JP6769085B2 - Tuned mass damper - Google Patents

Tuned mass damper Download PDF

Info

Publication number
JP6769085B2
JP6769085B2 JP2016086747A JP2016086747A JP6769085B2 JP 6769085 B2 JP6769085 B2 JP 6769085B2 JP 2016086747 A JP2016086747 A JP 2016086747A JP 2016086747 A JP2016086747 A JP 2016086747A JP 6769085 B2 JP6769085 B2 JP 6769085B2
Authority
JP
Japan
Prior art keywords
elastic member
coil spring
mass damper
mass body
tuned mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016086747A
Other languages
Japanese (ja)
Other versions
JP2017198228A (en
Inventor
吾郎 三輪田
吾郎 三輪田
優也 青山
優也 青山
治 吉田
治 吉田
理都子 石川
理都子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2016086747A priority Critical patent/JP6769085B2/en
Publication of JP2017198228A publication Critical patent/JP2017198228A/en
Application granted granted Critical
Publication of JP6769085B2 publication Critical patent/JP6769085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物の床等の制振対象物の上下振動を抑制するチューンドマスダンパーに関する。 The present invention relates to a tuned mass damper that suppresses vertical vibration of a vibration damping object such as a floor of a building.

従来、制振対象物の上下振動を抑制する装置として、チューンドマスダンパー(以下、TMDとも言う)が知られている。TMDは、例えば建物の床を制振対象物として使用される。すなわち、TMDは、床に配置された質量体と、当該質量体と床との間に介挿されて同質量体を支持する弾性部材と、同弾性部材と並列に配置された減衰部材と、を有する。そして、床の上下振動に同調して略逆位相の上下振動を質量体がすることにより、床の上下振動を抑制する。 Conventionally, a tuned mass damper (hereinafter, also referred to as TMD) is known as a device for suppressing vertical vibration of a vibration damping object. In TMD, for example, the floor of a building is used as a vibration damping object. That is, the TMD includes a mass body arranged on the floor, an elastic member inserted between the mass body and the floor to support the same mass body, and a damping member arranged in parallel with the elastic member. Has. Then, the mass body suppresses the vertical vibration of the floor by synchronizing the vertical vibration of the floor with the vertical vibration of substantially opposite phases.

特開平10−252253号公報JP-A-10-252253

一方、かかるTMD10’の一例として、質量体20’を、下方からダンピングコイルばね40’で支持した構成も考えられる。図1Aは、その概略縦断面図であり、図1Bは、図1A中のB−B断面図である。なお、図1A中では、コイルばね41’等のTMD10’の一部の構成を側面視で示している。
ここで、タンピングコイルばね40’とは、上記弾性部材としてのコイルばね41’の外周部を、減衰部材として機能する粘弾性の筒状部材45’で覆いつつ接着剤で接合一体化したものである。
On the other hand, as an example of such TMD 10', a configuration in which the mass body 20'is supported by a damping coil spring 40' from below can be considered. 1A is a schematic vertical sectional view thereof, and FIG. 1B is a sectional view taken along line BB in FIG. 1A. In FIG. 1A, a part of the configuration of the TMD 10'such as the coil spring 41' is shown from the side view.
Here, the tamping coil spring 40'is a device in which the outer peripheral portion of the coil spring 41' as the elastic member is covered with a viscoelastic tubular member 45' that functions as a damping member and is joined and integrated with an adhesive. is there.

そして、このような構成のTMD10’によれば、コイルばね41’の上下方向の変形に伴って粘弾性の筒状部材45’も上下方向に変形する。よって、同調した質量体20’及び粘弾性の筒状部材45’の上下振動に基づいて、床1’の上下振動を減衰させることが可能となる。 Then, according to the TMD 10'with such a configuration, the viscoelastic tubular member 45'is also deformed in the vertical direction as the coil spring 41' is deformed in the vertical direction. Therefore, it is possible to attenuate the vertical vibration of the floor 1'based on the vertical vibration of the synchronized mass body 20'and the viscoelastic tubular member 45'.

しかしながら、このような筒状部材45’たる減衰部材が一体化したコイルばね41’を用いると、当該一体化の不均一性等に起因して質量体20’がロッキング振動をする恐れがある。そして、その場合には、質量体20’は、床1’の上下振動と同調した略逆位相の上下振動をし難くなって、その結果、床1’の上下振動の抑制効果が減退してしまい得る。 However, if a coil spring 41'in which a damping member such as a tubular member 45' is integrated is used, the mass body 20'may cause locking vibration due to the non-uniformity of the integration or the like. In that case, the mass body 20'is less likely to vibrate vertically in substantially opposite phase in synchronization with the vertical vibration of the floor 1', and as a result, the effect of suppressing the vertical vibration of the floor 1'is diminished. It can be closed.

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、減衰部材が一体化された弾性部材をTMDに用いることで起こり得るTMDの質量体のロッキング振動を防ぐことにある。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to prevent the locking vibration of the mass body of the TMD that may occur by using an elastic member with an integrated damping member for the TMD. There is.

かかる目的を達成するために請求項1に示す発明は、
制振対象物の上方又は下方に配置された質量体が、前記制振対象物の上下振動に同調して上下振動することにより、前記制振対象物の前記上下振動を抑制するチューンドマスダンパーであって、
前記質量体と前記制振対象物との間に互いに並列に介挿されて前記質量体を支持する少なくとも3つの第1弾性部材と、
前記質量体と前記制振対象物との間に前記第1弾性部材と並列に介挿されて前記質量体を支持する少なくとも1つの第2弾性部材と、
前記第2弾性部材に並列に設けられつつ前記第2弾性部材に一体化された減衰部材と、を有し、
前記3つの第1弾性部材と前記質量体の重心の位置との水平方向の距離は、前記第2弾性部材と前記重心の位置との水平方向の距離よりも大きいことを特徴とする。
The invention shown in claim 1 for achieving such an object
A tuned mass damper that suppresses the vertical vibration of the vibration damping object by causing the mass body placed above or below the vibration damping object to vibrate vertically in synchronization with the vertical vibration of the vibration damping object. There,
At least three first elastic members that are interposed between the mass body and the vibration damping object in parallel to support the mass body, and
At least one second elastic member that supports the mass body by being inserted in parallel with the first elastic member between the mass body and the vibration damping object.
It has a damping member integrated with the second elastic member while being provided in parallel with the second elastic member.
The horizontal distance between the three first elastic members and the position of the center of gravity of the mass body is larger than the horizontal distance between the second elastic member and the position of the center of gravity.

上記請求項1に示す発明によれば、上記3つの第1弾性部材は、減衰部材が一体化された第2弾性部材よりも質量体の重心から離れた位置に配置されている。よって、質量体が安定して上下振動をするように、当該質量体を、これら3つの第1弾性部材は安定して支持することができる。そして、これにより、質量体のロッキング振動を防ぐことができる。 According to the invention of claim 1, the three first elastic members are arranged at positions farther from the center of gravity of the mass body than the second elastic member in which the damping member is integrated. Therefore, these three first elastic members can stably support the mass body so that the mass body vibrates up and down stably. As a result, the locking vibration of the mass body can be prevented.

請求項2に示す発明は、請求項1に記載のチューンドマスダンパーであって、
前記質量体と前記制振対象物との間に位置する全ての前記第1弾性部材の前記上下方向の剛性値(N/m)の合計値は、前記質量体と前記制振対象物との間に位置する全ての前記第2弾性部材の前記上下方向の剛性値(N/m)の合計値よりも大きいことを特徴とする。
The invention shown in claim 2 is the tuned mass damper according to claim 1.
The total value of the vertical rigidity values (N / m) of all the first elastic members located between the mass body and the vibration damping object is the value of the mass body and the vibration damping object. It is characterized in that it is larger than the total value of the rigidity values (N / m) in the vertical direction of all the second elastic members located between them.

上記請求項2に示す発明によれば、第1弾性部材の剛性値の合計値の方が、減衰部材が一体化された第2弾性部材の剛性値の合計値より大きい。よって、質量体を第1弾性部材で安定して支持することができて、これにより、質量体のロッキング振動を効果的に防ぐことができる。 According to the second aspect of the invention, the total value of the rigidity values of the first elastic member is larger than the total value of the rigidity values of the second elastic member integrated with the damping member. Therefore, the mass body can be stably supported by the first elastic member, and thereby the locking vibration of the mass body can be effectively prevented.

請求項3に示す発明は、請求項1又は2に記載のチューンドマスダンパーであって、
前記第2弾性部材と前記減衰部材とは、接着剤で接着されることにより一体化されていることを特徴とする。
The invention shown in claim 3 is the tuned mass damper according to claim 1 or 2.
The second elastic member and the damping member are integrated by being adhered with an adhesive.

上記請求項3に示す発明によれば、第2弾性部材に減衰部材は接着剤で接着されることにより一体化されている。そのため、質量体の上下振動に伴って第2弾性部材に入力される上下変位を、第2弾性部材を介して減衰部材にも確実に入力することができて、これにより、減衰部材も質量体の上下振動に連動して確実に上下方向に変形する。よって、当該減衰部材を、制振対象物の上下振動の減衰に有効に寄与させることができる。 According to the invention shown in claim 3, the damping member is integrated with the second elastic member by being adhered with an adhesive. Therefore, the vertical displacement input to the second elastic member due to the vertical vibration of the mass body can be reliably input to the damping member via the second elastic member, whereby the damping member is also a mass body. Deforms reliably in the vertical direction in conjunction with the vertical vibration of. Therefore, the damping member can effectively contribute to the damping of the vertical vibration of the vibration damping object.

請求項4に示す発明は、請求項3に記載のチューンドマスダンパーであって、
前記第2弾性部材は、上下方向に沿った中心軸回りに線材を螺旋状に旋回してなるコイルばねであり、
前記減衰部材は、前記コイルばねの外周面の全周を覆う筒状部材であり、
前記筒状部材の内周面が前記コイルばねの外周部に前記接着剤で接着されていることを特徴とする。
The invention shown in claim 4 is the tuned mass damper according to claim 3.
The second elastic member is a coil spring formed by spirally swirling a wire rod around a central axis along the vertical direction.
The damping member is a tubular member that covers the entire circumference of the outer peripheral surface of the coil spring.
The inner peripheral surface of the tubular member is adhered to the outer peripheral portion of the coil spring with the adhesive.

上記請求項4に示す発明によれば、減衰部材たる筒状部材の内周面が、第2弾性部材たるコイルばねの外周部に接着剤で接着されている。そのため、質量体の上下振動に伴ってコイルばねに入力される上下変位が、当該コイルばねを介して筒状部材にも確実に入力されて、これにより、当該筒状部材も質量体の上下振動に連動して上下方向に変形する。よって、当該筒状部材たる減衰部材を、制振対象物の上下振動の減衰により有効に寄与させることができる。 According to the invention of claim 4, the inner peripheral surface of the tubular member, which is a damping member, is adhered to the outer peripheral portion of the coil spring, which is a second elastic member, with an adhesive. Therefore, the vertical displacement input to the coil spring due to the vertical vibration of the mass body is surely input to the tubular member via the coil spring, whereby the vertical vibration of the tubular member also occurs. It deforms in the vertical direction in conjunction with. Therefore, the damping member, which is the tubular member, can be effectively contributed by damping the vertical vibration of the vibration damping object.

請求項5に示す発明は、請求項4に記載のチューンドマスダンパーであって、
前記第2弾性部材は1つだけ設けられ、
前記質量体の前記重心の平面位置は、前記第2弾性部材としての前記コイルばねの内周側に位置していることを特徴とする。
The invention shown in claim 5 is the tuned mass damper according to claim 4.
Only one second elastic member is provided.
The plane position of the center of gravity of the mass body is characterized in that it is located on the inner peripheral side of the coil spring as the second elastic member.

上記請求項5に示す発明によれば、質量体の重心の平面位置は、第2弾性部材としてのコイルばねの内周側に位置している。よって、質量体が安定して上下振動するように、同質量体を当該コイルばねは支持することができる。そして、このことも、質量体のロッキング振動の防止に有効に寄与する。 According to the invention of claim 5, the plane position of the center of gravity of the mass body is located on the inner peripheral side of the coil spring as the second elastic member. Therefore, the coil spring can support the mass body so that the mass body vibrates up and down stably. This also effectively contributes to the prevention of the locking vibration of the mass body.

請求項6に示す発明は、請求項1又は2に記載のチューンドマスダンパーであって、
前記第2弾性部材と前記減衰部材とは、連結部材を介して連結されることにより一体化されていることを特徴とする。
The invention shown in claim 6 is the tuned mass damper according to claim 1 or 2.
The second elastic member and the damping member are integrated by being connected via a connecting member.

上記請求項6に示す発明によれば、第2弾性部材に減衰部材は連結部材を介して連結されることにより一体化されている。そのため、質量体の上下振動に伴って第2弾性部材に入力される上下変位を、上記連結部材を介して減衰部材にも確実に入力することができて、これにより、当該減衰部材も質量体の上下振動に連動して速やかに上下方向に変形する。よって、同減衰部材を、制振対象物の上下振動の減衰に確実に寄与させることができる。 According to the invention shown in claim 6, the damping member is integrated with the second elastic member by being connected via the connecting member. Therefore, the vertical displacement input to the second elastic member due to the vertical vibration of the mass body can be reliably input to the damping member via the connecting member, whereby the damping member is also a mass body. It quickly deforms in the vertical direction in conjunction with the vertical vibration of. Therefore, the damping member can surely contribute to the damping of the vertical vibration of the vibration damping object.

請求項7に示す発明は、請求項6に記載のチューンドマスダンパーであって、
前記第2弾性部材は、上下方向に沿った中心軸回りに線材を螺旋状に旋回してなるコイルばねであり、
前記減衰部材は、中心軸が上下方向を向きつつ前記コイルばねの内周側に収容された棒状粘弾性体であり、
前記連結部材は、前記コイルばねの上端と前記棒状粘弾性体の上端面とに接着される上側板部材と、前記コイルばねの下端と前記棒状粘弾性体の下端面とに接着される下側板部材と、を有することを特徴とする。
The invention shown in claim 7 is the tuned mass damper according to claim 6.
The second elastic member is a coil spring formed by spirally swirling a wire rod around a central axis along the vertical direction.
The damping member is a rod-shaped viscoelastic body housed on the inner peripheral side of the coil spring while the central axis faces in the vertical direction.
The connecting member includes an upper plate member bonded to the upper end of the coil spring and the upper end surface of the rod-shaped viscoelastic body, and a lower plate bonded to the lower end of the coil spring and the lower end surface of the rod-shaped viscoelastic body. It is characterized by having a member and.

上記請求項7に示す発明によれば、減衰部材としての棒状粘弾性体は、第2弾性部材としてのコイルばねの内周側に収容されている。また、連結部材としての上側板部材は、コイルばねの上端と棒状粘弾性体の上端面とに接着され、同じく連結部材としての下側板部材は、コイルばねの下端と棒状粘弾性体の下端面とに接着されている。そのため、質量体の上下振動に伴って上記のコイルばねに入力される上下変位を、上側板部材及び下側板部材を介して棒状粘弾性体にも確実に入力することができて、これにより、当該棒状粘弾性体も質量体の上下振動に連動して速やかに上下方向に変形する。よって、当該棒状粘弾性体たる減衰部材を、制振対象物の上下振動の減衰に確実に寄与させることができる。 According to the invention of claim 7, the rod-shaped viscoelastic body as the damping member is housed on the inner peripheral side of the coil spring as the second elastic member. Further, the upper plate member as a connecting member is adhered to the upper end surface of the coil spring and the upper end surface of the rod-shaped viscoelastic body, and the lower plate member as the connecting member is also the lower end surface of the coil spring and the lower end surface of the rod-shaped viscoelastic body. It is glued to and. Therefore, the vertical displacement input to the coil spring due to the vertical vibration of the mass body can be reliably input to the rod-shaped viscoelastic body via the upper plate member and the lower plate member. The rod-shaped viscoelastic body also rapidly deforms in the vertical direction in conjunction with the vertical vibration of the mass body. Therefore, the damping member, which is a rod-shaped viscoelastic body, can surely contribute to the damping of the vertical vibration of the vibration damping object.

請求項8に示す発明は、請求項7に記載のチューンドマスダンパーであって、
前記コイルばねの前記中心軸の平面位置が、前記棒状粘弾性体の前記上端面及び前記下端面に含まれていることを特徴とする。
The invention shown in claim 8 is the tuned mass damper according to claim 7.
The plane position of the central axis of the coil spring is included in the upper end surface and the lower end surface of the rod-shaped viscoelastic body.

上記請求項8に示す発明によれば、第2弾性部材としてのコイルばねの中心軸の平面位置が、減衰部材としての棒状粘弾性体の上端面及び下端面に含まれている。よって、質量体の上下振動に伴って上記のコイルばねに入力される上下変位を、上記の上端面及び下端面を介して棒状粘弾性体にも安定して入力することができる。 According to the eighth aspect of the invention, the plane position of the central axis of the coil spring as the second elastic member is included in the upper end surface and the lower end surface of the rod-shaped viscoelastic body as the damping member. Therefore, the vertical displacement input to the coil spring due to the vertical vibration of the mass body can be stably input to the rod-shaped viscoelastic body via the upper end surface and the lower end surface.

請求項9に示す発明は、請求項1乃至8の何れかに記載のチューンドマスダンパーであって、
前記第1弾性部材には、粘弾性の減衰部材が一体化されていないことを特徴とする。
The invention shown in claim 9 is the tuned mass damper according to any one of claims 1 to 8.
The first elastic member is characterized in that a viscoelastic damping member is not integrated.

上記請求項9に示す発明によれば、第1弾性部材には、粘弾性の減衰部材が一体化されていない。よって、一体化の不均一性の影響を受けることなく、当該第1弾性部材は、質量体が安定して上下振動するように、同質量体を安定して支持することができる。そして、これにより、質量体のロッキング振動をより効果的に防ぐことができる。 According to the invention of claim 9, the viscoelastic damping member is not integrated with the first elastic member. Therefore, the first elastic member can stably support the mass body so that the mass body vibrates up and down stably without being affected by the non-uniformity of integration. As a result, the locking vibration of the mass body can be prevented more effectively.

本発明によれば、減衰部材が一体化された弾性部材をTMDに用いることで起こり得るTMDの質量体のロッキング振動を防ぐことができる。 According to the present invention, it is possible to prevent the locking vibration of the mass body of the TMD that may occur by using the elastic member with the damping member integrated in the TMD.

図1Aは、ダンピングコイルばね40’を用いたTMD10’の概略縦断面図であり、図1Bは、図1A中のB−B断面図である。FIG. 1A is a schematic vertical sectional view of TMD10'using a damping coil spring 40', and FIG. 1B is a sectional view taken along line BB in FIG. 1A. 図2Aは、本実施形態のTMD10の概略縦断面図であり、図2Bは、図2A中のB−B断面図である。FIG. 2A is a schematic vertical sectional view of TMD10 of the present embodiment, and FIG. 2B is a sectional view taken along line BB in FIG. 2A. コイルばね41の外周部を粘弾性シート45sで覆うことで形成された減衰部材の一例としての筒状部材45の概略斜視図である。It is a schematic perspective view of a tubular member 45 as an example of a damping member formed by covering the outer peripheral portion of a coil spring 41 with a viscoelastic sheet 45s. 二重床構造の概略側面図である。It is a schematic side view of a double floor structure. 図5Aは、TMD10aの変形例の概略側面図であり、図5Bは、図5A中のB−B断面図である。5A is a schematic side view of a modified example of TMD10a, and FIG. 5B is a sectional view taken along line BB in FIG. 5A. TMD10bのその他の実施形態の概略縦断面図である。FIG. 3 is a schematic vertical sectional view of another embodiment of TMD10b. TMD10cのその他の実施形態の概略側面図である。It is a schematic side view of another embodiment of TMD10c.

===本実施形態===
図2A及び図2Bは、本実施形態のTMD10の説明図である。図2Aは、TMD10の概略縦断面図であり、図2Bは、図2A中のB−B断面図である。なお、図2A中では、コイルばね41等のTMD10の一部の構成を側面視で示している。
=== This embodiment ===
2A and 2B are explanatory views of the TMD 10 of the present embodiment. FIG. 2A is a schematic vertical sectional view of TMD10, and FIG. 2B is a sectional view taken along line BB in FIG. 2A. In FIG. 2A, a part of the configuration of the TMD 10 such as the coil spring 41 is shown from the side view.

このTMD10は、制振対象物となる構造床等の床1の上方に配置されている。そして、基本的に、このTMD10では、床1の上方に支持された質量体20が、床1の上下振動に同調して略逆位相の上下振動をすることにより、床1の上下振動を抑制する。 The TMD 10 is arranged above a floor 1 such as a structural floor that is a vibration damping object. Basically, in this TMD 10, the mass body 20 supported above the floor 1 suppresses the vertical vibration of the floor 1 by synchronizing with the vertical vibration of the floor 1 and vibrating the floor 1 in substantially opposite phases. To do.

このTMD10は、上記の質量体20と、同質量体20と床1の上面1suとの間に互いに並列に介挿されて質量体20を支持する4つの第1弾性部材30,30…と、同質量体20と床1の上面1suとの間に上記第1弾性部材30と並列に介挿されて同質量体20を支持する1つの第2弾性部材41と、当該第2弾性部材41に並列に設けられつつ同第2弾性部材41に一体化された減衰部材45と、を有する。 The TMD 10 includes four first elastic members 30, 30, ... Which are inserted in parallel between the mass body 20 and the upper surface 1su of the mass body 20 and the floor 1 to support the mass body 20. One second elastic member 41 that is inserted in parallel with the first elastic member 30 between the same mass body 20 and the upper surface 1su of the floor 1 to support the same mass body 20, and the second elastic member 41. It has a damping member 45 which is provided in parallel and integrated with the second elastic member 41.

質量体20は、例えば平面視略矩形形状の鋼製等の金属製部材であり、この例では、所定厚さの一枚の矩形鋼板が使用されている。但し、何等これに限らない。例えば、質量が足りない場合には、複数枚の矩形鋼板を積層して使用しても良い。 The mass body 20 is, for example, a metal member such as steel having a substantially rectangular shape in a plan view. In this example, a single rectangular steel plate having a predetermined thickness is used. However, it is not limited to this. For example, when the mass is insufficient, a plurality of rectangular steel plates may be laminated and used.

第1弾性部材30は、例えば鋼製の線材を上下方向に沿った中心軸回りに螺旋状に旋回してなるコイルばね30である。 The first elastic member 30 is, for example, a coil spring 30 formed by spirally turning a steel wire rod around a central axis along the vertical direction.

また、第2弾性部材41も、同じく鋼製の線材を上下方向に沿った中心軸回りに螺旋状に旋回してなるコイルばね41である。但し、このコイルばね41の外周には、減衰部材として機能する粘弾性の筒状部材45が設けられている。すなわち、当該粘弾性の筒状部材45がコイルばね41の外周面の全周を覆いながら、当該筒状部材45の内周面がコイルばね41の外周部に接着剤で接着一体化されている。よって、質量体20の上下振動に伴ってコイルばね41に入力される上下変位が、当該コイルばね41を介して筒状部材45にも入力されて、当該筒状部材45も質量体20の上下振動に連動して上下方向に変形する。そして、これにより、当該筒状部材45も、その粘弾性に基づいて床1の上下振動を減衰する。 Further, the second elastic member 41 is also a coil spring 41 formed by spirally rotating a steel wire rod around a central axis along the vertical direction. However, a viscoelastic tubular member 45 that functions as a damping member is provided on the outer periphery of the coil spring 41. That is, while the viscoelastic tubular member 45 covers the entire outer peripheral surface of the coil spring 41, the inner peripheral surface of the tubular member 45 is adhesively integrated with the outer peripheral portion of the coil spring 41. .. Therefore, the vertical displacement input to the coil spring 41 due to the vertical vibration of the mass body 20 is also input to the tubular member 45 via the coil spring 41, and the tubular member 45 also moves up and down the mass body 20. It deforms in the vertical direction in conjunction with vibration. As a result, the tubular member 45 also attenuates the vertical vibration of the floor 1 based on its viscoelasticity.

なお、この例では、かかる筒状部材45は、アクリル系樹脂製の粘弾性シート45sを材料として形成されている。すなわち、図3の概略斜視図に示すように、当該粘弾性シート45sを、コイルばね41の外周部に周方向に沿って巻き付けて接着剤で接着するとともに、当該シート45sにおいて周方向に対向する小口面45sk,45sk同士を突き合わせて接着剤で接合することにより、同シート45sを筒状の形態にしている。そのため、この例では、同シート45sの小口面45sk,45sk同士を接合してなる接合部45sjが、周方向の1箇所に存在しているが、何等これに限らない。すなわち、予め筒状に連続して成形された粘弾性部材を筒軸方向に延ばす等することにより、上記の筒状部材45を、接合部45sjが存在しないシームレス形態で形成しても良い。 In this example, the tubular member 45 is formed of a viscoelastic sheet 45s made of an acrylic resin as a material. That is, as shown in the schematic perspective view of FIG. 3, the viscoelastic sheet 45s is wound around the outer peripheral portion of the coil spring 41 along the circumferential direction and adhered with an adhesive, and the sheet 45s faces the circumferential direction. The sheet 45s is formed into a tubular shape by abutting the fore-edge surfaces 45sk and 45sk and joining them with an adhesive. Therefore, in this example, the joint portion 45sj formed by joining the edge surfaces 45sk and 45sk of the sheet 45s to each other exists at one place in the circumferential direction, but the present invention is not limited to this. That is, the viscoelastic member 45, which is continuously formed in a tubular shape in advance, may be formed in a seamless form in which the joint portion 45sj does not exist by extending the viscoelastic member in the tubular axial direction.

ところで、上記のように第2弾性部材41と筒状部材45とを一体化すると、図1A及び図1Bを参照して既述のように、当該一体化の不均一性等に起因して質量体20がロッキング振動し易くなる。そして、これにより、床1の上下振動に同調して質量体20を略逆位相で上下振動させることが困難となって、その結果、床1の上下振動の抑制効果が減退してしまう恐れがある。 By the way, when the second elastic member 41 and the tubular member 45 are integrated as described above, the mass is caused by the non-uniformity of the integration and the like as described above with reference to FIGS. 1A and 1B. The body 20 is likely to rock and vibrate. As a result, it becomes difficult to vibrate the mass body 20 up and down in substantially opposite phases in synchronization with the up and down vibration of the floor 1, and as a result, the effect of suppressing the up and down vibration of the floor 1 may be diminished. is there.

そこで、本実施形態では、図2Bに示すように、筒状部材45たる減衰部材45が一体化された第2弾性部材41を、平面視略矩形形状の質量体20の平面中心C20su又はその近傍位置に配しているとともに、当該第2弾性部材41を周囲から囲むように4つの各第1弾性部材30,30…を同質量体20の四隅部にそれぞれ配置している。そして、これにより、これら各第1弾性部材30,30…は、それぞれ、第2弾性部材41よりも質量体20の重心の位置PG20から水平方向に関して遠い位置で同質量体20を支持している
すなわち、質量体20の重心の位置PG20(以下、平面位置PG20とも言う)は、質量体20の上面20suにおける平面中心C20suに位置しているが、この重心の平面位置PG20と4つの各第1弾性部材30,30…との水平方向の距離L30は、当該重心の平面位置PG20と第2弾性部材41との水平方向の距離L41よりも大きくなっている。更に詳しく言うと、重心の平面位置PG20と各第1弾性部材30の平面中心C30との水平距離L30は、当該重心の平面位置PG20と第2弾性部材41の平面中心C41との水平方向の距離L41(不図示)よりも大きくなっている。
Therefore, in the present embodiment, as shown in FIG. 2B, the second elastic member 41 in which the damping member 45, which is the tubular member 45, is integrated, is formed at or near the plane center C20su of the mass body 20 having a substantially rectangular shape in a plan view. In addition to being arranged at positions, four first elastic members 30, 30 ... Are arranged at the four corners of the same mass body 20 so as to surround the second elastic member 41 from the periphery. As a result, each of the first elastic members 30, 30 ... Supports the same mass body 20 at a position farther in the horizontal direction from the position PG 20 of the center of gravity of the mass body 20 than the second elastic member 41, respectively . ..
That is, the position PG20 of the center of gravity of the mass body 20 (hereinafter, also referred to as the plane position PG20) is located at the plane center C20su on the upper surface 20su of the mass body 20, but the plane position PG20 of the center of gravity and each of the four firsts. The horizontal distance L30 from the elastic members 30, 30 ... Is larger than the horizontal distance L41 between the plane position PG20 of the center of gravity and the second elastic member 41. More specifically, the horizontal distance L30 between the plane position PG20 of the center of gravity and the plane center C30 of each first elastic member 30 is the horizontal distance between the plane position PG20 of the center of gravity and the plane center C41 of the second elastic member 41. It is larger than L41 (not shown).

よって、質量体20は安定して支持されて、これにより、同質量体20は安定して上下振動することができる。そして、その結果、質量体20のロッキング振動を効果的に防ぐことができる。 Therefore, the mass body 20 is stably supported , whereby the mass body 20 can stably vibrate up and down. As a result, the locking vibration of the mass body 20 can be effectively prevented.

また、図2A及び図2Bを参照してわかるように、これら4つの第1弾性部材30たるコイルばね30には、減衰部材として機能する粘弾性の部材が一体化されていない。よって、各コイルばね30は、減衰部材の一体化の不均一性の影響を受けずに質量体20を安定して支持することができて、このことも、当該質量体20のロッキング振動の防止に有効に寄与する。 Further, as can be seen with reference to FIGS. 2A and 2B, the coil spring 30 which is the four first elastic members 30 does not have a viscoelastic member which functions as a damping member integrated. Therefore, each coil spring 30 can stably support the mass body 20 without being affected by the non-uniformity of the integration of the damping member, which also prevents the locking vibration of the mass body 20. Effectively contributes to.

更に、このように第2弾性部材41の他に第1弾性部材30を有していれば、TMD10の質量体20の上下振動を床1の上下振動に同調させるための調整作業を容易に行うこともできる。すなわち、第2弾性部材41には粘弾性の減衰部材45が一体化されているが、当該減衰部材45の上下方向の剛性値(N/m)は、ばらつく恐れがある。そのため、第2弾性部材41と減衰部材45とを一体化させた場合の上下方向の剛性値(N/m)が設計値からずれてしまう可能性が高く、その場合には、TMD10の質量体20の固有振動数を床1の固有振動数に一致させることが困難になる。しかし、この点につき、上述のように第1弾性部材30を有していれば、上記の剛性値(N/m)のずれ分を補うように、第1弾性部材30の上下方向の剛性値(N/m)を適宜選択することができて、その結果、TMD10の質量体20の固有振動数を床1の固有振動数に一致させる調整作業を比較的容易に行えるようになる。 Further, if the first elastic member 30 is provided in addition to the second elastic member 41 in this way, the adjustment work for synchronizing the vertical vibration of the mass body 20 of the TMD 10 with the vertical vibration of the floor 1 can be easily performed. You can also do it. That is, although the viscoelastic damping member 45 is integrated with the second elastic member 41, the rigidity value (N / m) of the damping member 45 in the vertical direction may vary. Therefore, there is a high possibility that the rigidity value (N / m) in the vertical direction when the second elastic member 41 and the damping member 45 are integrated deviates from the design value, and in that case, the mass body of the TMD 10 It becomes difficult to match the natural frequency of 20 with the natural frequency of the floor 1. However, regarding this point, if the first elastic member 30 is provided as described above, the rigidity value in the vertical direction of the first elastic member 30 is compensated for the deviation of the rigidity value (N / m). (N / m) can be appropriately selected, and as a result, the adjustment work for matching the natural frequency of the mass body 20 of the TMD 10 to the natural frequency of the floor 1 can be performed relatively easily.

また、このTMD10は、上述のように4つの第1弾性部材30,30…と1つの第2弾性部材41とを有しているが、ここで、この例では、全4つの第1弾性部材30,30…の上下方向の剛性値(N/m)の合計値と、全1つの第2弾性部材41の上下方向の剛性値(N/m)の合計値とを比較した場合に、前者の合計値の方が後者の合計値よりも大きくなっている。よって、質量体20を第1弾性部材30で安定して支持することができて、このことも、質量体20のロッキング振動の防止に有効に寄与し得る。 Further, this TMD 10 has four first elastic members 30, 30 ... And one second elastic member 41 as described above, but here, in this example, all four first elastic members When the total value of the vertical rigidity values (N / m) of 30, 30 ... Is compared with the total value of the vertical rigidity values (N / m) of all one second elastic member 41, the former The total value of is larger than the total value of the latter. Therefore, the mass body 20 can be stably supported by the first elastic member 30, which can also effectively contribute to the prevention of the locking vibration of the mass body 20.

更に、この例では、図2Bに示すように、質量体20の重心の平面位置PG20は、第2弾性部材41としてのコイルばね41の内周側に位置している。よって、当該コイルばね41も、質量体20が上下方向に安定して振動するように同質量体20を支持することができて、このことも、質量体20のロッキング振動の防止に有効に寄与し得る。 Further, in this example, as shown in FIG. 2B, the plane position PG20 of the center of gravity of the mass body 20 is located on the inner peripheral side of the coil spring 41 as the second elastic member 41. Therefore, the coil spring 41 can also support the mass body 20 so that the mass body 20 vibrates stably in the vertical direction, which also effectively contributes to the prevention of the locking vibration of the mass body 20. Can be done.

ところで、この例では、これら4つの全ての第1弾性部材30,30…が、第2弾性部材41よりも質量体20の重心の平面位置PG20から離れた位置に配置されているが、何等これに限らない。すなわち、少なくとも3つの第1弾性部材30,30,30が、第2弾性部材41よりも質量体20の重心の平面位置PG20から離れた位置に配置されていれば、同質量体20を安定して支持することができて、これにより、同質量体20のロッキング振動の防止を図れる。そのため、4つの第1弾性部材30,30…のうちの何れか1つの第1弾性部材30については、第2弾性部材41よりも質量体20の重心の位置PG20から近い位置に配されていても良い。 By the way, in this example, all four first elastic members 30, 30 ... Are arranged at positions farther from the plane position PG20 of the center of gravity of the mass body 20 than the second elastic member 41. Not limited to. That is, if at least three first elastic members 30, 30, 30 are arranged at positions farther from the plane position PG20 of the center of gravity of the mass body 20 than the second elastic member 41, the mass body 20 is stable. able to support Te, thereby, thereby preventing the rocking of the weight member 20. Therefore, the first elastic member 30 of any one of the four first elastic members 30, 30 ... Is arranged closer to the position PG20 of the center of gravity of the mass body 20 than the second elastic member 41. Is also good.

また、必要に応じて、制振対象物としての床1の構成を、図4の概略側面図に示すような二重床構造にしても良い。すなわち、床1の上方に複数の二重床ユニット3,3…を配置し、各二重床ユニット3が有する複数の脚部3L,3L…を床1の上面1suに載置して支持させても良い。そして、このような場合にも、TMD10が床1の上下振動を抑制することで、当該二重床構造において第2の床となる二重床ユニット3の上面3suの上下振動も抑制可能となる。 Further, if necessary, the configuration of the floor 1 as the vibration damping object may be a double floor structure as shown in the schematic side view of FIG. That is, a plurality of double floor units 3, 3 ... Are arranged above the floor 1, and a plurality of legs 3L, 3L ... Having each double floor unit 3 are placed and supported on the upper surface 1su of the floor 1. You may. Even in such a case, the TMD 10 suppresses the vertical vibration of the floor 1, so that the vertical vibration of the upper surface 3su of the double floor unit 3 which is the second floor in the double floor structure can also be suppressed. ..

図5Aは、TMD10aの変形例の概略側面図である。また、図5Bは、図5A中のB−B断面図である。なお、図5A中では、コイルばね41等のTMD10aの一部の構成を側面視で示している。 FIG. 5A is a schematic side view of a modified example of the TMD 10a. Further, FIG. 5B is a cross-sectional view taken along the line BB in FIG. 5A. In FIG. 5A, a part of the configuration of the TMD 10a such as the coil spring 41 is shown from the side view.

上述の実施形態では、図2Aに示すように減衰部材として筒状部材45を用い、当該筒状部材45の内周側に第2弾性部材41を配置していた。この点につき、この変形例では、図5A及び図5Bに示すように、第2弾性部材41たるコイルばね41の内周側に棒状の減衰部材47を収容している点で主に相違する。そして、これ以外の点は、概ね上述の実施形態と同じである。例えば、質量体20、第1弾性部材30、及び第2弾性部材41の各構成については、上述の実施形態と同じである。よって、以下では、主に上記の相違点について説明し、同じ構成については、同じ符号を付してその説明については省略する。 In the above-described embodiment, as shown in FIG. 2A, the tubular member 45 is used as the damping member, and the second elastic member 41 is arranged on the inner peripheral side of the tubular member 45. Regarding this point, as shown in FIGS. 5A and 5B, this modification is mainly different in that a rod-shaped damping member 47 is housed on the inner peripheral side of the coil spring 41 which is the second elastic member 41. The other points are substantially the same as those of the above-described embodiment. For example, the configurations of the mass body 20, the first elastic member 30, and the second elastic member 41 are the same as those in the above-described embodiment. Therefore, in the following, the above differences will be mainly described, and the same components will be designated by the same reference numerals and the description thereof will be omitted.

同図5A及び図5Bに示すように、この変形例では、減衰部材47としてアクリル系樹脂製の棒状粘弾性体47が使用されているとともに、当該棒状粘弾性体47は、その中心軸C47が上下方向を向いた姿勢で、第2弾性部材41としてのコイルばね41の内周側に収容されている。また、同コイルばね41と棒状粘弾性体47とは、連結部材49を介して連結されることにより一体化されている。詳しくは、同連結部材49は、コイルばね41の上端と棒状粘弾性体47の上端面47suとの両者に接着剤で接着される平面視円形で鋼製の上側板部材49uと、コイルばね41の下端と棒状粘弾性体47の下端面47sdとの両者に接着剤で接着される平面視円形で鋼製の下側板部材49dと、を有する。そして、これら板部材49u,49dを介してコイルばね41と棒状粘弾性体47とは一体化されている。 As shown in FIGS. 5A and 5B, in this modified example, a rod-shaped viscoelastic body 47 made of acrylic resin is used as the damping member 47, and the rod-shaped viscoelastic body 47 has a central axis C47 thereof. It is housed on the inner peripheral side of the coil spring 41 as the second elastic member 41 in a vertically oriented posture. Further, the coil spring 41 and the rod-shaped viscoelastic body 47 are integrated by being connected via a connecting member 49. Specifically, the connecting member 49 includes a plan-view circular steel upper plate member 49u and a coil spring 41 that are adhered to both the upper end of the coil spring 41 and the upper end surface 47su of the rod-shaped viscoelastic body 47 with an adhesive. It has a steel lower plate member 49d having a circular shape in a plan view, which is adhered to both the lower end of the rod-shaped viscoelastic body 47 and the lower end surface 47sd of the rod-shaped viscoelastic body 47 with an adhesive. The coil spring 41 and the rod-shaped viscoelastic body 47 are integrated with each other via the plate members 49u and 49d.

よって、質量体20の上下振動に伴って上記のコイルばね41に入力される上下変位を、これら上側板部材49u及び下側板部材49dを介して棒状粘弾性体47にも速やかに入力することができて、これにより、当該棒状粘弾性体47も質量体20の上下振動に連動して上下方向に変形する。そのため、当該棒状粘弾性体47を、床1の上下振動を減衰する減衰部材47として確実に機能させることができる。 Therefore, the vertical displacement input to the coil spring 41 due to the vertical vibration of the mass body 20 can be quickly input to the rod-shaped viscoelastic body 47 via the upper plate member 49u and the lower plate member 49d. As a result, the rod-shaped viscoelastic body 47 also deforms in the vertical direction in conjunction with the vertical vibration of the mass body 20. Therefore, the rod-shaped viscoelastic body 47 can be reliably functioned as a damping member 47 that attenuates the vertical vibration of the floor 1.

また、同図5Bに示すように、この変形例では、コイルばね41の中心軸C41の平面位置が、棒状粘弾性体47の上端面47su及び下端面47sdにそれぞれ含まれている。よって、質量体20の上下振動に伴ってコイルばね41に入力される上下変位を、上記の上端面47su及び下端面47sdを介して棒状粘弾性体47に安定して入力することができて、このことも、上記の減衰作用の向上に有効に寄与する。 Further, as shown in FIG. 5B, in this modified example, the plane position of the central axis C41 of the coil spring 41 is included in the upper end surface 47su and the lower end surface 47sd of the rod-shaped viscoelastic body 47, respectively. Therefore, the vertical displacement input to the coil spring 41 due to the vertical vibration of the mass body 20 can be stably input to the rod-shaped viscoelastic body 47 via the upper end surface 47su and the lower end surface 47sd. This also effectively contributes to the improvement of the above-mentioned damping action.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。例えば、以下に示すような変形が可能である。
=== Other embodiments ===
Although the embodiments of the present invention have been described above, the above-described embodiments are for facilitating the understanding of the present invention, and are not for limiting the interpretation of the present invention. Further, the present invention can be changed or improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof. For example, the following modifications are possible.

上述の実施形態では、第1弾性部材30としてコイルばね30を用いていたが、何等これに限らない。例えば、板ばね等の他の種類のばねを用いても良い。 In the above-described embodiment, the coil spring 30 is used as the first elastic member 30, but the present invention is not limited to this. For example, other types of springs such as leaf springs may be used.

上述の実施形態では、1つの質量体20につき4つの第1弾性部材30,30…を設けていたが、その個数は何等上記の4つに限らない。すなわち、その個数は、3つ以上であれば良い。例えば、第1弾性部材30を3つだけ設けても良いし、5つ以上設けても良い。 In the above-described embodiment, four first elastic members 30, 30 ... Are provided for one mass body 20 , but the number thereof is not limited to the above four. That is, the number may be three or more. For example, only three first elastic members 30 may be provided, or five or more first elastic members 30 may be provided.

上述の実施形態では、1つの質量体20につき1つの第2弾性部材41を設けていたが、その個数は1つ以上であれば、何等これに限らない。すなわち、第2弾性部材41を2つ以上設けても良い。 In the above-described embodiment, one second elastic member 41 is provided for each mass body 20, but the number is not limited to this as long as the number is one or more. That is, two or more second elastic members 41 may be provided.

上述の実施形態では、質量体20の平面形状を略矩形状としていたが、何等これに限らない。例えば、平面視円形状としても良いし、三角形等の四角形以外の多角形状としても良い。 In the above-described embodiment, the planar shape of the mass body 20 is substantially rectangular, but the present invention is not limited to this. For example, it may be a circular shape in a plan view, or a polygonal shape other than a quadrangle such as a triangle.

上述の実施形態では、制振対象物として床1を例示したが、何等これに限らない。すなわち、上方又は下方に質量体20を配置可能なものであれば、それを制振対象物として、上述の実施形態のTMD10や変形例のTMD10aを適用しても良い。 In the above-described embodiment, the floor 1 is exemplified as the vibration damping object, but the present invention is not limited to this. That is, as long as the mass body 20 can be arranged above or below, the TMD 10 of the above-described embodiment or the TMD 10a of the modified example may be applied using the mass body 20 as a vibration damping object.

上述の実施形態では、減衰部材としての筒状部材45及び棒状粘弾性体47の素材例としてアクリル系樹脂を示したが、何等これに限らない。すなわち、粘弾性の性状を有した素材であれば、上記以外の素材に基づいて筒用部材45及び棒状粘弾性体47を形成しても良い。 In the above-described embodiment, acrylic resin is shown as a material example of the tubular member 45 as the damping member and the rod-shaped viscoelastic body 47, but the present invention is not limited thereto. That is, as long as the material has viscoelastic properties, the tubular member 45 and the rod-shaped viscoelastic body 47 may be formed based on a material other than the above.

上述の実施形態では、制振対象物として床1を例示し、床1の上方に質量体20を配置していた。しかし、何等これに限らず、図6の概略縦断面図に示すように、床1の下方に質量体20を配置しても良い。そして、この場合には、TMD10bは、例えば、上記の質量体20と、同質量体20と床1の下面1sdとの間に互いに並列に介挿されて質量体20を支持する4つの第1弾性部材30,30…と、同質量体20と床1の下面1sdとの間に上記第1弾性部材30と並列に介挿されて同質量体20を支持する1つの第2弾性部材41と、当該第2弾性部材41に並列に設けられつつ同第2弾性部材41に一体化された減衰部材45と、を有することとなる。
また、図7の概略側面図のような二重床構造の場合には、二重床ユニット3の下面3sdに質量体20を支持させても良い。そして、その場合には、TMD10cは、例えば、上記の質量体20と、同質量体20と二重床ユニット3の下面3sdとの間に互いに並列に介挿されて質量体20を支持する4つの第1弾性部材30,30…と、同質量体20と二重床ユニット3の下面3sdとの間に上記第1弾性部材30と並列に介挿されて同質量体20を支持する1つの第2弾性部材41と、当該第2弾性部材41に並列に設けられつつ同第2弾性部材41に一体化された減衰部材45と、を有することとなる。また、この場合の直接の制振対象物は、二重床ユニット3となり、床1は、二重床ユニット3を介して間接的に制振されることとなる。
In the above-described embodiment, the floor 1 is illustrated as the vibration damping object, and the mass body 20 is arranged above the floor 1. However, the present invention is not limited to this, and the mass body 20 may be arranged below the floor 1 as shown in the schematic vertical sectional view of FIG. Then, in this case, the TMD 10b is inserted in parallel with each other, for example, between the above-mentioned mass body 20 and the mass body 20 and the lower surface 1sd of the floor 1, and supports the mass body 20. The elastic members 30, 30 ..., And one second elastic member 41 that is inserted in parallel with the first elastic member 30 between the same mass body 20 and the lower surface 1sd of the floor 1 to support the same mass body 20. The damping member 45, which is provided in parallel with the second elastic member 41 and is integrated with the second elastic member 41, is provided.
Further, in the case of the double floor structure as shown in the schematic side view of FIG. 7, the mass body 20 may be supported by the lower surface 3sd of the double floor unit 3. Then, in that case, the TMD 10c supports the mass body 20 by being inserted in parallel with each other, for example, between the above-mentioned mass body 20 and the mass body 20 and the lower surface 3sd of the double floor unit 3. One that supports the same mass body 20 by being inserted in parallel with the first elastic member 30 between the first elastic members 30, 30 ... It has a second elastic member 41 and a damping member 45 which is provided in parallel with the second elastic member 41 and is integrated with the second elastic member 41. Further, the direct vibration damping object in this case is the double floor unit 3, and the floor 1 is indirectly vibration-damped via the double floor unit 3.

1 床(制振対象物)、1su 上面、1sd 下面、
3 二重床ユニット、3su 上面、3sd 下面、
3L 脚部、
10 TMD(チューンドマスダンパー)、
10a TMD(チューンドマスダンパー)、
10b TMD(チューンドマスダンパー)、
10c TMD(チューンドマスダンパー)、
20 質量体、20su 上面、
30 コイルばね(第1弾性部材)、
41 コイルばね(第2弾性部材)、
45 筒状部材(減衰部材)、45s 粘弾性シート、45sk 小口面、
45sj 接合部、
47 棒状粘弾性体(減衰部材)、上端面 47su、下端面 47sd、
49 連結部材、49u 上側板部材、49d 下側板部材、
C20su 平面中心、C30 平面中心、C41 中心軸(平面中心)、
C47 中心軸、PG20 平面位置(位置)、
1 floor (vibration damping object), 1su upper surface, 1sd lower surface,
3 Double floor unit, 3su upper surface, 3sd lower surface,
3L legs,
10 TMD (tuned mass damper),
10a TMD (tuned mass damper),
10b TMD (tuned mass damper),
10c TMD (tuned mass damper),
20 mass body, 20su top surface,
30 Coil spring (first elastic member),
41 Coil spring (second elastic member),
45 tubular member (damping member), 45s viscoelastic sheet, 45sk edge surface,
45sj joint,
47 rod-shaped viscoelastic body (damping member), upper end surface 47su, lower end surface 47sd,
49 connecting member, 49u upper plate member, 49d lower plate member,
C20su plane center, C30 plane center, C41 center axis (plane center),
C47 central axis, PG20 plane position (position),

Claims (9)

制振対象物の上方又は下方に配置された質量体が、前記制振対象物の上下振動に同調して上下振動することにより、前記制振対象物の前記上下振動を抑制するチューンドマスダンパーであって、
前記質量体と前記制振対象物との間に互いに並列に介挿されて前記質量体を支持する少なくとも3つの第1弾性部材と、
前記質量体と前記制振対象物との間に前記第1弾性部材と並列に介挿されて前記質量体を支持する少なくとも1つの第2弾性部材と、
前記第2弾性部材に並列に設けられつつ前記第2弾性部材に一体化された減衰部材と、を有し、
前記3つの第1弾性部材と前記質量体の重心の位置との水平方向の距離は、前記第2弾性部材と前記重心の位置との水平方向の距離よりも大きいことを特徴とするチューンドマスダンパー。
A tuned mass damper that suppresses the vertical vibration of the vibration damping object by causing the mass body placed above or below the vibration damping object to vibrate vertically in synchronization with the vertical vibration of the vibration damping object. There,
At least three first elastic members that are interposed between the mass body and the vibration damping object in parallel to support the mass body, and
At least one second elastic member that supports the mass body by being inserted in parallel with the first elastic member between the mass body and the vibration damping object.
It has a damping member integrated with the second elastic member while being provided in parallel with the second elastic member.
A tuned mass damper characterized in that the horizontal distance between the three first elastic members and the position of the center of gravity of the mass body is larger than the horizontal distance between the second elastic member and the position of the center of gravity. ..
請求項1に記載のチューンドマスダンパーであって、
前記質量体と前記制振対象物との間に位置する全ての前記第1弾性部材の前記上下方向の剛性値(N/m)の合計値は、前記質量体と前記制振対象物との間に位置する全ての前記第2弾性部材の前記上下方向の剛性値(N/m)の合計値よりも大きいことを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 1.
The total value of the vertical rigidity values (N / m) of all the first elastic members located between the mass body and the vibration damping object is the value of the mass body and the vibration damping object. A tuned mass damper characterized in that it is larger than the total value of the rigidity values (N / m) in the vertical direction of all the second elastic members located between them.
請求項1又は2に記載のチューンドマスダンパーであって、
前記第2弾性部材と前記減衰部材とは、接着剤で接着されることにより一体化されていることを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 1 or 2.
A tuned mass damper characterized in that the second elastic member and the damping member are integrated by being adhered with an adhesive.
請求項3に記載のチューンドマスダンパーであって、
前記第2弾性部材は、上下方向に沿った中心軸回りに線材を螺旋状に旋回してなるコイルばねであり、
前記減衰部材は、前記コイルばねの外周面の全周を覆う筒状部材であり、
前記筒状部材の内周面が前記コイルばねの外周部に前記接着剤で接着されていることを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 3.
The second elastic member is a coil spring formed by spirally swirling a wire rod around a central axis along the vertical direction.
The damping member is a tubular member that covers the entire circumference of the outer peripheral surface of the coil spring.
A tuned mass damper characterized in that the inner peripheral surface of the tubular member is adhered to the outer peripheral portion of the coil spring with the adhesive.
請求項4に記載のチューンドマスダンパーであって、
前記第2弾性部材は1つだけ設けられ、
前記質量体の前記重心の平面位置は、前記第2弾性部材としての前記コイルばねの内周側に位置していることを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 4.
Only one second elastic member is provided.
A tuned mass damper characterized in that the plane position of the center of gravity of the mass body is located on the inner peripheral side of the coil spring as the second elastic member.
請求項1又は2に記載のチューンドマスダンパーであって、
前記第2弾性部材と前記減衰部材とは、連結部材を介して連結されることにより一体化されていることを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 1 or 2.
A tuned mass damper characterized in that the second elastic member and the damping member are integrated by being connected via a connecting member.
請求項6に記載のチューンドマスダンパーであって、
前記第2弾性部材は、上下方向に沿った中心軸回りに線材を螺旋状に旋回してなるコイルばねであり、
前記減衰部材は、中心軸が上下方向を向きつつ前記コイルばねの内周側に収容された棒状粘弾性体であり、
前記連結部材は、前記コイルばねの上端と前記棒状粘弾性体の上端面とに接着される上側板部材と、前記コイルばねの下端と前記棒状粘弾性体の下端面とに接着される下側板部材と、を有することを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 6.
The second elastic member is a coil spring formed by spirally swirling a wire rod around a central axis along the vertical direction.
The damping member is a rod-shaped viscoelastic body housed on the inner peripheral side of the coil spring while the central axis faces in the vertical direction.
The connecting member includes an upper plate member that is bonded to the upper end of the coil spring and the upper end surface of the rod-shaped viscoelastic body, and a lower plate that is bonded to the lower end of the coil spring and the lower end surface of the rod-shaped viscoelastic body. A tuned mass damper characterized by having a member and.
請求項7に記載のチューンドマスダンパーであって、
前記コイルばねの前記中心軸の平面位置が、前記棒状粘弾性体の前記上端面及び前記下端面に含まれていることを特徴とするチューンドマスダンパー。
The tuned mass damper according to claim 7.
A tuned mass damper characterized in that the plane position of the central axis of the coil spring is included in the upper end surface and the lower end surface of the rod-shaped viscoelastic body.
請求項1乃至8の何れかに記載のチューンドマスダンパーであって、
前記第1弾性部材には、粘弾性の減衰部材が一体化されていないことを特徴とするチューンドマスダンパー。
The tuned mass damper according to any one of claims 1 to 8.
A tuned mass damper characterized in that a viscoelastic damping member is not integrated with the first elastic member.
JP2016086747A 2016-04-25 2016-04-25 Tuned mass damper Active JP6769085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086747A JP6769085B2 (en) 2016-04-25 2016-04-25 Tuned mass damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086747A JP6769085B2 (en) 2016-04-25 2016-04-25 Tuned mass damper

Publications (2)

Publication Number Publication Date
JP2017198228A JP2017198228A (en) 2017-11-02
JP6769085B2 true JP6769085B2 (en) 2020-10-14

Family

ID=60237696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086747A Active JP6769085B2 (en) 2016-04-25 2016-04-25 Tuned mass damper

Country Status (1)

Country Link
JP (1) JP6769085B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958016B2 (en) * 2017-06-21 2021-11-02 株式会社大林組 Tuned mass damper, tuned mass damper installation structure, and tuned mass damper installation method
CN109826085B (en) * 2018-09-29 2020-02-04 湖北省交通投资集团有限公司 Nonlinear shear type spring assembly
JP2020133283A (en) * 2019-02-21 2020-08-31 大成建設株式会社 Floor ceiling structure
JP7044983B2 (en) * 2020-03-31 2022-03-31 ダイキン工業株式会社 Refrigeration cycle device
CN113931794B (en) * 2020-06-29 2023-05-16 北京金风科创风电设备有限公司 Elastic module and vibration suppression assembly
KR102506696B1 (en) * 2020-08-04 2023-03-06 롯데건설 주식회사 Tuned mass damper structure having sound absorbing structure for reducing floor impact sound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334148A (en) * 1995-06-06 1996-12-17 Tokico Ltd Damping device
JPH10252253A (en) * 1997-03-14 1998-09-22 Ohbayashi Corp Floor vibration control system
JP3835143B2 (en) * 2000-09-04 2006-10-18 株式会社大林組 Vibration control device
JP2009228772A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Damping element and damping device
JP2009243538A (en) * 2008-03-29 2009-10-22 Tokai Rubber Ind Ltd Vibration damping device
JP2011081709A (en) * 2009-10-09 2011-04-21 Tokai Rika Co Ltd Operation lever device
JP2013108518A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Vibration control fixing member
JP2015183723A (en) * 2014-03-20 2015-10-22 スリーエム イノベイティブ プロパティズ カンパニー Tuned mass damper

Also Published As

Publication number Publication date
JP2017198228A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6769085B2 (en) Tuned mass damper
TWI529284B (en) Composite damping connector
JP2015021574A (en) Vibration-reduction stopper structure and vibration-proofing frame with vibration-reduction stopper structure
TW201811648A (en) Vibration isolator
JP6739293B2 (en) Vibrating bowl feeder
JP6378494B2 (en) Seismic isolation structure
JP6958016B2 (en) Tuned mass damper, tuned mass damper installation structure, and tuned mass damper installation method
JP2010084834A (en) Simplified dynamic vibration absorber and vibration damping method
JP6622568B2 (en) Building vibration control structure
JP5240341B2 (en) Isolation device
JP5639766B2 (en) Floor structure
JP2018080804A (en) Vibration control mechanism and ceiling structure
JP7286307B2 (en) Seismic isolation structure
JP7244267B2 (en) Damping structure
JP6010362B2 (en) Resonant shaking table
JP6641761B2 (en) Damping structure
JP6208782B2 (en) Dynamic vibration absorber and floor
JP2016041964A (en) Base-isolated pedestal
JP6456774B2 (en) Vibration control structure
JP2008256170A (en) Base isolation structure
JP7141638B2 (en) Vibration isolation structure
JP2009079718A (en) Seismic response control apparatus
JP6384174B2 (en) Vibration control structure
JP2004060404A (en) Base-isolation device and base-isolation structure
JP6098866B2 (en) Vertical vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6769085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150