータ12aに、商用電源60と連系すべく商用電源60に同期した位相と周波数を設定する。自立運転モードで運転する場合、第1制御部15aは第1スイッチSW1をオフに制御し、第2スイッチSW2の接続先を第3ノードN3側に制御する。それとともに第1双方向インバータ12aに、商用電源60と独立した位相と周波数を設定する。 When power is supplied from the first solar cell 13a and / or the first storage battery 11a to the load 70, the first controller 15a operates in the grid connection operation mode when the commercial power source 60 is not out of power. If there is a power failure, operate in autonomous mode. When operating in the grid connection operation mode, the first control unit 15a controls the first switch SW1 to be on, and controls the connection destination of the second switch SW2 to the second node N2 side. At the same time, the phase and frequency synchronized with the commercial power source 60 are set in the first bidirectional inverter 12a so as to be linked to the commercial power source 60. When operating in the independent operation mode, the first control unit 15a controls the first switch SW1 to be turned off, and controls the connection destination of the second switch SW2 to the third node N3 side. At the same time, a phase and frequency independent of the commercial power source 60 are set in the first bidirectional inverter 12a.
 第2制御部15bも第1制御部15aと基本的に同様に動作するが、第1スイッチSW1および第2スイッチSW2の制御はマスタの第1制御部15aが行う。またマスタの第1制御部15aは、停電時における第1蓄電システム10aと第2蓄電システム10bとの連携運転を制御する。 The second control unit 15b operates basically in the same manner as the first control unit 15a, but the first switch SW1 and the second switch SW2 are controlled by the master first control unit 15a. The master first control unit 15a controls the cooperative operation of the first power storage system 10a and the second power storage system 10b during a power failure.
 図3は、本発明の実施の形態1に係る第1制御部15a、第2制御部15bの構成を示す図である。マスタに設定される第1蓄電システム10aの第1制御部15aは、第1駆動制御部151a、第1取得部152a、第1判定部153a、第1電流値算出部154a、指示部155a、目標値保持部158aを備える。スレーブに設定される第2蓄電システム10bは、第2駆動制御部151b、第2取得部152b、第2電流値算出部154b、指示受領部155b、目標値算出部158bを備える。 FIG. 3 is a diagram showing the configuration of the first control unit 15a and the second control unit 15b according to Embodiment 1 of the present invention. The first control unit 15a of the first power storage system 10a set as the master includes a first drive control unit 151a, a first acquisition unit 152a, a first determination unit 153a, a first current value calculation unit 154a, an instruction unit 155a, a target. A value holding unit 158a is provided. The second power storage system 10b set as a slave includes a second drive control unit 151b, a second acquisition unit 152b, a second current value calculation unit 154b, an instruction reception unit 155b, and a target value calculation unit 158b.
 第1制御部15aおよび第2制御部15bのそれぞれの構成は、ハードウエア的には、任意のマイクロコンピュータ、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 Each configuration of the first control unit 15a and the second control unit 15b can be realized in hardware by an arbitrary microcomputer, memory, or other LSI, and in software by a program loaded in the memory. Although it is realized, here, functional blocks realized by their cooperation are depicted. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
 なお図3に示す第1制御部15aおよび第2制御部15bのそれぞれの構成要素は、本明細書において注目する、停電時における第1蓄電システム10aと第2蓄電システム10bとの連携運転に必要な構成要素のみを描いている。したがって各種スイッチの制御などを行う構成要素は省略されている。 Note that each component of the first control unit 15a and the second control unit 15b shown in FIG. 3 is necessary for the cooperative operation of the first power storage system 10a and the second power storage system 10b at the time of a power failure, which is noted in this specification. Only the essential components are drawn. Therefore, components for controlling various switches are omitted.
 まずマスタの第1制御部15aを説明する。第1取得部152aは停電時、第1種負荷71に流れる電流の値を第1検出器20から取得する。また第1取得部152aは停電時、第1種負荷71に印加される電圧の値を第1検出器20または第2検出器30から取得する。 First, the master first control unit 15a will be described. The 1st acquisition part 152a acquires the value of the electric current which flows into the 1st type load 71 from the 1st detector 20 at the time of a power failure. Moreover, the 1st acquisition part 152a acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure.
 目標値保持部158aは、停電時に自立運転する際に第1双方向インバータ12aから出力されるべき交流電力の電圧および周波数を保持する。目標値保持部158aは、1周期分の各サンプリングポイントの目標電圧値をテーブルで保持してもよいし、その目標電圧値を算出するための数式を保持してもよい。サンプリングポイントは、例えば15[kHz]ごとに設定される。 The target value holding unit 158a holds the voltage and frequency of the AC power to be output from the first bidirectional inverter 12a when performing a self-sustaining operation at the time of a power failure. The target value holding unit 158a may hold a target voltage value at each sampling point for one cycle in a table, or may hold a mathematical formula for calculating the target voltage value. The sampling point is set, for example, every 15 [kHz].
 第1駆動制御部151aは、停電時にて、予め設定された電圧および周波数の交流電力を系統側に供給するよう第1双方向インバータ12aを駆動制御する。この電圧および周波数は目標値保持部158aに保持される。本明細書では200[V]、60[Hz]の交流電圧を、第1双方向インバータ12aの交流側端子から出力するよう駆動制御する。 The first drive control unit 151a drives and controls the first bidirectional inverter 12a so that AC power having a preset voltage and frequency is supplied to the system side at the time of a power failure. This voltage and frequency are held in the target value holding unit 158a. In this specification, drive control is performed so that an AC voltage of 200 [V] and 60 [Hz] is output from the AC terminal of the first bidirectional inverter 12a.
 より具体的には、第1駆動制御部151aは、第1双方向インバータ12aを構成する三相交流インバータの各IGBTのゲート端子に印加する駆動電圧のデューティ比を調整する。停電時にて、第1種負荷71に印加される電圧が低下した場合、第1駆動制御部151aは駆動電圧のデューティ比を上げる。反対に第1種負荷71に印加される電圧が上昇した場合、第1駆動制御部151aは駆動電圧のデューティ比を下げる。このようなフィードバック制御により、第1駆動制御部151aは、第1種負荷71に印加される電圧の値が目標電圧値を維持するよう制御する。 More specifically, the first drive control unit 151a adjusts the duty ratio of the drive voltage applied to the gate terminal of each IGBT of the three-phase AC inverter constituting the first bidirectional inverter 12a. When the voltage applied to the first type load 71 decreases during a power failure, the first drive control unit 151a increases the duty ratio of the drive voltage. Conversely, when the voltage applied to the first type load 71 increases, the first drive control unit 151a decreases the duty ratio of the drive voltage. By such feedback control, the first drive control unit 151a performs control so that the value of the voltage applied to the first type load 71 maintains the target voltage value.
 第1判定部153aは、第1検出器20から取得される電流の値、および目標電圧値をもとに第1双方向インバータ12aの出力容量を算出する。第1判定部153aは、算出した出力容量と第1双方向インバータ12aの定格出力容量を比較し、前者が後者を超えるか否か判定する。 The first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20 and the target voltage value. The first determination unit 153a compares the calculated output capacity with the rated output capacity of the first bidirectional inverter 12a, and determines whether the former exceeds the latter.
 本明細書では第1双方向インバータ12aの定格出力容量を10[kVA]、第1種負荷71の容量を15[kVA]とする例を考える。以下、説明を簡単にするため、第1双方向インバータ12aおよび第1種負荷71の力率を無視して考える。このように本明細書では一つの蓄電システム10からの、定格出力容量の範囲内の電力供給では、第1種負荷71の容量を満たさない例を前提としている。したがって複数の蓄電システム10が連携して、第1種負荷71に電力供給する必要がある。 In this specification, an example in which the rated output capacity of the first bidirectional inverter 12a is 10 [kVA] and the capacity of the first type load 71 is 15 [kVA] is considered. Hereinafter, in order to simplify the explanation, the power factor of the first bidirectional inverter 12a and the first type load 71 is ignored. Thus, in this specification, it is assumed that the power supply within the range of the rated output capacity from one power storage system 10 does not satisfy the capacity of the first type load 71. Therefore, a plurality of power storage systems 10 need to supply power to the first type load 71 in cooperation.
 第1電流値算出部154aは、算出された第1双方向インバータ12aの出力容量が第1双方向インバータ12aの定格出力容量を超えるとき、第2蓄電システム10bから第1ノードN1へ出力すべき電流の値を算出する。本実施の形態ではマスタの第1蓄電システム10aから第1双方向インバータ12aの定格出力容量の電流を出力し、スレーブの第2蓄電システム10bから不足分の電流を出力する。上述の例では第1蓄電システム10aが10[kVA]を分担し、第2蓄電システム10bが5[kVA]を分担する。 The first current value calculation unit 154a should output from the second power storage system 10b to the first node N1 when the calculated output capacity of the first bidirectional inverter 12a exceeds the rated output capacity of the first bidirectional inverter 12a. Calculate the current value. In the present embodiment, the current of the rated output capacity of the first bidirectional inverter 12a is output from the first power storage system 10a of the master, and the shortage of current is output from the second power storage system 10b of the slave. In the above example, the first power storage system 10a shares 10 [kVA], and the second power storage system 10b shares 5 [kVA].
 なお上述の第1判定部153aによる出力容量の判定処理はスキップしてもよい。即ち第1電流値算出部154aは、停電発生を条件に第2蓄電システム10bから第1ノードN1へ出力すべき電流の値を算出する。この電流の値が負になる場合は、第1蓄電システム10aからの電力供給のみで第1種負荷71の容量を満たすことになる。 Note that the output capacity determination processing by the first determination unit 153a described above may be skipped. That is, the first current value calculation unit 154a calculates the value of the current to be output from the second power storage system 10b to the first node N1 on the condition that a power failure occurs. When the value of this current becomes negative, the capacity of the first type load 71 is satisfied only by the power supply from the first power storage system 10a.
 指示部155aは、第1蓄電池管理部16aおよび第2蓄電池管理部16bを介して第2制御部15bに、第1ノードN1に電流を出力するよう指示する。その際、第2蓄電システム10bが分担すべき電流の値を指示する。 The instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
 次にスレーブの第2制御部15bを説明する。第2取得部152bは停電時、第1種負荷71に印加される電圧の値を第1検出器20または第2検出器30から取得する。また第2双方向インバータ12bから第1ノードA1に流れる電流の値を第2検出器30から取得する。即ち、第2蓄電システム10bの出力電流の値を取得する。 Next, the slave second control unit 15b will be described. The 2nd acquisition part 152b acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure. The value of the current flowing from the second bidirectional inverter 12b to the first node A1 is acquired from the second detector 30. That is, the value of the output current of the second power storage system 10b is acquired.
 第2駆動制御部151bは、停電時にて、第1検出器20または第2検出器30から検出される電圧に同期した交流電圧を出力するよう第2双方向インバータ12bを駆動制御する。具体的には第2検出器30から検出される交流電圧の位相および周波数と同期した位相および周波数の交流電圧を第2双方向インバータ12bに生成させる。当該位相および周波数は、第1検出器20または第2検出器30から検出される電圧を時系列に観測することにより特定できる。例えば、ゼロクロス間の時間をカウントすることにより、第1双方向インバータ12aから出力される交流電圧の位相および周波数を特定できる。 The second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output an AC voltage synchronized with the voltage detected from the first detector 20 or the second detector 30 in the event of a power failure. Specifically, the second bidirectional inverter 12b is caused to generate an AC voltage having a phase and frequency synchronized with the phase and frequency of the AC voltage detected from the second detector 30. The phase and frequency can be specified by observing the voltage detected from the first detector 20 or the second detector 30 in time series. For example, by counting the time between zero crossings, the phase and frequency of the AC voltage output from the first bidirectional inverter 12a can be specified.
 指示受領部155bは、指示部155aから電流出力指令を受領する。その際、第2蓄電システム10bが分担すべき電流の値も受領する。その値は実効値で与えられる。目標値算出部158bは、指示受領部155bにより受領された電流の値と、上述の交流電圧の位相および周波数をもとに各時刻の目標電流値を算出する。目標値算出部158bは、1周期分の各サンプリングポイントの目標電流値を算出して、目標電流値テーブルを作成してもよいし、リアルタイムに各サンプリングポイントの目標電流値を算出し続けてもよい。サンプリングポイントは、例えば15[kHz]ごとに設定される。 The instruction receiving unit 155b receives a current output command from the instruction unit 155a. At that time, the current value to be shared by the second power storage system 10b is also received. Its value is given as an effective value. The target value calculation unit 158b calculates a target current value at each time based on the value of the current received by the instruction receiving unit 155b and the phase and frequency of the AC voltage described above. The target value calculation unit 158b may calculate a target current value for each sampling point for one cycle to create a target current value table, or may continue to calculate the target current value for each sampling point in real time. Good. The sampling point is set, for example, every 15 [kHz].
 第2駆動制御部151bは、各サンプリングポイントにおいて第2検出器30から検出される電流の値と、目標値算出部158bにより算出される対応するサンプリングポイントの目標電流値とが一致するよう第2双方向インバータ12bを駆動制御する。前者が後者より大きい場合、第2駆動制御部151bは、第2双方向インバータ12bを駆動するための駆動電圧のデューティ比を下げる。反対に前者が後者より小さい場合、第2駆動制御部151bは当該駆動電圧のデューティ比を上げる。このようなフィードバック制御により定電流出力を実現できる。 The second drive control unit 151b is configured so that the current value detected from the second detector 30 at each sampling point matches the target current value of the corresponding sampling point calculated by the target value calculation unit 158b. The bidirectional inverter 12b is driven and controlled. When the former is larger than the latter, the second drive control unit 151b decreases the duty ratio of the drive voltage for driving the second bidirectional inverter 12b. On the other hand, when the former is smaller than the latter, the second drive controller 151b increases the duty ratio of the drive voltage. A constant current output can be realized by such feedback control.
 図4は、本発明の実施の形態1に係る配電システム50の動作を説明するためのフローチャートである。以下の本明細書のフローチャートでは、ステップS100番台の符号が付された処理は第1蓄電システム10aの処理を示し、ステップS200番台の符号が付された処理は第2蓄電システム10bの処理を示す。 FIG. 4 is a flowchart for explaining the operation of the power distribution system 50 according to the first embodiment of the present invention. In the following flowcharts of the present specification, the process indicated by the reference sign of step S100 indicates the process of the first power storage system 10a, and the process indicated by the reference sign of step S200 indicates the process of the second power storage system 10b. .
 図4のフローチャートに示す処理は、停電が発生してから第1種負荷71に、第1蓄電システム10aおよび第2蓄電システム10bの連携運転により、安定した電力を供給する状態になるまでの処理を示している。 The process shown in the flowchart of FIG. 4 is a process from when a power failure occurs until a state where stable power is supplied to the first type load 71 by the cooperative operation of the first power storage system 10a and the second power storage system 10b. Is shown.
 停電が発生すると(S100のY)、マスタの第1駆動制御部151aは、自立運転モードにおける電圧および周波数を決定する(S110)。この電圧および周波数には予め設定された値を使用できる。本明細書では200[V]、60[Hz]を使用する。 When a power failure occurs (Y in S100), the master first drive control unit 151a determines the voltage and frequency in the self-sustaining operation mode (S110). Preset values can be used for the voltage and frequency. In this specification, 200 [V] and 60 [Hz] are used.
 第1駆動制御部151aは、その電圧および周波数の交流電力を第1種負荷71に供給するよう第1双方向インバータ12aを駆動制御する(S120)。これにより第1種負荷71への電力供給が開始される。 The first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to supply AC power having the voltage and frequency to the first type load 71 (S120). As a result, power supply to the first type load 71 is started.
 第1取得部152aは、第1検出器20から第1種負荷71に流れる電流の値を取得する(S130)。第1電流値算出部154aは、取得された電流の値と、第1双方向インバータ12aの定格出力容量の電流の値との差分を算出して、不足する電流の値を算出する(S140)。この不足する電流の値は、目標電圧値において第1双方向インバータ12aから、その定格出力容量の範囲内で最大電流を出力する場合に不足する電流の値である。第1種負荷71の容量が大きい場合、第1双方向インバータ12aの出力電圧が低下してくる。これに対して、第1駆動制御部151aがその出力電圧を維持するよう第1双方向インバータ12aを駆動制御するため、第1双方向インバータ12aの出力電流が増大する。その出力電流が上述の定格出力容量の範囲内の最大を超えると、上述の電流不足が発生する。 The first acquisition unit 152a acquires the value of the current flowing from the first detector 20 to the first type load 71 (S130). The first current value calculation unit 154a calculates the difference between the acquired current value and the current value of the rated output capacity of the first bidirectional inverter 12a, and calculates the insufficient current value (S140). . This insufficient current value is a current value that is insufficient when the maximum current is output within the range of the rated output capacity from the first bidirectional inverter 12a at the target voltage value. When the capacity of the first type load 71 is large, the output voltage of the first bidirectional inverter 12a decreases. On the other hand, the first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to maintain the output voltage, so that the output current of the first bidirectional inverter 12a increases. When the output current exceeds the maximum within the range of the rated output capacity, the current shortage occurs.
 指示部155aは、算出された不足する電流の値を含む電流出力指示を、スレーブの第2制御部15bに指示する(S150)。スレーブの指示受領部155bは、マスタの指示部155aからの電流出力指示を取得する(S200)。第2取得部152bは第1検出器20または第2検出器30から、第1種負荷71に印加されている電圧の値を取得する(S210)。 The instruction unit 155a instructs the second control unit 15b of the slave to give a current output instruction including the calculated insufficient current value (S150). The slave instruction receiving unit 155b acquires a current output instruction from the master instruction unit 155a (S200). The second acquisition unit 152b acquires the value of the voltage applied to the first type load 71 from the first detector 20 or the second detector 30 (S210).
 第2駆動制御部151bは、第1検出器20または第2検出器30により検出された電圧波形に同期した電圧で、指示された電流を出力するよう第2双方向インバータ12bを駆動制御する(S220)。これにより第1蓄電システム10aからの電流と第2蓄電システム10bからの合成電流が第1種負荷71へ供給されるようになる。 The second drive controller 151b drives and controls the second bidirectional inverter 12b so as to output the instructed current with a voltage synchronized with the voltage waveform detected by the first detector 20 or the second detector 30 ( S220). As a result, the current from the first power storage system 10 a and the combined current from the second power storage system 10 b are supplied to the first type load 71.
 第2取得部152bは第2検出器30から、第2双方向インバータ12bから第1ノードN1に流れ込む電流の値を取得する(S230)。第2駆動制御部151bは、取得された電流の値が目標電流値と一致するか否か判定し(S240)、一致しない場合(S240のN)、両者が一致するよう第2双方向インバータ12bの駆動電圧のデューティ比を調整し(S250)、ステップS230に遷移する。なお当該目標電流値は、上述の電流出力指示に含まれる電流の値と、第1検出器20または第2検出器30により検出された電圧の位相および周波数をもとに目標値算出部158bにより算出される。 The second acquisition unit 152b acquires the value of the current flowing from the second detector 30 into the first node N1 from the second bidirectional inverter 12b (S230). The second drive control unit 151b determines whether or not the acquired current value matches the target current value (S240). If the current value does not match (N in S240), the second bidirectional inverter 12b Is adjusted (S250), and the process proceeds to step S230. The target current value is calculated by the target value calculation unit 158b based on the current value included in the current output instruction and the phase and frequency of the voltage detected by the first detector 20 or the second detector 30. Calculated.
 第2駆動制御部151bにより両者が一致すると判定された場合(S240のY)、マスタの第1取得部152aは第1検出器20または第2検出器30から、第1種負荷71に印加されている電圧の値を取得する(S170)。 When it is determined by the second drive control unit 151b that both match (Y in S240), the master first acquisition unit 152a is applied to the first type load 71 from the first detector 20 or the second detector 30. The value of the current voltage is acquired (S170).
 第1判定部153aは、第1検出器20または第2検出器30により検出された電圧の値から、第1種負荷71の要求を満たしているか否か判定する(S180)。検出された電圧の値が、上述の目標電圧値と一致していれば第1種負荷71の要求を満たしていることになる。両者が一致しなければ第1種負荷71の要求を満たしていないことになる。第2蓄電システム10bから追加される電流が不足している場合、検出された電圧の値が、目標電圧値より低くなる。 The first determination unit 153a determines whether or not the first type load 71 is satisfied from the voltage value detected by the first detector 20 or the second detector 30 (S180). If the detected voltage value matches the above-mentioned target voltage value, the first type load 71 is satisfied. If the two do not match, the first type load 71 is not satisfied. When the current added from the second power storage system 10b is insufficient, the detected voltage value is lower than the target voltage value.
 第1種負荷71の要求を満たしていない場合(S180のN)、ステップS130に遷移し、ステップS130からステップS170までの処理を繰り返す。第1種負荷71の要求を満たしている場合(S180のY)、停電発生時の第1蓄電システム10aと第2蓄電システム10bとの連携による、停電時の自立運転制御の一単位を終了する。その後も第1種負荷71の容量が変動する度に、この自立運転制御が繰り返される。 If the request for the first type load 71 is not satisfied (N in S180), the process proceeds to step S130, and the processes from step S130 to step S170 are repeated. When the request for the first type load 71 is satisfied (Y in S180), one unit of the independent operation control at the time of power failure is terminated by cooperation between the first power storage system 10a and the second power storage system 10b at the time of power failure. . Thereafter, each time the capacity of the first type load 71 fluctuates, this independent operation control is repeated.
 以上説明したように実施の形態1によれば、停電時にマスタの第1蓄電システム10aが不足する電流の値を計算して、スレーブの第2蓄電システム10bにその値の電流出力を指示する。これにより、停電時に複数の蓄電システムを効率的に連携運転させることができる。またマスタの第1蓄電システム10aの定格を超えないように運転されるため、安全性が高い。このような複数の蓄電システムの連携運転が可能になると、小型または中型の蓄電システムで、小規模な第1種負荷71から大規模な第1種負荷71まで対応可能になる。既存の蓄電システムへの増設も容易になり、蓄電システム全体の規模を柔軟に調整できる。 As described above, according to the first embodiment, the value of the current that the master first power storage system 10a is insufficient at the time of a power failure is calculated, and the current output of that value is instructed to the slave second power storage system 10b. Thereby, a some electrical storage system can be efficiently collaborated at the time of a power failure. Moreover, since it drive | operates so that the rating of the master 1st electrical storage system 10a may not be exceeded, safety | security is high. When such a plurality of power storage systems can be operated in a coordinated manner, a small-sized or medium-sized power storage system can support a small first type load 71 to a large first type load 71. Expansion to an existing power storage system is easy, and the overall scale of the power storage system can be flexibly adjusted.
(実施の形態2)
 図5は、本発明の実施の形態2に係る配電システム50の構成を示す図である。実施の形態2に係る配電システム50は、実施の形態1に係る配電システム50に第3検出器35が追加された構成である。以下、実施の形態1に係る配電システム50と共通する説明は適宜省略し、相違点を説明する。
(Embodiment 2)
FIG. 5 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 2 of the present invention. The power distribution system 50 according to the second embodiment has a configuration in which a third detector 35 is added to the power distribution system 50 according to the first embodiment. Hereinafter, description common to the power distribution system 50 according to Embodiment 1 will be omitted as appropriate, and differences will be described.
 第3検出器35は、第1蓄電システム10aの第1双方向インバータ12aの交流側出力端子と第1ノードN1との間に設けられる。第3検出器35は電流センサおよび電圧センサを含む。第3検出器35は、第1双方向インバータ12aから第1ノードN1に流れ込む電流の値を検出して、第1制御部15aに通知する。また第1ノードN1の電圧の値を検出して、第1制御部15aに通知する。 The third detector 35 is provided between the AC output terminal of the first bidirectional inverter 12a of the first power storage system 10a and the first node N1. The third detector 35 includes a current sensor and a voltage sensor. The third detector 35 detects the value of the current flowing from the first bidirectional inverter 12a into the first node N1, and notifies the first controller 15a. The voltage value of the first node N1 is detected and notified to the first controller 15a.
 第3検出器35と第1制御部15aは、光ファイバで構成されるLANケーブルまたはRS-232Cケーブルにより接続され、両者の間で光通信される。なお第1検出器20、第2検出器30および第3検出器35の全てが電圧センサを備える必要はなく、いずれか一つが備えるのみでよい。例えば、第1検出器20のみが電圧センサを備える場合、第1検出器20は第1制御部15aおよび第2制御部15bの両方に、検出した電圧の値を通知する。 The third detector 35 and the first control unit 15a are connected by a LAN cable or an RS-232C cable made of an optical fiber, and optically communicate between them. Note that all of the first detector 20, the second detector 30, and the third detector 35 do not have to include voltage sensors, and any one of them may be provided. For example, when only the 1st detector 20 is provided with a voltage sensor, the 1st detector 20 notifies the value of the detected voltage to both the 1st control part 15a and the 2nd control part 15b.
 実施の形態2では目標値保持部158aは、停電時に自立運転する際に第1双方向インバータ12aから出力されるべき交流電力の電圧および周波数に対応する電流の値をさらに保持する。目標値保持部158aは、1周期分の各サンプリングポイントの目標電流値をテーブルで保持してもよいし、その目標電流値を算出するための数式を保持してもよい。 In the second embodiment, the target value holding unit 158a further holds a current value corresponding to the voltage and frequency of the AC power to be output from the first bidirectional inverter 12a when performing a self-sustained operation during a power failure. The target value holding unit 158a may hold a target current value of each sampling point for one cycle in a table, or may hold a mathematical formula for calculating the target current value.
 実施の形態2では第1駆動制御部151aは、第2蓄電システム10bに電流出力を指示する前は第1双方向インバータ12aを定電圧駆動し、その指示をした後は第1双方向インバータ12aを定電流駆動する。定電圧駆動する場合、第1駆動制御部151aは、各サンプリングポイントにおいて第1検出器20などから検出される電圧の値と、対応するサンプリングポイントの目標電圧値とが一致するよう第1双方向インバータ12aを駆動制御する。定電流駆動する場合、第1駆動制御部151aは、各サンプリングポイントにおいて第3検出器35から検出される電流の値と、対応するサンプリングポイントの目標電流値とが一致するよう第1双方向インバータ12aを駆動制御する。 In the second embodiment, the first drive controller 151a drives the first bidirectional inverter 12a at a constant voltage before instructing the second power storage system 10b to output current, and after instructing the first bidirectional inverter 12a. Is driven at a constant current. In the case of constant voltage driving, the first drive control unit 151a performs the first bidirectional so that the voltage value detected from the first detector 20 or the like at each sampling point matches the target voltage value at the corresponding sampling point. The inverter 12a is driven and controlled. In the case of constant current driving, the first drive control unit 151a uses the first bidirectional inverter so that the current value detected from the third detector 35 at each sampling point matches the target current value at the corresponding sampling point. 12a is driven and controlled.
 実施の形態2では、電流値算出部154aは、第1検出器20から取得される電流の値を、第1ノードN1に接続される蓄電システム10の数で按分して個々の蓄電システム10から第1ノードN1へ出力すべき電流の値を算出する。第1ノードN1にM(自然数)個の蓄電システムが接続される場合、電流値算出部154aは当該電流の値を1/Mにする。本実施の形態では第1ノードN1に、第1蓄電システム10aと第2蓄電システム10bの二つが接続される。したがって、電流値算出部154aは当該電流の値を1/2にする。上述の例では第1蓄電システム10aが7.5[kVA]を分担し、第2蓄電システム10bが7.5[kVA]を分担する。なお、第1ノードN1に接続される蓄電システム10の数は、第1制御装置14aに予め記憶されていてもよいし、個々の蓄電システム10から第1ノードN1へ出力すべき電流の値を算出する際に検出してもよい。 In the second embodiment, the current value calculation unit 154a apportions the value of the current acquired from the first detector 20 by the number of power storage systems 10 connected to the first node N1, and from each power storage system 10. The value of the current to be output to the first node N1 is calculated. When M (natural number) power storage systems are connected to the first node N1, the current value calculation unit 154a sets the current value to 1 / M. In the present embodiment, the first power storage system 10a and the second power storage system 10b are connected to the first node N1. Therefore, the current value calculation unit 154a halves the current value. In the above example, the first power storage system 10a shares 7.5 [kVA], and the second power storage system 10b shares 7.5 [kVA]. The number of power storage systems 10 connected to the first node N1 may be stored in advance in the first control device 14a, or the value of the current to be output from each power storage system 10 to the first node N1. It may be detected when calculating.
 実施の形態2では第1判定部153aは第1制御部15aの必須要素ではない。実施の形態2では第1検出器20から検出される電流の値にかかわらず、電流値算出部154aはその値を、第1ノードN1に接続される蓄電システムの数で按分する。なお実施の形態1と同様に、第1判定部153aは、第1検出器20から取得される電流の値をもとに第1双方向インバータ12aの出力容量を算出し、算出した出力容量と第1双方向インバータ12aの定格出力容量を比較してもよい。前者が後者を超える場合のみ、電流値算出部154aは上述の按分処理を行う。 In Embodiment 2, the first determination unit 153a is not an essential element of the first control unit 15a. In the second embodiment, regardless of the value of the current detected from the first detector 20, the current value calculation unit 154a distributes the value by the number of power storage systems connected to the first node N1. As in the first embodiment, the first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20, and calculates the calculated output capacity and The rated output capacity of the first bidirectional inverter 12a may be compared. Only when the former exceeds the latter, the current value calculation unit 154a performs the above-described distribution process.
 指示部155aは、第1蓄電池管理部16aおよび第2蓄電池管理部16bを介して第2制御部15bに、第1ノードN1に電流を出力するよう指示する。その際、第2蓄電システム10bが分担すべき電流の値を指示する。 The instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
 図6は、本発明の実施の形態2に係る配電システム50の動作を説明するためのフローチャートである。図6のフローチャートは、図4のフローチャートと比較し、ステップS140およびステップS150の処理がステップS141およびステップS151の処理にそれぞれ置き換えられ、ステップS161、ステップS162およびステップS163の処理が追加されたものである。 FIG. 6 is a flowchart for explaining the operation of the power distribution system 50 according to the second embodiment of the present invention. The flowchart in FIG. 6 is different from the flowchart in FIG. 4 in that the processes in steps S140 and S150 are replaced with the processes in steps S141 and S151, respectively, and the processes in steps S161, S162, and S163 are added. is there.
 図6のステップS100からステップS130までの処理は、図4のそれらの処理と同じである。第1電流値算出部154aは、第1検出器20から取得される電流の値を、第1ノードN1に接続される蓄電システムの数で按分する(S141)。 The processing from step S100 to step S130 in FIG. 6 is the same as those in FIG. The first current value calculation unit 154a apportions the current value acquired from the first detector 20 by the number of power storage systems connected to the first node N1 (S141).
 指示部155aは、スレーブの第2蓄電システム10bが分担すべき電流の値を含む電流出力指示を、第2制御部15bに指示する(S151)。本実施の形態では第1ノードN1に、第1蓄電システム10aと第2蓄電システム10bの二つが接続されるため、第1検出器20により検出された電流の値の半分を出力するよう第2制御部15bに指示する。ステップS200からステップS240までの処理は、図4のそれらの処理と同じである。 The instruction unit 155a instructs the second control unit 15b to give a current output instruction including a current value to be shared by the slave second power storage system 10b (S151). In the present embodiment, since the first power storage system 10a and the second power storage system 10b are connected to the first node N1, the second value is output so that half of the current value detected by the first detector 20 is output. The control unit 15b is instructed. The processing from step S200 to step S240 is the same as those processing in FIG.
 第2駆動制御部151bにより第2検出器30から取得された電流の値と目標電流値が一致すると判定された場合(S240のY)、マスタの第1取得部152aは、第1双方向インバータ12aから第1ノードN1に流れ込む電流の値を第3検出器35から取得する(S161)。第1駆動制御部151aは、取得された電流の値が目標電流値と一致するか否か判定し(S162)、一致しない場合(S162のN)、両者が一致するよう第1双方向インバータ12aの駆動電圧のデューティ比を調整する(S163)。なお当該目標電流値は、目標値保持部158aに保持されている。なお数式をもとにリアルタイムに算出されてもよい。ステップS180の処理は、図4のステップS180の処理と同じである。 When it is determined that the current value acquired from the second detector 30 by the second drive control unit 151b matches the target current value (Y in S240), the first acquisition unit 152a of the master uses the first bidirectional inverter The value of the current flowing from 12a into the first node N1 is acquired from the third detector 35 (S161). The first drive control unit 151a determines whether or not the acquired current value matches the target current value (S162). If the current value does not match (N in S162), the first bidirectional inverter 12a makes the two match. The drive voltage duty ratio is adjusted (S163). The target current value is held in the target value holding unit 158a. In addition, you may calculate in real time based on numerical formula. The process in step S180 is the same as the process in step S180 in FIG.
 以上説明したように実施の形態2によれば、停電時に第1種負荷71に給電可能な蓄電システム10の数で、第1種負荷71に供給すべき電流の値を按分する。そして各蓄電システムから第1種負荷71にそれぞれが分担すべき電流を並列に供給する。これにより、上述の実施の形態1に係る効果に加えて以下の効果を奏する。配電システム50に含まれる複数の蓄電システム10のそれぞれの蓄電池11の使用量を平準化できる。したがって各蓄電システム10の蓄電池11の寿命を平準化できる。また蓄電システム10の切替をせずに、第1種負荷71に長時間電力供給できる。また三つ以上の蓄電システム10の連携運転が容易である。 As described above, according to the second embodiment, the value of the current to be supplied to the first type load 71 is apportioned by the number of power storage systems 10 that can supply power to the first type load 71 in the event of a power failure. And the electric current which each should share to each 1st type load 71 is supplied in parallel from each electrical storage system. Thereby, in addition to the effect which concerns on the above-mentioned Embodiment 1, there exist the following effects. The usage amount of each storage battery 11 of the plurality of power storage systems 10 included in the power distribution system 50 can be leveled. Therefore, the life of the storage battery 11 of each power storage system 10 can be leveled. Further, it is possible to supply power to the first type load 71 for a long time without switching the power storage system 10. Further, cooperative operation of three or more power storage systems 10 is easy.
(実施の形態3)
 次に、本発明の実施の形態3に係る配電システム50を説明する。実施の形態3に係る配電システム50は、図5の実施の形態2に係る配電システム50の構成と同じである。以下、実施の形態2に係る配電システム50と共通する説明は適宜省略し、相違点を説明する。
(Embodiment 3)
Next, a power distribution system 50 according to Embodiment 3 of the present invention will be described. The power distribution system 50 according to the third embodiment has the same configuration as the power distribution system 50 according to the second embodiment in FIG. Hereinafter, description common to the power distribution system 50 according to Embodiment 2 will be omitted as appropriate, and differences will be described.
 実施の形態3では電流値算出部154aは、第1ノードN1に接続される複数の蓄電システム10のそれぞれの蓄電池11における残容量の比率に応じて、個々の蓄電システム10から出力すべき電流の値を算出する。本実施の形態では第1蓄電池管理部16aは、第1蓄電池11aの残容量を取得する。第1蓄電池管理部16aは取得した残容量を第1制御部15aに通知する。第2蓄電池管理部16bは、第2蓄電池11bの残容量を取得する。第2蓄電池管理部16bは、取得した残容量を第1蓄電池管理部16aを介して第1制御部15aに通知する。第1蓄電池11aと第2蓄電池11bの容量が等しい場合、第1蓄電池管理部16aおよび第2蓄電池管理部16bは、残容量をSOC(State of. Charge)で表すことができる。 In the third embodiment, the current value calculation unit 154a determines the current to be output from each power storage system 10 according to the ratio of the remaining capacity in each storage battery 11 of the plurality of power storage systems 10 connected to the first node N1. Calculate the value. In the present embodiment, the first storage battery management unit 16a acquires the remaining capacity of the first storage battery 11a. The 1st storage battery management part 16a notifies the acquired remaining capacity to the 1st control part 15a. The 2nd storage battery management part 16b acquires the remaining capacity of the 2nd storage battery 11b. The 2nd storage battery management part 16b notifies the acquired remaining capacity to the 1st control part 15a via the 1st storage battery management part 16a. When the capacity | capacitance of the 1st storage battery 11a and the 2nd storage battery 11b is equal, the 1st storage battery management part 16a and the 2nd storage battery management part 16b can represent remaining capacity with SOC (State | of-of-charge | Charge).
 電流値算出部154aは、第1蓄電池11aと第2蓄電池11bとのSOC比で、第1蓄電システム10aから流すべき電流と、第2蓄電システム10bから流すべき電流の比を算出する。例えば、第1蓄電池11aのSOCが60%、第2蓄電池11bのSOCが30%の場合、電流値算出部154aは、第1蓄電システム10aから流すべき電流と第2蓄電システム10bから流すべき電流の比を2:1に決定する。上述の例では第1蓄電システム10aが10[kVA]を分担し、第2蓄電システム10bが5[kVA]を分担する。 The current value calculation unit 154a calculates the ratio of the current that should flow from the first power storage system 10a and the current that should flow from the second power storage system 10b based on the SOC ratio between the first storage battery 11a and the second storage battery 11b. For example, when the SOC of the first storage battery 11a is 60% and the SOC of the second storage battery 11b is 30%, the current value calculation unit 154a causes the current to flow from the first power storage system 10a and the current to flow from the second power storage system 10b. The ratio is determined to be 2: 1. In the above example, the first power storage system 10a shares 10 [kVA], and the second power storage system 10b shares 5 [kVA].
 実施の形態3でも実施の形態2と同様に、第1判定部153aは第1制御部15aの必須要素ではない。実施の形態3では第1検出器20から検出される電流の値にかかわらず、電流値算出部154aはその値を、残容量の比率で分配する。なお実施の形態1と同様に、第1判定部153aは、第1検出器20から取得される電流の値をもとに第1双方向インバータ12aの出力容量を算出し、算出した出力容量と第1双方向インバータ12aの定格出力容量を比較してもよい。前者が後者を超える場合のみ、電流値算出部154aは上述の分配処理を行う。 In the third embodiment, as in the second embodiment, the first determination unit 153a is not an essential element of the first control unit 15a. In the third embodiment, regardless of the value of the current detected from the first detector 20, the current value calculation unit 154a distributes the value at the remaining capacity ratio. As in the first embodiment, the first determination unit 153a calculates the output capacity of the first bidirectional inverter 12a based on the current value acquired from the first detector 20, and calculates the calculated output capacity and The rated output capacity of the first bidirectional inverter 12a may be compared. Only when the former exceeds the latter, the current value calculation unit 154a performs the above-described distribution process.
 指示部155aは、第1蓄電池管理部16aおよび第2蓄電池管理部16bを介して第2制御部15bに、第1ノードN1に電流を出力するよう指示する。その際、第2蓄電システム10bが分担すべき電流の値を指示する。 The instruction unit 155a instructs the second control unit 15b to output a current to the first node N1 via the first storage battery management unit 16a and the second storage battery management unit 16b. At that time, the value of the current to be shared by the second power storage system 10b is instructed.
 図7は、本発明の実施の形態3に係る配電システム50の動作を説明するためのフローチャートである。図7のフローチャートは、図6のフローチャートと比較し、ステップS142が追加され、ステップS141がステップS143に置き換えられたものである。 FIG. 7 is a flowchart for explaining the operation of the power distribution system 50 according to Embodiment 3 of the present invention. The flowchart of FIG. 7 is obtained by adding step S142 and replacing step S141 with step S143, compared to the flowchart of FIG.
 図7のステップS100からステップS130までの処理は、図6のそれらの処理と同じである。第1ノードN1に接続される各蓄電システム10の蓄電池管理部16は、各蓄電システム10の蓄電池11の残容量を取得する(S142)。取得された残容量は、第1制御部15aに伝達される。第1電流値算出部154aは、第1検出器20により検出された電流の値を、第1ノードN1に接続される各蓄電システムの残容量の比率で分配する(S143)。以下、図7のステップS151からステップS180までの処理は、図6のそれらの処理と同じである。 The processing from step S100 to step S130 in FIG. 7 is the same as those in FIG. The storage battery management unit 16 of each power storage system 10 connected to the first node N1 acquires the remaining capacity of the storage battery 11 of each power storage system 10 (S142). The acquired remaining capacity is transmitted to the first control unit 15a. The first current value calculation unit 154a distributes the value of the current detected by the first detector 20 in the ratio of the remaining capacity of each power storage system connected to the first node N1 (S143). Hereinafter, the processes from step S151 to step S180 in FIG. 7 are the same as those in FIG.
 以上説明したように実施の形態3によれば、停電時に第1種負荷71に給電可能な複数の蓄電システム10がそれぞれ備える蓄電池11の残容量の比率に応じて、第1種負荷71に供給すべき電流の値を分配する。そして各蓄電システム10から第1種負荷71にそれぞれ分担すべき電流を供給する。これにより、上述の実施の形態1に係る効果に加えて以下の効果を奏する。配電システム50に含まれる複数の蓄電システム10のそれぞれの蓄電池11の放電終了時刻を合せることができる。また蓄電システム10の切替をせずに、第1種負荷71に長時間電力供給できる。また三つ以上の蓄電システム10の連携運転が容易である。 As described above, according to the third embodiment, the first type load 71 is supplied according to the ratio of the remaining capacity of the storage battery 11 included in each of the plurality of power storage systems 10 that can supply power to the first type load 71 at the time of a power failure. Distribute the current value to be. Then, a current to be shared is supplied from each power storage system 10 to the first type load 71. Thereby, in addition to the effect which concerns on the above-mentioned Embodiment 1, there exist the following effects. The discharge end times of the storage batteries 11 of the plurality of power storage systems 10 included in the power distribution system 50 can be matched. Further, it is possible to supply power to the first type load 71 for a long time without switching the power storage system 10. Further, cooperative operation of three or more power storage systems 10 is easy.
(実施の形態4)
 図8は、本発明の実施の形態4に係る配電システム50の構成を示す図である。実施の形態4に係る配電システム50は、実施の形態1に係る配電システム50の第1蓄電システム10aと第2蓄電システム10bが通信線で接続されない構成である。以下、実施の形態1に係る配電システム50と共通する説明は適宜省略し、相違点を説明する。
(Embodiment 4)
FIG. 8 is a diagram showing a configuration of a power distribution system 50 according to Embodiment 4 of the present invention. The power distribution system 50 according to the fourth embodiment is configured such that the first power storage system 10a and the second power storage system 10b of the power distribution system 50 according to the first embodiment are not connected by a communication line. Hereinafter, description common to the power distribution system 50 according to Embodiment 1 will be omitted as appropriate, and differences will be described.
 図9は、本発明の実施の形態4に係る第1制御部15a、第2制御部15bの構成を示す図である。マスタに設定される第1蓄電システム10aの第1制御部15aは、第1駆動制御部151a、第1取得部152a、目標値保持部158aを備える。スレーブに設定される第2蓄電システム10bは、第2駆動制御部151b、第2取得部152b、第2判定部153b、第2電流値算出部154b、マスタ情報保持部157b、目標値算出部158bを備える。 FIG. 9 is a diagram showing the configuration of the first control unit 15a and the second control unit 15b according to Embodiment 4 of the present invention. The first control unit 15a of the first power storage system 10a set as the master includes a first drive control unit 151a, a first acquisition unit 152a, and a target value holding unit 158a. The second power storage system 10b set as a slave includes a second drive control unit 151b, a second acquisition unit 152b, a second determination unit 153b, a second current value calculation unit 154b, a master information holding unit 157b, and a target value calculation unit 158b. Is provided.
 実施の形態4では停電時に、マスタの第1制御部15aからスレーブの第2制御部15bに電流出力指示を通知しない。したがって、その指示を通知する指示部155a、スレーブの第2蓄電システム10bから出力すべき電流の値を算出する第1電流値算出部154aは省略される。また実施の形態4では第1蓄電システム10aからの電力のみで第1種負荷71の容量を満たすか否かをマスタで判定しないため、第1判定部153aも省略される。実施の形態4ではこの判定は、スレーブの第2蓄電システム10bで行われる。第1駆動制御部151a、第1取得部152a、目標値保持部158aの動作は、実施の形態1のそれらと同様である。 In the fourth embodiment, a current output instruction is not notified from the master first control unit 15a to the slave second control unit 15b in the event of a power failure. Therefore, the instruction unit 155a for notifying the instruction and the first current value calculation unit 154a for calculating the value of the current to be output from the slave second power storage system 10b are omitted. Further, in the fourth embodiment, since the master does not determine whether or not the capacity of the first type load 71 is satisfied only by the power from the first power storage system 10a, the first determination unit 153a is also omitted. In the fourth embodiment, this determination is performed by the slave second power storage system 10b. The operations of the first drive control unit 151a, the first acquisition unit 152a, and the target value holding unit 158a are the same as those in the first embodiment.
 実施の形態4ではスレーブの第2制御部15bに、第2判定部153b、第2電流値算出部154b、マスタ情報保持部157bが追加される。第2取得部152bは停電時、第1種負荷71に印加される電圧の値を第1検出器20または第2検出器30から取得する。また第1種負荷71に流れる電流の値を第1検出器20から取得する。また第2双方向インバータ12bから第1ノードA1に流れる電流の値を第2検出器30から取得する。即ち、第2蓄電システム10bの出力電流の値を取得する。 In the fourth embodiment, a second determination unit 153b, a second current value calculation unit 154b, and a master information holding unit 157b are added to the slave second control unit 15b. The 2nd acquisition part 152b acquires the value of the voltage applied to the 1st type load 71 from the 1st detector 20 or the 2nd detector 30 at the time of a power failure. Further, the value of the current flowing through the first type load 71 is acquired from the first detector 20. The value of the current flowing from the second bidirectional inverter 12b to the first node A1 is acquired from the second detector 30. That is, the value of the output current of the second power storage system 10b is acquired.
 マスタ情報保持部157bは、マスタに設定された第1蓄電システム10aの定格出力容量、停電時の自立運転で使用される電圧および周波数の値、その電圧の値で駆動される場合における当該定格出力容量を満たす最大出力電流の値を保持する。 The master information holding unit 157b has the rated output capacity of the first power storage system 10a set as the master, the voltage and frequency values used in the self-sustaining operation at the time of a power failure, and the rated output in the case of being driven by the voltage value Holds the maximum output current that satisfies the capacity.
 第2判定部153bは、第1検出器20から取得される電圧または電流の値をもとに、第1蓄電システム10aから第1種負荷71への電力供給のみで、第1種負荷71の容量を満たすか否か判定する。具体的には、第1検出器20から取得される電圧がマスタ情報保持部157bに保持される「停電時の自立運転で使用される電圧の値」よりも低い場合、または、第1検出器20から取得される電流がマスタ情報保持部157bに保持される「最大出力電流の値」を超える場合は第1種負荷71の容量を満たさないと判定し、それ以外の場合は第1種負荷71の容量を満たすと判定する。 The second determination unit 153b only supplies power from the first power storage system 10a to the first type load 71 based on the voltage or current value acquired from the first detector 20, and the first type load 71 It is determined whether the capacity is satisfied. Specifically, when the voltage acquired from the first detector 20 is lower than “the value of the voltage used in the self-sustaining operation at the time of power failure” held in the master information holding unit 157b, or the first detector When the current acquired from 20 exceeds the “maximum output current value” held in the master information holding unit 157b, it is determined that the capacity of the first type load 71 is not satisfied, otherwise the first type load It is determined that the capacity of 71 is satisfied.
 第2電流値算出部154bは、第1蓄電システム10aから第1種負荷71への電力供給のみでは第1種負荷71の容量を満たさない場合、スレーブに設定された第2蓄電システム10bから第1ノードN1に出力すべき電流の値を算出する。具体的には第2電流値算出部154bは、第1検出器20から取得される電流の値から、第1蓄電システム10aの上記最大出力電流の値を減算して、第2蓄電システム10bから出力すべき電流の値を算出する。 The second current value calculation unit 154b performs the second current value calculation unit 154b from the second power storage system 10b set as a slave when the power supply from the first power storage system 10a alone does not satisfy the capacity of the first type load 71. The value of the current to be output to one node N1 is calculated. Specifically, the second current value calculation unit 154b subtracts the value of the maximum output current of the first power storage system 10a from the value of the current acquired from the first detector 20, and from the second power storage system 10b. Calculate the current value to be output.
 第2駆動制御部151bは、停電時にて、第1検出器20または第2検出器30から取得される電圧の値およびその周波数に同期した交流電力を交流側出力端子から出力するよう第2双方向インバータ12bを駆動制御する。 The second drive control unit 151b is configured to output a voltage value acquired from the first detector 20 or the second detector 30 and an AC power synchronized with the frequency from the AC side output terminal at the time of a power failure. The direction inverter 12b is driven and controlled.
 また第2駆動制御部151bは、第2電流値算出部154bにより算出された値の電流を第1ノードN1へ出力するよう第2双方向インバータ12bを駆動制御する。第2駆動制御部151bは、各サンプリングポイントにおいて第2検出器30から検出される電流の値と、目標値算出部158bにより算出される対応するサンプリングポイントの目標電流値とが一致するよう第2双方向インバータ12bを駆動制御する。 Further, the second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output the current having the value calculated by the second current value calculation unit 154b to the first node N1. The second drive control unit 151b is configured so that the current value detected from the second detector 30 at each sampling point matches the target current value of the corresponding sampling point calculated by the target value calculation unit 158b. The bidirectional inverter 12b is driven and controlled.
 実施の形態4では第1制御部15aから電流出力指示を受領しないため、指示受領部155bは省略される。 In Embodiment 4, since the current output instruction is not received from the first control unit 15a, the instruction receiving unit 155b is omitted.
 図10(a)-(b)は、本発明の実施の形態4に係る配電システム50の動作を説明するためのフローチャートである。図10(a)のフローチャートは第1蓄電システム10aの動作を示し、図10(b)のフローチャートは第2蓄電システム10bの動作を示す。 FIGS. 10A to 10B are flowcharts for explaining the operation of the power distribution system 50 according to the fourth embodiment of the present invention. The flowchart in FIG. 10A shows the operation of the first power storage system 10a, and the flowchart in FIG. 10B shows the operation of the second power storage system 10b.
 図10(a)のフローチャートにて、停電が発生すると(S100のY)、マスタの第1駆動制御部151aは、自立運転モードにおける電圧および周波数を決定する(S110)。第1駆動制御部151aは、その電圧および周波数の交流電力を第1種負荷71に供給するよう第1双方向インバータ12aを駆動制御する(S120)。以下、第1駆動制御部151aは当該電圧を維持するよう定電圧駆動する。実施の形態4ではスレーブの第2蓄電システム10bが不足する電流を調整するため、マスタの第1蓄電システム10aの自立運転立ち上げ処理は以上である。 In the flowchart of FIG. 10A, when a power failure occurs (Y in S100), the master first drive control unit 151a determines the voltage and frequency in the self-sustaining operation mode (S110). The first drive control unit 151a drives and controls the first bidirectional inverter 12a so as to supply AC power having the voltage and frequency to the first type load 71 (S120). Hereinafter, the first drive control unit 151a performs constant voltage driving so as to maintain the voltage. In the fourth embodiment, since the current that the slave second power storage system 10b is short of is adjusted, the independent operation start-up process of the master first power storage system 10a is as described above.
 図10(b)のフローチャートにて、第2取得部152bは、第1検出器20または第2検出器30から第1種負荷71に印加される電圧の値を取得する(S300)。第2判定部153bは、スレーブの第2蓄電システム10bから第1種負荷71へ追加の電力供給が必要か否か判定する(S310)。必要ない場合(S310のN)、スレーブの第2蓄電システム10bの自立運転立ち上げ処理が終了する。 10B, the second acquisition unit 152b acquires the value of the voltage applied to the first type load 71 from the first detector 20 or the second detector 30 (S300). The second determination unit 153b determines whether or not additional power supply from the slave second power storage system 10b to the first type load 71 is necessary (S310). If not necessary (N in S310), the independent operation start-up process of the slave second power storage system 10b is completed.
 追加の電力供給が必要な場合(S310のY)、第2取得部152bは、第1種負荷71に流れる電流の値を第1検出器20から取得する(S320)。第2電流値算出部154bは、取得された電流の値と、第1双方向インバータ12aの許容される最大出力電流の値との差分を算出して、不足する電流の値を算出する(S330)。 When additional power supply is necessary (Y in S310), the second acquisition unit 152b acquires the value of the current flowing through the first type load 71 from the first detector 20 (S320). The second current value calculation unit 154b calculates the difference between the acquired current value and the allowable maximum output current value of the first bidirectional inverter 12a, and calculates the insufficient current value (S330). ).
 第2駆動制御部151bは、第1検出器20または第2検出器30により検出された電圧波形に同期した電圧で、算出された値の電流を出力するよう第2双方向インバータ12bを駆動制御する(S340)。これにより第1蓄電システム10aからの電流と第2蓄電システム10bからの合成電流が第1種負荷71へ供給されるようになる。 The second drive control unit 151b drives and controls the second bidirectional inverter 12b so as to output a calculated current with a voltage synchronized with the voltage waveform detected by the first detector 20 or the second detector 30. (S340). As a result, the current from the first power storage system 10 a and the combined current from the second power storage system 10 b are supplied to the first type load 71.
 第2取得部152bは、第2双方向インバータ12bから第1ノードN1に流れ込む電流の値を第2検出器30から取得する(S350)。第2駆動制御部151bは、取得された電流の値が目標電流値と一致するか否か判定し(S360)、一致しない場合(S360のN)、両者が一致するよう第2双方向インバータ12bの駆動電圧のデューティ比を調整し(S370)、ステップS350に遷移する。両者が一致する場合(S360のY)、ステップS300に遷移する。 The second acquisition unit 152b acquires the value of the current flowing from the second bidirectional inverter 12b into the first node N1 from the second detector 30 (S350). The second drive control unit 151b determines whether or not the acquired current value matches the target current value (S360). If they do not match (N in S360), the second bidirectional inverter 12b Is adjusted (S370), and the process proceeds to step S350. If they match (Y in S360), the process proceeds to step S300.
 なお、実施の形態4では、マスタ情報保持部157bは、マスタに設定された第1蓄電システム10aに関する種々の情報を保持しているが、少なくとも停電時の自立運転で使用される電圧の値を保持していればよい。これにより、第2判定部153bは、第1検出器20から取得される電圧の値と、保持している停電時の自立運転で使用される電圧の値とを比較し、第1蓄電システム10aからの電力供給のみで第1種負荷71の容量を満たすか否か判定することができる。この場合、マスタ情報保持部157bは第1蓄電システム10aの定格出力容量を保持していないので、第2電流値算出部154bは不足している電流値を算出することができない。そのため、第2判定部153bが第1蓄電システム10aからの電力供給のみでは第1種負荷71の容量を満たしていないと判定した場合に、第2蓄電システム10bから第1種負荷71に供給する所定の電流値を予め設定しておく。 In the fourth embodiment, the master information holding unit 157b holds various pieces of information related to the first power storage system 10a set as the master, but at least the voltage value used in the independent operation at the time of a power failure. It is only necessary to hold it. Thereby, the 2nd determination part 153b compares the value of the voltage acquired from the 1st detector 20, and the value of the voltage used by the independent operation at the time of the power failure currently hold | maintained, and the 1st electrical storage system 10a It is possible to determine whether or not the capacity of the first type load 71 is satisfied only by supplying power from. In this case, since the master information holding unit 157b does not hold the rated output capacity of the first power storage system 10a, the second current value calculation unit 154b cannot calculate an insufficient current value. Therefore, when the second determination unit 153b determines that the capacity of the first type load 71 is not satisfied only by the power supply from the first power storage system 10a, the second determination unit 153b supplies the first type load 71 from the second power storage system 10b. A predetermined current value is set in advance.
 以上説明したように実施の形態4によれば、停電時にスレーブの第2蓄電システム10bが不足する電流の値を計算して自立的に電流を出力する。これにより、上述の実施の形態1に係る効果に加えて以下の効果を奏する。第1蓄電システム10aと第2蓄電システム10b間の通信なしに両者が連携運転できる。したがって両者の間の通信線が不要となり配線を簡素化できる。また配電システム50に後から第2蓄電システム10bを増設する場合、第1蓄電システム10aの第1制御部15aは増設後も増設前と同様に動作できる。したがって増設時の第1制御部15aのアップデートを省略できる。第1蓄電システム10aは、第2蓄電システム10bの増設後も第2蓄電システム10bを意識せずに増設前と同様に、停電時の自立運転を行えばよい。 As described above, according to the fourth embodiment, the value of the current that the slave second power storage system 10b lacks in the event of a power failure is calculated and the current is output autonomously. Thereby, in addition to the effect which concerns on the above-mentioned Embodiment 1, there exist the following effects. Both can operate together without communication between the first power storage system 10a and the second power storage system 10b. Therefore, a communication line between the two is not necessary, and wiring can be simplified. Further, when the second power storage system 10b is added later to the power distribution system 50, the first control unit 15a of the first power storage system 10a can operate in the same manner as before the extension. Therefore, the update of the first control unit 15a at the time of expansion can be omitted. The first power storage system 10a may perform a self-sustained operation at the time of a power failure after the addition of the second power storage system 10b and without being aware of the second power storage system 10b as in the case before the extension.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. is there.
(変形例1)
 変形例1は実施の形態1に係る配電システム50の変形例である。実施の形態1に係る配電システム50でも図5に示す構成を採用できる。即ち、第1蓄電システム10aと第1ノードN1との間に第3検出器35を設ける。変形例1によれば、第1蓄電システム10aも連携運転後の定電流駆動が可能となる。したがって、後述する変形例2のマスタの交代がしやすくなる。
(Modification 1)
Modification 1 is a modification of the power distribution system 50 according to the first embodiment. The power distribution system 50 according to Embodiment 1 can also employ the configuration shown in FIG. That is, the third detector 35 is provided between the first power storage system 10a and the first node N1. According to the first modification, the first power storage system 10a can also be driven at a constant current after the cooperative operation. Therefore, it becomes easy to change the master of the modified example 2 described later.
(変形例2)
 変形例2は変形例1に係る配電システム50、実施の形態2に係る配電システム50または実施の形態3に係る配電システム50に適用可能な変形例である。変形例2は配電システム50に含まれる複数の蓄電システム10の間でマスタの交代を可能とするものである。
(Modification 2)
The modification 2 is a modification applicable to the power distribution system 50 according to the modification 1, the power distribution system 50 according to the second embodiment, or the power distribution system 50 according to the third embodiment. In the second modification, a master can be changed among a plurality of power storage systems 10 included in the power distribution system 50.
 図11は、変形例2に係る第1制御部15a、第2制御部15bの構成を示す図である。変形例2に係るマスタの第1制御部15aは、図3に示す第1制御部15aの構成にマスタ設定部156aが追加された構成である。変形例2に係るスレーブの第2制御部15bは、図3に示す第2制御部15bと同様である。 FIG. 11 is a diagram illustrating a configuration of the first control unit 15a and the second control unit 15b according to the second modification. The master first control unit 15a according to Modification 2 has a configuration in which a master setting unit 156a is added to the configuration of the first control unit 15a illustrated in FIG. The slave second control unit 15b according to Modification 2 is the same as the second control unit 15b illustrated in FIG.
 マスタ設定部156aは、第1ノードN1に接続される複数の蓄電システム10のそれぞれの蓄電池11の劣化度を参照して、最も劣化していない蓄電池11を含む蓄電システム10をマスタに設定する。変形例2では第1蓄電池管理部16aは、第1蓄電池11aの劣化度を取得する。第1蓄電池管理部16aは取得した劣化度を第1制御部15aに通知する。第2蓄電池管理部16bは、第2蓄電池11bの劣化度を取得する。第2蓄電池管理部16bは、取得した劣化度を第1蓄電池管理部16aを介して第1制御部15aに通知する。第1蓄電池11aと第2蓄電池11bの容量が等しい場合、第1蓄電池管理部16aおよび第2蓄電池管理部16bは、劣化度をSOH(State Of Health)で表すことができる。マスタ設定部156aは、SOHが大きいほうをマスタに設定する。 The master setting unit 156a refers to the deterioration degree of each storage battery 11 of the plurality of storage systems 10 connected to the first node N1, and sets the storage system 10 including the storage battery 11 that is least deteriorated as a master. In the modification 2, the 1st storage battery management part 16a acquires the deterioration degree of the 1st storage battery 11a. The 1st storage battery management part 16a notifies the acquired deterioration degree to the 1st control part 15a. The 2nd storage battery management part 16b acquires the deterioration degree of the 2nd storage battery 11b. The 2nd storage battery management part 16b notifies the acquired deterioration degree to the 1st control part 15a via the 1st storage battery management part 16a. When the capacity | capacitance of the 1st storage battery 11a and the 2nd storage battery 11b is equal, the 1st storage battery management part 16a and the 2nd storage battery management part 16b can represent a deterioration degree by SOH (State | of-of-health). The master setting unit 156a sets the larger SOH as the master.
 図12は、変形例2に係るマスタ設定処理を説明するためのフローチャートである。マスタ設定タイミングが到来すると(S190のY)、各蓄電システム10の蓄電池管理部16は、それぞれの蓄電池11の劣化度を取得する(S191)。マスタ設定タイミングは例えば、1週間毎、1ヶ月毎、3ヶ月毎などに設定できる。マスタ設定部156aは、最も劣化していない蓄電池11を備える蓄電システム10をマスタに設定する(S192)。 FIG. 12 is a flowchart for explaining the master setting process according to the second modification. When the master setting timing arrives (Y in S190), the storage battery management unit 16 of each power storage system 10 acquires the deterioration degree of each storage battery 11 (S191). The master setting timing can be set, for example, every week, every month, every three months, or the like. The master setting unit 156a sets the power storage system 10 including the storage battery 11 that is least deteriorated as a master (S192).
 変形例2によれば、マスタを交代させる処理を追加することにより、複数の蓄電システム10の蓄電池11の劣化度を平準化できる。特にスレーブがマスタの定格出力容量の不足分の電流値を負荷に供給する場合のように、蓄電池11の使用量がマスタとスレーブで大きく異なる場合に有効である。なお変形例2を採用する場合、第1蓄電システム10aと第2蓄電システム10bのどちらがスレーブになっても、定電流駆動できるよう図5に示す回路構成が望ましい。また、図11に示す第1制御部15a、第2制御部15bはそれぞれ異なる構成要素を含んでいるが、これはマスタとスレーブの動作説明を容易にするために説明に必要な構成要素のみを表示しているためである。変形例2を採用する場合、実際には第1制御部15a、第2制御部15bは、マスタとスレーブのどちらにも切替可能なように、マスタとスレーブの全ての構成要素を含んでいる。 According to the second modification, the deterioration degree of the storage batteries 11 of the plurality of power storage systems 10 can be leveled by adding a process for changing the master. This is particularly effective when the usage amount of the storage battery 11 differs greatly between the master and the slave, such as when the slave supplies a current value that is insufficient for the rated output capacity of the master to the load. When the second modification is employed, the circuit configuration shown in FIG. 5 is desirable so that constant current driving can be performed regardless of which of the first power storage system 10a and the second power storage system 10b is a slave. In addition, although the first control unit 15a and the second control unit 15b shown in FIG. 11 include different components, only the components necessary for the description are described in order to facilitate the explanation of the operation of the master and the slave. This is because it is displayed. When the modification 2 is employed, the first control unit 15a and the second control unit 15b actually include all the components of the master and the slave so as to be switched to either the master or the slave.
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。 The invention according to the present embodiment may be specified by the items described below.
[項目1]
 所定の電圧及び周波数の交流電流を負荷へ供給するマスタ蓄電システムと、
 前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムと、
 前記マスタ蓄電システム及び前記スレーブ蓄電システムから前記負荷へ供給される電流を検出する電流検出器と、
 前記マスタ蓄電システムの出力電圧及び出力周波数を検出する電圧検出器と、
を備え、
 前記マスタ蓄電システム及び前記スレーブ蓄電システムは、蓄電池と、前記蓄電池と前記負荷との間に配置された電力変換器と、各蓄電システムを制御する制御部とを含み、前記負荷に対して互いに並列接続されており、
 前記マスタ蓄電システムの制御部は、前記電流検出器によって検出された電流値に基づき、前記スレーブ蓄電システムの制御部に前記スレーブ蓄電システムが前記負荷に供給すべき電流値を指示し、
 前記スレーブ蓄電システムの制御部は、前記電圧検出器によって検出された前記出力電圧及び前記出力周波数で、前記マスタ蓄電システムから指示された電流値を前記負荷に供給させることを特徴とする電力供給システム。
[Item 1]
A master power storage system that supplies an alternating current of a predetermined voltage and frequency to a load;
Based on an instruction from the master power storage system, at least one slave power storage system for supplying an alternating current to the load;
A current detector for detecting a current supplied from the master power storage system and the slave power storage system to the load;
A voltage detector for detecting an output voltage and an output frequency of the master power storage system;
With
The master power storage system and the slave power storage system include a storage battery, a power converter disposed between the storage battery and the load, and a control unit that controls each power storage system, and are parallel to the load. Connected,
The control unit of the master power storage system instructs a current value to be supplied to the load by the slave power storage system to the control unit of the slave power storage system based on the current value detected by the current detector,
The control unit of the slave power storage system supplies the load with a current value instructed from the master power storage system at the output voltage and the output frequency detected by the voltage detector. .
[項目2]
 前記マスタ蓄電システム及び前記スレーブ蓄電システムは、商用電源に接続されており、
 前記マスタ蓄電システムは、前記商用電源が通電状態か停電状態かを判断し、停電状態であると判断した場合には前記所定の電圧及び周波数を決定することを特徴とする項目1に記載の電力供給システム。
[Item 2]
The master power storage system and the slave power storage system are connected to a commercial power source,
The power according to item 1, wherein the master power storage system determines whether the commercial power source is in an energized state or a power failure state, and determines the predetermined voltage and frequency when it is determined that the commercial power source is in a power failure state. Supply system.
[項目3]
 前記マスタ蓄電システムの制御部は、前記負荷に接続される前記マスタ蓄電システム及び前記スレーブ蓄電システムのそれぞれの前記蓄電池の劣化度を取得し、最も劣化していない蓄電池を含む蓄電システムを前記マスタ蓄電システムとして設定し、他の蓄電池を含む蓄電システムを前記スレーブ蓄電システムとして設定することを特徴とする項目1または2に記載の電力供給システム。
[Item 3]
The control unit of the master power storage system acquires the degree of deterioration of the storage battery of each of the master power storage system and the slave power storage system connected to the load, and determines the power storage system including the storage battery that is least deteriorated as the master power storage. The power supply system according to item 1 or 2, wherein the power supply system is set as a system, and a power storage system including another storage battery is set as the slave power storage system.
[項目4]
 前記負荷は、前記商用電源の停電時に、前記蓄電池から優先的に電力供給を受けることができる予め設定された負荷であることを特徴とする項目2に記載の電力供給システム。
[Item 4]
3. The power supply system according to item 2, wherein the load is a preset load that can receive power supply from the storage battery preferentially at the time of a power failure of the commercial power source.
[項目5]
 負荷に交流電流を供給するマスタ蓄電システムと、前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムとを含む電力供給システムのマスタ蓄電システムであって、
 マスタ蓄電池と、
 前記マスタ蓄電池と前記負荷との間に配置されたマスタ電力変換器と、
 前記マスタ蓄電システムの動作を制御するマスタ制御部とを含み、
 前記マスタ制御部は、所定の電圧及び周波数の交流電流を前記負荷に供給し、前記マスタ蓄電システム及び前記スレーブ蓄電システムから前記負荷へ供給される電流を検出する電流検出器によって検出された電流値に基づき、前記スレーブ蓄電システムに前記スレーブ蓄電システムが前記負荷に供給すべき電流値を指示することを特徴とするマスタ蓄電システム。
[Item 5]
A master power storage system of a power supply system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system,
A master storage battery,
A master power converter disposed between the master storage battery and the load;
A master control unit that controls the operation of the master power storage system,
The master control unit supplies an alternating current having a predetermined voltage and frequency to the load, and a current value detected by a current detector that detects a current supplied from the master power storage system and the slave power storage system to the load. Based on the above, the slave power storage system instructs the slave power storage system to supply a current value to be supplied to the load.
[項目6]
 前記マスタ制御部は、前記電流検出器によって検出された電流値と、前記マスタ電力変換器の定格出力容量の電流値とに基づき、前記スレーブ蓄電システムが前記負荷に供給すべき電流値を算出することを特徴とする項目5に記載のマスタ蓄電システム。
[Item 6]
The master control unit calculates a current value to be supplied to the load by the slave power storage system based on a current value detected by the current detector and a current value of a rated output capacity of the master power converter. Item 6. The master power storage system according to Item 5.
[項目7]
 前記マスタ制御部は、前記電流検出器によって検出された電流値が、前記マスタ電力変換器の定格出力容量の電流値を超える場合は、前記マスタ電力変換器から定格出力容量の電流を前記負荷に供給させるとともに、前記スレーブ蓄電システムに指示する電流値を、前記電流検出器によって検出された電流値と前記マスタ電力変換器の定格出力容量の電流値との差分とすることを特徴とする項目6に記載のマスタ蓄電システム。
[Item 7]
When the current value detected by the current detector exceeds the current value of the rated output capacity of the master power converter, the master control unit supplies the current of the rated output capacity from the master power converter to the load. Item 6 is characterized in that the current value instructed to the slave power storage system is a difference between the current value detected by the current detector and the current value of the rated output capacity of the master power converter. The master power storage system described in 1.
[項目8]
 前記マスタ制御部は、前記電流検出器によって検出される電流値を、前記負荷に接続される前記マスタ蓄電システム及び前記スレーブ蓄電システムの数で按分して、前記マスタ蓄電システム及び前記スレーブ蓄電システムそれぞれから前記負荷に供給すべき電流値を算出することを特徴とする項目5に記載のマスタ蓄電システム。
[Item 8]
The master control unit divides the current value detected by the current detector by the number of the master power storage system and the slave power storage system connected to the load, and the master power storage system and the slave power storage system respectively. 6. The master power storage system according to item 5, wherein a current value to be supplied to the load is calculated from
[項目9]
 前記マスタ制御部は、前記マスタ蓄電池の残容量データを取得するとともに、前記負荷に接続された前記スレーブ蓄電システムの蓄電池の残容量データを取得し、前記マスタ蓄電池及び前記スレーブ蓄電システムの蓄電池の残容量の比率に応じて、前記マスタ蓄電システム及び前記スレーブ蓄電システムそれぞれから前記負荷に供給すべき電流値を算出することを特徴とする項目5に記載のマスタ蓄電システム。
[Item 9]
The master control unit acquires remaining capacity data of the master storage battery, acquires remaining capacity data of the storage battery of the slave storage system connected to the load, and stores the remaining capacity data of the master storage battery and the storage battery of the slave storage system. 6. The master power storage system according to item 5, wherein a current value to be supplied to the load is calculated from each of the master power storage system and the slave power storage system according to a capacity ratio.
[項目10]
 前記マスタ制御部は、
 前記所定の電圧および周波数の交流電力を前記負荷に出力するよう前記マスタ電力変換器を駆動制御する駆動制御部と、
 前記電流検出器から電流値を取得する取得部と、
 前記スレーブ蓄電システムに指示する電流値を算出する電流算出部と、
 算出された電流値を前記負荷へ出力するよう前記スレーブ蓄電システムに指示する指示部とを含むことを特徴とする項目5から9のいずれかに記載のマスタ蓄電システム。
[Item 10]
The master control unit
A drive control unit that drives and controls the master power converter so as to output AC power of the predetermined voltage and frequency to the load;
An acquisition unit for acquiring a current value from the current detector;
A current calculation unit for calculating a current value for instructing the slave power storage system;
The master power storage system according to any one of items 5 to 9, further comprising: an instruction unit that instructs the slave power storage system to output the calculated current value to the load.
[項目11]
 負荷に交流電流を供給するマスタ蓄電システムと、前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムとを含む電力供給システムのスレーブ蓄電システムであって、
 スレーブ蓄電池と、
 前記スレーブ蓄電池と前記負荷との間に配置されたスレーブ電力変換器と、
 前記スレーブ蓄電システムの動作を制御するスレーブ制御部とを含み、
 前記スレーブ制御部は、前記マスタ蓄電システムの出力電圧及び出力周波数を検出する電圧検出器によって検出された出力電圧及び出力周波数で、前記マスタ蓄電システムから指示された電流値を前記負荷に供給させることを特徴とするスレーブ蓄電システム。
[Item 11]
A power storage system slave power storage system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system,
A slave battery,
A slave power converter disposed between the slave storage battery and the load;
A slave control unit that controls the operation of the slave power storage system,
The slave control unit causes the load to supply a current value instructed from the master power storage system at an output voltage and output frequency detected by a voltage detector that detects an output voltage and an output frequency of the master power storage system. A slave power storage system.
[項目12]
 前記スレーブ制御部は、前記スレーブ蓄電池の残容量データを取得し、前記残容量データを前記マスタ蓄電システムに通知することを特徴とする項目11に記載のスレーブ蓄電システム。
[Item 12]
The slave power storage system according to item 11, wherein the slave control unit acquires the remaining capacity data of the slave storage battery and notifies the master power storage system of the remaining capacity data.
 50 配電システム、 10a 第1蓄電システム、 10b 第2蓄電システム、 20 第1検出器、 30 第2検出器、 40 分電盤、 60 商用電源、 70 負荷、 71 第1種負荷、 72 第2種負荷、 SW1 第1スイッチ、 SW2 第2スイッチ、 11a 第1蓄電池、 12a 第1双方向インバータ、 13a 第1太陽電池、 SW3a 第13スイッチ、 14a 第1制御装置、 15a 第1制御部、 16a 第1蓄電池管理部、 11b 第2蓄電池、 12b 第2双方向インバータ、 13b 第2太陽電池、 SW3b 第23スイッチ、 14b 第2制御装置、 15b 第2制御部、 16b 第2蓄電池管理部、 151a 第1駆動制御部、 152a 第1取得部、 153a 第1判定部、 154a 第1電流値算出部、 155a 指示部、 156a マスタ設定部、 158a 目標値保持部、 151b 第2駆動制御部、 152b 第2取得部、 155b 指示受領部、 35 第3検出器、 153b 第2判定部、 154b 第2電流値算出部、 157b マスタ情報保持部、 158b 目標値算出部。 50 power distribution system, 10a first power storage system, 10b second power storage system, 20 first detector, 30 second detector, 40 distribution board, 60 commercial power supply, 70 load, 71 first type load, 72 second type Load, SW1 1st switch, SW2 2nd switch, 11a 1st storage battery, 12a 1st bidirectional inverter, 13a 1st solar battery, SW3a 13th switch, 14a 1st control device, 15a 1st control unit, 16a 1st Storage battery management unit, 11b 2nd storage battery, 12b 2nd bidirectional inverter, 13b 2nd solar battery, SW3b 23rd switch, 14b 2nd control device, 15b 2nd control unit, 16b 2nd storage battery management unit, 151a 1st drive Control unit, 152a first acquisition unit, 153a first determination unit, 154a first current value calculation unit, 155a instruction unit, 156a master setting unit, 158a target value holding unit, 151b second drive control unit, 152b second acquisition unit, 155b instruction reception unit, 35 third Detector, 153b second determination unit, 154b second current value calculation unit, 157b master information holding unit, 158b target value calculation unit.

Claims (12)

  1.  所定の電圧及び周波数の交流電流を負荷へ供給するマスタ蓄電システムと、
     前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムと、
     前記マスタ蓄電システム及び前記スレーブ蓄電システムから前記負荷へ供給される電流を検出する電流検出器と、
     前記マスタ蓄電システムの出力電圧及び出力周波数を検出する電圧検出器と、
    を備え、
     前記マスタ蓄電システム及び前記スレーブ蓄電システムは、蓄電池と、前記蓄電池と前記負荷との間に配置された電力変換器と、各蓄電システムを制御する制御部とを含み、前記負荷に対して互いに並列接続されており、
     前記マスタ蓄電システムの制御部は、前記電流検出器によって検出された電流値に基づき、前記スレーブ蓄電システムの制御部に前記スレーブ蓄電システムが前記負荷に供給すべき電流値を指示し、
     前記スレーブ蓄電システムの制御部は、前記電圧検出器によって検出された前記出力電圧及び前記出力周波数で、前記マスタ蓄電システムから指示された電流値を前記負荷に供給させることを特徴とする電力供給システム。
    A master power storage system that supplies an alternating current of a predetermined voltage and frequency to a load;
    Based on an instruction from the master power storage system, at least one slave power storage system for supplying an alternating current to the load;
    A current detector for detecting a current supplied from the master power storage system and the slave power storage system to the load;
    A voltage detector for detecting an output voltage and an output frequency of the master power storage system;
    With
    The master power storage system and the slave power storage system include a storage battery, a power converter disposed between the storage battery and the load, and a control unit that controls each power storage system, and are parallel to the load. Connected,
    The control unit of the master power storage system instructs a current value to be supplied to the load by the slave power storage system to the control unit of the slave power storage system based on the current value detected by the current detector,
    The control unit of the slave power storage system supplies the load with a current value instructed from the master power storage system at the output voltage and the output frequency detected by the voltage detector. .
  2.  前記マスタ蓄電システム及び前記スレーブ蓄電システムは、商用電源に接続されており、
     前記マスタ蓄電システムは、前記商用電源が通電状態か停電状態かを判断し、停電状態であると判断した場合には前記所定の電圧及び周波数を決定することを特徴とする請求項1に記載の電力供給システム。
    The master power storage system and the slave power storage system are connected to a commercial power source,
    The master power storage system determines whether the commercial power source is in an energized state or a power outage state, and determines the predetermined voltage and frequency when determining that the commercial power source is in a power outage state. Power supply system.
  3.  前記マスタ蓄電システムの制御部は、前記負荷に接続される前記マスタ蓄電システム及び前記スレーブ蓄電システムのそれぞれの前記蓄電池の劣化度を取得し、最も劣化していない蓄電池を含む蓄電システムを前記マスタ蓄電システムとして設定し、他の蓄電池を含む蓄電システムを前記スレーブ蓄電システムとして設定することを特徴とする請求項1または2に記載の電力供給システム。 The control unit of the master power storage system acquires the degree of deterioration of the storage battery of each of the master power storage system and the slave power storage system connected to the load, and determines the power storage system including the storage battery that is least deteriorated as the master power storage. The power supply system according to claim 1, wherein the power supply system is set as a system, and a power storage system including another storage battery is set as the slave power storage system.
  4.  前記負荷は、前記商用電源の停電時に、前記蓄電池から優先的に電力供給を受けることができる予め設定された負荷であることを特徴とする請求項2に記載の電力供給システム。 The power supply system according to claim 2, wherein the load is a preset load that can receive power supply from the storage battery preferentially at the time of a power failure of the commercial power source.
  5.  負荷に交流電流を供給するマスタ蓄電システムと、前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムとを含む電力供給システムのマスタ蓄電システムであって、
     マスタ蓄電池と、
     前記マスタ蓄電池と前記負荷との間に配置されたマスタ電力変換器と、
     前記マスタ蓄電システムの動作を制御するマスタ制御部とを含み、
     前記マスタ制御部は、所定の電圧及び周波数の交流電流を前記負荷に供給し、前記マスタ蓄電システム及び前記スレーブ蓄電システムから前記負荷へ供給される電流を検出する電流検出器によって検出された電流値に基づき、前記スレーブ蓄電システムに前記スレーブ蓄電システムが前記負荷に供給すべき電流値を指示することを特徴とするマスタ蓄電システム。
    A master power storage system of a power supply system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system,
    A master storage battery,
    A master power converter disposed between the master storage battery and the load;
    A master control unit that controls the operation of the master power storage system,
    The master control unit supplies an alternating current having a predetermined voltage and frequency to the load, and a current value detected by a current detector that detects a current supplied from the master power storage system and the slave power storage system to the load. Based on the above, the slave power storage system instructs the slave power storage system to supply a current value to be supplied to the load.
  6.  前記マスタ制御部は、前記電流検出器によって検出された電流値と、前記マスタ電力変換器の定格出力容量の電流値とに基づき、前記スレーブ蓄電システムが前記負荷に供給すべき電流値を算出することを特徴とする請求項5に記載のマスタ蓄電システム。 The master control unit calculates a current value to be supplied to the load by the slave power storage system based on a current value detected by the current detector and a current value of a rated output capacity of the master power converter. The master power storage system according to claim 5.
  7.  前記マスタ制御部は、前記電流検出器によって検出された電流値が、前記マスタ電力変換器の定格出力容量の電流値を超える場合は、前記マスタ電力変換器から定格出力容量の電流を前記負荷に供給させるとともに、前記スレーブ蓄電システムに指示する電流値を、前記電流検出器によって検出された電流値と前記マスタ電力変換器の定格出力容量の電流値との差分とすることを特徴とする請求項6に記載のマスタ蓄電システム。 When the current value detected by the current detector exceeds the current value of the rated output capacity of the master power converter, the master control unit supplies the current of the rated output capacity from the master power converter to the load. The current value instructed to the slave power storage system is a difference between the current value detected by the current detector and the current value of the rated output capacity of the master power converter. 6. The master power storage system according to 6.
  8.  前記マスタ制御部は、前記電流検出器によって検出される電流値を、前記負荷に接続される前記マスタ蓄電システム及び前記スレーブ蓄電システムの数で按分して、前記マスタ蓄電システム及び前記スレーブ蓄電システムそれぞれから前記負荷に供給すべき電流値を算出することを特徴とする請求項5に記載のマスタ蓄電システム。 The master control unit divides the current value detected by the current detector by the number of the master power storage system and the slave power storage system connected to the load, and the master power storage system and the slave power storage system respectively. The master power storage system according to claim 5, wherein a current value to be supplied to the load is calculated from
  9.  前記マスタ制御部は、前記マスタ蓄電池の残容量データを取得するとともに、前記負荷に接続された前記スレーブ蓄電システムの蓄電池の残容量データを取得し、前記マスタ蓄電池及び前記スレーブ蓄電システムの蓄電池の残容量の比率に応じて、前記マスタ蓄電システム及び前記スレーブ蓄電システムそれぞれから前記負荷に供給すべき電流値を算出することを特徴とする請求項5に記載のマスタ蓄電システム。 The master control unit acquires remaining capacity data of the master storage battery, acquires remaining capacity data of the storage battery of the slave storage system connected to the load, and stores the remaining capacity data of the master storage battery and the storage battery of the slave storage system. 6. The master power storage system according to claim 5, wherein a current value to be supplied to the load is calculated from each of the master power storage system and the slave power storage system according to a capacity ratio.
  10.  前記マスタ制御部は、
     前記所定の電圧および周波数の交流電力を前記負荷に出力するよう前記マスタ電力変換器を駆動制御する駆動制御部と、
     前記電流検出器から電流値を取得する取得部と、
     前記スレーブ蓄電システムに指示する電流値を算出する電流算出部と、
     算出された電流値を前記負荷へ出力するよう前記スレーブ蓄電システムに指示する指示部とを含むことを特徴とする請求項5から9のいずれかに記載のマスタ蓄電システム。
    The master control unit
    A drive control unit that drives and controls the master power converter so as to output AC power of the predetermined voltage and frequency to the load;
    An acquisition unit for acquiring a current value from the current detector;
    A current calculation unit for calculating a current value for instructing the slave power storage system;
    The master power storage system according to claim 5, further comprising: an instruction unit that instructs the slave power storage system to output the calculated current value to the load.
  11.  負荷に交流電流を供給するマスタ蓄電システムと、前記マスタ蓄電システムの指示に基づいて、前記負荷へ交流電流を供給する少なくとも1つのスレーブ蓄電システムとを含む電力供給システムのスレーブ蓄電システムであって、
     スレーブ蓄電池と、
     前記スレーブ蓄電池と前記負荷との間に配置されたスレーブ電力変換器と、
     前記スレーブ蓄電システムの動作を制御するスレーブ制御部とを含み、
     前記スレーブ制御部は、前記マスタ蓄電システムの出力電圧及び出力周波数を検出する電圧検出器によって検出された出力電圧及び出力周波数で、前記マスタ蓄電システムから指示された電流値を前記負荷に供給させることを特徴とするスレーブ蓄電システム。
    A power storage system slave power storage system comprising: a master power storage system that supplies an alternating current to a load; and at least one slave power storage system that supplies an alternating current to the load based on an instruction of the master power storage system,
    A slave battery,
    A slave power converter disposed between the slave storage battery and the load;
    A slave control unit that controls the operation of the slave power storage system,
    The slave control unit causes the load to supply a current value instructed from the master power storage system at an output voltage and output frequency detected by a voltage detector that detects an output voltage and an output frequency of the master power storage system. A slave power storage system.
  12.  前記スレーブ制御部は、前記スレーブ蓄電池の残容量データを取得し、前記残容量データを前記マスタ蓄電システムに通知することを特徴とする請求項11に記載のスレーブ蓄電システム。 The slave power storage system according to claim 11, wherein the slave control unit acquires the remaining capacity data of the slave storage battery and notifies the master power storage system of the remaining capacity data.
PCT/JP2012/004875 2012-07-31 2012-07-31 Power supply system, master power storage system, and slave power storage system WO2014020644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014527822A JPWO2014020644A1 (en) 2012-07-31 2012-07-31 Power supply system, master power storage system and slave power storage system
PCT/JP2012/004875 WO2014020644A1 (en) 2012-07-31 2012-07-31 Power supply system, master power storage system, and slave power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004875 WO2014020644A1 (en) 2012-07-31 2012-07-31 Power supply system, master power storage system, and slave power storage system

Publications (1)

Publication Number Publication Date
WO2014020644A1 true WO2014020644A1 (en) 2014-02-06

Family

ID=50027377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004875 WO2014020644A1 (en) 2012-07-31 2012-07-31 Power supply system, master power storage system, and slave power storage system

Country Status (2)

Country Link
JP (1) JPWO2014020644A1 (en)
WO (1) WO2014020644A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108027A (en) * 2012-11-29 2014-06-09 Daiwa House Industry Co Ltd Power supply system
JP2015171284A (en) * 2014-03-10 2015-09-28 パナソニック株式会社 Air conditioner system
JP2016025687A (en) * 2014-07-17 2016-02-08 ソニー株式会社 Power transmission/reception controller, power transmission/reception control method, and power transmission/reception control system
WO2016199380A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device
WO2016199377A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device
JP2017505254A (en) * 2014-08-08 2017-02-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV battery power backup system and method
JP2017046401A (en) * 2015-08-25 2017-03-02 日本電気株式会社 Power control unit, power control system, power control method and program
WO2017072991A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Power conversion system and control device
JP2017099113A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and operating method
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
JP2018050428A (en) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 Control apparatus, electric power system with the same, control method, and control program
US10158228B2 (en) 2014-08-08 2018-12-18 Sony Corporation Power supply device, method of supplying power, and power supply system
US10195952B2 (en) 2014-11-21 2019-02-05 SZ DJI Technology Co., Ltd. System and method for managing unmanned aerial vehicles
US10363826B2 (en) 2014-08-08 2019-07-30 SZ DJI Technology Co., Ltd. Systems and methods for UAV battery exchange
US10536031B2 (en) * 2017-03-02 2020-01-14 Hitachi, Ltd. System and method for distributing load current in a UPS system
US11091043B2 (en) 2014-08-08 2021-08-17 SZ DJI Technology Co., Ltd. Multi-zone battery exchange system
JP2023513441A (en) * 2020-01-24 2023-03-31 カミンズ パワー ジェネレイション インコーポレイテッド Robust and Redundant Distributed Power System Control Based on Objects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063946A1 (en) * 2014-10-23 2016-04-28 日本電気株式会社 Distributed power storage system, power control method, and program
WO2016063948A1 (en) * 2014-10-23 2016-04-28 日本電気株式会社 Distributed power storage system, power control method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126210A (en) * 1994-10-24 1996-05-17 Kawasaki Heavy Ind Ltd Parallel off control device for commercial power supply linkage private generator
JPH08171919A (en) * 1994-12-19 1996-07-02 Toshiba Syst Technol Kk Parallel operation device for fuel cell power plant
JP2002176736A (en) * 2000-12-06 2002-06-21 Sansha Electric Mfg Co Ltd Uninterrupted power supply system
WO2002061917A1 (en) * 2001-02-01 2002-08-08 Hitachi Maxell, Ltd. Power supply
JP2004173388A (en) * 2002-11-19 2004-06-17 Mitsubishi Heavy Ind Ltd System linkage system
JP2007259612A (en) * 2006-03-24 2007-10-04 Hitachi Ltd Power supply controller
JP2008236902A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Power system, electric vehicle, and power supply method
JP2010028876A (en) * 2008-07-15 2010-02-04 Lenovo Singapore Pte Ltd Charging/discharging system and portable computer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126210A (en) * 1994-10-24 1996-05-17 Kawasaki Heavy Ind Ltd Parallel off control device for commercial power supply linkage private generator
JPH08171919A (en) * 1994-12-19 1996-07-02 Toshiba Syst Technol Kk Parallel operation device for fuel cell power plant
JP2002176736A (en) * 2000-12-06 2002-06-21 Sansha Electric Mfg Co Ltd Uninterrupted power supply system
WO2002061917A1 (en) * 2001-02-01 2002-08-08 Hitachi Maxell, Ltd. Power supply
JP2004173388A (en) * 2002-11-19 2004-06-17 Mitsubishi Heavy Ind Ltd System linkage system
JP2007259612A (en) * 2006-03-24 2007-10-04 Hitachi Ltd Power supply controller
JP2008236902A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Power system, electric vehicle, and power supply method
JP2010028876A (en) * 2008-07-15 2010-02-04 Lenovo Singapore Pte Ltd Charging/discharging system and portable computer

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108027A (en) * 2012-11-29 2014-06-09 Daiwa House Industry Co Ltd Power supply system
JP2015171284A (en) * 2014-03-10 2015-09-28 パナソニック株式会社 Air conditioner system
JP2016025687A (en) * 2014-07-17 2016-02-08 ソニー株式会社 Power transmission/reception controller, power transmission/reception control method, and power transmission/reception control system
US10734819B2 (en) 2014-07-17 2020-08-04 Sony Corporation Power transmission and reception control device, method for controlling transmission and reception of power, power transmission and reception control system
US10158228B2 (en) 2014-08-08 2018-12-18 Sony Corporation Power supply device, method of supplying power, and power supply system
US11332033B2 (en) 2014-08-08 2022-05-17 SZ DJI Technology Co., Ltd. Systems and methods for UAV battery exchange
US11091043B2 (en) 2014-08-08 2021-08-17 SZ DJI Technology Co., Ltd. Multi-zone battery exchange system
JP2017505254A (en) * 2014-08-08 2017-02-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV battery power backup system and method
US10611252B2 (en) 2014-08-08 2020-04-07 SZ DJI Technology Co., Ltd. Systems and methods for UAV battery power backup
US10363826B2 (en) 2014-08-08 2019-07-30 SZ DJI Technology Co., Ltd. Systems and methods for UAV battery exchange
US10195952B2 (en) 2014-11-21 2019-02-05 SZ DJI Technology Co., Ltd. System and method for managing unmanned aerial vehicles
JP2017005930A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power storage system, power storage device and operation method for power storage device
JP2017005931A (en) * 2015-06-12 2017-01-05 パナソニックIpマネジメント株式会社 Power storage system, power storage device and operation method for power storage device
WO2016199377A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device
WO2016199380A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Power storage system, power storage device, and operation method for power storage device
JP2017046401A (en) * 2015-08-25 2017-03-02 日本電気株式会社 Power control unit, power control system, power control method and program
EP3370322A4 (en) * 2015-10-28 2018-10-17 Panasonic Intellectual Property Management Co., Ltd. Power conversion system and control device
WO2017072991A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Power conversion system and control device
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
JP2017099113A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and operating method
JP2018050428A (en) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 Control apparatus, electric power system with the same, control method, and control program
US10536031B2 (en) * 2017-03-02 2020-01-14 Hitachi, Ltd. System and method for distributing load current in a UPS system
JP2023513441A (en) * 2020-01-24 2023-03-31 カミンズ パワー ジェネレイション インコーポレイテッド Robust and Redundant Distributed Power System Control Based on Objects

Also Published As

Publication number Publication date
JPWO2014020644A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2014020644A1 (en) Power supply system, master power storage system, and slave power storage system
WO2014020645A1 (en) Power supply system and slave power storage system
CN106816884B (en) Energy storage system
US20230198286A1 (en) Combination wind/solar dc power system
JP5076024B2 (en) Storage system that maximizes the use of renewable energy
JP2015070746A (en) Control device and power storage system
US9205756B2 (en) Battery system
US20130169064A1 (en) Energy storage system and controlling method of the same
US10424923B2 (en) Scalable and flexible cell-based energy storage system
US10298006B2 (en) Energy storage system and method of driving the same
JP2011147329A (en) Power conservation device and operating method thereof, and power conservation system
KR20110068690A (en) Power converting device of new and renewable energy storage system
WO2017169655A1 (en) Power supply system, control system and power control method for power supply system
KR101278307B1 (en) Power supply system
TW201325004A (en) Power management apparatus and method of controlling the same
US10277029B2 (en) Energy storage system with dual-active-bridge converter
JP6369803B2 (en) Power storage device
WO2013179344A1 (en) Storage battery management device
KR20170052028A (en) Control power supplying apparatus and method for battery management and energy stock system using the same
JP6089565B2 (en) Emergency power system
KR101517566B1 (en) Hybrid electricity generator for emergency based on battery
KR20160040831A (en) Battery Pack and Driving Method Thereof
CN116667498A (en) Charging control method and device of energy storage system and energy storage conversion system
JP2015122841A (en) Power storage system and power generation system
KR20130123851A (en) Mass energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882226

Country of ref document: EP

Kind code of ref document: A1